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Abstract

From a mathematical point of view self-organization can be described as patterns to which
certain dynamical systems modeling social dynamics tend spontaneously to be attracted. In this
paper we explore situations beyond self-organization, in particular how to externally control such
dynamical systems in order to eventually enforce pattern formation also in those situations where
this wished phenomenon does not result from spontaneous convergence. Our focus is on dynamical
systems of Cucker-Smale type, modeling consensus emergence, and we question the existence of
stabilization and optimal control strategies which require the minimal amount of external interven-
tion for nevertheless inducing consensus in a group of interacting agents. First we follow a greedy
approach, by designing instantaneous feedback controls with two different sparsity properties: com-
ponentwise sparsity, meaning that the controls have at most one nonzero component at every instant
of time and their implementation is based on a variational criterion involving ¢;-norm penalization
terms; time sparsity, meaning that the number of switchings is bounded on every compact interval
of time, and such controls are realized by means of a sample-and-hold procedure. Controls sharing
these two sparsity features are very realistic and convenient for practical issues. Moreover we show
that among the controls built out of the mentioned variational principle, the maximally sparse ones
are instantaneously optimal in terms of the decay rate of a suitably designed Lyapunov functional,
measuring the distance from consensus. As a consequence we provide a mathematical justification
to the general principle according to which “sparse is better” in the sense that a policy maker, who
is not allowed to predict future developments, should always consider more favorable to intervene
with stronger action on the fewest possible instantaneous optimal leaders rather than trying to
control more agents with minor strength in order to achieve group consensus. We then establish
local and global sparse controllability properties to consensus. Finally, we analyze the sparsity of
solutions of the finite time optimal control problem where the minimization criterion is a combina-
tion of the distance from consensus and of the ¢;-norm of the control. Such an optimization models
the situation where the policy maker is actually allowed to observe future developments. We show
that the lacunarity of sparsity is related to the codimension of certain manifolds in the space of
cotangent vectors.
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sparse stabilization, sparse optimal control.

MSC 2010: 34D45, 35B36, 49J15, 656K10, 93D15, 93B05

*Conservatoire National des Arts et Métiers, Département Ingénierie Mathématique (IMATH), Equipe M2N, 292 rue
Saint-Martin, 75003, Paris, France. (marco.caponigro@cnam.fr)

fTechnische Universitat Miinchen, Facultit Mathematik, Boltzmannstrasse 3 D-85748, Garching bei Miinchen, Ger-
many (massimo.fornasier@ma.tum.de).

fRutgers University, Department of Mathematics, Business & Science Building Room 325 Camden, NJ 08102, USA
(piccoli@camden.rutgers.edu).

$Université Pierre et Marie Curie (Univ. Paris 6) and Institut Universitaire de France, CNRS UMR 7598, Laboratoire
Jacques-Louis Lions, F-75005, Paris, France (emmanuel.trelatQupmc.fr).



Contents

1 Introduction 2
1.1 Self-organization Vs organization via intervention . . . . . . . . . ... ... ... ... 2
1.2 The general Cucker-Smale model and introduction to its control . . . . . .. ... .. 4
2 Sparse Feedback Control of the Cucker-Smale Model 9
2.1 A first result of stabilization . . . . . . . . . .. ... 9
2.2  Componentwise sparse feedback stabilization . . . . . ... .. ... ... .. ..... 9
2.3 Time sparse feedback stabilization . . . . . . .. .. ... ... ... .. ... ... 13
2.4 Componentwise sparse selections are absolutely continuous solutions . . . . ... ... 16
3 Sparse is Better 17
3.1 Instantaneous optimality of componentwise sparse controls . . . . . . . . .. ... ... 17
3.2 Complexity of consensus . . . . . . . .. Lo 21
4 Sparse Controllability Near the Consensus Manifold 22
5 Sparse Optimal Control of the Cucker-Smale Model 24
6 Appendix 27
6.1 Proof of Lemma 1 . . . . . . . . . . . . e 27
6.2 Proof of Proposition 1 . . . . . . . . . . e 27
6.3 A technical Lemma . . . . . . . . . . e 29

1 Introduction

1.1 Self-organization Vs organization via intervention

In recent years there has been a very fast growing interest in defining and analyzing mathematical
models of multiple interacting agents in social dynamics. Usually individual based models, described
by suitable dynamical systems, constitute the basis for developing continuum descriptions of the agent
distribution, governed by suitable partial differential equations. There are many inspiring applications,
such as animal behavior, where the coordinated movement of groups, such as birds (starlings, geese,
etc.), fishes (tuna, capelin, etc.), insects (locusts, ants, bees, termites, etc.) or certain mammals (wilde-
beasts, sheep, etc.) is considered, see, e.g., [2, 6, 18, 19, 45, 48, 49, 56, 63, 65] or the review chapter [8],
and the numerous references therein. Models in microbiology, such as the Patlak-Keller-Segel model
[39, 50], describing the chemotactical aggregation of cells and multicellular micro-organisms, inspired
a very rich mathematical literature [35, 36, 52], see also the very recent work [4] and references therein.
Human motion, including pedestrian and crowd modeling [21, 22], for instance in evacuation process
simulations, has been a matter of intensive research, connecting also with new developments such as
mean field games, see [40] and the overview in its Section 2. Certain aspects of human social behav-
ior, as in language evolution [23, 25, 38] or even criminal activities [58], are also subject of intensive
study by means of dynamical systems and kinetic models. Moreover, relevant results appeared in the
economical realm with the theoretical derivation of wealth distributions [27] and, again in connection
with game theory, the description of formation of volatility in financial markets [41]. Beside applica-
tions where biological agents, animals and micro-(multi)cellular organisms, or humans are involved,
also more abstract modeling of interacting automatic units, for instance simple robots, are of high
practical interest [11, 37, 61, 42, 51, 57].



One of the leading concepts behind the modeling of multiagent interaction in the past few years has
been self-organization [6, 45, 48, 49, 63|, which, from a mathematical point of view, can be described
as the formation of patterns, to which the systems tend naturally to be attracted. The fascinating
mechanism to be revealed by such a modeling is how to connect the microscopical and usually binary
rules or social forces of interaction between individuals with the eventual global behavior or group
pattern, forming as a superposition in time of the different microscopical effects. Hence, one of the
interesting issues of such socio-dynamical models is the global convergence to stable patterns or, as
more often and more realistically, the instabilities and local convergence [52].

While the description of pattern formation can explain some relevant real-life behaviors, it is also of
paramount interest how one may enforce and stabilize pattern formation in those situations where
global and stable convergence cannot be ensured, especially in presence of noise [68], or, vice versa,
how one can avoid certain rare and dangerous patterns to form, despite that the system may suddenly
tend stably to them. The latter situations may refer, for instance, to the so-called “black swans”,
usually referred to critical (financial or social) events [3, 62]. In all these situations where the inde-
pendent behavior of the system, despite its natural tendencies, does not realize the desired result, the
active intervention of an external policy maker is essential. This naturally raises the question of which
optimal policy should be considered.

In information theory, the best possible way of representing data is usually the most economical for re-
liably or robustly storing and communicating data. One of the modern ways of describing economical
description of data is their sparse representation with respect to an adapted dictionary [43, Chapter
1]. In this paper we shall translate these concepts to realize best policies in stabilization and control
of dynamical systems modeling multiagent interactions. Beside stabilization strategies in collective
behavior already considered in the recent literature, see e.g. [55, 57], the conceptually closest work to
our approach is perhaps the seminal paper [42], where externally driven “virtual leaders” are inserted
in a collective motion dynamics in order to enforce a certain behavior. Nevertheless our modeling
still differs significantly from this mentioned literature, because we allow us directly, externally, and
instantaneously to control the individuals of the group, with no need of introducing predetermined
virtual leaders, and we shall specifically seek for the most economical (sparsest) way of leading the
group to a certain behavior. In particular, we will mathematically model sparse controls, designed
to promote the minimal amount of intervention of an external policy maker, in order to enforce nev-
ertheless the formation of certain interesting patterns. In other words we shall activate in time the
minimal amount of parameters, potentially limited to certain admissible classes, which can provide a
certain verifiable outcome of our system. The relationship between parameter choices and result will
be usually highly nonlinear, especially for several known dynamical system, modeling social dynamics.
Were this relationship linear instead, then a rather well-established theory predicts how many degrees
of freedom are minimally necessary to achieve the expected outcome, and, depending on certain spec-
tral properties of the linear model, allows also for efficient algorithms to compute them. This theory
is known in mathematical signal processing under the name of compressed sensing, see the seminal
work [7] and [26], see also the review chapter [30]. The major contribution of these papers was to re-
alize that one can combine the power of convex optimization, in particular £;-norm minimization, and
spectral properties of random linear models in order to show optimal results on the ability of /1-norm
minimization of recovering robustly sparsest solutions. Borrowing a leaf from compressed sensing, we
will model sparse stabilization and control strategies by penalizing the class of vector valued controls
u=(u,...,uy) € (RHY by means of a mixed /¥ — (¢-norm, i.e.,

N
> Nl
i=1



where here || - || is the ¢¢-Euclidean norm on R?. This mixed norm has been used for instance in
[29] as a joint sparsity constraint and it has the effect of optimally sparsifying multivariate vectors
in compressed sensing problems [28]. The use of (scalar) ¢;-norms to penalize controls dates back to
the 60’s with the models of linear fuel consumption [20]. More recent work in dynamical systems [66]
resumes again ¢1-minimization emphasizing its sparsifying power. Also in optimal control with partial
differential equation constraints it became rather popular to use Li-minimization to enforce sparsity
of controls [9, 13, 14, 34, 53, 60, 67].

