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Abstract

We performed numerical simulations of the obliquity evolution of Mars during the Noachian era, at which time the

giant planets were on drastically different orbits than today. For the preferred primordial configuration of the planets

we find that there are two large zones where the Martian obliquity is stable and oscillates with an amplitude lower than

20◦. These zones occur at obliquities below 30◦ and above 60◦; intermediate values show either resonant or chaotic

behaviour depending on the primordial orbits of the terrestrial planets.

Key words: Mars; Planetary Dynamics; Rotational dynamics.

1. Introduction

The current obliquity of Mars is chaotic with a Lyapunov time scale of 5 Myr (Laskar & Robutel, 1993; Touma &

Wisdom, 1993). This has drastic consequences for the Martian climate. At present, the obliquity is a modest 25◦, the

average polar insolation is lower than the equatorial one (Ward, 1974) and ice caps are observed at the poles of the

planet. However, during phases where the obliquity is high, ε � 40◦, large quantities of polar ice sublimate and could

be transported to the tropical regions (Jakosky & Carr, 1985; Jakosky et al., 1995). On shorter time scales the Mar-

tian obliquity suffers large-amplitude oscillations of approximately 22◦ around a mean value of 25◦ with a period of

125 kyr (Ward, 1974), caused by the perturbations on its orbit from the other terrestrial planets. These large-amplitude

oscillations drive large-scale variations in its seasonal cycles of water, carbon dioxide and dust (e.g. Kieffer & Zent,

1992). In addition, the large obliquity changes cause frequent ice ages on Mars, during which there is a build-up of

polar ice towards the equator (Head et al, 2003). The planet is currently in an interglacial period having suffered an

ice age approximately 1 Myr ago when the obliquity reached over 30◦ (Head et al, 2003). Over the past 10 Myr the

mean obliquity has decreased from approximately 35◦ to its current value of 25◦ (Touma & Wisdom, 1993; Laskar et
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al. 2002), indicating that past ice ages may have lasted much longer.

However, the conditions on Mars were very different shortly after its formation compared to what they are to-

day. During the Noachian period, which lasted from Mars’ formation until 3.5 Gyr ago, there is evidence for a short

existence of liquid water during its later stages (e.g. Carr, 1996; Christensen et al., 2001), a temporary magnetic

field (Lillis et al., 2008) and possibly a thick atmosphere with the temperature at the surface exceeding 273 K. The

existence of ubiquitous valley networks has led to the idea that fluvial erosion was an important process on Noachian

Mars (Carr, 1996). However, Christensen et al. (2001) argue that the duration of liquid water flow must have been

brief because of the existence of olivine and lack of carbonates at the surface.By the end of the Noachian, the bulk of

the valley networks had formed and the erosion rate was steeply declining (Carr, 1996). In addition, the magnetic field

might have protected the atmosphere from pick-up-ion sputtering and hydrodynamic collisions, and therefore knowl-

edge of its evolution is crucial for understanding the Noachian climate history. Isotopic evidence in Martian meteorite

ALH84001 suggests that the atmosphere was largely unfractionated near the end of the Noachian (Marti et al., 2001;

Mathew & Marti, 2001). The geologic and isotopic information taken together suggests a relatively rapid loss of

atmosphere as Mars entered the Hesperian era – which lasted from 3.5 Gyr ago to 1.8 Gyr ago. Loss of a global mag-

netic field has been considered as an attractive mechanism, but this probably happened much earlier (Lillis et al, 2008).

The end of the Noachian age corresponds approximately with the beginning of the Lunar Cataclysm or Late Heavy

Bombardment (LHB). This episode of intense cratering on the Moon (Tera et al., 1974), and the other terrestrial

planets, occurring some 3.8 Gyr ago, formed some of the basins on the Moon, notably Imbrium and Orientale. The

cratering intensity was dramatically higher than what is predicted from the remnants of planet formation (Bottke et al.,

