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Abstract

In this paper we analyze disinflation policy when a central bank has imperfect information about private
sector inflation expectations but learns about them from economic outcomes, which are in part the result
of the disinflation policy itself. The form of uncertainty is manifested as uncertainty about the effect of past
disinflation policy on the current output gap. This differs from other studies on learning and control in a
monetary policy context (e.g., Ellison, 2006; Svensson and Williams, 2007) that assume uncertainty about
the effects of current policy actions on the economy. We derive the central bank’s optimal disinflation
strategy under active learning (DOP) and compare it with two limiting cases—certainty equivalence policy
(CEP), or passive learning, and a Brainard-style cautionary monetary policy (CP). It turns out that under
the DOP inflation stays between the levels implied by the CEP and the CP. A novel result—e.g. unlike
Beck and Wieland (2002)—is that this holds irrespective of the initial level of inflation. At high levels of
inherited inflation the DOP moves closer to the CEP, at low levels of inherited inflation the DOP resembles
the CP.

Keywords: Learning, Inflation Expectations, Disinflation Policy, Separation Principle, Kalman Filter,
Optimal Control, Dynamic Programming
JEL: C53, E52, F33

1. Introduction

How should central banks manage a disinflation process? The received view in the literature—as ex-
pressed by King (1996) at the Kansas City Fed symposium on Achieving Price Stability—seems to be for
a gradual timetable, with inflation (reduction) targets consistently set below the public’s inflation expecta-
tions. As King puts it, “the aim was not to bring inflation down to below 2 percent by the next month, or
even the next year. It was to approach price stability gradually ... some four to five years ahead”. However,
King also raises the possibility that a central bank may try to convince the private sector of its commitment
to price stability by choosing to reduce inflation towards the inflation target quickly. He calls this ‘teaching
by doing’. Then the choice of a particular inflation rate influences the speed at which expectations adjust
to price stability.

King shows how the optimal speed of disinflation depends crucially on whether the private sector imme-
diately believes in the new low inflation regime or not. If they do, the best strategy is to disinflate quickly,
since the output costs are then zero. Of course, if expectations are slower to adapt, the disinflation should
be more gradual as well. Teaching by doing effects have also been analyzed by Hoeberichts and Schaling
(2000) and Schaling (2003). They find that allowing for teaching by doing effects always speeds up the
disinflation process vis-à-vis the case where this effect is absent. Thus, their result is that ‘speed’ in the
disinflation process does not necessarily ‘kill’, in the sense of creating large output losses.
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In this paper we analyze optimal disinflation policy when the central bank faces uncertainty regarding
the prevailing level of inflation expectations and uses data from the economy to learn about them. The
process of learning involves updating in real time using standard Kalman filtering methods. We find that
when the central bank internalizes the effect of its current disinflation policy on future uncertainty about
inflation expectations, it disinflates more than implied by a policy of certainty equivalence but less than
implied by a cautionary policy. Under active learning, the optimal disinflation policy is a nonlinear function
of the state of the economy and the central bank’s belief about inflation expectations. It turns out that,
given its belief, the optimal policy stays close to a certainty equivalence policy when the inherited level of
inflation is high. When the inherited level of inflation is low, the optimal policy stays close to a policy that
implies caution (as first shown by Brainard (1967), but now extended to a dynamic context). In our case,
a cautionary policy disinflates more than implied by the certainty equivalence policy.

Regarding the focus on learning and control, our paper is related to other studies that have analyzed
the role of parameter uncertainty in optimal monetary policy (see, e.g., Bertocchi and Spagat, 1993; Balvers
and Cosimano, 1994; Wieland, 2000a,b; Ellison and Valla, 2001; Yetman, 2003; Ellison, 2006; Svensson and
Williams, 2007).1 However, these studies typically assume uncertainty about the effects of current policy
actions on the economy.2 Also, a common feature of most of these studies is that the linear economic process
subject to central bank control is static. By contrast, in our model, imperfect information about inflation
expectations is reflected as uncertainty about the effects of past policy actions. Thus, in our case the lag of
the policy instrument is crucial for the dynamics of the economy.