Differently from this previously mentioned work, we will investigate in this paper optimally sparse
stabilization and control to enforce pattern formation or, more precisely, convergence to attractors
in dynamical systems modeling multiagent interaction. A simple, but still rather interesting and
prototypical situation is given by the individual based particle system we are considering here as a
particular case

l"i = V;

b = 1% Uj i (1)
TN LTy wPP

fori =1,...,N, where 3 > 0 and z; € R?, v; € R? are the state and consensus parameters respectively.
Here one may want to imagine that the v;s actually represent abstract quantities such as words of
a communication language, opinions, invested capitals, preferences, but also more classical physical
quantities such as the velocities in a collective motion dynamics. This model describes the emerging
of consensus in a group of N interacting agents described by 2d degrees of freedom each, trying to
align (also in terms of abstract consensus) with their social neighbors. One of the motivations of
this model proposed by Cucker and Smale was in fact to describe the formation and evolution of
languages [23, Section 6], although, due to its simplicity, it has been eventually related mainly to the
description of the emergence of consensus in a group of moving agents, for instance flocking in a swarm
of birds [24]. One of the interesting features of this simple system is its rather complete analytical
description in terms of its ability of convergence to attractors according to the parameter 5 > 0 which
is ruling the communication rate between far distant agents. For § < %, corresponding to a still rather
strong long - social - distance interaction, for every initial condition the system will converge to a
consensus pattern, characterized by the fact that all the parameters v;(t)s will tend for ¢ — 400 to
the mean v = % Zi\; 1 i(t) which is actually an invariant of the dynamics. For 3 > %, the emergence
of consensus happens only under certain concentration conditions in state and consensus parameters,
i.e., when the group is sufficiently close to its state center of mass or when the consensus parameters
are sufficiently close to their mean. Nothing instead can be said a priori when at the same time one
has § > % and the mentioned concentration conditions are not provided. Actually one can easily
construct counterexamples to formation of consensus, see our Example 1 below. In this situation, it
is interesting to consider external control strategies which will facilitate the formation of consensus,
which is precisely the scope of this work.

1.2 The general Cucker-Smale model and introduction to its control

Let us introduce the more general Cucker-Smale model under consideration in this article.

The model. We consider a system of N interacting agents. The state of each agent is described by
a pair (x;,v;) of vectors of the Euclidean space R?, where x; represents the main state of an agent

and the v; its consensus parameter. The main state of the group of N agents is given by the N-uple
x = (z1,...,zN). Similarly for the consensus parameters v = (vy,...,vy). The space of main states



and the space of consensus parameters is (Rd)N for both, the product N-times of the Euclidean space
R? endowed with the induced inner product structure.
The time evolution of the state (z;,v;) of the i*" agent is governed by the equations

.%"i (t) = V; (t),

. 1 (2)
ut) =+ > a(llas(t) — ()| (vs(t) — vilt)),
j=1
for every i = 1,..., N, where a € C1([0, +0)) is a nonincreasing positive function. Here, || -|| denotes

again the Eg—EuCIidean norm in R%. The meaning of the second equation is that each agent adjusts its
consensus parameter with those of other agents in relation with a weighted average of the differences.
The influence of the j' agent on the dynamics of the i*" is a function of the (social) distance of the two
agents. Note that the mean consensus parameter v = % Zfil v;(t) is an invariant of the dynamics,
hence it is constant in time.

As mentioned previously, an example of a system of the form (2) is the influential model of Cucker
and Smale [23] in which the function a is of the form

K
0% + [l — x]*)7

(3)

a(llzj —z:]) = (

where K > 0, ¢ > 0, and 3 > 0 are constants accounting for the social properties of the group of
agents.
In matrix notation, System (2) can be written as

{ i Z Qisz, )

where L, is the Laplacian! of the N x N matrix (a(||z; — aczH)/N)f\;:1 and depends on z. The

Laplacian L, is an N x N matrix acting on (RY)Y and verifies L,(v,...,v) = 0 for every v € R%,
Notice that the operator L, always is positive semidefinite.

Consensus. For every v € (RY)"N, we define the mean vector v = + SN v; and the symmetric
bilinear form B on (RH)N x (RH)N by

N N
1 1 .
B(u,v) = ON2 Z (Ui — uj,vi —vj) = NZ@%W - (u,v),
i=1

ij=1
where (-, -) denotes the scalar product in R?. We set

Vf:{(vl,...,UN)G(Rd)N’1)1:-":1)N€Rd}, (5)

N
Vi ={(v1,...,on) € (RHY | Euizo}. (6)
i=1

These are two orthogonal subspaces of (RY)". Every v € (R?)Y can be written as v = vy +v| with
vy = (0,...,0) € Vy and v, € V.

'Given a real N x N matrix A = (as;):; and v € (RY)Y we denote by Av the action of A on (R*)"™ by mapping v
to (asiv1 + -+ - + ainvn)i=1,..,n. Given a nonnegative symmetric N x N matrix A = (asj)s,;j, the Laplacian L of A is
defined by L = D — A, with D = diag(ds,...,dn) and dr = 3.7, ag;.

Jj=1



Note that B restricted to V| x V| coincides, up to the factor 1/N, with the scalar product on
(RHN. Moreover B(u,v) = B(uy,v) = B(u,v,) = B(ug,v,). Indeed B(u,vs) = 0 = B(uy,v) for
every u,v € (RH)N.

Given a solution (z(t),v(t)) of (2) we define the quantities

N
X(1) = Blal), 2(t) = 51y O Ialt) — (1)
ij=1

and

N N

1 1

V() = Blo(t),v(0) = 53z 3 Joilt) = ()] = 5 3 Jo(e) 1, I
ij=1 i=1

Consensus is a state in which all agents have the same consensus parameter.

Definition 1 (Consensus point). A steady configuration of System (2) (x,v) € (RY)N x V; is called

a consensus point in the sense that the dynamics originating from (x,v) is simply given by rigid
translation x(t) = x + tv. We call (RY)N x V; is the consensus manifold.

Definition 2 (Consensus). We say that a solution (z(t),v(t)) of System (2) tends to consensus if
the consensus parameter vectors tend to the mean v = % >, vi, namely if limy_,o v;(t) = 0 for every
i=1,....N.

Remark 1. Because of uniqueness, a solution of (2) cannot reach consensus within finite time, unless
the initial datum is already a consensus point. The consensus manifold is invariant for (2).

Remark 2. The following definitions of consensus are equivalent:
(1) limy_oo vi(t) = v for every i =1,...,N;
(19) limyoovy,(t) =0 for everyi=1,...,N;

(7i1) limy_oo V' (t) = 0.

The following lemma, whose proof is given in the Appendix, shows that actually V' (¢) is a Lyapunov
functional for the dynamics of (2).

Lemma 1. For everyt >0

d
V() < —2a( 2NX(t)) V(t).
In particular if sup;o X (t) < X then limy_o V() = 0.

For multi-agent systems of the form (2) sufficient conditions for consensus emergence are a partic-
ular case of the main result of [32] and are summarized in the following proposition, whose proof is
recalled in the Appendix, for self-containedness and reader’s convenience.

Proposition 1. Let (zg,vp) € (RN x (RN be such that Xo = B(xo,vo) and Vo = B(xzg,v0) satisfy

/OO o(VENTYdr > /Ty 7
vXo

Then the solution of (2) with initial data (xg,vo) tends to consensus.



In the following we call the subset of (R¥)Y x (R%)V satisfying (7) the consensus region, which
represents the basin of attraction of the consensus manifold. Notice that the condition (7) is actually
satisfied as soon as Vjy and X are sufficiently small, i.e., the system has initially sufficient concentration
in the consensus parameters and in the main states.

Although consensus forms a rigidly translating stable pattern for the system and represents in
some sense a “convenient” choice for the group, there are initial conditions for which the system does
not tend to consensus, as the following example shows.

Example 1 (Cucker-Smale system: two agents on the line). Consider the Cucker—Smale system (2)-
(3) in the case of two agents moving on R with position and velocity at time t, (x1(t),vi1(t)) and
(x2(t),v2(t)). Assume for simplicity that f =1, K = 2, and 0 = 1. Let x(t) = x1(t) — z2(t) be the
relative main state and v(t) = v1(t) — va(t) be the relative consensus parameter. Equation (2), then
reads
T=v

v
14 a2
with initial conditions x(0) = xg and v(0) = vy > 0. The solution of this system can be found by direct
integration, as from v = —i /(1 + x?) we have

=

v(t) — vg = — arctan z(t) + arctan .

If the initial conditions satisfy arctanzg + vo < /2 then the relative main state x(t) is bounded
uniformly by tan (arctan xg + vg), satisfying the sufficient boundedness condition on the space variables
in Lemma 1 for consensus.

On the other hand, whenever arctanxg + vo > /2, which implies arctanxg + vg > 7/2 + € for
some € > 0, the consensus parameter v(t) remains bounded away from O for every time, since

v(t) = —arctanz(t) + arctanzg + vgp = 7/2 — arctanz(t) + & > ¢ > 0,
for every t > 0. In other words, the system does not tend to consensus.
Control of the Cucker-Smale model. When the consensus in a group of agents is not achieved by
self-organization of the group, as in Example 1, it is natural to ask whether it is possible to induce the
group to reach it by means of an external action. In this sense we introduce the notion of organization
via intervention. We consider the system (2) of N interacting agents, in which the dynamics of
every agent are moreover subject to the action of an external field. Admissible controls, accounting

for the external field, are measurable functions u = (u1,...,uy) : [0, +00) — (R satisfying the
¢V — fd-norm constraint

N
Z lus(®)]| < M, (8)

for every ¢t > 0, for a given positive constant M. The time evolution of the state is governed by

$Z(t) = Ui(t),
1 N
ult) =+ > allz;(t) — (0] (w5 (t) — vil#)) + (),
7=1

fori=1,...,N, and z; € R? v; € R% In matrix notation, the above system can be written as

T =
( "
v = —L,v + u,



where L, is the Laplacian defined in Section 1.2.

Our aim is then to find admissible controls steering the system to the consensus region in finite
time. In particular, we shall address the question of quantifying the minimal amount of intervention
one external policy maker should use on the system in order to lead it to consensus, and we formulate
a practical strategy to approach optimal interventions.

Our first approach will be a greedy one, in the sense that we will design a feedback control which
will optimize instantaneously three fundamental quantities:

(i) it has the minimal amount of components active at each time;

(ii) it has the minimal amount of switchings equispaced in time within the finite time interval to
reach the consensus region;

(iii) it maximizes at each switching time the rate of decay of the Lyapunov functional measuring the
distance to the consensus region.