2007), suggesting a major re-ordering event in the solar system. Indeed, the LHB is believed to be the last major event

that sculpted the solar system (Strom et al., 2005). The LHB is also thought to be linked with a dynamical instability

in the outer solar system, which resulted in a reshuffling of giant planet orbits (Gomes et al., 2005). This dynamical

instability also affected the orbits of the terrestrial planets and probably created their current orbital structure (Brasser

et al., 2009). These models favour a fast migration of Jupiter and Saturn, resulting in a short-lived, high-eccentricity

phase after a long spell of circular orbits (Brasser et al., 2009). Recent results have uncovered that the orbits of the gi-

ant planets were likely less dynamically excited (lower eccentricities and inclinations), and that they were much closer

together (Morbidelli et al., 2007). Unfortunately, the orbits of the terrestrial planets before the LHB are unknown,

but there is a range of possible solutions. Therefore we create a set of different terrestrial planet systems with a wide

range of initial conditions, and determine the influence of their perturbations on the obliquity evolution of Mars using

numerical simulations. The simulations are inspected for cases where the obliquity could be stable on long time scales.

This paper proceeds as follows. Section 2 contains a short presentation of the equations of motion of the obliquity

of Mars, and the typical values of the quantities that enter these equations. Section 3 contains a description of our
2



  

numerical methods. In Section 4 we present our results, and the last section contains our conclusions.

2. Evolution of the obliquity with planetary perturbations

The evolution of the obliquity of a planet subject to perturbations from other planets has been studied by various

authors (e.g. Colombo, 1966; Ward, 1974; Kinoshita, 1977; Laskar et al., 1993; Ward & Hamilton, 2004). Here we

give a short summary based on the elegant method of Néron de Surgy & Laskar (1997).

Mars’ figure exhibits precession of the equinoxes, similar to Earth. The precession is caused by Mars’ figure being

slightly flattened, so that there is a normal component to the force exerted on Mars by the Sun. This component of

the force induces a torque on Mars that drives the precession and which acts in the direction opposite to Mars’ orbital

motion. The Hamiltonian describing the torque on Mars is (Néron de Surgy & Laskar, 1997)

H = L2

2C −
αX2

2L
, (1)

where L = Cωr is the rotational angular momentum of Mars, C is Mars’ largest moment of inertia, ωr is its rotation

rate, X = L cos ε with ε being the obliquity. The precession of the equinox, ψ̇, is governed by the parameter α as

ψ̇ = αX where

α =
3n2

2ωr

J2MR2
M

C (1 − e2)−3/2. (2)

Here J2 is Mars’ quadrupole moment, n =
√

GM�/a3 is Mars’ orbital mean motion, RM is Mars’ radius,M is its mass,

a is the semi-major axis and e is the eccentricity. For simplicity we will set L = 1 and thus X = cos ε. The most recent

data for the figure, obliquity, equinox and orbit of Mars are taken from Folkner et al. (1997), with ε = 25.189517◦,

ψ = 35.43777◦, ωr = 350.89198521◦/day, C/MR2
M = 0.3662, J2 = 1.96045 × 10−3, a = 1.523698 AU and

e = 0.0933428, from which we compute the current value α = 8.373 ′′/yr and thus α cos ε = 7.576 ′′/yr.

However, the orbit of Mars is not static but undergoes periodic changes induced by perturbations from the other

planets. When taking these perturbations into account, the ecliptic is no longer an inertial plane and thus the kinetic

energy of its forcing, E, has to be added to the Hamiltonian (Kinoshita, 1977). This is given by

E = 2Γ(t)X −
√

1 − X2[A(t) sinψ + B(t) cosψ], (3)

where

Γ(t) = ṗq − q̇p; A(t) = 2
q̇ + pΓ(t)√
1 − p2 − q2

; B(t) = 2
ṗ − qΓ(t)√
1 − p2 − q2

(4)

3



  

with ζ = q + ip = sin(i/2) exp(iΩ) and i2 = −1. Here i is the inclination of the orbit of Mars with respect to the

invariable plane of the solar system and Ω is its longitude of the ascending node. The new Hamiltonian is then

K = H + E, and Hamilton’s equations are

Ẋ =
∂K
∂ψ
= −
√

1 − X2[A(t) cosψ−B(t) sinψ]; ψ̇ = −∂K
∂X
= αX−X(1−X2)−1/2[A(t) sinψ+B(t) cosψ]−2Γ(t). (5)

