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Abstract

A benchmark AK optimal growth model with maintenance expenditures and endogenous
utilization of capital is considered within an explicit vintage capital framework. Scrap-
ping is endogenous, and the model allows for a clean distinction between age and usage
dependent capital depreciation and obsolescence. It is also shown that in this set-up
past investment profile completely determines the size of current maintenance expendi-
tures. Among other findings, a closed-form solution to optimal dynamics is provided
taking advantage of very recent development in optimal control of infinite dimensional
systems. More importantly, and in contrast to the pre-existing literature, we study in-
vestment and maintenance co-movements without any postulated ad-hoc depreciation
function. In particular using impulse response experiments, we find that optimal in-
vestment and maintenance do move together in the short-run in response to neutral
technological shocks, which seems to be more consistent with the data.

Keywords: Maintenance, Investment, optimal control, dynamic programming, infinite
dimensional problem.
JEL classification: E22, E32, O40

1. Introduction

There is an increasing effort to incorporate maintenance and repair activities in the
core of investment theory, and therefore in the core of growth theory. While traditional
Jorgensonian investment theory relies on the assumption of constant capital depreciation
rate, several authors have been pointing at the numerous shortcomings arising from such
an assumption, therefore challenging the ability of the standard model to account for the
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investment decision either at the firm or the aggregate levels. Feldstein and Rothschild
(1974) and Nickell (1975) are two pioneering works in this respect (see also Hartl, 1983,
for a more technical early contribution to the literature).

Yet the incorporation of maintenance and repair costs in macroeconomic models of
investment and growth has truly started with the illuminating work of McGrattan and
Schmitz (1999). Indeed the lack of economy-wide surveys assessing the importance of
maintenance costs was usually invoked to disregard them. McGrattan and Schmitz were
the first to exploit a Canadian (economy-wide) survey, and to highlight why and how
investment theory can account for these costs. Their argument was actually easy to make
as maintenance and repair expenditures averaged about 6% of the Canadian GDP and
nearly 50% of spending on new equipment over the period 1961-1993.

Since then, several research projects have been launched on the topic. Let us mention
briefly some of the directions taken. A first bulk of papers studied the implications of ac-
counting for maintenance expenditures within otherwise standard models of investment
and/or growth. For example Licandro et al. (2001) introduced maintenance in opti-
mal growth by specifying capital depreciation as a decreasing function of maintenance.
They studied accordingly how the latter affects the typical convergence properties inher-
ent to neoclassical theory. Boucekkine and Ruiz-Tamarit (2003) took a tighter avenue,
the standard neoclassical investment firm model,2 but they allowed for a more flexi-
ble relationship between depreciation, maintenance expenditures and the rate of capital
utilization. They showed that depending on some deep characteristics of the latter re-
lationship, investment and maintenance decisions can respond (or not) in the same way
to various neutral technological shocks. Co-movements of investment and maintenance
are the central motivation of our paper, so we will come back later to this point. Note
however that the previous papers only provide characterizations around steady state
equilibria, while our paper solves out the short-term optimal dynamics. On the quan-
titative macroeconomics ground, more papers have been written recently.3 Important
contributions to this line of research are due to Kalaitzidakis and Kalyvitis (2004, 2005)
who studied how maintenance of public capital affects long-term growth and how to fix
optimally maintenance expenditures in this respect.

More recently, Saglam and Veliov (2008), Goetz, Hritonenko and Yatsenko (2008) and
Boucekkine et al. (2009) have shown how to incorporate maintenance and support costs
in vintage capital models. The idea that maintenance costs do depend on the age of cap-
ital goods is natural in many respects, especially if one has to account for technological
obsolescence in addition to physical deterioration. While incorporating explicitly main-
tenance and operation costs, Goetz et al. (2008) have focused more on the derivation of
optimal investment and disinvestment rules. Saglam and Veliov (2008) and Boucekkine
et al. (2009) have paid much more attention to the co-movements between investment
and maintenance, the former in a firm problem and the latter in a general equilibrium
set-up. Other differences between the two frameworks lie in the fact that while the former

2Another paper taking this avenue is Kalyvitis (2006) who empirically found that the incorporation
of maintenance and repair expenditures into the q-model of investment improves the relevance of the
latter.

3An early investigation of the role of maintenance in the business cycle is due to Collard and Kollintzas
(2000).
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(as almost all the other papers listed so far) builds on a given functional form directly
relating maintenance to depreciation, and considers maintenance as a control variable
(as initiated by McGrattan and Schmitz (1999)),4 the latter derives depreciation partly
as a result of the endogenous scrapping decision of obsolete capital items, and specifies
maintenance costs as a function of the chosen capacity utilization and the age of capital
goods. Therefore the main advantage of the latter approach is to allow for an endogenous
identification of depreciation due to obsolescence on one hand, and depreciation due to
aging and utilization on the other.

Boucekkine et al. (2009) consider a multi-sector model with both investment-specific
and neutral technological progress, and Cobb-Douglas production function in the final
goods sector. In this paper, we shall consider a much simpler AK one-sector version
of Boucekkine et al. (2009), only allowing for neutral technological progress. Moreover,
while these authors focus on the steady state, we are able to:

1. find a closed-form solution to optimal dynamics by applying the dynamic program-
ming strategy developed by Fabbri and Gozzi (2008a);

2. and accordingly to study how optimal investment and maintenance move in re-
sponse to technological shocks, not only in the long-run, but also in the short-run.

In this sense, our paper has a double technical contribution: on one hand, it derives
a closed-form solution to the optimal dynamics in the vintage AK version of Boucekkine
et al. (2009), and on the other, it shows how to apply the dynamic programming approach
of Fabbri and Gozzi to an AK model with endogenous scrapping. The first application,
provided by the authors themselves, was on the AK vintage capital model of Boucekkine
et al. (2005) which has exogenous scrapping time. Because the involved optimal control
problem has a differential-difference state equation, the problem is infinite dimensional,
and the dynamics cannot be studied with the standard techniques. More precisely,
applying a Pontryagin-type argument is still possible as demonstrated in Boucekkine
et al. (2005) but the stability analysis is much more sophisticated and requires non-
standard tools. The main advantage of the dynamic programming approach applied in
this paper is to deliver a simple explicit value function, which allows to visualize the
optimal dynamics straightforwardly, which is not possible within the Pontryagin-based
approach.5

More importantly, our paper brings out an original contribution to an important ques-
tion in the literature, investment and maintenance co-movements. In the earlier papers
devoted to this issue, notably those devoted to the study of business fluctuations (see
Collard and Kollintzas (2000) and specially Licandro and Puch (2000)), the specification
of the depreciation function was chosen in order to replicate some key stylized facts. As
mentioned above, Saglam and Veliov (2008) is one of the very few general inspections
into this issue. To make our argument more precise, whence the depreciation function

4Saglam and Veliov (2008) and, to a certain extent, Boucekkine and Ruiz-Tamarit (2003) are among
the very few papers considering general depreciation functions: these functions are usually fully specified
in the literature, notably the business cycle fluctuations literature.

5Other advantages of the dynamic programming approach are given in Fabbri and Gozzi (2008a) (like
the less stringent parametric conditions needed). Of course, it should be clear that these advantages are
specific to the vintage AK models considered where an explicit value function can be identified.
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δ(U,M) is postulated, with U the capital utilization rate and M maintenance expendi-
tures, assumptions on second-order derivatives of function δ(U,M) are typically made to
fit the data. In particular, it turned out that the sign of the second-order cross deriva-
tive δUM (U,M) is crucial for the shape of investment and maintenance co-movements.
As mentioned above, Boucekkine and Ruiz-Tamarit (2003) have provided with a sys-
tematic analysis of the problem depending on the sign of this cross-derivative. When
δUM (U,M) ≥ 0, then investment and maintenance move in the same direction (Propo-
sition 3, Boucekkine and Ruiz-Tamarit, 2003). This case is considered to be compatible
with data by Licandro and Puch (2000). However, when δUM (U,M) < 0, things are
much trickier, and under certain circumstances, maintenance can act as a substitute to
investment, as previously claimed by McGrattan and Schmitz (1999). Our paper offers a
sounder framework to study these co-movements. First of all, in contrast to Boucekkine
and Ruiz-Tamarit (2003), we leave the steady state and address the problem along op-
timal transitional dynamics. Second of all, there is no postulated depreciation function,
and the depreciation rate is identified in particular through an endogenous scrapping
decision. Our main result is that in such a framework, optimal investment and main-
tenance do move together in the short-run in response to neutral technological shocks.
Our results are consistent with those gathered by Saglam and Veliov (2008) in their firm
problem who also show analytically that maintenance and investment in new capital
goods appear as complements with respect to changes in productivity.6

The paper is organized as follows. Section 2 gives a brief description of the AK
vintage model and presents the infinite dimensional optimal control problem under con-
sideration. Section 3 recalls the principles of the dynamic programming approach used
to solve it, and proceeds further by deriving closed-form solutions to optimal dynamics.
Section 4 compiles some numerical exercises conducted to study optimal investment and
maintenance co-movements. Section 5 concludes.