This approach models the situation where the external policy maker is actually not allowed to predict
future developments and has to make optimal decisions based on instantaneous configurations. Note
that a componentwise sparse feedback control as in (i) is more realistic and convenient in practice
than a control simultaneously active on more or even all agents, because it requires acting only on at
most one agent, at every instant of time. The adaptive and instantaneous rule of choice of the controls
is based on a variational criterion involving ¢) — f4-norm penalization terms. Since however such
componentwise sparse controls are likely to be chattering, i.e., requiring an infinite number of changes
of the active control component over a bounded interval of time, we will also have to pay attention in
deriving control strategies with property (ii), which are as well sparse in time, and we therefore call
them time sparse controls.

Our second approach is based on a finite time optimal control problem where the minimization crite-
rion is a combination of the distance from consensus and of the ¢ — ¢4-norm of the control. Such an
optimization models the situation where the policy maker is actually allowed to make deterministic
future predictions of the development. We show that componentwise sparse solutions are again likely
to be the most favorable.

The rest of the paper is organized as follows: Section 2 is devoted to establishing sparse feedback
controls stabilizing System (9) to consensus. We investigate the construction of componentwise and
time sparse controls. In Section 3 we discuss in which sense the proposed sparse feedback controls have
actually optimality properties and we address a general notion of complexity for consensus problems.
In Section 4 we we combine the results of the previous sections with a local controllability result
near the consensus manifold in order to prove global sparse controllability of Cucker-Smale consensus
models. We study the sparsity features of solutions of a finite time optimal control of Cucker-Smale
consensus models in Section 5 and we establish that the lacunarity of their sparsity is related to the
codimension of certain manifolds. The paper is concluded by an Appendix which collects some of the
merely technical results of the paper.



2 Sparse Feedback Control of the Cucker-Smale Model

2.1 A first result of stabilization

Note first that if the integral [;°a(r)dr diverges then every pair (X, V) > 0 satisfies (7), in other
words the interaction between the agents is so strong that the system will reach the consensus no
matter what the initial conditions are. In this section we are interested in the case where consensus
does not arise autonomously therefore throughout this section we will assume that

a € L'(0, +o0).

As already clarified in Lemma 1 the quantity V(¢) is actually a Lyapunov functional for the uncon-
trolled System (2). For the controlled System (9) such quantity actually becomes dependent on the
choice of the control, which can nevertheless be properly optimized. As a first relevant and instructive
observation we prove that an appropriate choice of the control law can always stabilize the system to
consensus.

Proposition 2. For every M > 0 and initial condition (zg,vo) € (RD)N x (RN, the feedback control

defined pointwise in time by u(t) = —aw (t), with 0 < a < N satisfies the constraint (8) for
V0,0

every t > 0 and stabilizes the system (9) to consensus in infinite time.

Proof. Consider the solution of (9) with initial data (zo,vg) associated with the feedback control

= — 1 < 4M . = 1vi
U avy, with 0 < a < N/Bloown) Then, by non-negativity of L,,

d d

5V () = 2. B(u(t),v(t))

= —2B(Lyv(t),v(t)) + 2B(u(t), v(t))
< 2B(u(t), v(t))

= —2aB(v.(t),v1 (1))

= —2aV (t).

Therefore V(t) < e 2%V (0) and V (¢) tends to 0 exponentially fast as t — co. Moreover

N
D llu®))? = av'N
i=1

N
Y llu®)) < VN Z lo,@D? = aNV/V(t) < aN/V(0) = M,
1=1

and thus the control is admissible. O

In other words the system (8)-(9) is semi-globally feedback stabilizable. Nevertheless this result
has a merely theoretical value: the feedback stabilizer u = —aw; is not convenient for practical
purposes since it requires to act at every instant of time on all the agents in order to steer the
system to consensus, which may require a large amount of instantaneous communications. In what
follows we address the design of more economical and practical feedback controls which can be both
componentwise and time sparse.

2.2 Componentwise sparse feedback stabilization

We introduce here a variational principle leading to a componentwise sparse stabilizing feedback law.



Definition 3. For every M > 0 and every (z,v) € (RN x (RYN | let U(z,v) be defined as the set
of solutions of the variational problem

N N
min (B(v,u) +7(B(z,2)) > HuiH> subject to > ||u;|| < M, (11)
=1 =1

where -
7(X) :/ a(V2Nr)dr. (12)

VX
The meaning of (11) is the following. Minimizing the component B(v,u) = B(v,,u) means that,
at every instant of time, the control u € U(x,v) is of the form u = —«- v, for some o = (aq,...,an)

sequence of nonnegative scalars. Hence it acts as an additional force which pulls the particles towards
having the same mean consensus parameter. Imposing additional £ — ¢¢-norm constraints has the
function of enforcing sparsity, i.e., most of the /s will turn out to be zero, as we will in more detail
clarify below. Eventually, the threshold «(X) is chosen in such a way that the control switches-off as
soon as the criterion (7) gets fulfilled.

The componentwise sparsity feature of feedback controls u(x,v) € U(x,v) is analyzed in the next
remark, where we make explicit the set U(z,v) according to the value of (z,v) in a partition of the
space (RN x (RH)N,

Remark 3. First of all, it is easy to see that, for every (z,v) € (RN x (R%)" and every element
u(x,v) € U(z,v) there exist nonnegative real numbers «;s such that

0 if vy, = 0,
ui(fc,v) = vy, if vl 7& 0,

. (13)
Tow

where 0 < Zi]\ilai < M.

The componentwise sparsity of u depends on the possible values that the «;’s may take in function of
(z,v). Actually, the space (RY)YN x (RN can be partitioned in the union of the four disjoint subsets
C1,Co,C3, and Cy4 defined by

G = {(z,v) € ROY x R)N | B(v,v) < v(B(z,))*},
Co = {(z,v) € RO x R)N | B(v,v) =v(B(z,))},

C3 = {(z,v) € RHN x (RHN | B(v,v) > v(B(z,z))?, and there exists a unique i € {1,..., N} such
that [Jo, | > [los, | for every j # i},

Ci= {(z,v) € (RHN x (RHN | B(v,v) > v(B(x,z))? and there exist k > 2 and i1,...,ix € {1,...,N}
such that [vy, || =---=lvi, [ and [[vi, [| > [lvi,| for every j & {i1,... ix}}.

The subsets C; and C3 are open, and the complement (C; UC3)¢ has Lebesgue measure zero. Moreover
for every (x,v) € C;UCs, the set U(x,v) is single valued and its value is a sparse vector with at most one
nonzero component. More precisely, one has Ul¢, = {0} and U, = {(0,...,0, —Mv, /||vi,|,0,...,0)}
for some unique i € {1,...,N}.

If (z,v) € Co UCy then a control in U(x,v) may not be sparse: indeed in these cases the set U(z,v)
consists of all u = (uy, ...,uyn) € (RY)Y such that u; = —ayv,, /|lv,|| foreveryi = 1,..., N, where the
a’s are nonnegative real numbers such that 0 < SN | ; < M whenever (z,v) € Co, and % oy = M
whenever (z,v) € Cy.

10



By showing that the choice of feedback controls as in Definition 3 optimizes the Lyapunov functional
V(t), we can again prove convergence to consensus.

Theorem 1. For every (z,v) € (RON x (RHN, and M > 0, set F(x,v) = {(v,~Lyv+u) | u
U(x,v)}, where U(z,v) is as in Definition 3. Then for every initial datum (zg,v0) € (RH)N x (R d)
the differential inclusion

(#,0) € F(z,v) (14)
with initial condition (2(0),v(0)) = (xo,vo) is well-posed and its solutions converge to consensus as t
tends to +o0.

Remark 4. By definition of the feedback controls u(x,v) € U(x,v), and from Remark 3, it follows
that, along a closed-loop trajectory, as soon as V(¢) is small enough with respect to v(B(z,z)) the
trajectory has entered the consensus region defined by (7). From this point in time no action is further
needed to stabilize the system, since Proposition 1 ensures then that the system is naturally stable
to consensus. In particular the control switches-off automatically by being set to 0 forever. It follows
from the proof of Theorem 1 below that the time 7" needed to steer the system to the consensus region

is not larger than £% ( V(0) — 7()2)), where v is defined by (12), and X = 2X(0) + 2MQV(O)

Proof of Theorem 1. First of all we prove that (14) is well-posed, by using general existence results
of the theory of differential inclusions (see e.g. [1, Theorem 2.1.3]). For that we address the following
steps:

e being the set F(x,v) non-empty, closed, and convex for every (z,v) € (RH)N x (RHN (see
Remark 3), we show that F'(x,v) is upper semi-continuous; this will imply local existence of
solutions of (14);

e we will then argue the global extension of these solutions for every ¢t > 0 by the classical
theory of ODE’s, as it is sufficient to remark that there exist positive constants ci, cs such that
1F(z, v)|| < ol + c2.

Let us address the upper semi-continuity of F(z,v), that is for every (xg,vg) and for every ¢ > 0 there
exists § > 0 such that
F(B(S(xO?UO)) C BE(F($07UO))7

where Bs(y), B:(y) are the balls of (RN x (R?)N centered in y with radius § and ¢ respectively. As the
composition of upper semi-continuous functions is upper semi-continuous (see [1, Proposition 1.1.1]),
then it is sufficient to prove that U(z,v) is upper semi continuous. For every (z,v) € C; UCs, ( )
is single valued and continuous. If (z,v) € Cy then there exist i1,..., 4 such that [[vy, || =
los, | and [lor, || > o, |l for every § ¢ {ir,...,ix}. 1t < minlg{ih,__ﬁk} (Hmil = Hulll) then
U(Bs(z,v)) = U(x,v) hence, in particular, it is upper semi continuous. With a similar argument it
is possible to prove that U(z,v) is upper semi continuous for every (x,v) € C4. This establishes the
well-posedness of (14).