Here A(t), B(t) and Γ(t) are the forcing terms from the planetary perturbations on the orbit of Mars. Equations (5)

are singular when X = 1 i.e. when ε = 0, so for numerical integrations we follow Laskar et al. (1993) and use

χ = ξ + iη = sin ε exp(iψ), which yields

ξ̇ = A(t)
√

1 − ξ2 − η2 − η[α
√

1 − ξ2 − η2 − 2Γ(t)]; η̇ = −B(t)
√

1 − ξ2 − η2 + ξ[α
√

1 − ξ2 − η2 − 2Γ(t)]. (6)

Equations (6) contain no singularities. Now that we have outlined the basic equations of motion of the spin axis, we

turn to our numerical methods.

3. Numerical Methods

Unlike Laskar et al. (2004), our aim is not to obtain an accurate prediction of the future evolution of the obliquity

of Mars, but rather to test its stability as a function of varying initial conditions: different orbits of the terrestrial

planets and a range of original obliquities. Thus we integrate the equations of motion of the obliquity of Mars (6)

from existing simulations of the solar system. This is described below.

• We perform simulations of the solar system with various initial conditions of the giant planets and the terrestrial

planets (see next section) for 265 Myr with a time step of 0.01 yr (3.6525 days). The data is output every

1000 yr. We use the 2nd order MVS integrator of Laskar & Robutel (2001), implemented (Brož et al., 2005)

in the SWIFT integration package (Levison & Duncan, 1994). The code includes digital filtering of the orbital

elements using Kaiser windows (Kaiser, 1966), based on the method of Quinn et al. (1991). Any signal with a

period shorter than 667 yr is suppressed. To mimic the effect of general relativity we added a correction term as

described in Nobili & Will (1986).

• From the simulation the quantities α, A(t), B(t) and Γ(t) are calculated using the filtered elements. Numerical

forward differentiation with four data points was used to compute ṗ and q̇.

• The quantities α, A(t), B(t) and Γ(t) are used to integrate eqs. (6) with the Bulirsch-Stoer method (Bulirsch

& Stoer, 1966) with a time step of 1000 years. For the intermediate steps that the integrator performs before

extrapolation to zero step size the corresponding intermediate values of α, A(t), B(t) and Γ(t) are computed using

linear interpolation. The input are the original values of ε and ψ. The output is Fourier analysed according to the
4



  

method of Laskar (1988). The maximum and minimum values of ε and the averaged proper rate of precession,

ψ̇, are recorded.

The last two steps are repeated for different values of original ε. Generally ε was varied between 0 and 90◦ with

steps of 0.2◦, while the original value of ψ was kept at its current value. All steps were repeated for the different

configurations of the terrestrial planets.

4. Results

4.1. Current solar system

In order to be able to distinguish the obliquity evolution of Mars during the Noachian from the current one, we

give a short summary of the latter. For more details see Laskar & Robutel (1993), Touma & Wisdom (1993) and

Laskar et al., (2004).

Fig. 1 depicts current obliquity evolution, and should be compared directly with those presented in Laskar &

Robutel (1993). The top left panel of Fig. 1 depicts the minimum and maximum values that the obliquity reaches

during 256 Myr (vertical axis) as a function of initial obliquity, ε0 (horizontal axis). The top right panel depicts the

average proper precession rate of the equinoxes, ψ̇, on the vertical axis as a function of ε0. There are three regions of

motion. The first is for initial obliquities < 10◦, where it oscillates between 0 and 20◦ and the precession decreases

with the obliquity as ψ̇ = α cos ε. The second region is between 10◦ and 60◦. Here the minimum and maximum

obliquities are 10◦ and 60◦ respectively and ψ̇ ranges from 5 ′′/yr to 8 ′′/yr without a trend with ε. This is the chaotic

region identified by Laskar & Robutel (1993) and Touma & Wisdom (1993). On Gyr time scales, the mean obliquity

of Mars will vary between 0 and 60◦. Above 60◦ the motion becomes regular. The bottom panel depicts the Fourier

spectrum of A(t) + iB(t), similar to Laskar & Robutel (1993), but taken over 64 Myr. The vertical axis lists the log

of the amplitude of each term while the horizontal axis corresponds to the frequency in arcsec per year. The forcing

peaks from the solar system’s nodal eigenfrequencies s1 . . . s8, corresponding to the proper regression frequencies of

the nodes of Mercury (s1) to Neptune (s8), (Brouwer & van Woerkom, 1950), are indicated.