The remainder of the paper is organized as follows. Section 2 presents a simple model and discusses
private sector (subjective) expectations about the credibility of the central bank’s inflation (reduction)
target. It also discusses belief updating on the part of the central bank. In section 3 we derive the optimal
degree of disinflation under alternative scenarios—certainty equivalence, the cautionary and the dynamically
optimal policies and present sensitivity analysis to changes in the key parameters. In section 4 we discuss
convergence of limit beliefs and policies. Finally, section 5 presents our concluding remarks.

2. The Model

King (1996) discusses disinflation policy using a simple macroeconomic model, which combines nominal
wage and price stickiness and slow adjustment of expectations to a new monetary policy regime. The
model has three key equations—aggregate supply, monetary policy preferences and inflation expectations.
Aggregate supply exceeds the natural rate of output when inflation is higher than was expected by agents
when nominal contracts were set. This is captured by a simple short-run Phillips curve (see also Cogley
and Colacito and Sargent (2007)).3

zt = πt − πe
t + ut (1)

Where πt is the rate of inflation, zt is the output gap and πe
t indicates that the expectation of inflation

is the subjective expectation (belief) of private agents. As in King (1996), this belief does not necessarily
coincide with rational expectations. The model is not restrictive as long as inflation expectations are in part
influenced by past monetary policy (see, e.g., Bomfim and Rudebusch, 2000; Yetman, 2003). 4

1Formally, the numerical methods for solving optimal control under parameter uncertainty originate in the dual control
literature (see, e.g., Prescott, 1972). The dual control literature has shown that the so-called separation principle may not
hold, and a trade-off between estimation and control arises because current actions influence estimation (learning) and provide
information that may improve future performance. (See, e.g., Wieland, 2000b) for a detailed discussion.

2As our focus is on parameter uncertainty, we abstract from other forms of uncertainty, such as model uncertainty (see e.g.,
Cogley and Colacito and Sargent, 2007), which are also important for monetary policymakers.

3In their analysis of U.S. monetary policy experimentation in the 1960s, Cogley and Colacito and Sargent (2007) use a
model similar to ours but with unemployment instead of output.

4In future work we want to investigate disinflation policy in the context of a hybrid New Keynesian (NK) Phillips curve
along the lines of πt = ϕγπt−1 + (1 − ϕ) δEtπt+1 + α1zt − ut. Note that if ϕ = α1 = 1 , π∗ = 0 and using (4) this equation
collapses to (1). Further, ϕ = 0 results in the standard NK Phillips curve. Finally, 0 < ϕ < 1 and γ = 1 yields the hybrid
NK Phillips curve (see, e.g., Woodford, 2003). For an analysis that resembles NK macroeconomics but permits non-clearing
markets see Chen et al. (2006).
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The regime change is represented by a new inflation target π∗ = 0, which is announced to the public at
the end of t − 1. The new target is lower than the initial steady state inflation, denoted by π0.

The central bank’s objective as of period t is to choose a sequence of current and future inflation rates
{πτ}∞τ=t so as to minimize its intertemporal loss

Ec
t−1

∞∑
τ=t

δτ−tL(πτ , zτ ) (2)

where
L(πt, zt) =

1
2
(zt − z∗)2 +

α

2
(πt − π∗)2 (3)

and Ec
t−1 denotes expectations conditional on the central bank’s information at the end of period t − 1.

The parameter α ≥ 0 is the relative weight on inflation stabilization while δ is the discount factor (0 < δ < 1).