Now, let (z(:),v(+)) be a solution of (14). Let 7' the minimal time needed to reach the consensus,
that is T is the smallest number such that V(T') = v(X(7T))?, with the convention that T' = +oo0 if the
system does not reach consensus. Let t € (0,T), then V() > v(X(¢))2. Thus the trajectory (z(-), v(-))

is in Cg or Cy4 and there exist indices 41, ..., i in {1,..., N} such that [jv,, (¢)|| =--- = [vi, ()] and
v, (O > [lvi,; (@) for every j ¢ {i1,... iy} Hence if u(t) € U(z(t),v(t)) then
vy, (t) S .
—q——— if j € {i1,... ik},
u;(t) = v, @)l

0 otherwise,

11



where Z§:1 @j; = M. Then,

For clarity, notice that in the last inequality we used the maximality of [[vy, (¢)]| for which

N 1 &
WHMH ®)? = N2 Z loa, ()17,
=1

or
1/2

VN 1 (1 & )
T\|”¢q(ﬂ”>ﬁ N;ij(t)\\ ,

and eventually

1 1
Sl O <~ VY.
Let Vo = V(0) and Xy = X(0). It follows from Lemma 5 in Appendix, or simply by direct integration,
that
M\2
V(t) < (\/Vo - Nt) : (16)
and
Nt oo
Note that the time 7" needed to steer the system in the consensus region is not larger than
N _
Ty =3 (Ve —1(%), (17)

and in particular it is finite. Indeed, for every t > Ty we have

VI < V) < v/ — 3T = 7(X) < 5(X(0),

and Proposition 1, in particular (7), implies that the system is in the consensus region.
Since we have V(t) = B(v(t),v(t)) < v(X(t))? for every t > T, it follows that (z(t),v(t)) € C1,
which implies that U(x(t),v(t)) = {0}. Then by Lemma 1 we infer that V (¢) tends to 0. O

Within the set U(x,v) as in Definition 3, which in general does not contain only sparse solutions,
there are actually selections with maximal sparsity.

12



Definition 4. We select the componentwise sparse feedback control u® = u°(z,v) € U(z,v) according
to the following criterion:

e if B(v,v) < ~v(z)?, then u® =0,
e if B(v,v) > ~(B(z,7))?, leti € {1,...,N} be the smallest index such that
loLll = ~(B(z,2))  and o]l = oy, for every j=1,..., N,

then
o _ ,UJ—Z

;= —, and uj =0 for every j #i.
oL,

We would like to prove that actually there exists a solution to (14) which uses exclusively the
componentwise sparse control u°® as in Definition 4, i.e.,

2(t) =20 + /0 (F2() +u(2(s) ds, == (z,0),  F(2) = (v, —Lav), (18)

is an absolutely continuous solution of (14) in the sense of Clarke, Ledyaev, Sontag, and Subbotin
[12]. To do that, we will first construct piecewise C'! solutions by sampling in time the componentwise
sparse feedback control u°, and then we will show, by a compactness argument, that such sampled
solutions actually converge uniformly to the one in (18). In particular we shall prove in Section 2.4
the following formal statement.

Theorem 2. For every M > 0 there ezists a solution of (14) associated with the componentwise
sparse control u® as defined in Definition 4.

Let us stress that, as a byproduct of our analysis, we shall eventually construct practical feedback
controls which are both componentwise and time sparse.
2.3 Time sparse feedback stabilization

Theorem 1 gives the existence of a feedback control whose behavior may be, in principle, very compli-
cated and that may be nonsparse. In this section we are going to exploit the variational principle (11)
to give an explicit construction of a piecewise constant and componentwise sparse control steering the
system to consensus. The idea is to take a selection of a feedback in U(z,v) which has at most one
nonzero component for every (z,v) € (RH)N x (RH)N, as in Definition 4, and then sample it to avoid
chattering phenomena (see, e.g., [69]).

The following definition of solution for discontinuous feedback has been given in [12].

Definition 5 (Sampling solution). Let U C R™, f : R" x U — f(z,u) be continuous and locally
Lipschitz in x uniformly on compact subset of R™ x U. Given a feedback v : R® — U, 7 > 0, and
xo € R™ we define the sampling solution of the differential system

= f(z,u(x)), x(0)=xo,
as the continuous (actually piecewise C1) function x : [0, T] — R™ solving recursively for k > 0
z(t) = f(z(t),u(x(kr))), te€kr,(k+1)7]

using as initial value x(kT), the endpoint of the solution on the preceding interval, and starting with
x(0) = xg. We call T the sampling time.

13



Theorem 3. Fiz M > 0 and consider the control u® law given by Definition 4. Then for every initial
condition (xg,v) € (RHN x (RHYN there exists 7o > 0 small enough, such that for all 7 € (0,79] the
sampling solution of (9) associated with the control u®, the sampling time 7, and initial datum (xo, vg)
reaches the consensus region in finite time.

Remark 5. The maximal sampling time 79 depends on the number of agents N, the E{V — Eg—norm
bound M on the control, the initial conditions (zg, vp), and the rate of communication function af(-).
The precise bounding condition (19) is given in the proof below. Moreover, as in Remark 4, the
sampled control is switched-off as soon as the sampled trajectory enters the consensus reg410n defined
by (7). This occurs within time 7' < Tp = 2Y (1/V(0) —v(X)), where X = 2B(z0, z0) + 2 B(vo, v0)*.

Proof of Theorem 3. Let

- 2N
X = 2B(xo, r0) + WB(U(J’UO)Q-
and let 7 > 0 satisfy the following condition
( 2 7(X)
7 (a(0)(1 + VN)\/B(vg,vo) + M) 4+ 7°2a(0) M < 5 (19)

Denote by (x,v) the sampling solution of System (9) associated with the control «°, the sampling
time 7, and the initial datum (zg,vo). Here [| denotes the integer part of a real number. Let
a(t) = u®(x(r[t/7]),v(r[t/7])) and denote for simplicity u°(t) = u°(x(t),v(t)), then a(t) = u®(r[t/7]).
Let T > 0 be the smallest time such that \/V(T) = v(X) with the convention that T = +oo if
V(t) > ~v(X) for every t > 0. (If \/V(0) = v(X) < v(X(0)) the system is in the consensus region
and there is nothing to prove.) For almost every t € [0,T], and by denoting n = [t/7], we have

d d

ZV(8) =~ B(u(t),v(t)
< 2B(a(t), v(t))
= 2B(u°(n7),v(t)). 2

Let ¢ in {1,..., N} be the smallest index such that ||v,,(n7)|| > ||vi, (n7)| for every k # i, so that
ul(nt) = —Mvy,(n7)/||vy, (nT)|| and ug(nt) = 0 for every k # i. Then (20) reads

d 2M

vy < —Z o), 21
Ly < 2o (21)
e (o1, (nr), w1, (1)
vy, (nT),vy,
o(t) = =
[vL; (n7)]]
Note that
¢(n7) = oL, (n7)|| = VV(n7). (22)
Moreover, by observing ||v,(t)[|> < N <% Z;V=1 v, (t)HQ), we have also the following estimates from
above
—o(t) < o, () S VNVV (1), (23)
We combine (23) and (21) to obtain
d 2M
v < =V,
GV < LV



and, by integrating between s and t, we get

VY < VTG + (= 5) (24)
Now, we prove that V' is decreasing in [0, 7]. Notice that
d 1 1 -
0Lt = I;a(\!%k = zil)(vL,(8) v () + @ — 2 g
= & Sl ) (os,0) - s () - M T

k#i

Moreover, observing that by Cauchy-Schwarz

N N 1/2 1 N 1/2
> sl < I (Sl )= (53 ht?)
k=1 k=1 k=1

we have the following sequence of estimates

%ZH’UMG)—’U Z”UJ_k N H]v, ( %ZHUJ—I@ H_i_\ﬁ\/i 1+\ﬁ m
ki k;ﬁz
Hence
d o (ui(n), 0(t)L,)
i o o
N -1
NHUJ_ nrT H kzgéz ka xl”)( ( ) U(t)J-wa-i(nT» - TM
_7(1 Z H L B v lk” -
k#i

YA+ VN)/V(t) — M.

By mean-value theorem there exists £ € [n7,t] such that

6(t) > ¢(nr) = (t = n7) (a(0)(1 + VN)VV(E) + M) .

Then, using the growth estimate (24) on vV, and estimating /V(€) from above by /V(nt) +
TM/\/N, we have

é(t) > d(nt) — 7 (a(O)(l +VN)/V(nr) + M) — 7224(0) M.

Plugging this latter expression again in (21) and using (22), we have

Dy < 21 ( Vinr) — 1 (a(O)(l +VN)/V(nr) + M) - TQZQ(O)M) . (25)
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We prove by induction on n that V(¢) is decreasing on [0,7]. Let us start on [0, 7] by assuming

V(0) > v(X), otherwise we are already in the consensus region and there is nothing further to
prove. By (25) and using the condition (19) on 7, we infer

Ly < —% (\/V(O) — 7 (a(0)(1 + VN)/V(0) + M) - 7'22a(0)M)

dt
< —% <7(X) - 72)())
— —%V(X) < 0. (26>

Now assume that V is actually decreasing on [0,n7], n7 < T, and thus \/V (n7) > v(X). Let us prove
that V' is decreasing also on [n7, min{T, (n+ 1)7}]. For every ¢t € (n7, min{7, (n+ 1)7}), we can recall
again equation (25), and use the inductive hypothesis of monotonicity for which \/V(0) < \/V (n7),
and the condition (19) on 7 to show

Cvity < -2 (VVirm) — 7 (a0)(1+ VR V) + M) — 2a(0)M)

< —% (7(5() —r (a(())(1 +VN)V(0) + M) - 722a(0)M)

This proves that V' is decreasing on [0, 7).

Let us now use a bootstrap argument to derive an algebraic rate of convergence towards the con-
sensus region. For every t € (0,7') by using (25), the fact that V' is decreasing, and the condition (19)
on 7 we have

dt N
M
< —— t
NGO
Then M
V(t) </ V(0) — —t,
0 < V) - ok
for every t € [0, 7). Finally we get T < 2N (1/V(0) — v(X))/M. O

2.4 Componentwise sparse selections are absolutely continuous solutions

We are now ready to prove Theorem 2, which states, in particular, that there exists a componentwise
sparse stabilizer for System (9) with at most one nonzero component.

Proof of Theorem 2. Denote z = (x,v) an element of (RN x (R)N. Let u° be the sparse feedback
of Definition 4. Fix zg = (29, v0) € (R)YN x (R))N. Let 7 be an admissible sampling time arbitrarily
small as in Proposition 3 which determines a sampling solutions which converges to consensus. For
every n > 1/7 consider the sampling solution z, of (9) associated with the feedback u, the sampling
time 1/n, and the initial data zg. Therefore if u,(t) = u°(z([nt]/n)) and f(z) = (v, —Lzv) we have
that

2n(t) = 20 —i—/o (f(zn(s)) + un(s)) ds.
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For a suitable constant o > 0, the linear growth estimate ||f(2)|| < «(]|z]| + 1) holds, so that, in

particular we have
e (allzol| +a+ M) —a—-M

1) <
lzn(®)l < X ,

where the bound is uniform in n. Therefore the sequence of continuous functions (zj)nen iS equi-
bounded by the constant
e“To(allzol| +a+ M) —a—M

- .