It is important to distinguish the two sources of chaos in the current evolution of Mars’ obliquity. The first is

caused by a resonance overlap between the precession of Mars’ figure and two eigenfrequencies of the solar system.

The other is a secular resonance between the orbits of Mercury, Venus and Jupiter, which indirectly affects the orbit

of Mars. We shall examine each of these below.

Usually the relation ψ̇ = α cos ε is a good approximation for the precession rate with increasing obliquity. For

Mars, however, as the obliquity increases there are two values where ψ̇ = si i.e. a secular spin-orbit resonance occurs.

The first resonance is with s2 at ε2 = arccos(s2/α) = 32.3◦. The second is with s1 at ε1 = arccos(s1/α) = 48.0◦.
5



  

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 0  10  20  30  40  50  60  70  80  90

ε m
in

, m
ax

 [
˚]

ε0 [˚]

 1
 2
 3
 4
 5
 6
 7
 8
 9

 0  10  20  30  40  50  60  70  80  90

dψ
/d

t "
/y

r
ε0 [˚]

-9

-8

-7

-6

-5

-34 -32 -30 -28 -26 -24 -22 -20 -18 -16 -14 -12 -10 -8 -6 -4 -2  0

lo
g 

am
pl

f ["/yr]

s8

s7

s6
s3

s4

s2 s1

Figure 1: Top left panel shows maximum and minimum values of obliquity evolution (vertical axis) taken over 256 Myr as a function of the original

value (horizontal axis). Top right panel shows the averaged proper precession rate, ψ̇ (vertical axis) vs original obliquity. The bottom panel shows

a spectrum of A(t) + iB(t), taken over 64 Myr. The vertical axis corresponds to the log of the amplitude of each term while the horizontal axis

corresponds to the frequency in arcsec per year. This figure is similar to those presented in Laskar & Robutel (1993).
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The width of these two resonances is directly proportional to the forcing on Mars’ orbit from Mercury and Venus.

In the current solar system the forcing from both planets is so large that these resonances overlap, which occurs at

ε ∼ 40◦. Resonance overlap is a source of chaos (Chirikov, 1979), which accounts for the chaotic region between

initial obliquities of 30◦ and 60◦. However, there is a second source of chaos that affects the obliquity, which arises

from chaos in the orbit of Mars.

Laskar (1990) identified two sources of chaos in the orbits of the terrestrial planets. The one that affects Mars’

obliquity has the argument σ = (g1 − g5) − (s1 − s2), which is currently in libration with period 10 Myr (Laskar,

1990). Here g1 . . . g8 are the eigenfrequencies of the longitudes of pericentre, corresponding to the proper precession

frequencies of the perihelia of Mercury (g1) to Neptune (g8) (Brouwer & Van Woerkom, 1950). The argument σ

stays in libration for the next 200 Myr, but its amplitude changes, implying the motion is near a separatrix. Laskar

(1990) showed that the components associated with s1 and s2 in Mars’ orbit are accompanied by a number of smaller

components of similar frequency. A multiplet of components can also be viewed as a single component with varying

frequency and amplitude, with the frequency of the multiplet being comparable to the frequency spread of the multi-

plet. These multiplets are caused by the presence of the secular resonance (g1 − g5) − (s1 − s2). Thus in the Fourier

spectrum of Mars’ orbit the lines associated with s1 and s2 are not clean delta functions but exhibit a near-Gaussian

profile i.e. they have significant sidebands. This is clearly visible in fig. 1 and the profiles overlap. These mutiplets

affect the motion of the mean obliquity because ψ̇ can resonate with all these additional frequencies in the multiplets.

The mean obliquity pops in and out of resonance because the location of the separatrix varies with time. The crossing

of the separatrix occurs at essentially random phase which causes the obliquity to increase or decrease at random,

and thus the mean obliquity exhibits something akin to a random walk. The secular resonance acts when the mean

obliquity < 30◦. This implies that the mean obliquity is chaotic from 0◦ to 60◦ on Gyr time scales (Laskar & Robutel,

1993; Laskar et al., 2004).