2.1. Inflation expectations
King (1996) analyzes two extreme cases of inflation formation: (1) a completely credible policy regime

where private sector expectations adjust immediately to the new inflation (reduction) target (since the
announcement is fully credible)—this is the case of rational or model consistent expectations; (2) ‘endogenous
learning’, where the private sector expectations depend on monetary policy choices (that is on actions, not
just on words) made in the new regime.5

In general, expectations are affected both by the inflation target and by actual inflation performance.
After experiencing high inflation for a long period of time, there may be good reasons for the private sector
not to believe the disinflation policy fully (See also Bomfim and Rudebusch (2000) and Schaling (2003)).
In light of this, we assume that private sector inflation expectations follow a simple rule, that is a linear
function of the (zero) inflation target and the lagged inflation rate

πe
t = γπt−1 + (1 − γ)π∗ = γπt−1 (4)

where 0 ≤ γ ≤ 1 captures the degree of credibility of the new regime. The closer is γ to 0, the higher is the
credibility of the regime change.6

We introduce uncertainty by supposing that the central bank can not observe private sector expectations
directly. Moreover, we assume the central bank does not know the credibility parameter γ and can not
observe (even ex post) the shock ut, so that it can not infer private sector inflation expectations from (4). In
period t, the central bank observes zt only after it has chosen πt and the shock ut has realized. Under this
scenario, the unobservability of inflation expectations is manifested as parameter uncertainty—the central
bank does not know the degree of credibility, as measured by γ. It follows that optimal monetary policy
affects (and is affected by) the dynamics of belief updating about γ. In other words control and estimation
of the economy are interrelated.7

2.2. Belief Updating
Let yt−1 = −πt−1. Substituting (4) into (1) (where we have set π∗ = 0), the actual dynamics of the

Phillips curve is given by
zt = πt + γyt−1 + ut (5)

5Case 1 can be seen to result from minimizing (2) (where we have set z∗ = π∗ = 0) subject to (1). This yields πt = 1
1+a

πe
t .

Taking expectations then yields the REE πt = πe
t = π∗ = 0.

6It can be shown that this simple rule has the correct functional form when the CB optimizes subject to the hybrid New
Keynesian Phillips curve (1’).

7This bounded rationality assumption follows, among others, Marcet and Sargent (1988) and Evans and Honkapohja (2001)
in that in forecasting private sector inflation expectations, the central bank acts like an econometrician. Evans and Honkapohja
(2001) and others have studied determinacy and learnability of rational expectations equilibria when the private sector has
to learn about key parameters and the central bank follows a simple monetary policy rule. Here we are interested in how
uncertainty and learning affect the central bank’s optimal control problem (see, e.g., Beck and Wieland, 2002; Tesfaselassie
et al., 2006).

3



yt = −πt (6)

The information set at the end of period t is Ωt = {zt, zt−1, ...}. Under parameter uncertainty, the
central bank’s belief about γ, before setting πt, can be characterized by a prior mean ct−1 = E(γ|Ωt−1) and
prior variance pt−1 = E(γ − ct−1)2. After πt is chosen and zt realizes, the central bank updates its belief to
ct and pt. Updating takes a standard recursive structure,

ct = ct−1 + yt−1pt−1F
−1
t−1

(
zt − πt − ct−1yt−1

)
(7)

pt = pt−1 − p2
t−1y

2
t−1F

−1
t−1 (8)

where Ft−1 = pt−1y
2
t−1 + σ2

u. These two equations represent the learning channel through which the
current policy action, πt, affects future beliefs about γ, i.e., ct+j , pt+j+1 for j = 0, 1, 2, ... The filtering process
maps the sequence of prediction errors into a sequence of revisions; and the term yt−1pt−1F

−1
t−1 on the right

hand side of (7) and (8) is usually referred to as the Kalman gain, which is a nonlinear function of period
t − 1 policy, πt−1.8

3. Optimal Disinflation Policy

We distinguish three policy scenarios—certainty equivalence policy, cautionary policy and dynamically
optimal policy. The three policies differ in their approaches to parameter uncertainty and learning. The
certainty equivalence policy and the cautionary policy ignore the non-linear updating equations, and so
policy is conducted under passive learning and the policy rules are linear in the state variable yt−1. The
certainty equivalence policy is an extreme case, where the prior variance is set to zero (pt−1 = 0). The
dynamically optimal policy takes account of the updating equations and thus represents an active learning
policy. In that case, the policy rule is a non-linear function of yt−1 and can be solved for only numerically.