C:

The sequence (zy,)nen is also equicontinuous. Indeed
t
[2n(t) = zn(s)|| < / (Lf (NI + M) d€ < (t = s)(a(C + 1) + M)
S
for every n. For every e > 0, if § = ¢/(a(C + 1)+ M) > 0 then for every n one has ||z,(t) — z,(s)|| < ¢
whenever |t — s| < §. By Ascoli-Arzela Theorem, up to subsequences, z, converges uniformly to
an absolutely continuous function z. By continuity f(z,(t)) converges to f(z(t)) for almost every t.

Moreover, by definition wu,(t) tends to u°(z(t)) for almost every ¢. By the dominated convergence
Theorem, the limit function z satisfies

2(t) = 20 + /0 (F(2(5)) +u°(2(5)) ds,

and it is therefore a solution of the differential inclusion (14) associated with the sparse selection
u®. 0

3 Sparse is Better

3.1 Instantaneous optimality of componentwise sparse controls

The componentwise sparse control u°® of Definition 4 corresponds to the strategy of acting, at each
instant of time, on the agent whose consensus parameter is farthest from the mean and to steer it
to consensus. Since this control strategy is designed to act on at most one agent at each time, we
claim that in some sense it is instantaneously the “best one”. To clarify this notion of instantaneous
optimality which also implies its greedy nature, we shall compare this strategy with all other feedback
strategies u(z,v) € U(x,v) and discuss their efficiency in terms of the instantaneous decay rate of the
functional V.

Proposition 3. The feedback control u®(t) = u®(x(t),v(t)) of Definition 4, associated with the solution
((x(t),v(t)) of Theorem 2, is a minimizer of

Bt u) = %V(t),

over all possible feedbacks controls in U(x(t),v(t)). In other words, the feedback control u°(t) is the
best choice in terms of the rate of convergence to consensus.
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Proof. Consider

N
d. 1d )
dt Nﬁz vl
9 N
= N Z(OJ_NUJ-J
9 N N 9 N 1 N
= 2 2o 2 ol =D va) = Jonl) o 3t = 5 3 v
i=1 j=1 i=1 j=1
Now consider controls uy,...,uy of the form (13), then
N 1 (vi,,v1;)
> u —*Zuav”i == > allbnlt+y Y > G
i=1 {i | vy, #0} {i | v, #0} {5 | vi,#0} J
1 V]
- S iy B (Y ey
{i | vi,#0} {5 | vi,#0} \i | vy, #0} 7
=0
=— Y vl
{i | vi,#0}

since, by definition, Zfi 1 v1, = 0. Then maximizing the decay rate of V' is equivalent to solve

N N
maXZaijle, subject to a; > 0, Zaj < M. (27)
— o

In fact, if the index i is such that [[vy,|| > [[vy, || for j # i as in the definition of u°, then

N
> ajllos,ll < v, HZ% Mo,
j=1

Hence the control u° is a maximizer of (27). This variational problem has a unique solution whenever
there exists a unique 7 € {1,..., N} such that [[vy,[| > [lvi,|| for every j # i. O

This result is somewhat surprising with respect to the perhaps more intuitive strategy of activating
controls on more agents or even (although not realistic) all the agents at the same time as given in
Proposition 2. This can be viewed as a mathematical description of the following general principle:

A policy maker, who is not allowed to have prediction on future developments, should
always consider more favorable to intervene with stronger actions on the fewest possible
instantaneous optimal leaders than trying to control more agents with minor strength.

Example 2. The limit case when the action of the sparse stabilizer and of a control acting on all
agents are equivalent is represented by the symmetric case in which there exists a set of indices A =
{ir,d2,.. ik} such that [Jvi, || = (v, || and [[vi,, | > v, |l for every j ¢ A and for all ig,in, € A.
In this case, indeed, the equation (27) of the proof of Proposition 3 has more solutions. Consider four
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Figure 1: The time evolution of the modulus of the velocities in the fully symmetric case of Example 2.
In red the free evolution of the system, in blue the evolution under the action of a sparse control, and
in green the system under the action of a distributed control.

agents on the plane R? with initial positions x1(0) = (—1,0),22(0) = (0,1),23(0) = (1,0),24(0) =
(0, —1) and velocities v1(0) = (—1,0),v2(0) = (0,1),v3(0) = (1,0),v4(0) = (0,—1). Let the interaction
function be a(x) = 2/(1 + 2?) and the bound on the control be M = 1. In Figure 1 we represent the
time evolution of the velocities of this system. The free evolution of the system is represented in red.
The evolution under the action of the sparse control u° is in blue while in green the system under the
action of a “distributed” control acting on all the four agents simultaneously with oy = -+ = g = 1/4.
The system reaches the consensus region within a time t = 3.076 under the action of both the distributed
and the sparse control.

Example 3. We consider a group of 20 agents starting with positions on the unit circle and with
velocities pointing in various direction. Namely,

2:(0) = (cos(i +1/(2)), cos(i + 2/(2))) and v;(0) = (2sin(i/(3) — 1), 2sin(i1/(3) — 2)).

The initial configuration is represented in Figure 2. We consider that the interaction potential, as in
the Cucker—Smale system is of the form (3) with K = o = 3 =1, that is

The sufficient condition for consensus (7) then reads

VV < \/;TV (g — arctan( 2NX)> .

The system in free evolution does not tend to consensus, as showed in Figure 3. After a time of 100
the quantity /V (100) ~ 1.23 while v(X (100)) ~ 0.10.

On the other hand the componentwise sparse control steers the system to consensus in time t = 22.3.
Moreover the totally distributed control, acting on the whole group of 20 agents, steers the system in a
larger time, t = 27.6. The time evolution of 'V and of v(X) is represented in Figure 4. In Figure 5
the detail of the moment in which the two systems enter the consensus region.
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Figure 2: The initial configuration of Example 3.

Figure 3: The time evolution for ¢ € [0,100] of 1/V(¢) (solid line) and of the quantity v(X(¢)) (dashed
line). The system does not reach the consensus region.

Figure 4: Comparison between the actions of the componentwise sparse control and the totally dis-
tributed control. The time evolution for ¢ € [0, 30] of \/V(¢) (solid line in the sparse case and dash-dot
line in the distributed case) and of (X (¢)) (dashed line in the sparse case and dotted line in the dis-
tributed case).
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Figure 5: Detail of the time evolution of y/V (t) and of (X (¢)) under the action of the componentwise
sparse control and the completely distributed control near the time in which the two systems enter the
consensus region. The solid line represents the evolution of y/V(¢) under the action of the componen-
twise sparse control and the dash-dot line the evolution of /V(¢) under the action of the distributed
control. The dashed line represents the evolution of (X (¢)) under the action of the componentwise
sparse control and the dotted line the evolution of v(X (¢)) under the action of the distributed control.

3.2 Complexity of consensus

The problem of determining minimal data rates for performing control tasks has been considered for
more than twenty years. Performing control with limited data rates incorporates ideas from both
control and information theory and it is an emerging area, see the survey Nair, Fagnani, Zampieri
and Evans [44], and the references within the recent paper [15]. Similarly, in Information Based
Complezity [46, 47|, which is a branch of theoretical numerical analysis, one investigates which are the
minimal amount of algebraic operations required by any algorithm in order perform accurate numerical
approximations of functions, integrals, solutions of differential equations etc., given that the problem
applies on a class of functions or on a class of solutions.

We would like to translate such concepts of universal complezxity (universal because it refers to
the best possible algorithm for the given problem over an entire class of functions) to our problem of
optimizing the external intervention on the system in order to achieve consensus.

For that, and for any vector w € R?, let us denote supp(w) := {i € {1,...,d} : u; # 0} and
# supp(w) its cardinality. Hence, we define the minimal number of external interventions as the sum
of the actually activated components of the control # supp(u(ty)) at each switching time ¢,, which a
policy maker should provide by using any feedback control strategy u in order to steer the system to
consensus at a given time 7T'. Not being the switching times tg,t1,...,ts, ... specified a priori, such
a sum simply represents the amount of communication requested to the policy maker to activate and
deactivate individual controls by informing the corresponding agents of the current mean consensus
parameter v of the group. (Notice that here, differently from, e.g., [44], we do not yet consider
quantization of the information.)

More formally, given a suitable compact set K C (R%)™ x (R?)YN of initial conditions, the /¥ —
¢4-norm control bound M > 0, the set of corresponding admissible feedback controls % (M) C
BZ{V—eg(M)’ the number of agents N € N, and an arrival time 7" > 0, we define the consensus
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number as

n = n(N,%Z(M),K,T)

k—1

= inf sup Z #supp(u(ty)) : (x(T;u),v(T,u)) is in the consensus region .
u€% (M) (zo,v0)EK =0

Although it seems still quite difficult to give a general lower bound to the consensus numbers, Theorem

3 actually allows us to provide at least upper bounds: for Ty = To(M, N, zo,vo, a(-)) = %(\/V(O) -

v(X)), and 19 = T0(M, N, x0,v0,a(-)) as in Theorem 3 and Remark 5, we have the following upper

estimate
o0, T < Ty
Sup(zo,vo)EK TO(M7N7m07’U07a(')) >

inf (2 vg)ex T0(M,N,z0,v0,a(")) T'>To

(28)

n(N,%(M),/C,T)g{

Depending on the particular choice of the rate of communication function a(-), such upper bounds can
be actually computed, moreover, one can also quantify them over a class of communication functions
a(-) in a bounded set .7 C L'(R), simply by estimating the supremum.

The result of instantaneous optimality achieved in Proposition 3 suggests that the sampling strategy
of Theorem 3 is likely to be close to optimality in the sense that the upper bounds (28) should be close
to the actual consensus numbers. Clarifying this open issue will be the subject of further investigations
which are beyond the scope of this paper.