2. The model

The model is one-sector AK optimal growth model with vintage capital. A benevolent
central planner maximizes a discounted intertemporal stream of utilities from consump-
tion under technological and resource constraints. To present things in the simplest way,
we first get through the technological specifications. In particular, we will identify the
different determinants of capital depreciation in our set-up, and the resulting capital
accumulation over time. Then we present the optimal growth model under the extracted
capital law of motion.

2.1. Maintenance, utilization and the sources of capital depreciation

The aggregate production function is AK:

Y (t) = Akt, A > 0

where kt is the stock of capital at time t, which is given by

6Saglam and Veliov (2008) have also derived interesting results on the co-movements between invest-
ment in old vintages and maintenance activities. In our model, the economy only invests in new capital
goods.
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kt =

∫ t

t−T (t)

x (z, t) i (z) dz (1)

where i (z) is investment at time z, and T (t) is the age of the oldest machine still in
use at time t or scrapping time. Both x (z, t) and T (t) are key decision variables in
the model. As in Boucekkine et al. (2009), x(z, t) is not an utilization rate, it rather
measures the frequency at which the capital good is used (like the number of kilometers
run measures the frequency of use of a car). The larger x(z, t), the larger will be the
contribution of machines i(z) to output. The scrapping time, T (t), is chosen in such
way that non-profitable capital goods at time t are immediately thrown out, as usual in
the vintage literature. As we will see in a minute, the determination of optimal x (z, t)
and T (t) does not involve an intertemporal trade-off in our model, so we treat them
just below independently of the optimal control problem. Before getting to this point,
notice that in contrast to Boucekkine et al. (2009), the unique (exogenous) technical
progress indicator in the production function is parameter A, which may reflect the state
of disembodied (neutral) technological change in the sense that all operating machines
are affected in the same way by technological accelerations through A. By taking this
avenue, comparison with more standard RBC approaches like Licandro and Puch (2000)
is more appropriate.

Let us come now to the optimal determination of x (z, t) and T (t). It is tightly linked
to a crucial ingredient of our model: maintenance and repair expenditures. Regarding
this specification aspect, we depart clearly from the literature, including Saglam and
Veliov (2008), and we extend a previous specification of Whelan (2002) by assuming a
variable maintenance cost.7 More specifically, the unit maintenance and repair cost of
vintage z at time t is assumed to be an increasing function of its age, t − z, and its
relative average productivity,

ω (t− z, x (z, t)) = βeγ(t−z)x (z, t)
μ
+ η, γ > 0, β > 0, η > 0, μ > 1.

When β = 0, we get Whelan’s specification, maintenance costs become equal to a
constant support cost. Notice that the specification is completely generic: beside aging,
maintenance costs increase with utilization. μ > 1 and η > 0 are needed to have a finite
optimal choice of utilization and for a finite time scrapping to be possible respectively.
Indeed, production net of the maintenance and repair costs is

y (t) =

∫ t

t−T (t)

B (t− z, x (z, t)) i (z) dz, (2)

where
B (t− z, x (z, t)) = Ax (z, t)− ω (t− z, x (z, t)) (3)

is the average (and marginal) profitability of vintage z at time t. The utilization intensi-
ties x(z, t) are chosen to maximize the average profitability, B (t− z, x (z, t)). The first
order condition of this maximization problem implies that x(z, t) depends only on the
difference t− z and

x (t− z) = x0e
− γ

μ−1 (t−z). (4)

7Whelan (2002) considered a constant support cost for any vintage at any time.
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where x0 =
(

A
βμ

) 1
μ−1

, inducing a decreasing age profile for utilization. The profile is

shifted upward by neutral technological improvements through parameter A, and shifted
down if the maintenance technology worsens through parameters β and γ.

Finally a machine of vintage z is scrapped whence its profitability drops to zero.
Substitution from x (t− z) into (3) yields:

B (t− z) ≡ B (t− z, x (t− z)) = Ωe−
γ

μ−1 (t−z) − η, (5)

where Ω = (μ − 1) β xμ0 , which implies that a vintage will be utilized until a finite age
T > 0 such that

B (T ) = Ωe−
γ

μ−1T − η = 0. (6)

It is easy to prove that whence Ω > η > 0, a finite (and positive) scrapping time exists
and is unique: T = μ−1

γ ln Ω
η . Notice that the model degenerates into a standard AK

model if η goes to zero. In such a case, T =∞. We can still work out the model and study
maintenance and investment co-movements in such a simplistic model but of course we
lose an important ingredient: obsolescence. It is also straightforward to see that T is an
increasing function of A and a decreasing function of β, γ and η. Technological improve-
ment through A increases the profitability of ALL vintages, leading to lengthening their
lifetime. Notice that this property arises because technological progress is neutral in the
latter case. Investment-specific technological progress would lead to shorter lifetimes, see
Boucekkine et al. (2009). Here, since we are interested in investment and maintenance
co-movements, and mainly for comparison with the results gathered by Licandro and
Puch (2000) or Boucekkine and Ruiz-Tamarit (2003) for example, we consider neutral
technological progress accelerations in a one-sector model.8

Finally and as announced in the introduction, our model allows to disentangle obso-
lescence and physical depreciation in a quite easy and natural way. The stock of capital
at time t can vary due to (i) gross investment, (ii) the change of the relative average
productivity of capital, which is physical depreciation, and (iii) the scrapping of unprof-
itable vintages, which is called obsolescence. Differentiating equation (1), and using that
x (t− z) is given by (4), yields the following evolution law of capital:

·
k (t) = x0i (t)− (ξ (t) + δ) k (t) (7)

where
ξ (t) = x0e

− γ
μ−1T

i(t− T )
k(t)

(8)

is related to the fraction of scrapped capital at time t, and

δ =
γ

μ− 1
(9)

is the decline rate of the average relative productivity or equivalently utilization intensity
of each vintage. For quite intuitive reasons, we shall call ξ(t) the rate of obsolescence,
and the constant δ the rate of physical depreciation since it is related to aging and usage.

8Needless to say, considering investment-specific technological progress requires at least two sectors,
consumption and capital sectors. See Boucekkine et al. (2009).
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There is a big difference between the behavior of the obsolescence rate and the physical
depreciation rate. While the physical depreciation rate is constant, the obsolescence
rate is not so because it depends on the scrapped investment-capital ratio and it could
fluctuate due to the existence of echo effects that generally characterize the dynamics of
vintage capital models as proved by Boucekkine et al. (2005). On the other hand, and
more importantly for our paper, the rate of physical depreciation need not respond in
the same way to technological accelerations or other shocks. For example, if A increases,
the rate δ is unaffected while the obsolescence rate ξ(t) is likely to respond given that
the impact of A’s increase on lifetime T does affect ξ(t) in several ways. We shall come
back to these questions later.

We are ready now to write down the optimal growth problem to be tackled.

2.2. The optimal growth problem

The optimal growth problem is standard in that it consists in maximizing intertem-
poral utility subject to the AK production technology. The per-period utility function
is CARA (with 1

σ , σ > 0, the elasticity of intertemporal substitution in consumption),
and an interesting feature of the approach is the possibility to save one control variable,
maintenance, by using the net production function (2). Needless to say, capital, mainte-
nance and replacement investment can be reconstructed from the computed controls and
states. Indeed, these three variables, k(·), M(t) and ir(·) respectively, are determined
by:

k(t) =

∫ t

t−T

x0e
−δ(t−τ)i(τ)dτ, (10)

M(t) =

∫ t

t−T

ω(t− τ, x(τ, t))i(τ)dτ =

∫ t

t−T

[
βeγ(t−τ)xμ0e

−δμ(t−τ) + η
]
i(τ)dτ (11)

=

∫ t

t−T

[
Ω

μ− 1
e−δ(t−τ) + η

]
i(τ)dτ

and

ir(t) = δk(t) + x0e
−δT i(t− T ) = x0

[∫ t

t−T

δe−δ(t−τ)i(τ)dτ + e−δT i(t− T )
]
. (12)

It should be also noted that by the same argument, we can also identify the optimal
path of the endogenous obsolescence rate, ξ(t), thanks to equation (8). We will be then
able to investigate, among others, the issue of substitutability Vs complementarity of in-
vestment and maintenance expenditures. Because of the delayed integral representation
of capital, maintenance and replacement investment in terms of the investment profile,
see (10)-(12), the co-movements of each of the three variables and gross investment are
not obvious at all. Yet (10)-(12) exhibit a quite striking property, at least for mainte-
nance: by (11), past investment profile i(z), t − T ≤ z ≤ t, completely determines the
size of maintenance expenditures at t. This is not at all the way maintenance expendi-
tures are determined in the recent literature following the path-breaking contribution of
McGrattan and Schmitz (1999). Therefore, our modeling does bring a new approach to
the study of the relationship between investment and maintenance.
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Let us now dig deeper in our optimal control problem. If consumption is c(t) =
y(t)− i(t), then the optimal control problem is:

Max

∫ +∞

0

e−ρt (y(t)− i(t))1−σ

1− σ dt

subject to (for t ≥ 0):

y(t) =

∫ t

t−T

(Ωe−δ(t−s) − η)i(s) ds. (13)

Note that in the expression above, for s ∈ [−T, 0), i(s) is given and it is not part of the
control, indeed it is the initial datum of the investment that we will denote by ῑ(s).9 The
integral equation (13) is the net production function obtained using (2) and (5), T is the
scrapping time identified by (6). It is possible to put the integral equation above into a
more standard differential equation by differentiating it. Then we get the following state
equation (for t ≥ 0):

ẏ(t) = (Ω− η)i(t)− δΩ
∫ 0

−T

eδri(r + t)dr, with i(s) = ῑ(s) when s ∈ [−T, 0) (14)

The problem has some standard features but it entails a definitely non-standard char-
acteristic. It has one control, investment, and one state, net output. The state equation
is a delay-differential equation, which implies that the problem is infinite dimensional.
This section is devoted to provide a closed-form solution to optimal dynamics, including
asymptotic behavior. The technique used is inspired by Fabbri and Gozzi (2008a). We
first explain its general principles, then we apply it to our model.

Apart from small changes some results given in this section can be proved as in
Fabbri and Gozzi (2008a) so we do not repeat them here simply referring to that paper.
Nevertheless some other results (especially Propositions 3.2, 3.3, 3.10, 3.11 and Theorems
3.2, 3.3) are essentially different and cannot be derived from known results since they
use the peculiar characteristics of our model. We prove them in the Appendix Appendix
A.

3. Solving the optimal control problem with dynamic programming

The optimal control problem is treated following the procedure used by Fabbri and
Gozzi (2008a).10 First we write the problem as an optimal control problem driven by a
Delay Differential Equation (DDE) (Section 3.1) giving some preliminary results. Then
we translate it11 as an optimal control problem driven by an Ordinary Differential Equa-
tion (ODE) (without delay) in a suitable Hilbert space. At that point we apply the

9As mentioned above, the problem degenerates into a standard optimal control problem if the fixed
cost η goes to zero: in such a case, T = ∞ and (13) degenerates into a simple ordinary differential
equation. We disregard this trivial case hereafter.

10We briefly outline the procedure in this subsection and we refer the reader to Fabbri and Gozzi
(2008a) (Sections 1.2, 1.3, 2) and to its extended version Fabbri and Gozzi (2008b) for more details on
the techniques and on the literature.

11Using the techniques introduced by Delfour (1986) and Vinter and Kwong (1981), see also Bensoussan
et al. (2007) chapter 4.
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dynamic programming to this problem: we write and solve explicitly the HJB equation
in the Hilbert space, we prove that the solution is the value function and we use the
explicit expression of the value function to find the optimal feedback in closed form.

Solving the HJB equation is in general a difficult task: as well known, it is impossible
in general to find an explicit solution even to finite dimensional HJB equations, so, a
fortiori, explicit solutions of infinite dimensional HJB equations are very rare. Here
we have to use the particular structure of the problem. The explicit form of the value
function allows us to solve the infinite dimensional problem and to find the closed loop
solutions. All the job required to handle the infinite dimensional nature of the problem
is performed in Subsection 3.2. Eventually we translate back the solution to the DDE
setting and we find a closed loop solution of our original problem (Subsection 3.3).

3.1. Statement of the optimal control problem in DDE form and preliminary results

We first introduce a notation useful to rewrite more formally (14):

Notation 3.1 We call ῑ : [−T, 0)→ R
+, the initial datum, i : [0,+∞)→ R

+ the control
strategy and ı̃ : [−T,+∞)→ R

+ the function:

ı̃(s) =

{
ῑ(s) s ∈ [−T, 0)
i(s) s ∈ [0,+∞).

(15)

As explained before, standard pointwise initial conditions are not enough to determine
solution paths to the DDEs involved. Rather we need an initial function on a particular
time span depending on the particular delays involved. Accordingly, we shall work on
functional spaces. Hereafter, we give the needed concepts to get through this problem,
four useful functional spaces are defined.

L2([−T, 0);R) denotes to the space of all functions from [−T, 0) to R that are Lebesgue
measurable and square integrable. L2

loc([0,+∞);R) is the space of all functions from
[0,+∞) to R that are Lebesgue measurable and square integrable on all bounded in-
tervals. W 1,2([−T, 0);R) denotes the space of the functions in L2([−T, 0);R) whose
first derivative exists and belongs to L2([−T, 0);R) too. Eventually W 1,2

loc ([0,+∞);R)
denotes the space of all functions belonging, together with their first derivatives, to
L2
loc([0,+∞);R). We denote by L2([−T, 0);R+) the subset of L2([−T, 0);R) made by

positive functions. Similarly we define L2
loc([0,+∞);R+).

The state equation (14) can now be written as the following DDE (on R
+):⎧⎪⎨

⎪⎩
ẏ(t) = (Ω− η)ı̃(t)− δΩ ∫ 0

−T
eδr ı̃(r + t)dr

ı̃(s) = ῑ(s) ∀s ∈ [−T, 0)
y(0) =

∫ 0

−T
ῑ(s)(Ωeδs − η)ds

(16)

where ῑ(·) and y(0) are the initial conditions.12 We will assume ῑ(·) ≥ 0 and ῑ(·) 	≡ 0
so y(0) > 0. Moreover we impose that ῑ(·) ∈ L2([−T, 0),R+). Thanks to what we said
in the previous sections T,Ω, δ, σ, ρ are strictly positive constants, moreover we assume

12Indeed y(0) is not a datum as it depends on ῑ(·) but (as we will see below) it is convenient to consider
it a datum.
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that σ 	= 1. For every i : R+ → R locally integrable and every ῑ ∈ L2([−T, 0),R) there
exists a unique locally absolutely continuous solution of (16) (that has to be understood
in integral sense). Rewriting (13) using the notation introduced in (15) we have:

yῑ,i(t) =

∫ t

t−T

ı̃(s)(Ωe−δ(t−s) − η)ds. (17)

The functional to maximize is

J(ῑ; i)
def
=

∫ ∞

0

e−ρs (yῑ,i(t)− i(t))1−σ

(1− σ) ds
over the set

Iῑ def
= {i(·) ∈ L2

loc([0,+∞);R+) : i(t) ∈ [0, yῑ,i(t)] for almost all t ∈ R
+}.

The choice of Iῑ ensures that yῑ,i(·) ∈ W 1,2
loc ([0,+∞);R+). By the Sobolev embedding

theorem this implies that yῑ,i(·) is continuous. We call Problem (P) the problem of
finding an optimal control strategy i.e. an i∗(·) ∈ Iῑ such that:

J(ῑ; i∗) = V (ῑ)
def
= sup

i(·)∈Iῑ

{∫ ∞

0

e−ρs (yῑ,i(t)− i(t))1−σ

(1− σ) ds

}
. (18)

V called value function.

3.1.1. Preliminary results

We now give a preliminary study of the problem, in particular concerning the asymp-
totic behavior of admissible trajectories, the finiteness of the value function and the
existence-and-uniqueness of optimal strategy.

Asymptotic behavior of admissible trajectories To find conditions ensuring
the finiteness of the value function we need first to study the asymptotic behavior of the
admissible trajectories, in particular to determine the maximum asymptotic growth rate
of the output y(·). Equation (17) and the choice of Iῑ suggest (since (Ωeδs− η) is always
positive in [−T, 0]) that the output is the highest possible one when i(t) = y(t) for all
t ≥ 0. Setting i(t) = y(t) in the state equation (16) we get the following DDE:{

ẏ(t) = (Ω− η)(y(t))− δΩ ∫ t

−T+t
eδry(r + t)dr

y(t) =
∫ 0

−T−t
ῑ(s+ t)(Ωeδs − η)ds ≥ 0 t ∈ [−T, 0]. (19)

Such a DDE has a unique solution that we denote by yM (·), the “candidate” maximal
output. Proposition 3.1 will confirm such an intuition.

Proposition 3.1 Given an initial datum ῑ(·) ∈ L2([−T, 0);R+) and a control i(·) ∈ Iῑ
we have that the solution yῑ,i(·) of (16) is dominated at any time t ≥ 0 by the solution
yM (·) of (19).
Proof. See the proof of Proposition 2.1.3 of Fabbri and Gozzi (2008a).

Now we study the DDE (19). The associated characteristic equation is

z = F1(z) :=

⎧⎪⎨
⎪⎩

Ω
[
1− e−δT − δ

δ+z

(
1− e−(δ+z)T

)]
; if z 	= −δ

Ω
[
1− e−δT − δT ] ; if z = −δ

(20)
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As shown in the subsequent proposition, the following hypothesis is crucial in studying
the roots of the characteristic equation:

Hypothesis 3.1 We assume that Ω
δ

(
1− e−δT − δTe−δT

)
> 1.