In the next two sections we consider the cases of certainty equivalence and cautionary policy. In both
cases the central bank disregards the effect of current policy actions on future estimation and control. In
other words, by ignoring the non-linear updating equations for ct and pt, the central bank treats control and
estimation separately. Learning is in effect passive in the sense that, the central bank optimizes assuming
its actions will not affect future beliefs but updates its beliefs once new data arrives (Sargent, 1999).

3.1. The Certainty Equivalence Policy
Under certainty equivalence the central bank ignores parameter uncertainty, being fully confident about

its prior ct−1 = c. Its belief about γ is thus given by the pair (ct−1, pt−1) = (c, 0). The sequence of events
is as follows.

Certainty Equivalence: Timing of events in period t
Stage 1 Stage 2 Stage 3 Stage 4

private sector sets central bank sets central bank chooses ut realizes,
πe

t Ec
t−1π

e
t πt = π(yt−1, c; .) determining zt

The minimization problem is

min
{πτ}∞

τ=t

Ec
[ ∞∑

τ=t

δτ−tL(zτ , πτ )|yt−1

]
(9)

subject to the linear constraint (5). Since under CE the control problem is linear-quadratic, the solution
for the optimal level of πt is similar to that under perfect knowledge. The certainty-equivalence rule simply

8See Tesfaselassie (2005) for a detailed derivation.
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replace γ with its conditional mean c. As is shown in Appendix, the solution for πt is given by (‘CE’ denotes
certainty equivalence)

πCE
t =

z∗ − 1
2δμCE

1

1 + α + δμCE
2

+
cyt−1

1 + α + δμCE
2

(10)

where

μCE
2 =

−1 − α + δc2 +
√

4αδc2 + (1 + α − δc2)2

2δ

μCE
1 =

2cz∗(α + δμCE
2 )

1 + α − cδ + δμCE
2

Note that in general, μCE
2 > 0. When α = 0, the case of strict output targeting, μCE

1 = μCE
2 = 0. Then,

from the optimal rule (10), πt = z∗ + cyt−1. For α > 0, πt moves less than one-to-one with cyt−1.

3.2. The Cautionary Policy
A cautionary policy recognizes parameter uncertainty p > 0. In a seminal paper, Brainard (1967)

raised the issue of parameter uncertainty and optimal policy. Using a simple static model where there is no
opportunity for learning, Brainard showed that optimal policy that allows for parameter uncertainty induces
caution, in the sense that the policy instrument changes by a smaller amount compared to the that implied
by the CEP.9 Within our dynamic model, the role of p > 0 can be seen by decomposing Ec

t−1(zt − z∗)2 into
the square of the conditional mean Ec

t−1(zt − z∗) and the conditional variance Ft−1.

Ec
t−1(zt − z∗)2 = (Ec

t−1zt − z∗)2 + Ft−1 (11)
= (πt + cyt−1 − z∗)2 + py2

t−1 + σ2
u

The expected loss due to output variability has an additional term, py2
t−1. Since yt = −πt, a lower value

of |πt| reduces the conditional variance of zt+1. Thus, parameter uncertainty matters for optimal monetary
policy.

Cautionary Policy: Timing of events in period t
Stage 1 Stage 2 Stage 3 Stage 4

private sector sets central bank sets central bank chooses ut realizes,
πe

t yt = Ec
t−1π

e
t πt = π(yt−1, c, p; .) determining zt

As before, the central bank continues to ignore the fact that current policy can affect future beliefs and
by construction treats c and p as fixed parameters, implying that the only state variable from the central
bank’s point of view is yt. The first order condition with respect to πt will thus take the same form as (10).
The difference is that now μ2 is a function of p as well as c (see Appendix).