From the above it appears there are two ways the obliquity of Mars can be stabilised. The first is to reduce the

forcing from Mercury and Venus on Mars so that the two resonances no longer overlap. This can be achieved by

reducing the eccentricities and inclinations of the terrestrial planets. There is indication that the terrestrial planets

were situated on dynamically colder orbits before the LHB (Brasser et al, 2009). The second method is to change the

precession frequencies of either Mercury, Venus or Jupiter and break the resonance (g1 − g5)− (s1 − s2). There are no

indications that the terrestrial planets had their orbits changed significantly, but there is plenty of evidence that Jupiter

had migrated (e.g. Fernández & Ip, 1984; Malhotra, 1993; Tsiganis et al., 2005; Morbidelli et al., 2007, 2009, 2010;

Brasser et al., 2009). Displacing Jupiter would change the value of g5 and if increased enough it will break the secular

resonance. The effect of removing this resonance on the obliquity of Mars, while keeping everything else the same, is

discussed in the next subsection.
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4.2. Compact configuration of the giant planets

Here we investigate the effect of a different configuration of the giant planets on the obliquity evolution of Mars.

It was almost certain that the giant planets had different orbits before the LHB, so it is essential to study the stability

of Mars’ obliquity using other configurations of the giant planets. We look for a system that increases g5 so that the

resonance (g1 − g5) − (s1 − s2) is not in libration.

The value of g5 depends mostly on the separation between Jupiter and Saturn i.e. on their period ratio PS /PJ.

Brasser et al. (2009) showed that when PS /PJ > 2, g5 decreases sharply as PS /PJ increases: from approximately

20′′/yr when PS /PJ = 2.03 to its current value of 4.26′′/yr when PS /PJ = 2.48. As PS /PJ increases and g5 decreases,

it crosses the values of g2 = 7.45′′/yr and g1 = 5.56′′/yr when PS /PJ ∼ 2.1 and PS /PJ ∼ 2.3 respectively. In order

not to destabilise the terrestrial system we need g5 > g2 and thus PS /PJ < 2.1. There are several well-studied models

in the literature that prefer an initial period ratio between Jupiter and Saturn PS /PJ < 2.1. These are the model of

Malhotra (1993), the Nice model of Tsiganis et al. (2005) and the resonant model of Morbidelli et al. (2007). Here

we use the configuration of Malhotra (1993), since it has the most relaxed initial conditions for the giant planets:

the initial period ratio is PS /PJ = 2.05 and the giant planets have their current inclinations and eccentricities. The

terrestrial planets remained on their current orbits.

Figure 2 shows the result of numerical simulations using Malhotra’s planets. The layout is exactly the same as

fig. 1, and there are some significant differences. First the chaotic region is much narrower. In the current solar system

the chaotic region ranges from 10◦ to 60◦, though from 0 to 60◦ on longer time scale (Laskar & Robutel, 1993; Laskar

et al., 2004). In fig. 2, the chaotic region is confined to ε0 from 35◦ to 60◦. The chaos from the secular resonance

(g1 − g5) − (s1 − s2) has disappeared because g5 > g2. The only source of chaos is the overlap of the two resonances

ψ̇ = s2 and ψ̇ = s1. This can be inferred from the bottom panel of fig. 2: the lines around s1 and s2 are much narrower

than in fig. 1, implying a cleaner spectrum and thus a periodic signal instead of a chaotic one. The obliquity can no

longer resonate with all the intermediate frequencies and the chaos is confined to the main resonances. By increasing

g5 and breaking the resonance (g1 − g5) − (s1 − s2) the regions of initial obliquity with values below 35◦ and above

60◦ are stable, though the amplitude of oscillation is still large. This could be reduced if the terrestrial planets were

dynamically colder, which is discussed in the next subsection.

4.3. Compact giant planets and colder terrestrial planets

Here we examine the stability of the obliquity of Mars in a solar system where the orbits of the terrestrial planets

are dynamically colder.