Hypothesis 3.1 is very interesting from the economic point of view. One easy way to get
through it is to see its implications when the scrapping time is infinite (which happens
when η goes to zero) featuring a kind of standard AK limit case (with a constant saving
rate equal to 1). In such a case, the hypothesis simply writes as Ω > δ, which is similar
in spirit to the condition set in the standard AK model to ensure positive growth (that
is A > δ, where δ is physical depreciation). Actually Ω plays the role of parameter A
in the standard AK model: in our model with maintenance and endogenous utilization,
the profitability of capital goods does not depend on parameter A but also on those of
the maintenance technology which matter crucially in the utilization decision. If the
ratio Ω

δ is not large enough, then even though all resources of the economy are channeled
into investment, the process of capital accumulation need not be ever-lasting, and the
economy need not grow in the long run. The following proposition identifies precisely
this feature.

Proposition 3.2 There exists a strictly positive root π to the characteristic equation
(20) if and only if Hypothesis 3.1 is satisfied; in this case we have that:

(i) the only real roots of (20) are 0 and π and they are simple;
(ii) all the complex roots are simple (except at most two).

Proof. See Appendix Appendix A.

From now on, we assume that Hypothesis 3.1 holds and we call π the strictly positive
root of the characteristic equation. As one can infer from the discussion above, π is the
maximal long-run growth rate the economy can generate. If Hypothesis 3.1 does not
hold, π cannot be positive. The next proposition formalizes this point in more accurate
terms.

Proposition 3.3 Given any initial datum ῑ(·) ∈ L2([−T, 0);R+) the solution of (19)
is continuous on [0,+∞) and

yM (t) = αeπt + o(eπt) for t→ +∞
where α is a coefficient depending on ῑ.

Proof. See Appendix Appendix A.

Finiteness of the value function As stated in the subsequent proposition, an
immediate consequence of Proposition 3.1 and Proposition 3.3 is that the following hy-
pothesis is sufficient to ensure that V is finite:

Hypothesis 3.2 We assume that ρ > π(1− σ).
Proposition 3.4 If Hypotheses 3.2 hold then −∞ < V (ῑ) < +∞ for all ῑ in
L2([−T, 0);R+).

Proof. See the proof of Propositions 2.1.10 and 2.1.11 of Fabbri and Gozzi (2008a).
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From now on we always assume that Hypotheses 3.1 and 3.2 are satisfied.

Existence and uniqueness of the optimal strategy The following proposition
gives an existence and uniqueness result for the optimal strategy:

Proposition 3.5 Given an initial datum ῑ(·) ∈ L2([−T, 0);R+) there exists a unique
optimal control in Iῑ, i.e. we can find in Iῑ a unique admissible strategy i∗(·) such that
V (ῑ) = J(ῑ; i∗).

Proof. For the existence see the proof of Proposition 2.1.12 of Fabbri and Gozzi (2008a),
for uniqueness it is enough to use in a standard way the strict concavity of the functional
J .

The above existence result is an application of the direct method (i.e. we consider
a maximizing sequence and we prove we can extract a subsequence converging to the
optimal control) in the space of the Lebesgue measurable functions from [0 + ∞) to
R integrable with respect to the measure dμ(t) = e(ε−π)tdt where dt is the Lebesgue
measure and ε a strictly positive constant (the same argument is used in Askenazy and
Le Van (1999)).

3.2. The equivalent problem in infinite dimension and its solution

3.2.1. Rewriting the problem in infinite dimension

To rewrite our control problem with delay as a control problem without delay in
infinite dimension the main difficulty is to define the new state variable (which will
be called “structural state”) and to find the new state equation that it satisfies. To
accomplish this task we first write the DDE (16) in a more formal way, defining suitable
functions and operators.

Given t ≥ 0, the “history” of investments at time t will be denoted by ı̃t defined as:

ı̃t : [−T, 0]→ R; ı̃t(s) = ı̃(t+ s). (21)

Moreover if we define the continuous linear mappings:

C : C[−T, 0]→ R; C : f 
→ (Ω− η)f(0)− δΩ
∫ 0

−T

eδrf(r)dr, (22)

R : L2([−T, 0),R)→ R; R : f 
→
∫ 0

−T

f(s)(Ωeδs − η)ds, (23)

we can rewrite the state equation (16) as13

ẏ(t) = C(ı̃t), t > 0; (y(0), ı̃0) = (R(ῑ), ῑ). (24)

In treating the infinite dimensional problem, we will consider the state equation with
general initial condition, without any interdependence between the initial conditions ῑ(·)
and y(0):

ẏ(t) = C(ı̃t), t > 0; (y(0), ı̃0) = (y0, ῑ). (25)

Its solution is

13Expression (24) could be undefined for some t ≥ 0. Indeed we only need its integral form: y(τ) =
y(0) +

∫ τ
0 C(ı̃t)dt.
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y(y0,ῑ),i(t) = y0 −R(ῑ) +
∫ 0

−T

ı̃t(s)(Ωe
δs − η)ds. (26)

From equation (17) it follows that y(R(ῑ),ῑ),i(·) = yῑ,i(·).
Now we are ready to write our infinite dimensional problem.

First we introduce the infinite dimensional space where the new state variable will
live, which the same as in Fabbri and Gozzi (2008a):

M2 def
= R× L2([−T, 0),R).

A generic element x ∈ M2 is denoted as a couple (x0, x1). The scalar product in M2 is
the standard one i.e.:

〈(x0, x1), (z0, z1)〉M2
def
= x0z0 + 〈x1, z1〉L2 , for all (x0, x1), (z0, z1) ∈M2.

Second we define the state of the infinite dimensional problem: the so called “struc-
tural state”. We denote by F the function

F : L2([−T, 0),R)→ L2([−T, 0),R); F : i 
→ F (i).

F (i)(s)
def
=

∫ s

−T

−δΩi(−s+ r)eδrdr, s ∈ [−T, 0). (27)

Definition 3.1 Let y0 ∈ R
+, ῑ(·) ∈ L2([−T, 0),R+) be the initial data; let i(·) ∈

L2
loc([0,+∞);R+) and y(y0,ῑ),i(·) as in (26). Set z

def
= (y0, F (ῑ)) ∈ M2 (the ini-

tial datum in the Hilbert setting). The structural state of the system is the couple

xz,i(t) = (x0z,i(t), x
1
z,i(t))

def
= (y(y0,ῑ),i(t), F (̃ıt)) ∈M2 for all t ≥ 0.

Third we write the equation satisfied by the new state variable. To do this we intro-
duce the operator A on M2:{

D(A)
def
= {(ψ0, ψ1) ∈M2 : ψ1 ∈W 1,2([−T, 0),R), ψ0 = ψ1(0)}

A : D(A)→M2; A(ψ0, ψ1)
def
= (0, Dψ1).

With an abuse of notation we can identify, on D(A), ψ1(0) with ψ0. So we can redefine
the operator C on D(A) as{ C : D(A)→ R

C(ψ0, ψ1) = Cψ1 = (Ω− η)ψ1(0)− δΩ ∫ 0

−T
eδrψ1(r)dr.

The theorem below links the dynamics of y(·) with that of the structural state.

Theorem 3.1 For all τ > 0, the structural state xz,i(·) is the unique solution14 in

14Here the solution is meant in the following weak sense: for every ψ ∈ D(A){
d
dt

〈ψ, x(t)〉 = 〈Aψ, x(t)〉M2 + i(t)C(ψ), t ∈ (0, τ ]
〈ψ, x(0)〉M2 = ψ0y0 +

〈
ψ1, F (ῑ)

〉
L2 .

(28)
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Π
def
=

{
f ∈ C([0, τ ];M2) :

d

dt
f ∈ L2((0, τ);D(A)′)

}
(29)

of the equation: {
d
dtx(t) = A∗x(t) + C∗i(t), t > 0
x(0) = z = (y0, F (ῑ))

(30)

where A∗ and C∗ are the duals of the continuous linear operators A : D(A) → M2 and
C : D(A)→ R.

Proof. See e.g. Bensoussan et al. (2007) Theorem 5.1 page 282.

Before proceeding, we need an existence and uniqueness result for the state equation
for all initial conditions, not only for the ones given in (30).

Theorem 3.2 The equation

d

dt
x(t) = A∗x(t) + C∗i(t), t > 0; x(0) = z

for z ∈M2, i(·) ∈ L2
loc([0,+∞);R) has a unique solution in Π (defined in (29))

Proof. See Appendix Appendix A.