πCP
t =

z∗ − 1
2δμCP

1

1 + α + δμCP
2

+
cyt−1

1 + α + δμCP
2

(12)

where ‘CP’ denotes cautionary policy and

μCP
2 =

−1 − α + δ(c2 + p) +
√

4δ(p + (c2 + p)α) + (1 + α − δ(c2 + p))2

2δ

μCP
1 =

2cz∗(α + δμCP
2 )

1 + α − cδ + δμCP
2

9See also Tesfaselassie et al. (2006) and the references therein.
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As μCE
2 > μCP

2 , we have πCP
t < πCE

t implying that given its initial belief, the central bank disinflates
by more under the cautionary policy. Moreover, the larger is p, the larger is the disinflation move.

The intuition behind a less accommodating policy under the cautionary policy lies in the additional loss
from pπ2

t . Given p > 0, the central bank must choose πt lower than πCE
t so that the effect of p on future

output variability is less magnified. In the limiting case where p = 0 the cautionary policy collapses to the
certainty equivalence policy.

Unlike the case of certainty equivalence, limα→0 μCP
2 �= 0

lim
α→0

μCP
2 =

−1 + δ(c2 + p) +
√

4δp + (1 − δ(c2 + p))2

2δ
(13)

which is different from zero unless p = 0. This is an important result for the following reason. Suppose
α = 0. Under perfect knowledge, the optimal policy is to accommodate inflation expectations πe

t , whatever
the level may be. That is πt = z∗ + πe

t . This rule also applies under certainty equivalence since πt =
z∗ + cπt−1, where the central bank accommodates its forecast of inflation expectations. By contrast, the
cautionary policy does not fully accommodate the central bank’s forecast of inflation expectations (πt =
z∗ + 1

1+φδ cπt−1 < z∗ + cπt−1), where φ ≡ limα→0 μCP
2 .

3.3. The Dynamically Optimal Policy
We now examine how disinflation policy is affected by learning considerations. The dynamic control

problem is

min
{πτ}∞

τ=t

Ec
[ ∞∑

τ=t

δτ−tL(zτ , πτ )|(yt−1, ct−1, pt−1)
]

(14)

subject to three constraints—the linear Phillips curve (5) and the two non-linear updating equations (7)
and (8). Under fully optimal policy, there are three state variables: yt−1, ct−1 and pt−1.

Dynamically Optimal Policy: Timing of events in period t
Stage 1 Stage 2 Stage 3 Stage 4

private sector sets central bank sets central bank chooses ut realizes,
πe

t Ec
t−1π

e
t πt = π(yt−1, ct−1, pt−1) determining zt

The Bellman equation associated with the dynamic programming problem (14) is

V (ct−1, pt−1, yt−1) = min
πt

{
L(zt, πt) + δEc

t−1V (ct, pt, yt)
}

= min
πt

{
1
2
Ec

t−1(zt − z∗)2 +
α

2
π2

t

+ δ

∫
V (ct, pt, yt)f(zt|ct−1, pt−1, yt−1, πt)dzt

}
(15)

where Ec
t−1(zt − z∗)2 is now decomposed as follows

Ec
t−1(zt − z∗)2 = (πt − ct−1yt−1 − z∗)2 + pt−1y

2
t−1 + σ2

u (16)

The terms on the right hand side of (15) represent the tradeoff between control and estimation. The first
two terms are current expected reward while implicit in the last term are two opposing components—one
is the effect of πt on L(zt+1, πt+1) (note that ct and pt depend on πt−1 but not on πt) and the other is
the expected improvement in payoffs from t + 2 onwards due to better information about the unknown
parameter (via the effect of πt on pt+1). The first component implies that, given pt > 0, as with the CP,
the DOP reduces the conditional variance of zt+1 by decreasing the level of πt. But πt−1 > 0 means that
pt < pt−1, which reduces expected losses and πt does not have to decrease by as much as it does in the
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CP. Therefore, this channel leads to gradual disinflation compared to the CP and the gradualist policy is
enhanced the larger the initial level of inflation, which helps reduce parameter uncertainty considerably.