4 Sparse Controllability Near the Consensus Manifold

In this section we address the problem of controllability near the consensus manifold. The stabilization
results of Section 2 provide a constructive strategy to stabilize the multi-agent system (9): the system
is first steered to the region of consensus, and then in free evolution reaches consensus in infinite
time. Here we study the local controllability near consensus, and infer a global controllability result
to consensus.

The following result states that, almost everywhere, local controllability near the consensus man-
ifold is possible by acting on only one arbitrary component of a control, in other words whatever is
the controlled agent it is possible to steer a group, sufficiently close to a consensus point, to any other
desired close point. Recall that the consensus manifold is (R?)"Y x Vy, where V; is defined by (5).

Proposition 4. For every M > 0, for almost every & € (RN and for every v € V¢, for every time
T > 0, there exists a neighborhood W of (%,9) in (RON x (RYN such that, for all points (xq,vo) and
(z1,v1) of W, for every index i € {1,..., N}, there exists a componentwise and time sparse control
u satisfying the constraint (8), every component of which is zero except the i™ (that is, u;(t) = 0 for
every j # i and every t € [0,T]), steering the control system (9) from (zg,vo) to (x1,v1) in time T
Proof. Without loss of generality we assume ¢ = 1, that is we consider the system (9) with a control
acting only on the dynamics of vi. Given (7,7) € (RY)" x V; we linearize the control system (9) at
the consensus point (Z,?), and get d decoupled systems on RY x RN

.T}k = Uk
% = —Lzv* + Bu,

for every k =1,...,d where
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To prove the local controllability result, we use the Kalman condition. It is sufficient to consider the
decoupled control sub-systems corresponding to each value of £k = 1,...,d. Moreover the equations
for z* do not affect the Kalman condition, the z* plays only the role of an integrator. Therefore we
reduce the investigation of the Kalman condition for a linear system on RY of the form v = Av 4+ Bu

where A = —Ljz. Since A is a Laplacian matrix then there exists an orthogonal matrix P such that
0O 0 --- 0
D:=P AP = 9 A2
: . .0
0 -~ 0 My
Moreover since (1,...,1) € ker A, we can choose all the coordinates of the first column of P and thus
the first line of P~! = PT are equal to 1. We denote the first column of P~! by
1
%)
By =
aN

Notice that B; = P~'B. Denoting the Kalman matrix of the couple (A, B) by
K(A,B) = (B,AB,..., AN"1B)

one has
K(P7'AP,P7'B)= P7'K(A, B)

and hence it suffices to investigate the Kalman condition on the couple of matrices (D, B1). Now,
there holds

1 0 0 0
a9 A2xo )\%OKQ s )\éV_IOQ
K(D,By) = ) . )
aN ANOQN )\?VOéN A%_lozN
This matrix is invertible if and only if all eigenvalues 0, As,..., Ay are pairwise distinct, and all
coefficients ao, ...,y are nonzero. It is clear that these conditions can be translated as algebraic

conditions on the coefficients of the matrix A.

Hence, for almost every & € (R%)Y and for every & € Vy, the Kalman condition holds at (, 7).
For such a point, this ensures that the linearized system at the equilibrium point (Z,?) is controllable
(in any time T'). Now, using a classical implicit function argument applied to the end-point mapping
(see e.g. [64]), we infer the desired local controllability property in a neighborhood of (Z,7). By
construction, the controls are componentwise and time sparse. To prove the more precise statement of
Remark 7, it suffices to invoke the chain of arguments developed in [59, Lemma 2.1] and [33, Section
2.1.3], combining classical needle-like variations with a conic implicit function theorem, leading to the
fact that the controls realizing local controllability can be chosen as a perturbation of the zero control
with a finite number of needle-like variations.

O

Remark 6. Actually the set of points € (R?)" for which the condition is not satisfied can be
expressed as an algebraic manifold in the variables a(||z; — z;||). For example, if z is such that all
mutual distances ||z; — x;|| are equal, then it can be seen from the proof of this proposition that
the Kalman condition does not hold, hence the linearized system around the corresponding consensus
point is not controllable.
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Remark 7. The controls realizing this local controllability can be even chosen to be piecewise con-
stant, with a support union of a finite number of intervals.

As a consequence of this local controllability result, we infer that we can steer the system from
any consensus point to almost any other one by acting only on one agent. This is a partial but global
controllability result, whose proof follows the strategy developed in [16, 17] for controlling heat and
wave equations on steady-states.

Theorem 4. For every (g, %) € (RN x Vy, for almost every (&1,71) € (RY)N x Vy, for every § > 0,
and for everyi=1,...,N there exist T > 0 and a control u : [0,T] — [0,0]? steering the system from
(z,0) to (z,0), with the property u;(t) =0 for every j # i and every t € [0,T].

Proof. Since the manifold of consensus points (R%)" x V; is connected, it follows that, for all consensus
points (Zg, 7o) and (#1,71), there exists a C'' path of consensus points (Z,,¥,) joining (Zg, 7o) and
(Z1,01), and parametrized by 7 € [0, 1]. Then the we apply iteratively the local controllability result of
Proposition 4, on a series of neighborhoods covering this path of consensus points (his can be achieved
by compactness). At the end, to reach exactly the final consensus point (Z1,01), it is required that
the linearized control system at (Z1,71) be controllable, whence the “almost every” statement. O

Note that on the one hand the control u can be of arbitrarily small amplitude, on the other hand
the controllability time 7" can be large.

Now, it follows from the results of the previous section that we can steer any initial condition
(x0,v0) € (RHN x (RN to the consensus region defined by (7), by means of a componentwise and
time sparse control. Once the trajectory has entered this region, the system converges naturally (i.e.,
without any action: u = 0) to some point of the consensus manifold (R?)" x V;, in infinite time. This
means that, for some time large enough, the trajectory enters the neighborhood of controllability whose
existence is claimed in Proposition 4, and hence can be steered to the consensus manifold within finite
time. Theorem 4 ensures the existence of a control able move the system on the consensus manifold
in order to reach almost any other desired consensus point. Hence we have obtained the following
corollary.

Corollary 1. For every M > 0, for every initial condition (zg,vo) € (RN x (RHN, for almost every
(z1,v1) € RN x V¢, there exist T > 0 and a componentwise and time sparse control u : [0,T] —
(RHN, satisfying (8), such that the corresponding solution starting at (xo,v0) arrives at the consensus
point (x1,v1) within time T.

5 Sparse Optimal Control of the Cucker-Smale Model

In this section we investigate the sparsity properties of a finite time optimal control with respect to a
cost functional involving the discrepancy of the state variables to consensus and a ¢ — ¢3-norm term
of the control.

While the greedy strategies based on instantaneous feedback as presented in Section 2 model the
perhaps more realistic situation where the policy maker is not allowed to make future predictions, the
optimal control problem presented in this section actually describes a model where the policy maker
is allowed to see how the dynamics can develop. Although the results of this section do not lead
systematically to sparsity, what is interesting to note is that the lacunarity of sparsity of the optimal
control is actually encoded in terms of the codimension of certain manifolds, which have actually null
Lebesgue measure in the space of cotangent vectors.
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We consider the optimal control problem of determining a trajectory solution of (9), starting at
(2(0),v(0)) = (x0,v0) € (RN x (RY)Y, and minimizing a cost functional which is a combination of
the distance from consensus with the /& — ¢4-norm of the control (as in [28, 29]), under the control
constraint (8). More precisely, the cost functional considered here is, for a given v > 0,

/TZN: ((w(t) - ]1].ivj(t))2+’7i”lu(t)”>dt. (29)
0 =1 Jj=1 i=1

Using classical results in optimal control theory (see for instance [5, Theorem 5.2.1] or [10, 64]), this
optimal control problem has a unique optimal solution (z(-),v(:)), associated with a control u on
[0, T, which is characterized as follows. According to the Pontryagin Minimum Principle (see [54]),
there exist absolutely continuous functions p.(-) and p,(-) (called adjoint vectors), defined on [0, T
and taking their values in (R?)", satisfying the adjoint equations

al|z; — il)
:Ei N Z ’xjj .Z';H <x xﬂvj ‘><p1)]' _pl)i)?

) 1
Boe = —Pa, = 5 D alllws = @il (po; — pu) — 20i + Z%
JFi

almost everywhere on [0,7], and py,(T") = p.,(T) = 0, for every i = 1,..., N. Moreover, for almost
every t € [0, T] the optimal control «(¢) must minimize the quantity

N N
D po(t),wi) + Y il (31)
i=1 i=1

over all possible w = (wy,...,wy) € (RH)N satisfying SN | |lw;| < M

In analogy with the analysis in Section 2 we identify five regions Oy, O2, O3, O4, Os covering the
(cotangent) space (RH)N x (RN x (RH)N x (RH)N

O1 = {(x,0,p2,00) | [P ]| <7 for every i € {1,...,N}},

Oz = {(z,v,pz,pv) | there exists a unique 7 € {1,..., N} such that |p,, || =~ and ||p,,|| < ~ for every
Jj# i},

O3 = {(x,v,pz,pv) | there exists a unique i € {1,..., N} such that |p,,|| > v and [|py,|| > |[py,| for
every j # 1},

Oy = {(2,v,ps,py) | there exist k > 2 and iy,...,i € {1,..., N} such that |[py, || = [[pv, |l =
[Po;, | >~ and [[py, || > [[py, || for every j & {i1,... ix}},

Os = {(z,v,pz,py) | there exist k > 2 and iy,...,ix € {1,..., N} such that HpvhH = ||pvz-2H =
|pv;, || =~ and [[py, || < for every j & {i1,...,ix}}.
k J

The subsets 01 and O3 are open, the submanifold O is closed (and of zero Lebesgue measure) and O;U
02U 05 is of full Lebesgue measure in (R?)N x (R))N. Moreover if an extremal (z(-),v(-), pz(-), po(-))
solution of (9)-(30) is in @1 U3 along an open interval of time then the control is uniquely determined
from (31) and is componentwise sparse. Indeed, if there exists an interval I C [0,7] such that
(x(t),v(t),pz(t),pu(t)) € Op for every t € I, then (31) yields u(t) = 0 for almost every ¢t € [. If
(x(t),v(t), pz(t), pu(t)) € O3 for every t € I then (31) yields u;j(t) = 0 for every j # i and u;(t) =
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—M”Z?Eg” for almost every ¢t € I. Finally, if (x(t),v(t), p.(t), py(t)) € Og for every t € I, then (31)
’ P (1)

does not determine w(t) in a unique way: it yields that u;(¢) = 0 for every j # ¢ and u;(t) = QT
with 0 < a < M, for almost every ¢t € I. However wu is still componentwise sparse on I.