Fourth we formulate our optimal control problem in infinite dimension. The state
space is M2, the control space is R, the time is continuous. The state equation in M2 is
given by d

dt
x(t) = A∗x(t) + C∗i(t); t > 0, x(0) = z (31)

for z ∈M2, i(·) ∈ L2
loc([0,+∞);R). Thanks to Theorem 3.2, equation (31) has a unique

solution xz,i(·) in Π (it extends the structural state defined in Definition 3.1 only for
positive initial data and control), so t 
→ x0z,i(t) is continuous and it makes sense to
consider the set of controls

I0z def
= {i(·) ∈ L2

loc([0,+∞);R+) : i(t) ∈ [0, x0z,i(t)] for a.e. t ∈ R
+}

The objective functional is

J0(z; i)
def
=

∫ ∞

0

e−ρs
(x0z,i(t)− i(t))1−σ

(1− σ) ds.

The value function is then

V0(z)
def
= sup

i(·)∈Iz
J0(z; i) if Iz 	= ∅,

while V0(z)
def
= −∞ if I0z = ∅.

Remark 3.1 (Connection with the starting problem) If we have, for some ῑ(·) ∈
L2([−T, 0);R+), z =

(
R(ῑ), F (ῑ)

)
, we find I0z = Iῑ, J0(z; i) = J(ῑ; i) and V0(z) = V (ῑ)

and the solution of (31) is given by Theorem 3.1. �
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3.2.2. Solving the infinite dimensional problem with dynamic programming

The HJB equation and its explicit solution The current value Hamiltonian is
a function with values in the extended real line R and defined on

E
def
= {(x, P, i) ∈M2 ×M2 × R : x0 > 0, i ∈ [0, x0], P ∈ D(A)}.

Its form is the following (〈i, CP 〉R is the product on R):

HCV ((x
0, x1), P, i)

def
= 〈(x0, x1), AP 〉M2 + 〈i, CP 〉R +

(x0 − i)1−σ

(1− σ)
in the points in which x0 	= i and, for σ ∈ (0, 1), also for x0 = i. When σ > 1 the above
is not defined in the points in which x0 = i. In such points we set then HCV = −∞.

The maximum value Hamiltonian (or simply Hamiltonian) is the real function defined

on G
def
= {(x, P ) ∈M2 ×M2 : x0 > 0, P ∈ D(A)} as

H(x, P ) = sup
i∈[0,x0]

HCV (x, P, i).

The HJB equation of our infinite dimensional control problem is then

ρV0(x)−H(x,DV0(x)) = 0. (32)

We now recall the definition of solution of the HJB equation, and then we provide the
explicit solution.

Definition 3.2 Let Θ be an open set ofM2 and Θ1 ⊆ Θ a closed subset. A function g ∈
C1(Θ;R) satisfies the HJB equation (32) on Θ1 if, for all z ∈ Θ1, we have (x,Dg(z)) ∈ G
and

ρg(z)−H(
z,Dg(z)

)
= 0.

Remark 3.2 If P ∈ D(A) and (CP )−1/σ ∈ (0, x0], by elementary arguments, the
function HCV (x, P, ·) : [0, x0]→ R admits a unique maximum point given by

iMAX = x0 − (CP )−1/σ ∈ [0, x0)

and then we can write the Hamiltonian in a simplified form:

H(x, P ) = 〈x,AP 〉M2 + x0CP +
σ

1− σ (CP )
σ−1
σ . (33)

The expression for iMAX will be used to write the solution of the problem P in closed-loop
form. �

We define

X
def
=

{
x ∈M2 : x0 > 0,

(
x0 +

∫ 0

−T

eπsx1(s)ds

)
> 0

}

and, calling ν
def
= ρ−π(1−σ)

σπ ,

Y
def
=

{
(x0, x1) ∈ X :

∫ 0

−T

eπsx1(s)ds ≤ x0
1− ν
ν

}
. (34)
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It is easy to see that X is an open set of M2 and Y ⊆ X is closed in X. We define, for
x ∈M2, the quantity

Γ0(x)
def
= x0 +

∫ 0

−T

eπsx1(s)ds. (35)

It is now possible to identify an explicit solution to the HJB equation (32) using the
functional Γ0(·) just defined. This is given in the next proposition.

Proposition 3.6 Under the Hypotheses 3.1 and 3.2 the function

v : X → R; v(x)
def
= aΓ0(x)

1−σ

with

a
def
= ν−σ 1

(1− σ)π =

(
ρ− π(1− σ)

σπ

)−σ
1

(1− σ)π (36)

is differentiable at all x ∈ X and is a solution to the HJB equation (32) at all points of
Y in the sense of Definition 3.2.

Proof. See the proof of Proposition 2.2.9 of Fabbri and Gozzi (2008a).

The crucial proposition above deserves some comments. In the standard AK optimal
growth model15, it is trivial to show that the solution to the corresponding HJB equation
is actually k1−σ (possibly multiplied by a constant). In our infinite dimensional case,
the role of capital is played by Γ0(x), which is the equivalent concept of capital in our
infinite dimensional problem. This concept is introduced and justified clearly in Fabbri
and Gozzi (2008a).16 Things will be immediately clear in Section 3.4 once we apply this
methodology to our economic problem, that is once Γ0(x) is explicitly expressed in terms
of the economic variables.

The Closed Loop control in infinite dimension Once the value function is
identified, it is possible to study the closed loop control (feedback strategy), in other
words, the policy function. Things are more complicated, but similar, in infinite dimen-
sion. Indeed, a preliminary definition is needed.

Definition 3.3 Given ῑ(·) ∈ L2([−T, 0);R+) with and ῑ 	≡ 0, we call φ ∈ C(M2) an
admissible feedback strategy associated to ῑ(·) if the equation.{

d
dtxφ(t) = A∗xφ(t) + C∗(φ(xφ(t))), t > 0
xφ(0) = (R(ῑ), F (ῑ))

has an unique solution xφ(·) in Π and φ(xφ(·)) ∈ Iῑ. We denote the set of admissible
feedback strategies associated to ῑ(·) with AFSῑ. We say that an admissible feedback
strategy associated to ῑ(·) is an optimal feedback strategy associated to ῑ(·) if

V (ῑ) = V0(R(ῑ), F (ῑ)) =

∫ +∞

0

e−ρt

(
x0φ(t)− φ(xφ(t))

)1−σ

(1− σ) dt.

The set of optimal feedback strategies related to ῑ(·) will be denoted by OFSῑ.

15To be precise, without irreversibility constraint on investment.
16In particular, these authors show that when T goes to infinity, featuring the standard AKmodel, their

concept of equivalent capital converges well to the standard concept of capital in the one-dimensional
case.
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We want to use the solution v of the HJB equation (32) given in Proposition 3.6 to
find the feedback strategy. v is a solution of the HJB equation only in a part of the state
space (the set Y ). The function v will be the value function and the associated closed
loop strategy (iMAX defined in Remark 3.2 where P is the gradient of v) is optimal if
and only if the related trajectory remains in Y . To guarantee this we have to impose
another condition on the parameters of the problem. It substantially requires to rule out
corner solutions.

Hypothesis 3.3 We assume that ν
(
1− δ

δ+π e
−(δ+π)T

)
≤ 1.

From now on we will assume that Hypotheses 3.1, 3.2, 3.3 are satisfied. At this stage,
a further (anticipated) point can be made on the latter assumption. While it is designed
to rule out corner solution, it is consistent with a further requirement. Indeed, we will
see in Theorem 3.4 that the optimal paths grows at most as egt where g = π−ρ

σ . So the
condition to have a strictly positive growth of the BGP is g > 0 i.e. ρ < π. It is easy to
see that the condition g > 0 implies Hypothesis 3.3 so our assumptions include all cases
of strictly positive growth and also cases with possibly negative growth.

It’s time now to state our results on optimal feedback strategies. The following
theorem is useful.

Theorem 3.3 For all ῑ(·) ∈ L2([−T, 0);R+) with ῑ(·) 	≡ 0 the function

φ : M2 → R; φ(x)
def
= x0 − νΓ0(x) (37)

is in OFSῑ.

Proof. See Appendix Appendix A.

Finally, we get the explicit expression for the value function V0:

Corollary 3.1 Given any ῑ(·) ∈ L2([−T, 0);R+) and setting z = (R(ῑ), F (ῑ)) we have
that V (ῑ) = V0(z) = v(z) where v is given in Proposition 3.6.

Proof. See the proof of Corollary 2.2.14 of Fabbri and Gozzi (2008a).

