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Introduction

In 1972 Zakharov and Shabat solved the nonlinear Schrödinger equation (NLS) using the inverse scattering method. The case of periodic and almost periodic algebro-geometric solutions to the focusing NLS equation were first constructed in 1976 by Its and Kotlyarov [START_REF] Its | Explicit expressions for the solutions of nonlinear Schrödinger equation[END_REF]. The first quasi-rational solutions of NLS equation were constructed in 1983 by Peregrine, nowadays called worldwide Peregrine breathers. In 1986 Eleonski, Akhmediev and Kulagin obtained the two-phase almost periodic solution to the NLS equation and obtained the first higher order analogue of the Peregrine breather [START_REF] Akhmediev | Generation of periodic trains of picosecond pulses in an optical fiber : exact solutions[END_REF]. Other families of higher order were constructed in a series of articles by Akhmediev et al. [START_REF] Akhmediev | Rogue waves and rational solutions of nonlinear Schrödinger equation[END_REF][START_REF] Akhmediev | Exact first order solutions of the nonlinear Schrödinger equation[END_REF] using Darboux transformations. In 2010, it has been shown in [START_REF] Dubard | On multi-rogue waves solutions of the NLS equation and positon solutions of the KdV equation[END_REF] that rational solutions of the NLS equation can be written as a quotient of two Wronskians. With this formulation, it was possible to recover as a particular case, Akhmediev's quasi-rational solution of the NLS equation.

2 Expression of solutions of NLS equation in terms of Wronskian determinant and quasirational limit

Solutions of NLS equation in terms of Wronskian determinant

We recall results obtained in [START_REF] Gaillard | Families of quasi-rational solutions of the NLS equation and multi-rogue waves[END_REF]. We consider the focusing NLS equation

iv t + v xx + 2|v| 2 v = 0. (1) 
From [START_REF] Gaillard | Higher order Peregrine breathers and multi-rogue waves solutions of the NLS equation[END_REF], the solution of the NLS equation can be written in the form v(x, t) = det(I + A 3 (x, t)) det(I + A 1 (x, t)) exp(2it -iϕ).

In [START_REF] Akhmediev | Exact first order solutions of the nonlinear Schrödinger equation[END_REF], the matrix A r = (a νµ ) 1≤ν,µ≤2N (r = 3, 1) is defined by

a νµ = (-1) ǫν λ =µ γ λ + γ ν γ λ -γ µ exp(iκ ν x -2δ ν t + x r,ν + e ν ). (3) 
κ ν , δ ν , γ ν are functions of the parameters λ ν , ν = 1, . . . , 2N satisfying the relations

0 < λ j < 1, λ N +j = -λ j , 1 ≤ j ≤ N. (4) 
They are given by the following equations,

κ ν = 2 1 -λ 2 ν , δ ν = κ ν λ ν , γ ν = 1 -λ ν 1 + λ ν , (5) 
and κ N +j = κ j , δ N +j = -δ j , γ N +j = 1/γ j , j = 1 . . . N.

The terms x r,ν (r = 3, 1) are defined by

x r,ν = (r -1) ln

γ ν -i γ ν + i , 1 ≤ j ≤ 2N. ( 7 
)
The parameters e ν are defined by

e j = ia j -b j , e N +j = ia j + b j , 1 ≤ j ≤ N, (8) 
where a j and b j , for 1 ≤ j ≤ N are arbitrary real numbers. The terms ǫ ν are defined by :

ǫ ν = 0, 1 ≤ ν ≤ N ǫ ν = 1, N + 1 ≤ ν ≤ 2N.
We use the following notations : Θ r,ν = κ ν x/2 + iδ ν t -ix r,ν /2 + γ ν y -ie ν , 1 ≤ ν ≤ 2N . We consider the functions φ r,ν (y) = sin Θ r,ν , 1 ≤ ν ≤ N, φ r,ν (y) = cos Θ r,ν , N + 1 ≤ ν ≤ 2N.

W r (y) = W (φ r,1 , . . . , φ r,2N ) is the Wronskian W r (y) = det[(∂ µ-1 y φ r,ν ) ν, µ∈ [1,...,2N ] ]. [START_REF] Gaillard | Families of quasi-rational solutions of the NLS equation as an extension of higher order Peregrine breathers[END_REF] Then we get the following link between Fredholm and Wronskian determinants [START_REF] Gaillard | Quasi-rational solutions of the NLS equation and rogue waves[END_REF] Proposition 2.1

det(I + A r ) = k r (0) × W r (φ r,1 , . . . , φ r,2N )(0), (11) 
where

k r (y) = 2 2N exp(i 2N ν=1 Θ r,ν ) 2N ν=2 ν-1 µ=1 (γ ν -γ µ )
.