The submanifolds Q4 and Os are of zero Lebesgue measure. When the extremal is in these regions,
the control is not uniquely determined from (31) and is not necessarily componentwise sparse. More

precisely, if (z(t),v(t),pz(t),pu(t)) € O4 U Os for every t € I, then (31) is satisfied by every control
v () . .
of the form u;, (t) = _aszu-]W’ j=1,...,k, and u; = 0 for every [ ¢ {i1,... i}, where the «;’s

i
are nonnegative real numbers such that 0 < Z?Zl a; < M whenever (z(t),v(t),pz(t),pu(t)) € Os,
and such that Z?:l a; = M whenever (z(t),v(t), pz(t), py(t)) € Os. We have even the following more

precise result.

Proposition 5. The submanifolds O, and Os are stratified> manifolds of codimension larger than or
equal to two. More precisely, Oy (resp., Oz) is the union of submanifolds of codimension 2(k — 1)
(resp., 2k ), where k is the index appearing in the definition of these subsets and is as well the number
of active components of the control at the same time.

Proof. Since the arguments are similar for Q4 and Oy, we only treat in details the case of O4. Assume
that ||p, (£)]| = [lpu, (t)[| > v, and that ||p, (t)|| < ||pe, (t)]| for every j = 3,..., N and for every ¢ € I.
Differentiating with respect to t the equality

1pw, ()17 = [P, (£)1%, (32)
we obtain
N
1
{Pozs Pag) = (Pors Do) + > poys alllzj — 22))pe, — alllzy — z1])po)+
=3

N
1
+ I [ > (alley = 21ll) = alllz; — a2]) +
j=3

N
£ 2({puy, ) — (o) + Do~ P D0 =0 (33)
j=1

These two relations are clearly independent in the cotangent space. Since a vector must satisfy (32) and
(33), this means that the Oy is a submanifold of the cotangent space R**" of codimension 2. Assume
now that [[pu ()] = [1Pvs ()] = -+ = [Pug ()] [Dox (O] > 7, 190y (DIl < Ipes ()] for j = k+1,...., N,
for every ¢ € I. Then for every pair (py,,py;) j = 2,...,k we have a relation of the kind (32) and a
relation of the kind (33). Hence Oy has codimension 2(k — 1). It follows clearly that O, is a stratified
manifold, whose strata are submanifolds of codimension 2(k — 1). O

It follows from these results that the componentwise sparsity features of the optimal control are
coded in terms of the codimension of the above submanifolds. By the way, note that, since p,(T") =
po(T) = 0, there exists € > 0 such that u(t) = 0 for every ¢t € [T'—¢,T]. In other words, at the end of
the interval of time the extremal (z(-),v(-), pz(), pu(+)) is in O;.

It is an open question of knowing whether the extremal may lie on the submanifolds O4 or Os
along a nontrivial interval of time. What can be obviously said is that, for generic initial conditions
((xo,v0), (p=(0),py(0))), the optimal extremal does not stay in Oy UOs along an open interval of time;
such a statement is however unmeaningful since the pair (p;(0), p,(0)) of initial adjoint vectors is not
arbitrary and is determined through the shooting method by the final conditions p,(T) = p,(T) = 0.

%in the sense of Whitney, see e.g. [31].
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6 Appendix

6.1 Proof of Lemma 1

For every t > 0, one has

N N N N
Z”LHQ *ZM vl,) szu lzz (lwi — z;]1)(v; — vi,v1,)
dtN N ~ o ~ ’ N2 L J )
L (NN N N
= = [ 223 allles — 2o — vivvr) + 303 alllay — will) s — v, 0.)
i=1j=1 j=11i=1

Now 1
N 3
lzi = )l = llz 1, — 2|l <zl + el < V2 (Z ||$Li||2> = V2NX
i=1
and since a is nonincreasing we have the statement.

6.2 Proof of Proposition 1

We split the proof of Proposition 1 in several steps.

Lemma 2. Assume that V(0) # 0, then for every t >0

% V(t) < —a(\/QNX >¢v

Proof. 1t is sufficient to remark that

d
dt” t_z\ﬁdt()

and apply Lemma 1. O

Lemma 3. For everyt >0

%\/X(t) <AV
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Proof. Note that for the conservation of the mean consensus parameter &, = v;,. So

1d 72 Y 9 Y
2 _
N E lzL,||” = I '§1<$Li7vj—i> < I El lzL, [[llvL,ll-
: 1= 1=

The sum in the last term is the scalar product on RY between the two vectors with components ||z ||
and ||v, | respectively. Applying once more the Cauchy-Schwarz inequality, on the one hand we have

v b :
jtx<t><]f,<2||m|2> (ZH%P) = 2/XOVV0).
=1 =1

On the other hand

2xt = (VEOVED) = 2/X0) 5 /XD,

OJ
Lemma 4. For everyt >0
JXD
Va4 +/ a(V2Nr)dr V(0).
/X (0)
Proof. By Lemma 2 we have that
t
SV — JV0) < — / o (VENX()) V7 (s
0
Now set 7 = /X (s). By Lemma 3 —/V (s)ds < —dr and, therefore,
VV(E) =/ V(0) < / FT) dr.
O

Let us now end the proof of Proposition 1. If V(0) = 0 then the system would be already in a
consensus situation. Let us assume then that V(0) > 0. Since

0<+/V(0) < / Fr)

then there exists X > X (0) such that

VV(0) = /ﬁ a (ﬁr) dr. (34)
VKO

Note that X may be not unique. So let X be the smallest number verifying (34). We claim that
X (t) < X for every t > 0 and we prove it by contradiction. Indeed if there exists ¢ such that X (f) > X
then by Lemma 4

VV(0) = F+/F

(V2N . V2N vV
T r)dr>/ a(V2Nr)dr = /V(0),

VX(0)

that is a contradiction.
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6.3 A technical Lemma

We state the following useful technical lemma, used in the proof of Theorem 1.

Lemma 5. Let (z(-),v(:)) be a solution of (14). If there exist &« > 0 and T' > 0 such that

for almost every t € [0,T], then

v < (VIO - 51), (36)
and )
X(t) < 2X(0) %V(O)Q (37)
Proof. Let us remind that
1 N
X(t) = 532 D lit) = 2;(@)]* and V(¢ N2 Z lvi(t) — v ()]
i,j=1 i,j=1

Integrating (35) one has

/0 \/st < —at,
and
VV () —/V(0) = ;/0 ;%ds < —%t,

hence (36) follows. For every i,j € {1,..., N} we have
t
i (t) — 2 ()] < [l2i(0) — 2;(0)]] +/0 [0i(s) = vj(s)l|ds
t
< 1i(0) ~ 20 + VBN [ V).
0

Notice that here we used the estimate ||v;(s) — v;(s)[|? < 2N? <2]1,2 Zé\fm:l llve(s) —vm(s)\|2> =
2N2V (t). Equation (35) implies also

/t JV(E)ds < -2 (V) — V(0)) < 2V (0).
0 a

a

Therefore, using the estimates as before, we have

N
= w2 ) — w0 < N2Z2<||xl — (02 + (/ los(s) — v5(s ||d8>>

i,j=1 1,j=1
< N2 Z <2sz ) —z;(0) H2+4N2 </ VvV dS) )
4,j=1
N
V(0)?
S 2N2 Z ;0 _‘T] )H2 +2 Z o2
3,j=1 i,j=1

= 2X(0)+wV( 0)2.

29



References

1]

2]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

J.-P. Aubin and A. Cellina. Differential Inclusions, volume 264 of Grundlehren der Mathematis-
chen Wissenschaften. Springer-Verlag, Berlin, 1984. Set-valued maps and viability theory.

M. Ballerini, N. Cabibbo, R. Candelier, A. Cavagna, E. Cisbani, L. Giardina, L. Lecomte, A. Or-
landi, G. Parisi, A. Procaccini, M. Viale, and V. Zdravkovic. Interaction ruling animal collective
behavior depends on topological rather than metric distance: evidence from a field study. preprint.

N. Bellomo, M. A. Herrero, and A. Tosin. On the dynamics of social conflict: looking for the
Black Swan. ArXiv: 1202.4554, 2012.

A. Blanchet, E. A. Carlen, and J. A. Carrillo. Functional inequalities, thick tails and asymptotics
for the critical mass Patlak-Keller-Segel model. J. Funct. Anal., 262(5):2142-2230, 2012.

A. Bressan and B. Piccoli. Introduction to the Mathematical Theory of Control, volume 2 of
AIMS Series on Applied Mathematics. American Institute of Mathematical Sciences (AIMS),
Springfield, MO, 2007.

S. Camazine, J. Deneubourg, N. Franks, J. Sneyd, G. Theraulaz, and E. Bonabeau. Self-
organization in biological systems. Princeton University Press, 2003.

E. J. Candes, J. Romberg, and T. Tao. Stable signal recovery from incomplete and inaccurate
measurements. Comm. Pure Appl. Math., 59(8):1207-1223, 2006.

J. A. Carrillo, M. Fornasier, G. Toscani, and F. Vecil. Particle, kinetic, and hydrodynamic
models of swarming. In G. Naldi, L. Pareschi, G. Toscani, and N. Bellomo, editors, Mathematical
Modeling of Collective Behavior in Socio-Economic and Life Sciences, Modeling and Simulation
in Science, Engineering and Technology, pages 297-336. Birkhauser Boston, 2010.

E. Casas, C. Clason, and K. Kunisch. Approximation of elliptic control problems in measure
spaces with sparse solutions. STAM J. Control Optim., 50(4):1735-1752, 2012.

L. Cesari. Optimization—Theory and Applications, volume 17 of Applications of Mathematics
(New York). Springer-Verlag, New York, 1983.

Y. Chuang, Y. Huang, M. D’Orsogna, and A. Bertozzi. Multi-vehicle flocking: scalability of coop-
erative control algorithms using pairwise potentials. IEFEE International Conference on Robotics
and Automation, pages 2292-2299, 2007.