3.3. Going back: solution to the original problem

Now we use the results we found in the infinite dimensional setting to solve the original
optimal control problem P. The results of this subsection are immediate corollaries of
those of the previous one so we do not prove them. First of all observe that, given any
f(·) ∈ L2([−T, 0),R+) and writing z = (R(f), F (f)), the quantity Γ0(z) defined in (35)
becomes

Γ(f)
def
= Γ0 (R(f), F (f)) = y(0)−

∫ 0

−T

eπs
∫ s

−T

δΩf(−s+ r)eδrdrds. (38)

We will use such an expression both when f is the initial datum (f = ῑ) and when f is
the history f = ı̃t for some t ≥ 0. From Corollary 3.1 we get the following:

Proposition 3.7 The explicit expression for the value function V related to problem
P is

V (ῑ) = a(Γ(ῑ))1−σ = a

(
y(0)−

∫ 0

−T

eπs
∫ s

−T

δΩῑ(−s+ r)eδrdrds

)1−σ

(39)

where a is defined in (36).
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Using Theorem 3.3 we derive the optimal strategies of problem P in closed loop form:

Proposition 3.8 The optimal control i∗ for problem P and the related state trajectory
y∗ satisfy, for all t ≥ 0,

i∗(t) = y∗(t)− νΓ(̃ı∗t (·)).
In particular, for all t ≥ 0, the optimal consumption path c∗(t) = y∗(t) − i∗(t) satisfies
c∗(t) = νΓ(̃ı∗t (·)).

3.4. Dynamic behavior of the optimal paths

We analyze here the dynamic behavior of the optimal paths using the results of
previous subsection. First we prove that the consumption c∗(·) is exponential and we
write a suitable DDE for y∗(·) and i∗(·):
Theorem 3.4 Let ῑ(·) ∈ L2([−T, 0);R+). Taking the initial data (y(0), ı̃0) = (R(ῑ), ῑ)
in (16), we have

c∗(t) = Λegt, ∀t ≥ 0 (40)

where g = π−ρ
σ and

Λ
def
= νΓ(ῑ) = ν

(
y(0)−

∫ 0

−T

eπs
∫ s

−T

δΩῑ(−s+ r)eδrdrds

)
. (41)

Moreover the optimal control i∗(t) for problem P is the unique solution in
W 1,2

loc ([0,+∞);R+) of the following DDE:

i∗(t) =
∫ t

(t−T )

i∗(s)(Ωe−δ(t−s) − η)ds− Λegt, (t ≥ 0); (42)

with the initial condition
i∗0(t) = ῑ(t), t ∈ [−T, 0).

The optimal y∗(·) is the unique solution in W 1,2
loc ([0,+∞);R+) of the following integral

equation

y∗(t) =
∫ 0

(t−T )∧0
(Ωeδs − η)ῑ(s)ds+

∫ t

(t−T )∨0
[y∗(s)− Λegs] ds, t ≥ 0. (43)

Proof. See the proof of Lemma 2.3.3 and Theorem 2.3.4 of Fabbri and Gozzi (2008a).

The previous proposition completely determines the optimal dynamics. Consistently
with the AK vintage models studied in Boucekkine et al. (2005) and Fabbri and Gozzi
(2008a), detrended consumption is constant as in the standard AK model. The growth
rate g = π−ρ

σ is easily interpretable having in mind the previous comments on π in Sec-
tion 3.2.1. The constant detrended consumption level, Λ, depends here on several factors.
First of all, it depends on the whole investment history, and not only on the initial capi-
tal stock as in the standard AK model.17 Second, it depends on ALL the parameters of
the model, including those of the maintenance technology through parameter Ω. Coun-
tries having different maintenance strategies (reflected in different Ω) are likely to have

17Countries sharing the same initial capital stock but having a different initial investment datum will
have a different consumption level.
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different optimal consumption levels, and more importantly from the economic develop-
ment point of view, different output levels. Indeed, once optimal consumption dynamics
singled out, the dynamics of optimal investment (and thus output) follow simple linear
(but non-autonomous) DDEs that can be solved either in closed form or numerically.
Therefore in contrast to consumption, both investment and output optimal paths are
not simple exponential functions. Before getting to the dynamics, let us investigate their
asymptotic behavior. The following easy proposition is accurate enough.

Proposition 3.9 Defining, for t ≥ 0, the optimal detrended paths as:

yg(t)
def
= e−gty∗(t), ig(t)

def
= e−gti∗(t), cg(t)

def
= e−gtc∗(t), (44)

we have that the optimal detrended consumption path cg(t) =
(
yg(t) − ig(t)

)
is constant

and equal to Λ (defined in (41)). Moreover there exist positive constants iB and yB such
that

lim
t→+∞ ig(t) = iB and lim

t→+∞ yg(t) = yB .

We have, when g 	= −δ,
iB = Λ

(
∫ 0
−T

Ω(eδs−e−δT )egsds)−1
, yB = Λ+ Λ

(
∫ 0
−T

Ω(eδs−e−δT )egsds)−1
. (45)

Proof. See the proof of Proposition 2.3.5 of Fabbri and Gozzi (2008a).

Corollary 3.2 Define, for t ≥ 0, the optimal detrended maintenance expenditure

Mg(t)
def
= e−gt

∫ t

t−T

[
Ω

μ− 1
e−δ(t−τ) + η

]
i∗(τ)dτ (46)

and the optimal detrended replacement investment

irg(t)
def
= e−gt

(
A

βμ

) 1
μ−1

[∫ t

t−T

δe−δ(t−τ)i∗(τ)dτ + e−δT i∗(t− T )
]
. (47)

There exist positive constants MB and irB such that

lim
t→+∞Mg(t) =MB and lim

t→+∞ irg(t) = irB .

When g 	= −δ,
MB =

∫ 0

−T

(
Ω

μ−1e
δr + η

)
iBe

grdr (48)

and
irB =

(
A
βμ

) 1
μ−1

iB

[
e−(δ+g)T +

∫ 0

−T
δeδsegsds

]
. (49)

Not surprisingly, both investment and output grow at the same asymptotic rate as
consumption. More interestingly, the long-run investment and output levels iB and yB
do depend on the initial conditions, which is a common feature of endogenous growth
models, and on the relevant parameters of the model, including the parameters of the
maintenance technology as expected. But the latter dependence is quite complicated to
investigate analytically. We can develop a balanced growth path analysis as usual in
growth theory, starting from the following definition.
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Definition 3.4 We will say that the system is on a Balanced Growth Path (BGP)
if there exists a0, b0 > 0, and real numbers a1, b1 such that, for all s ∈ [−T,+∞),
ı̃∗(s) = a0e

a1s and, for all s ∈ [0,+∞), y∗(s) = b0e
b1s.

Notice that our definition accounts for the delayed nature of the operators driving the
dynamics of the model like in equation (42). This features the dependence of the BGP
on the initial investment datum. The next proposition highlights this sensitive property.

Proposition 3.10 If g > 0 the system admits BGPs. More precisely, if g > 0, all
the possible BGPs are those related to initial data of the form ῑ(s) = a0e

gs (for all
s ∈ [−T, 0)) for some a0 ∈ [0,+∞). In this case we have that ı̃∗(s) = a0e

gs for all

s ≥ −T and y∗(s) = b0e
gs for all s ≥ 0 where b0 =

∫ 0

−T
Ω(eδs − e−δT )a0e

gsds.

Proof. See Appendix Appendix A.

We study now the particular case in which the initial datum has the form ῑ(s) = ceg0s,
for all s ∈ [−T, 0), for some real constants c and g0 (c positive). This is the case we analyze
in the numerical simulations in Section 4 and its simplicity allows to solve the integrals we
found in our study and to provide a closed-form solution to the whole optimal dynamics,
and not only the BGPs. The next proposition does the job.

Proposition 3.11 Let c > 0, g0 > 0 and let

ῑ : [−T, 0]→ R; ῑ(s) = ceg0s.

Taking the initial data (y(0), ı̃0) = (R(ῑ), ῑ) in (16) we have:

(i)

{
F (ῑ) : [−T, 0)→ R

F (ῑ)(s) = −δΩce−g0s 1
g0+δ

(
e(g0+δ)s − e−(g0+δ)T

)
, s ∈ [−T, 0);

(ii) Γ(ῑ) =
(

Ωc
δ+g0

(
1− e−(δ+g0)T

)− ηc
g0

(
1− e−g0T

)− δΩc
δ+g0

1
δ+π

(
1− e−(δ+π)T

)
+ δΩc

δ+g0
1

π−g0
e−(g0+δ)T

(
1− e−(π−g0)T

))
;

(iii) Λ = νΓ(ῑ) and V (ῑ) = ν−σ 1
(1−σ)πΓ(ῑ)

1−σ;

(iv) iB = 1

Ω
(

1
g+δ (1−e−(δ+g)T )− e−δT

g (1−e−gT )
)
−1

Λ and yB = (iB + 1)Λ.

Proof. See Appendix Appendix A.