The orbits of the terrestrial planets prior to the LHB cannot be obtained in similar fashion to those of the giant

planets: the former were formed by solid body accretion over 100 Myr time scales well after the gas disc dissipated
8
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Figure 2: Similar to Fig. 1, but now the giant planets are on the configuration of Malhotra (1993, 1995). The top-left panel depicts the maximum

and minimum obliquity as a function of original obliquity. The top-right panel shows the averaged proper precession frequency. Both two panels

are taken over 256 Myr. The bottom panel shows a spectrum of A(t)+ iB(t), taken over 64 Myr. Notice that the chaotic motion is confined to values

of the initial obliquity between 35◦ and 60◦.
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(e.g. Raymond et al. 2009). Their original orbital configuration was determined by the stochastic process of planetary

embryo collision and accretion. Studies of the dynamical instability responsible for the LHB, likely caused by giant

planet scattering which caused a large semi-major axis jump for Jupiter (Brasser et al., 2009; Morbidelli et al., 2010),

cannot determine the exact effect this would have on the orbits of the terrestrial planets individually, so we study them

as a system. One useful metric is the Angular Momentum Deficit (AMD; Laskar, 1997), which measures the deviation

of the terrestrial system from circular and coplanar orbits, and is given by (Laskar, 1997)

AMD =

∑4
n=1 mn

√
an(1 − √1 − e2

n cos in)∑4
n=1 mn

√
an

(7)

where mn is the mass of each planet Mercury to Mars in solar masses, the semi-major axes an are measured in AU

and the inclinations in are with respect to the invariable plane. Its current value is AMD0 = 1.4043 × 10−3 and the

partitioning among the planets is 35.8%, 19.9%, 20.1% and 24.2% for Mercury to Mars. This is close to the 25% one

would expect for each planet.

The AMD is used as the independent variable to construct a set of terrestrial planet orbits with a range of dynami-

cal excitation, ranging from 10% to 100% of the current value (where the current AMD is equal to unity from now on)

in ten equal steps. In order to test some low AMD values, we chose to place the giant planets on the resonant, circular

configuration of Morbidelli et al. (2007), to remove any forcing from the giants on the terrestrials. It is assumed that

the dynamical instability that caused the LHB would only excite the terrestrial planets, thus increasing their AMD to

its current value. We have tested this assumption by performing simulations in which we subjected the terrestrial plan-

ets on random orbits with pre-assigned AMD values to a so-called ’jumping Jupiter’ scenario (Brasser et al., 2009).

We consistently find an AMD increase of ∼ 1 and that the increase is systematic, suggesting that the primordial AMD

was most likely lower than its current value. This can be argued as follows. During the instability Jupiter suddenly

appears on an orbit that is closer to the terrestrials and more eccentric, and remains there. This adds a forcing to the

eccentricities of the terrestrials, whose amplitude depends on the eccentricity of Jupiter and the semi-major axis ratio

between Jupiter and the terrestrials. Thus the eccentricities of the terrestrial planets, and thus the AMD, experience a

systematic increase. Therefore we take the upper limit of the primordial AMD equal to 1 and focus our discussion on

values closer to 0.

For simplicity we kept the share of the AMD of each terrestrial planet the same as its current one. Changing the

fraction of the AMD in Mars will change the oscillation amplitude of the obliquity accordingly. For example, if Mars’

share of the AMD were to be only 3% then the oscillation amplitude of the obliquity would be approximately a factor

three smaller. For the current orbits of the terrestrial planets, with the exception of Mercury, e ∼ sin i. Therefore, the

share of the AMD for each planet was partitioned equally among its eccentricity and inclination. The other orbital

parameters remained equal to their current values.
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Figure 3: Similar to Fig. 1, but now for a compact configuration of the giant planets and colder terrestrial planet orbits. The AMD for the top two

panels is equal to 40% of the current value. The top-left panel depicts the maximum and minimum obliquity as a function of original obliquity.

The top-right panel shows the averaged proper precession frequency. The bottom panel is a summary that shows the stable, chaotic and resonant

regions as a function of initial AMD and initial obliquity for the systems studied here and the current solar system.