Unlike the CEP and CP, the DOP is a non-linear function of the state variables and can be solved
for only numerically. As shown by Easley and Kiefer (1988) and Kiefer and Nyarko (1989) an optimal
feedback rule exists and the value function is continuous and satisfies the Bellman equation. Policy and
value functions can be obtained using an iterative algorithm based on the Bellman equation and starting
with an initial guess.

We solve for the optimal policy under learning using numerical dynamic programming (see e.g. Wieland
(2000a)). Then we compare disinflation policy under the DOP with those of CEP and CP. First we show
results for a baseline parameters where α = 0.5, σ2

u = 1, δ = 0.95 and z∗ = 0.25.
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Figure 1: CEP, CP and DOP for baseline parameters (α = 0.5, σ2
u = 1, δ = 0.95 and z∗ = 0.25).

Figure 1 shows that for various combinations of initial beliefs about the mean and variance of the
unknown parameter, the DOP is in general more accommodative to inflation expectations than the CP but
less accommodative than the CEP. The initial position of inflation determines whether DOP stays closer to
the CP or to the CEP. For large deviations of initial inflation from zero the DOP is similar to the CEP. An
intuitive explanation for this result is that, from the updating equations, the central bank recognizes that
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the larger the deviation of πt−1 from zero, the smaller pt, which in turn reduces the conditional variance of
zt+1. In anticipation of this, the central bank does not have to disinflate as much as the CP would imply.
Therefore, the optimal policy remains closer to the CEP. On the other hand, when πt−1 is small, pt remains
close to pt−1. Expecting only a marginal reduction in the degree of uncertainty in period t + 1, the central
bank gives more weight to reducing expected future losses from the immediate future relative to reducing
estimation errors in the more distant future. Thus, it disinflates more aggressively, moving towards the CP.
However, this effect is weaker the larger is the initial parameter uncertainty (i.e., the larger pt−1).

4. Sensitivity Analysis

Below we show results when the variance of the exogenous shocks to output and the discount factor take
different values than the baseline values.

4.1. Smaller variance of shocks
Note that, the CEP and the CP are independent of the variance of the output shock. Figure 2 compares

the DOP for two levels of the variance of the shock to output gap (σ2
u = 1 and σ2

u = 0.1). In that case, the
DOP is closer to the CEP when σ2

u = 0.1 than when σ2
u = 1.

The intuition for this effect is that the output gap zt is more stable under σ2
u = 0.1 than under σ2

u = 1.
Given yt−1, the updating equation for ct implies that the forecast error zt−πt−ct−1yt−1 is more informative
about the unknown parameter the smaller the variance of zt due to exogenous shocks and the larger the
variance of zt due to estimation errors. This effect is also apparent from the updating equation for pt, which
is positively related to σ2

u.10

4.2. Shorter Policy Horizon
Changes in δ affect all types of policies.11 For instance, the smaller δ, the more heavily future losses are
discounted and the shorter the central bank’s policy horizon. In that case, the effect of parameter uncertainty
on future expected losses is less of a concern to the central bank. Thus, the DOP and the CP will move
towards the CEP, implying that all policies call for a more gradual disinflation process.

Figure 3 shows the effect of a decrease in the discount factor on the DOP relative to the CP (the degree
of gradualism of the DOP relative to the CP). The DOP induces less relative gradualism at the lower value
of the discount factor if the initial level of inflation is large. However, the differences between the DOP and
the CP seem to disappear at low to moderate rates of initial inflation, and at small values of the parameter
estimates.