Items (i) and (ii) of the proposition give the explicit forms of functionals F (.) and
Γ(.) (applied to initial datum) which are enough to obtain a closed form solution to
optimal investment dynamics by Theorem 3.8 in Section 3.4. We shall now investigate the
implications of such solutions for the optimal investment and maintenance co-movements.
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4. Optimal investment and maintenance co-movements

In this section, we run some numerical experiments using the analytical findings of
the previous section. We choose to present the results of a non-anticipated, permanent
and positive shock on the productivity parameters A.18 Before the shock, the parameters
are chosen so that the long-run growth rate of the economy is between 2% and 3%, the
ratio maintenance to investment is about 50% as documented by McGrattan and Schmitz
(1999), capital lifetime is between 10 and 15 years, and an obsolescence rate between 1%
and 3%, both figures being quite common in the literature.19 Figures 1 to 4 show an
example of the optimal dynamics following a non-anticipated permanent 1% increase in
the productivity parameter A for investment, maintenance, replacement investment and
the obsolescence rate. The first three variables are detrended in the sense that each
variable, say q(t), is reported as q̂(t) = q(t) e−gt, ∀t ≥ 0, where g is the long-run growth
rate resulting from the permanent shock. Needless to say, the value of machines’ lifetime,
T , is adjusted from t = 0, since the A-shock also affects this variable.20 Last by not least,
the figures are generated with an initial investment profile of the form ῑ(s) = ceg0s as
anticipated in the previous section. In the numerical illustration considered here, we
set c = 1 and g0 is the long-run growth rate of the economy before the A-shock, here
g0 = 2.54%.

Figures 1 and 2 give the optimal investment and maintenance dynamics respectively.
Because initial investment profile is ῑ(s) = eg0s, detrended investment satisfies:

lim
t→0−

ˆ̄ι(t) = lim
t→0−

e(g0−g)t = 1.

Figure 1 thus shows clearly that the permanent technological stimulus induces a neat
increase in (detrended) investment just after the shock relative to the corresponding level
just before the shock: Investment jumps at t = 0! This discontinuity is quite common in
the DDE literature (see Boucekkine et al., 2005). More importantly, Figure 1 captures
very well the essential features of optimal adjustment in this kind of models: Investment
is stimulated in the short and long-run, though the long-run “multiplier” is smaller. In
the middle, the dynamics are much more persistent than in a model with homogeneous
capital due to replacement dynamics. Due to these dynamics, which are themselves
induced by the optimal constant lifetime of machines, convergence to the new balanced
growth paths is oscillatory (although the scale of the figures does not reflect this so
neatly after t = 3T

2 ). This is again consistent with the available AK theory with vintage
capital. Figure 2 displays the optimal dynamics of capital maintenance. For a careful
interpretation of the dynamics, the reader should note that given our parameterization

lim
t→0−

M̂(t) = 0.5008.

18We have also studied the consequences of shocks on the support cost, η.
19More precisely, three parameters were fixed and four varied. The fixed parameters are: β = 1, σ = 4

and ρ = 3%. The four varying parameters were: γ, A, η and μ.
20In Figure 1 to 4, we have: A = 0.62 before the shock, γ = 1.89, η = 0.0296 and μ = 10. This

implies a long-run growth rate equal to 2.54% before the shock, and equal to 2.68% after the shock.
The ratio maintenance expenditures to investment is close to 50%, and the machines’ lifetime is equal
to 12.5 before the shock. The latter increases very slightly to 12.55 years after the shock. The resulting
obsolescence rate is equal to 1.30% before the shock.
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Figure 1: Optimal response of the detrended investment ig(t) (see (44))

Figure 2: Optimal response of the detrended maintenance Mg(t) (see (46))
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Figure 2 thus implies even the maintenance variable jumps at t = 0, which is much
more surprising than the investment jump. Indeed, M(t) is not a control variable, and
moreover, it is a weighted time integral of the investment profile from t to t − T , as
reflected in equation (11). So why this jump? This jump occurs because the increase in
the productivity parameter A changes the value of optimal lifetime from t = 0. Therefore
the lower integration bound appearing in (11) gets modified, inducing the jump. More
interestingly, one can notice that investment and maintenance move in the same way.
Maintenance goes up at t = 0 because capital lifetime increases (slightly) inducing a
larger set of vintages to maintain. The remaining maintenance dynamics are explained
by investment dynamics given the integral law of motion (11).21 Overall, one can see that
optimal investment and maintenance patterns show a great degree of complementarity, a
property which we found to be robust to a wide variety of shocks and initial conditions.22

Figure 3: Behavior of the optimal obsolescence rate ξ(t) (see (8)) along the optimal path

Figures 3 and 4 give the optimal dynamics of the obsolescence rate ξ(t) and replace-
ment investment. The former is given by equation (8), and the latter by (12). Two
important characteristics have to be mentioned. First of all, and this may be the most
salient feature of Figures 3 and 4, the two paths show a discontinuity at t = T , which
comes trivially from the fact that investment is jumping at t = 0. Indeed, both variables

21One could differentiate (11) with respect to time to make explicit the link.
22In particular, we try shocks on the parameters of the maintenance technology.
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depend on the term i(t − T ). Second, for the same reason as for maintenance expendi-
tures, there is also a much less apparent jump of replacement investment and the rate
of obsolescence at t = 0. Instantaneous adjustment of T to its new value, following the
A-shock, do include jumps of the two variables at t = 0. More precisely, both the rate
of obsolescence and replacement investment experience a downward jump at t = 0.23

While investment shifts upward, replacement investment goes down just after the shock,
which is a powerful reason to distinguish between the two components of investment in
any business cycle study. Why? As the value of the optimal lifetime of machines goes
up, less machines will be thrown out just after the shock, the obsolescence costs will
be lower (which is reflected in the initial downward shift in the rate of obsolescence),
and replacement investment too. The remaining dynamics derive from investment dy-
namics according to the lagged structures appearing in the law of motions (8) and (12),
ultimately yielding oscillatory convergence to the new balanced growth path.

Figure 4: Optimal response of the detrended replacement investment irg(t) (see (47))

5. Conclusions

In this paper, we have considered a benchmark model of the AK type, incorporating
maintenance costs and allowing for endogenous obsolescence, in order to study optimal

23To be more precise, the rate of obsolescence and replacement investment (detrended) are equal to
1.30% and 0.659 respectively just before the shock.
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investment and maintenance co-movements in a framework where such co-movements do
no rely exclusively on a postulated ad-hoc depreciation function as it is usually done in
the related literature. At equilibrium, we prove that current optimal maintenance is a
weighted integral of past investment profile with time span depending on the endogenous
pace of obsolescence. Adapting a recent analytical approach to vintage models proposed
by Fabbri and Gozzi (2008a), we have been able to find the optimal dynamics of the
model in closed form. Completing the job with numerical assessment, we found that
investment and maintenance move in the same way in response to neutral technological
shocks, which suggest that they act as complementary to each other, which seems to be
consistent with data.

Deviating from AK framework for more comprehensive empirical work will of course
disable the analytical approach mostly taken in this paper. For example, with less stylized
Cobb-Douglas technologies as in Boucekkine et al. (2009), the involved state equations
are no longer linear delay differential equations, so that one can only resort to a full com-
putational approach. Moreover, accounting for investment-specific technological progress
will make the analysis of investment and maintenance co-movements even trickier. In-
deed, while accelerations in neutral technical progress lengthen capital lifetime as shown
in this paper, investment-specific technological progress tends rather to decrease it (see
again Boucekkine et al. (2009)). In a model with both forms of technological progress,
investment and maintenance co-movements would therefore depend a lot on the compo-
sition of technological progress and on the sensitivity of the scrapping decision to each
form of technical progress. This goes much beyond the scope of this paper. But precisely
because the latter general problem seems quite hard to address properly, we do believe
that the benchmark analysis provided in this article is a necessary step in this research
program.

Appendix A. Appendix: Proofs

We start by proving the following lemma that will be used in the proof of Proposition 3.2

Lemma Appendix A.1 The function F1 defined in (20) is strictly increasing and strictly
concave. Moreover F1(−∞) = −∞, F1(0) = 0, F1(+∞) = Ω

(
1− e−δT

)
and F ′1(0) =

Ω
δ

(
1− e−δT − δTe−δT

)
.

Proof. It is not difficult to see that, setting h(x) = 1− e−x − xe−x, we have

F ′1(z) =
Ωδ

(δ + z)2
h((δ + z)T ), if z �= −δ and F ′1(z) =

1

2
ΩδT 2, if z = −δ (A.1)

while, setting g(x) = −2h(x) + xh′(x) = −2 + 2e−x + 2xe−x + x2e−x we get

F ′′1 (z) =
Ωδ

(δ + z)3
g((δ + z)T ), if z �= −δ and F ′′1 (z) = −1

3
ΩδT 3, if z = −δ. (A.2)

Now by simple computations we can see that

h(x) > 0, ∀x ∈ R− {0} and
g(x)

x3
< 0, ∀x ∈ R− {0}.

so the whole claim of the Lemma easily follows.
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Proof of Proposition 3.2
The first statement is an immediate consequence of Lemma Appendix A.1. Statement (i)
follows observing that F ′1(0) > 1 by Hypothesis 3.1 and F ′1(π) < 1 by the strict monotonicity
and concavity of F1.
To prove (ii) we first observe that (20) can be rewritten, multiplying by δ + z �= 0, as

z2 +
[
−Ω

(
1− e−δT

)
+ δ

]
z + δΩe−δT − δΩe−(δ+z)T = 0. (A.3)

All complex roots of (20) are also roots of (A.3): they are at most countable and have the form
λk = ak±ibk for two sequences of real numbers {ak} and {bk}. Now a characteristic root is non-
simple if and only if it satisfies also the equation 2z+

(−Ω((1− e−δT
)
+ δ

)
+ δΩTe−(δ+z)T = 0.