The summary of these numerical experiments is presented in Fig. 3, taken over 256 Myr. For the top two panels

the AMD is 40% of the current value. Note the small amplitude of oscillation of the obliquity, ∼ 12◦, and strictly

confined range of obliquity motion for ε0 � 35◦ in the top-right panel. This is an indication of stable motion. The first

resonant zone, where ψ̇ = s2, occurs for initial obliquities 37◦ to 45◦. In resonance the obliquity oscillates between

27◦ and 47◦ with a period of approximately 3 Myr. The second resonant zone, where ψ̇ = s1, is confined between

initial obliquities of 48◦ to 56◦. Here the obliquity oscillates between 42◦ and 57◦ and with a period of 4 Myr. Above

an initial obliquity of 57◦ the motion is stable yet again, and the range of oscillation is merely ∼ 9◦. The top-right

panel depicts ψ̇. There are a few very narrow chaotic zones associated with the crossing of the separatrix between res-

onant and non-resonant motion. Inside the resonances ψ̇ is a constant and outside the resonates it varies as ψ̇ = α cos ε.

The bottom panel is a summary plot that shows the stable, chaotic and resonant regions as a function of ini-
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tial AMD and initial obliquity. The situation for the current solar system has been added to the right. During the

Noachian there are two large stable regions for mean obliquities below 35◦ or above 60◦. In between these regions

the motion depends on the AMD: for values less than 0.6 there are two stable resonant zones. These resonances start

to overlap when the AMD is larger than 0.6 and the motion becomes chaotic. The chaos is confined to the resonant

zones because there is no other source of chaos. We also tested the validity of our conclusions when taking the giant

planet configurations of Malhotra (1993) and Tsiganis et al. (2005). In all three models g5 > g2 so that the reso-

nance (g1 − g5) − (s1 − s2) has disappeared and thus the chaos is confined to the resonant region i.e. for ε0 between

30◦ and 60◦. For Malhotra’s model, however, forcing from Jupiter limits the minimum AMD of the terrestrial planets

to approximately 30% of the current one, while for the other two models the minimum AMD can reach all the way to 0.

Currently Mars’ obliquity oscillates with an amplitude of approximately 20◦ and period 125 kyr (e.g. Ward, 1974).

For the systems studied in Fig. 3 above, the obliquity oscillation amplitude in the lowermost stable region is also 20◦

when the AMD is equal to the current value. The oscillation amplitude then decreases as AMD1/2, so that it is just 6◦

when the AMD is 0.1.

5. Summary and conclusions

We have analysed the evolution of the Martian obliquity for different initial conditions of both the terrestrial plan-

ets and the giant planets, with a focus on the compact configuration of the giant planets presented in Morbidelli et al.

(2007). The zones of stable obliquity are summarised in the bottom panel of Fig. 3.

The obliquity could have been chaotic if the AMD of the terrestrial planets was more than 60% of its current

value, but only when the mean value of the obliquity ranged from 30◦ to 60◦. For these values of the AMD, the secu-

lar spin-orbit resonances ψ̇ = s2 and ψ̇ = s1 start to overlap. There, significant changes in the mean obliquity as well

as large-range obliquity oscillations become possible. Outside the resonant zones the obliquity oscillates with an am-

plitude set mostly by Mars’ share of and the total value of the AMD; the maximum value of the oscillation amplitude

of the obliquity is approximately 20◦. Before the LHB, the stable zone with obliquities lower than the resonant values

is increased by approximately 25◦ when compared to the current solar system. Therefore the obliquity was stable for

any value of the AMD as long as its mean value was below 30◦ or above 60◦. For values of the AMD less than 0.6,

the obliquity is stable in the resonances with s2 and s1, but could suffer large-amplitude, long-period oscillations.

There remain several ways in which the above work could be expanded. One is to have the share of the AMD

in Mars be different from the 25% that we have adopted here, while keeping the orbits of the giant planets fixed.

This could then be extended with varying initial configurations of the giant planets. A second study could include

the other terrestrial planets. The cases of Venus and Earth are particularly interesting. However, an investigation into
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the primordial obliquities of these planets would need including the effects of atmospheric tides for Venus (Correia &

Laskar, 2001) and knowledge of the orbital history of the Moon for the Earth, the latter is poorly known (Touma &

Wisdom, 1994). These issues will be tackled in a future investigation.
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