5. Speed of Learning and Convergence

We know turn to the dynamics of inflation and central bank belief and their convergence in the limit.
The question is whether in the limit inflation approaches its new target under alternative policies. Could
the central bank end up having a wrong limit belief about γ, which would lead to incorrect limit policy,
whereby inflation stabilizes at a level different from its target?

Starting from period 0 the sequence of estimation, control and updating is (c0, p0) → (π1, z1) → (c1, p1)
→ (π2, z2) and so on. As the dynamics of (πt, zt) and (ct, pt) are interrelated, even if we start with the same
priors (c0, p0), the dynamics of estimation and control will depend on the type of policy followed by the
central bank.

Note that as in King (1996), the central bank has perfect control over inflation. That means, absent
exogenous shocks to inflation, there is a possibility of incomplete learning about inflation expectations if
inflation is stabilized too quickly. As it induces low variations in πt the CP is most susceptible to the

10The change in the DOP is more muted when the weight on inflation increases.
11When α = 0, the CEP collapse to a static optimal policy, thus independent of δ.
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Figure 2: DOP under alternative values of σ2
u (σ2

u = 1 vs σ2
u = 0.1).

danger of incomplete learning. By adopting a slower speed of disinflation, the CEP and the DOP increase
estimation precision and thereby improving future control of the economy.

Of course in reality, inflation is subject to shocks outside the control of the central bank. When there
is an additive control error, actual inflation is the sum of intended monetary policy πI

t and an exogenous
control error νt, that is, πt = πI

t + νt. The econometric model is still given by (1). Actual inflation is
now stochastic even if πI

t is fixed by the central bank. Thus, in the limit ct converges to γ. Even if the
additive control error has a very small variance, inflation will never settle down with time, implying that in
the limit, beliefs converge to the true parameter. As the variance of the additive control error increases, the
central bank focuses more on current control of the economy and less on future estimation. It follows that
the central bank has an incentive to speed up the disinflation process by reducing πI

t more rapidly. Given
policy, learning tends to be slow as the variance of the additive control error diminishes. The implication is
that, if the additive control error is insignificant and the central bank improves its control of inflation, the
speed of learning will depend more on its disinflation policy.

One possible extension of the analysis is to let γ be time-dependent, for example a random walk γt =
γt−1 + ηt as in Beck and Wieland (2002) or an autoregressive process γt = ργt−1 + ηt, 0 < ρ < 1 as in
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Figure 3: Degree of activism (DOP relative to CP) (δ = 0.95 vs δ = 0.65).

Balvers and Cosimano (1994). It is easy to conjecture that in this case, learning will be perpetual, as the
underlying parameter changes all the time. This may reduce the incentives for learning, and move the DOP
towards the CP, implying larger disinflation than the case of fixed unknown parameter.

6. Concluding Remarks

The paper analyzes disinflation policy when the central bank has imperfect information about private
sector inflation expectations, thus extending King (1996), which supposes perfect observability of inflation
expectations. The central bank learns about inflation expectations from past economic outcomes, which are
in part the result of past policy decisions. Due to the dependence of inflation expectations on past policy
decisions, the problem facing the central bank is one of parameter uncertainty, that is, uncertainty about
the effect of past policy on the current level of output. Formally, the dynamic control problem differs from
other studies on learning and control, where the assumed uncertainty is about the effect of current actions
on current economic outcomes, and lagged control variable is absent from the dynamic process.

We compare three policy scenarios under which disinflation policy may proceed—certainty equivalence
policy (CEP), cautionary policy (CP) and dynamically optimal policy (DOP). The CEP and CP represent
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passive learning but while the CEP ignores parameter uncertainty the CP policy assumes that current
uncertainty about inflation expectations will remain unchanged in the future. Given the state of the economy,
the DOP disinflates by more than the CEP but by less than the CP. A novel result is that, unlike the case
of uncertainty about current policy effect, our result holds irrespective of the initial state of the economy
(characterized by past level of inflation).