Combining the two equations we get that a non simple characteristic root z must solve the

quadratic equation z2 +
[
2
T
− Ω

(
1− e−δT

)
+ δ

]
z + δΩe−δT +

Ω((1−e−δT )−δ

T
. This means that

there are at most two complex conjugate non simple characteristic roots. �
Proof of Proposition 3.3

By Diekmann et al. (1995) page. 34 and the Proposition 3.2 it follows that the solution of (19)
is continuous on R

+ and

yM (t) = o(eπt) + αeπt +
N∑

j=1

pj(t)e
λjt for t→ +∞

where λj are the finitely many roots of the characteristic equation with real part exceeding π
and pj are C-valued polynomial in t. Now we can easily see that the part due to the trigonomet-
ric polynomial

∑N
j=1 pj(t)e

λjt vanish because the solution remain always positive, due to the
following property: if the initial datum ῑ(·) is not identically zero then yM (t) remains positive
for all t. Indeed, the solution is continuous and its value in 0 is strictly positive. If there exists
a first point t̄ in which the solution is zero it satisfies:

yM (t̄) =

∫ t̄

(t̄−T )∧0
yM (s+ t)(Ωeδs − η)ds+

∫ 0

(t̄−T )∨0
ῑ(s+ t)(Ωeδs − η)ds

but the right hand side of equation is strictly positive because t̄ is the first positive point in
which yM (t) = 0. �

Proof of Theorem 3.2
Thanks to Theorem 5.1 page 282 in Bensoussan et al. (2007) we know that a solution exists for
all i(·) ∈ L2

loc([0,+∞);R) when the initial datum z is in N := R× F (L2([−T, 0);R)). Moreover
the same theorem ensures that having a weak solution as defined in (28) is equivalent to having
a solution in the following mild sense: x(·) in Π is a (mild) solution if, for all ψ ∈ D(A),

〈ψ, x(t)〉 =
〈
etAψ, z

〉
+

∫ t

0

C
(
e(t−r)Aψ

)
i(s)ds (A.4)

that gives, for all z1, z2 ∈ N and i(·) ∈ L2
loc([0,+∞);R), (xz1,i − xz2,i) = etA

∗
(z1−z2). Moreover

it is easy to see that N is dense in M2 and, fixed i(·) ∈ L2
loc([0,+∞);R), given z ∈ M2 and

zn ∈ N with zn
n→∞−−−−→
M2

z, that xzn,i(·) converges in Π to a xz,i(·) that is the solution we were

looking for. �
Proof of Theorem 3.3

First of all we prove that φ ∈ AFSῑ. We divide the proof in two steps.
Step 1: We claim that {

d
dt
xφ(t) = A∗xφ(t) + C∗(φ(xφ(t))), t > 0

xφ(0) = z = (R(ῑ), F (ῑ))
(A.5)
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has a unique solution in Π.
To prove this first step we consider the solution i(·) of the following delay differential equation{

i(t) = (1− ν)
(∫ t

(t−T )
i(s)(Ωe−δ(t−s) − η)ds

)
− ν

∫ 0

−T
eπsF (it)(s)ds

i(s) = ῑ ∀ s ∈ [−T, 0)
(A.6)

that has an absolute continuous solution i on [0,+∞) (see for example Bensoussan et al. (2007)
page 287 for a proof). Then we consider the equation{

d
dt
x = A∗x+ C∗(i(t)), t > 0

x(0) = z = (R(ῑ), F (ῑ)).
(A.7)

We know, thanks to Theorem 3.1, that the only solution in Π of (A.7) is x(t) := (y(t), F (it))
for all t ≥ 0, where y(·) is the solution of

ẏ(t) = C(it); (y(0), i0) = (R(ῑ), ῑ).

We claim that x(t) is solution of (A.5) indeed

φ(x(t)) = y(t)− ν

(∫ 0

−T

eπsF (it)(s)ds+ y(t)

)
(A.8)

and so (by (A.6):

φ(x(t)) = y(t) (1− ν) + i(t)− (1− ν)

(∫ t

(t−T )

i(s)(Ωe−δ(t−s) − η)ds

)

and by (A.7) we conclude that φ(x(t)) = i(t) for all t ≥ 0 and so x(·) = xφ(·) is a solution of
(A.5) and is in Π. Moreover thanks to the linearity of φ it is easy to observe that xφ(·) is the
unique solution in Π.
Step 2: We claim that φ(xφ(·)) ∈ Iῑ.
We have to prove that, for all t ≥ 0, φ(xφ(t)) = i(t) ∈ [0, x0

φ(t)]. First we prove that i(t) ≥ 0,

i.e. that ν
(∫ 0

−T
eπsx1

φ(t)(s)ds+ x0
φ(t)

)
≤ x0

φ(t). By Step 1 we have xφ(t) = (R(it), F (it)) so,

using the definitions of R and F and the Fubini Theorem we get:

ν

(∫ 0

−T

eπsx1
φ(t)(s)ds+ x0

φ(t)

)
= ν

(∫ 0

−T

Ωit(r)

(
eδr − e−δT

− δ

δ + π
eδre(δ+π)r +

δ

δ + π
eδre−(δ+π)T

)
dr

)

≤ ν

(∫ 0

−T

Ωit(r)
(
(eδr − e−δT )

(
1− δ

δ + π
e−T (δ+π)

))
dr

)

= ν
(
1− δ

δ + π
e−(δ+π)T

)
R(it) ≤ R(it) = x0

φ(t) (A.9)

where the last inequality follows by Hypothesis 3.3.
We prove now that, for all t ≥ 0, i(t) ≤ x0

φ(t) i.e. that

ν
(
x0
φ(t) +

∫ 0

−T
eπsx1

φ(t)(s)ds
)
≥ 0. Using the expressions of R and F as above we get

x0
φ(t) +

∫ 0

−T

eπsx1
φ(t)(s)ds = R(it) +

∫ 0

−T

eπsF (it)(s)ds=

∫ 0

−T

Ωi(r + t)Φ(r)dr

where the function Φ: [−T, 0]→ R is given by

Φ: r �→ eδr − e−δT − δ

δ + π
eδr

(
e(δ+π)r − e−(δ+π)T

)
.

Now by elementary computation we can prove that Φ(−T ) = 0 and Φ(r) > 0 for all r ∈ (−T, 0].
Using that i(t) ≥ 0 for all t > −T we have the claim.
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This concludes the proof of the fact that φ is an admissible strategy related to ῑ. The
optimality can be proved using the same arguments used by Fabbri and Gozzi (2008a) in the
proof of Theorem II.2.13. �

Proof of Proposition 3.10
It is enough to try the solution a0e

a1s in (42). We find:

a0e
a1s =

(∫ 0

−T

Ωe(δ+a1)rdr −
∫ 0

−T

Ωea1re−δTdr

)
a0e

a1s

(
π − ρ

σπ

)

+a0e
a1sν

∫ 0

−T

eπτ

∫ τ

−T

e−a1τδΩe(a1+δ)rdrdτ

then

1 = Σ(a1)
def
=

(
Ω

1

δ + a1
(1− e−(δ+a1)T )− Ωe−δT 1

a1
(1− e−a1T )

)(
π − ρ

σπ

)

+ν

∫ 0

−T

e(π−a1)τδΩ
1

δ + a1
(e(a1+δ)τ − e−(a1+δ)T )dτ

=

(
Ω

1

δ + a1
(1− e−(δ+a1)T )− Ωe−δT 1

a1
(1− e−a1T )

)(
π − ρ

σπ

)

+ν
δΩ

δ + a1

(
1

π + δ
(1− e−(π+δ)T )− e−(a1+δ)T 1

π − a1
(1− e−(π−a1)T )

)
.

We can see that, when g > 0,

lim
a1→−∞

Σ(a1) = +∞ lim
a1→+∞

Σ(a1) = 0

then there exists a a1 such that Σ(a1) = 1 and than such that a0e
a1· is the a BGP for all

positive a0. But from Theorem 3.4 (since we need b0e
b1s − a0e

a1s = Λegs for all s ≥ 0) we
can deduce that the only possible choice for a BGP is that a1 = b1 = g, then Σ(g) = 1 and
a0e

g· is a BGP for all positive a0. The related state evolution will be y(s) = b0e
gs where

b0 =
∫ 0

−T
Ω(eδs − e−δT )a0e

gsds. �
Proof of Proposition 3.11

We have only to use the definitions and results of other sections, to substitute ῑ(s) = ceg0s

(s ∈ [−T, 0)) and to solve the integrals. In particular we have to use (27) for (i), (38) for (ii),
(39) and (41) for (iii), and (45) for (iv). �
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