In [START_REF] Gaillard | Higher order Peregrine breathers and multi-rogue waves solutions of the NLS equation[END_REF], the matrix A r is defined by [START_REF] Akhmediev | Generation of periodic trains of picosecond pulses in an optical fiber : exact solutions[END_REF]. It can be deduced the following result :

Proposition 2.2 The function v defined by v(x, t) = W 3 (0) W 1 (0) exp(2it -iϕ). ( 12 
)
is solution of the NLS equation ( 1)

iv t + v xx + 2|v| 2 v = 0.
2.2 Quasi-rational solutions of NLS equation in terms of a limit of a ratio of wronskian determinants

In the following, we take the limit when the parameters λ j → 1 for 1 ≤ j ≤ N and λ j → -1 for N + 1 ≤ j ≤ 2N .

For simplicity, we denote d j the term c j √ 2 . We consider the parameter λ j written in the form

λ j = 1 -2ǫ 2 d 2 j , 1 ≤ j ≤ N. (13) 
When ǫ goes to 0, we realize limited expansions at order p, for 1 ≤ j ≤ N , of the terms κ j = 4d j ǫ(1 -ǫ 2 d 2 j ) 1/2 , δ j = 4d j ǫ(1 -2ǫ 2 d 2 j )(1 -ǫ 2 d 2 j ) 1/2 , γ j = d j ǫ(1 -ǫ 2 d 2 j ) -1/2 , x r,j = (r -1) ln

1+iǫd j (1-ǫ 2 d 2 j ) -1/2 1-iǫd j (1-ǫ 2 d 2 j ) -1/2 , κ N +j = 4d j ǫ(1 -ǫ 2 d 2 j ) 1/2 , δ N +j = -4d j ǫ(1 -2ǫ 2 d 2 j )(1 -ǫ 2 d 2 j ) 1/2 , γ N +j = 1/(d j ǫ)(1 -ǫ 2 d 2 j ) 1/2 , x r,N +j = (r -1) ln 1-iǫd j (1-ǫ 2 d 2 j ) -1/2 1+iǫd j (1-ǫ 2 d 2 j ) -1/2 .
The parameters a j and b j , for 1 ≤ N are chosen in the form

a j = ãj ǫ M -1 , b j = bj ǫ M -1 , 1 ≤ j ≤ N, M = 2N. ( 14 
)
We have the result given in [START_REF] Gaillard | Higher order Peregrine breathers and multi-rogue waves solutions of the NLS equation[END_REF] :

Theorem 2.1 With the parameters λ j defined by [START_REF] Its | Exact integration of nonlinear Schrödinger equation[END_REF], a j and b j chosen as in [START_REF] Its | Explicit expressions for the solutions of nonlinear Schrödinger equation[END_REF], for 1 ≤ j ≤ N , the function v defined by v(x, t) = exp(2it -iϕ)

lim ǫ→0 W 3 (0) W 1 (0) , (15) 
is a quasi-rational solution of the NLS equation ( 1)

iv t + v xx + 2|v| 2 v = 0,
depending on 3N parameters d j , ãj , bj , 1 ≤ j ≤ N .

Expression of solutions of NLS equation in terms of a ratio of two determinants

We construct here solutions of the NLS equation which does not involve Wronskian determinant and a passage to the limit, but which is expressed as a quotient of two determinants. For this we need the following notations :

A ν = κ ν x/2 + iδ ν t -ix 3,ν /2 -ie ν /2, B ν = κ ν x/2 + iδ ν t -ix 1,ν /2 -ie ν /2,
for 1 ≤ ν ≤ 2N , with κ ν , δ ν , x r,ν defined in ( 5), ( 6) and [START_REF] Dubard | Multi-rogue waves solutions of the focusing NLS equation and the KP-i equation[END_REF].

The parameters e ν are defined by [START_REF] Eleonskii | Rational multisoliton solutions to the NLS equation, Soviet Doklady 1986 sect[END_REF]. For simplicity of the reduction, we choose a j and b j in the form

a j = ã1 j 2N -1 ǫ 2N -1 , b j = b1 j 2N -1 ǫ 2N -1 , 1 ≤ j ≤ N. ( 16 
)
Below we use the following notations :

f 4j+1,k = γ 4j-1 k sin A k , f 4j+2,k = γ 4j k cos A k , f 4j+3,k = -γ 4j+1 k sin A k , f 4j+4,k = -γ 4j+2 k cos A k , for 1 ≤ k ≤ N , and
f 4j+1,k = γ 2N -4j-2 k cos A k , f 4j+2,k = -γ 2N -4j-3 k sin A k , f 4j+3,k = -γ 2N -4j-4 k cos A k , f 4j+4,k = γ 2N -4j-5 k sin A k , for N + 1 ≤ k ≤ 2N .
We define the functions g j,k for 1 ≤ j ≤ 2N , 1 ≤ k ≤ 2N in the same way, we replace only the term A k by B k .