It turns out that, given the central bank’s belief about inflation expectations, the DOP moves closer
to the CEP when past inflation is high. By contrast, when past inflation is low, the DOP stays close to
the CP implying more caution. In general, the danger with the CP is that if inflation drops sharply and
stabilizes too soon, the central bank might fail to learn about inflation expectations, leading to poor policy
performance in the distant future. By taking into account the effect of policy on inflation expectations, the
DOP and the CEP are less prone to the danger of incomplete learning.
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Appendix: Derivation of CEP and CP

In this appendix we derive the optimal policy for the case of passive learning. When choosing current
policy in period t, the central bank assumes that the initial belief (ct−1, pt−1) will remain fixed for all
future periods. Consequently, the non-linear updating equations drop out of the set of constraints of the
optimization problem.12

There are two subcases under passive learning—certainty equivalence policy and CP. Under the caution-
ary case Ft−1 = py2

t−1 +σ2
u. On the other hand, under the case of certainty equivalence, p = 0 ⇒ py2

t−1 = 0,
and so Ft−1 is perceived to be independent of yt−1. Thus, the certainty equivalence policy is a limiting case
of the CP.

Derivation of the CEP
Under certainty-equivalence the central bank ignores parameter uncertainty, being fully confident about

its prior ct−1 = c. Its current belief is thus characterized as (ct−1, pt−1) = (c, 0). The central bank minimizes
(9) subject to (5) and (6). The problem is linear-quadratic, so that the optimal level of πt is similar to that
under perfect knowledge. The certainty-equivalence rule simply replaces γ with its estimate c. We can
rewrite the above minimization problem using recursive dynamic programming and then use the standard
’guess and verify’ method on the value function.13 We can write the Bellman equation associated with the
minimization of (9) as follows 14

V (yt−1) = min
πt

Ec
t−1

[
L(zt, πt) + δV (yt)

]
(A1)

subject to (5). Because of the linear-quadratic form of the minimization problem, the value function will be
quadratic in the state yt−1.

V (yt−1) = μ0 +
1
2
μ2y

2
t−1 (A2)

where the two coefficients remain to be determined. If (A2) is correct, it follows that

Ec
t−1V (yt) = μ0 +

1
2
μ2y

2
t

or using (6)

Ec
t−1V (yt) = μ0 +

1
2
μ2(−πt)2 (A3)

Next, substitute (A3) into (A1) and derive the first order condition with respect to πt

πt =
1

1 + α + μ2δ
cyt−1 (A4)

To identify the value of μ2, substitute (A4) into the loss function and much the resulting coefficient of
y2

t−1 with the conjectured loss function (A2). A unique solution for μ2, such that 0 < μ2 < 1, is given by
equation (10) of the main text.

12Of course, when next period arrives, the bank updates its belief but then expects it to remain fixed from that period on.
13See, e.g., Tesfaselassie (2005), Chapter 5 and the references therein.
14Note that the value function in the Bellman equation does not have time subscript. This is because in infinite horizon

problems, we are interested only in the unique time invariant value function, V, and associated unique, stationary policy
rule, that result from repeated iterations on the Bellman equation starting from any bounded continuous V0 (e.g. V0 = 0).
Convergence of the value function is guaranteed due to the contraction mapping theorem (see e.g. Sargent (1987)).
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Derivation of the CP
Under the CP, p > 0. As before the only state variable from the central bank’s point of view is yt−1.

The conjecture for the value function is given by (A2). The first order condition with respect to πt will
also take the same form as (A4). Following the steps analogous to the derivation of the CEP, we match the
coefficients and arrive at the solution given by equation (12) of the main text. The certainty equivalence
case arises if p = 0, that is, if we disregard parameter uncertainty.
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