F. H. Clarke, Y. S. Ledyaev, E. D. Sontag, and A. I. Subbotin. Asymptotic controllability implies
feedback stabilization. IEEE Trans. Automat. Control, 42(10):1394-1407, 1997.

C. Clason and K. Kunisch. A duality-based approach to elliptic control problems in non-reflexive
Banach spaces. ESAIM Control Optim. Cale. Var., 17(1):243-266, 2011.

C. Clason and K. Kunisch. A measure space approach to optimal source placement. Comput.
Optim. Appl., 53(1):155-171, 2012.

F. Colonius. Minimal bit rates and entropy for stabilization. SIAM J. Control Optimization,
50:2988-3010, 2012.

J.-M. Coron and E. Trélat. Global steady-state controllability of one-dimensional semilinear heat
equations. STAM J. Control Optim., 43(2):549-569 (electronic), 2004.

30



[17]

[18]

[19]

[20]

[21]

32]

[33]

J.-M. Coron and E. Trélat. Global steady-state stabilization and controllability of 1D semilinear
wave equations. Commun. Contemp. Math., 8(4):535-567, 2006.

I. Couzin and N. Franks. Self-organized lane formation and optimized traffic flow in army ants.
Proc. R. Soc. Lond., B 270:139-146, 2002.

I. Couzin, J. Krause, N. Franks, and S. Levin. Effective leadership and decision making in animal
groups on the move. Nature, 433:513-516, 2005.

A. J. Craig and . Fliigge-Lotz. Investigation of optimal control with a minimum-fuel consumption
criterion for a fourth-order plant with two control inputs; synthesis of an efficient suboptimal
control. J. Basic Engineering, 87:39-58, 1965.

E. Cristiani, B. Piccoli, and A. Tosin. Modeling self-organization in pedestrians and animal
groups from macroscopic and microscopic viewpoints. In G. Naldi, L. Pareschi, G. Toscani, and
N. Bellomo, editors, Mathematical Modeling of Collective Behavior in Socio-Economic and Life
Sciences, Modeling and Simulation in Science, Engineering and Technology. Birkhéuser Boston,
2010.

E. Cristiani, B. Piccoli, and A. Tosin. Multiscale modeling of granular flows with application to
crowd dynamics. Multiscale Model. Simul., 9(1):155-182, 2011.

F. Cucker and S. Smale. Emergent behavior in flocks. IEEE Trans. Automat. Control, 52(5):852—
862, 2007.

F. Cucker and S. Smale. On the mathematics of emergence. Jpn. J. Math., 2(1):197-227, 2007.

F. Cucker, S. Smale, and D. Zhou. Modeling language evolution. Found. Comput. Math., 4(5):315-
343, 2004.

D. L. Donoho. Compressed sensing. IEEE Trans. Inform. Theory, 52(4):1289-1306, 2006.

B. Diiring, D. Matthes, and G. Toscani. Kinetic equations modelling wealth redistribution: A
comparison of approaches. Phys. Rev. F, 78:056103, 2008.

Y. Eldar and H. Rauhut. Average case analysis of multichannel sparse recovery using convex
relaxation. IEEE Trans. Inform. Theory, 56(1):505-519, 2010.

M. Fornasier and H. Rauhut. Recovery algorithms for vector-valued data with joint sparsity
constraints. STAM J. Numer. Anal., 46(2):577-613, 2008.

M. Fornasier and H. Rauhut. Handbook of Mathematical Methods in Imaging, chapter Compressive
Sensing. Springer-Verlag, 2010.

M. Goresky and R. MacPherson. Stratified Morse theory, volume 14 of Ergebnisse der Mathematik
und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)]. Springer-Verlag,
Berlin, 1988.

S.-Y. Ha, T. Ha, and J.-H. Kim. Emergent behavior of a Cucker-Smale type particle model with
nonlinear velocity couplings. IEEE Trans. Automat. Control, 55(7):1679-1683, 2010.

T. Haberkorn and E. Trélat. Convergence results for smooth regularizations of hybrid nonlinear
optimal control problems. SIAM J. Control Optim., 49(4):1498-1522, 2011.

31



[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]
[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

R. Herzog, G. Stadler, and G. Wachsmuth. Directional sparsity in optimal control of partial
differential equations. SIAM J. Control and Optimization, 50(2):943-963, 2012.

D. Horstmann. From 1970 until present: The Keller-Segel model in chemotaxis and its conse-
quences. 1. Jahresber. Dtsch. Math.-Ver., 105(3):103-165, 2003.

D. Horstmann. From 1970 until present: the Keller-Segel model in chemotaxis and its conse-
quences. II. Jahresber. Dtsch. Math.-Ver., 106:51-69, 2004.

A. Jadbabaie, J. Lin, and A. S. Morse. Correction to: “Coordination of groups of mobile au-
tonomous agents using nearest neighbor rules” [IEEE Trans. Automat. Control 48 (2003), no. 6,
988-1001; MR 1986266]. IEEE Trans. Automat. Control, 48(9):1675, 2003.

J. Ke, J. Minett, C.-P. Au, and W.-Y. Wang. Self-organization and selection in the emergence of
vocabulary. Complexity, 7:41-54, 2002.

E. F. Keller and L. A. Segel. Initiation of slime mold aggregation viewed as an instability. J.
Theor. Biol., 26(3):399-415, 1970.

A. Lachapelle and M. T. Wolfram. On a mean field game approach modeling congestion and
aversion in pedestrian crowds. Trans. Res.: Part B: Methodological, 45:1572-1589, 2011.

J.-M. Lasry and P.-L. Lions. Mean field games. Jpn. J. Math. (3), 2(1):229-260, 2007.

N. Leonard and E. Fiorelli. Virtual leaders, artificial potentials and coordinated control of groups.
Proc. 40th IEEE Conf. Decision Contr., pages 2968-2973, 2001.

S. Mallat. A Wavelet Tour of Signal Processing. The Sparse Way. 3rd ed. Amsterdam: FElse-
vier/Academic Press, 2009.

G. N. Nair, F. Fagnani, S. Zampieri, and R. J. Evans. Feedback Control Under Data Rate
Constraints: An Overview. Proc IEEE Inst Electr Electron Eng, 95(1):108-137, 2007.

H. Niwa. Self-organizing dynamic model of fish schooling. J. Theor. Biol., 171:123-136, 1994.

E. Novak and H. Wozniakowski. Tractability of multivariate problems. Volume I: Linear infor-
mation. Zirich: European Mathematical Society (EMS), 2008.

E. Novak and H. Wozniakowski. Tractability of multivariate problems. Volume II: Standard in-
formation for functionals. Ziirich: European Mathematical Society (EMS), 2010.

J. Parrish and L. Edelstein-Keshet. Complexity, pattern, and evolutionary trade-offs in animal
aggregation. Science, 294:99-101, 1999.

J. Parrish, S. Viscido, and D. Gruenbaum. Self-organized fish schools: An examination of emer-
gent properties. Biol. Bull., 202:296-305, 2002.

C. S. Patlak. Random walk with persistence and external bias. Bull. Math. Biophys., 15:311338,
1953.

L. Perea, G. Gémez, and P. Elosegui. Extension of the Cucker-Smale control law to space flight
formations. AIAA Journal of Guidance, Control, and Dynamics, 32:527-537, 2009.

B. Perthame. Transport Equations in Biology. Basel: Birkh&user, 2007.

32



[53]

[54]

K. Pieper and B. Vexler. A priori error analysis for discretization of sparse elliptic optimal control
problems in measure space. preprint, 2012.

L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze, and E. F. Mishchenko. The mathematical
theory of optimal processes. Interscience Publishers John Wiley & Sons, Inc. New York-London,
1962.

A. Rahmani, M. Ji, M. Mesbahi, and M. Egerstedt. Controllability of multi-agent systems from
a graph-theoretic perspective. SIAM J. Control and Optimization, 48(1):162-186, 20009.

W. Romey. Individual differences make a difference in the trajectories of simulated schools of
fish. Ecol. Model., 92:65-77, 1996.

R. Sepulchre, D. Paley, and N. E. Leonard. Stabilization of planar collective motion with all-to-all
communication. IEEE Transactions on Automatic Control, 52(5):811-824, May 2007.

M. B. Short, M. R. D’Orsogna, V. B. Pasour, G. E. Tita, P. J. Brantingham, A. L. Bertozzi,
and L. B. Chayes. A statistical model of criminal behavior. Math. Models Methods Appl. Sci.,
18(suppl.):1249-1267, 2008.

C. Silva and E. Trélat. Smooth regularization of bang-bang optimal control problems. [FEFE
Trans. Automat. Control, 55(11):2488-2499, 2010.

G. Stadler. Elliptic optimal control problems with L'-control cost and applications for the place-
ment of control devices. Comput. Optim. Appl., 44(2):159-181, 20009.

K. Sugawara and M. Sano. Cooperative acceleration of task performance: Foraging behavior of
interacting multi-robots system. Physica D, 100:343-354, 1997.

N. Taleb. The Black Swan. Penguin, 2010.

J. Toner and Y. Tu. Long-range order in a two-dimensional dynamical xy model: How birds fly
together. Phys. Rev. Lett., 75:4326-4329, 1995.

E. Trélat. Contréle optimal, théorie € applications. Vuibert, Paris, 2005.

T. Vicsek, A. Czirok, E. Ben-Jacob, I. Cohen, and O. Shochet. Novel type of phase transition in
a system of self-driven particles. Phys. Rev. Lett., 75:1226-1229, 1995.

G. Vossen and H. Maurer. L' minimization in optimal control and applications to robotics.
Optimal Control Applications and Methods, 27:301-321, 2006.

G. Wachsmuth and D. Wachsmuth. Convergence and regularization results for optimal control
problems with sparsity functional. ESAIM, Control Optim. Calc. Var., 17(3):858-886, 2011.

C. Yates, R. Erban, C. Escudero, L. Couzin, J. Buhl, L. Kevrekidis, P. Maini, and D. Sumpter.
Inherent noise can facilitate coherence in collective swarm motion. Proceedings of the National
Academy of Sciences, 106:5464-5469, 20009.

M. I. Zelikin and V. F. Borisov. Theory of chattering control. Systems & Control: Foundations
& Applications. Birkhduser Boston Inc., Boston, MA, 1994. With applications to astronautics,
robotics, economics, and engineering.

33