g 4j+1,k = γ 4j-1 k sin B k , g 4j+2,k = γ 4j k cos B k , g 4j+3,k = -γ 4j+1 k sin B k , g 4j+4,k = -γ 4j+2 k cos B k ,
for 1 ≤ k ≤ N , and

g 4j+1,k = γ 2N -4j-2 k cos B k , g 4j+2,k = -γ 2N -4j-3 k sin B k , g 4j+3,k = -γ 2N -4j-4 k cos B k , g 4j+4,k = γ 2N -4j-5 k sin B k , for N + 1 ≤ k ≤ 2N .
Then it is clear that q(x, t) := W 3 (0) W 1 (0) can be written as

q(x, t) = ∆ 3 ∆ 1 = det(f j,k ) j, k∈[1,2N ] det(g j,k ) j, k∈[1,2N ] . (17) 
We recall that λ j = 1 -2jǫ 2 . All the functions f j,k and g j,k depend on ǫ. We use the expansions

f j,k (x, t, ǫ) = N -1 l=0 1 (2l)! f j,1 [l]k 2l ǫ 2l + O(ǫ 2N ), f j,1 [l] = ∂ 2l f j,1 ∂ǫ 2l (x, t, 0), f j,1 [0] = f j,1 (x, t, 0), 1 ≤ j ≤ 2N, 1 ≤ k ≤ N, 1 ≤ l ≤ N -1, f j,N +k (x, t, ǫ) = N -1 l=0 1 (2l)! f j,N +1 [l]k 2l ǫ 2l +O(ǫ 2N ), f j,N +1 [l] = ∂ 2l f j,N +1 ∂ǫ 2l (x, t, 0), f j,N +1 [0] = f j,N +1 (x, t, 0), 1 ≤ j ≤ 2N, 1 ≤ k ≤ N, 1 ≤ l ≤ N -1.
We have the same expansions for the functions g j,k .

g j,k (x, t, ǫ) = N -1 l=0 1 (2l)! g j,1 [l]k 2l ǫ 2l + O(ǫ 2N
), g j, [START_REF] Akhmediev | Rogue waves and rational solutions of nonlinear Schrödinger equation[END_REF] [l] = ∂ 2l g j,1 ∂ǫ 2l (x, t, 0),

g j,1 [0] = g j,1 (x, t, 0), 1 ≤ j ≤ 2N, 1 ≤ k ≤ N, 1 ≤ l ≤ N -1, g j,N +k (x, t, ǫ) = N -1 l=0 1 (2l)! g j,N +1 [l]k 2l ǫ 2l +O(ǫ 2N ), g j,N +1 [l] = ∂ 2l g j,N +1 ∂ǫ 2l (x, t, 0), g j,N +1 [0] = g j,N +1 (x, t, 0), 1 ≤ j ≤ 2N, 1 ≤ k ≤ N, N + 1 ≤ k ≤ 2N..
Combining the columns of the determinants appearing in q(x, t) successively to eliminate in each column k (or N + k) of them the powers of ǫ lower than 2(k -1), and factorizing and simplifying each common terms, q(x, t) can be replaced by Q(x, t) Q(x, t) :=

f 1,1 [0] . . . f 1,1 [N -1] f 1,N +1 [0] . . . f 1,N +1 [N -1] f 2,1 [0] . . . f 2,1 [N -1] f 2,N +1 [0] . . . f 2,N +1 [N -1] . . . . . . . . . . . . . . . . . . f 2N,1 [0] . . . f 2N,1 [N -1] f 2N,N +1 [0] . . . f 2N,N +1 [N -1] g 1,1 [0] . . . g 1,1 [N -1] g 1,N +1 [0] . . . g 1,N +1 [N -1] g 2,1 [0] . . . g 2,1 [N -1] g 2,N +1 [0] . . . g 2,N +1 [N -1] . . . . . . . . . . . . . . . . . . g 2N,1 [0] . . . g 2N,1 [N -1] g 2N,N +1 [0] . . . g 2N,N +1 [N -1] (18) 
Then we get the following result :

Proposition 3.1 The function v defined by v(x, t) = exp(2it -iϕ) × Q(x, t) (19) 
is a quasi-rational solution of the NLS equation ( 1)

iv t + v xx + 2|v| 2 v = 0,
where Q(x, t) is defined in (18).

4 Quasi-rational solutions of order N Wa have already constructed in [START_REF] Gaillard | Families of quasi-rational solutions of the NLS equation and multi-rogue waves[END_REF] solutions for the cases N = 1 until N = 9 , and this method gives the same results. We don't reproduce it here. We only give solutions of (NLS) equation in the case N = 10. Because of the length of the expressions of polynomials N and D in the solutions v of the NLS equation defined by

v(x, t) = N (x, t) D(x, t) exp(2it -iϕ),
we only give in the appendix.

If we choose a 1 = 0, b 1 = 0, we obtain the classical Akhmediev's breather : 

Conclusion

The method described in the present paper provides a powerful tool to get explicitly solutions of the NLS equation. As my knowledge, it is the first time that the Peregrine breather of order seven is presented. It confirms the conjecture about the shape of the breather in the (x, t) coordinates, the maximum of amplitude equal to 2N + 1 and the degree of polynomials in x and t here equal to N (N + 1). This new formulation gives an infinite set of non singular solution of NLS equation. It opens a large way to future researches in this domain. 

Figure 1 :

 1 Figure 1: Solution of NLS, N=10, a 1 = 0, b 1 = 0.
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Appendix

In the following, we choose all the parameters a and b equal to 0. The solution of NLS equation takes the form v(x, t) = N (x, t) D(x, t) exp(2it -iϕ).

The polynomials N and D are defined by