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Abstract

We study the asymptotic optimal control of multi-class restless bandits. A restless bandit is a
controllable process whose state evolution depends on whether or not the bandit is made active. The
aim is to find a control that determines at each decision epoch which bandits to make active in order
to minimize the overall average cost associated to the states the bandits are in. Since finding the
optimal control is typically intractable, we study an asymptotic regime instead that is obtained by
letting the number of bandits that can be simultaneously made active grow proportionally with the
population of bandits. We consider both a fixed population of bandits as well as a dynamic population
of bandits where bandits can depart and new bandits can arrive over time to the system. We propose
a class of priority policies, obtained by solving a linear program, that are proved to be asymptotically
optimal under a global attractor property and a technical condition. Indexability of the bandits is not
required for the result to hold. For a fixed population of bandits, the technical condition reduces to
checking a unichain property. For a dynamic population of bandits we present a large class of restless
bandit problems for which the technical condition is always satisfied. As an example, we present a
multi-class M/M/S+M queue, which is inside this class of problems and satisfies the global attractor
property. Henceforth asymptotic optimality of an index policy follows.

In case the bandits are indexable, we prove that Whittle’s index policy is included in the class of
asymptotically optimal policies. This generalizes the result of Weber and Weiss (1990), who showed
asymptotic optimality of Whittle’s index policy for a symmetric fixed population of bandits, to the
setting of (i) several classes of bandits, (ii) multiple actions, and (iii) possible arrivals of new bandits.
In order to prove the main results we combine fluid-scaling techniques with linear programming
results. This is a different proof approach than that taken in Weber and Weiss, and, in contrary to
the latter, allows to include arrivals of new bandits to the system.

Keywords: Restless bandits, asymptotic optimality, Whittle’s index policy, arm-aquiring bandits.

1 Introduction

Multi-armed bandit problems are concerned with the optimal dynamic activation of several competing
bandits taking into account that at each moment in time α bandits can be made active. The aim
is to find a control that determines at each decision epoch which bandits to make active in order to
minimize the overall cost associated to the states the bandits are in. In the by now classical multi-
armed bandit model [18] it is assumed that only active bandits can change from state. In [49] Whittle
introduced so-called restless bandits, where a bandit can also change its state while it is passive (that
is, not active), possibly according to a different law from that which applies when it is active. The
multi-armed restless bandit problem is a general optimization problem that has gained popularity due
to its multiple applications in for example sequential selection trials in medicine, sensor management,
manufacturing systems, queueing and communication networks, control theory, economics, etc. We refer
to [19, 30, 50] for further references, applications, and possible extensions studied in the literature.

In 1979, Gittins introduced index-based policies for the non-restless bandit problem. He associated to
each bandit an index being a function of the state a bandit is in and defined the policy that makes those
α bandits active having currently the greatest indices (see [17]). This policy is known as the Gittins index
policy. It was first proved by Gittins that this policy is optimal in case α = 1 [17] for the time-average
and discounted cost criteria. Extensions of the optimality result of Gittins index policy when new bandits
may arrive over time (for example Poisson arrivals or Bernouilli arrivals) were obtained in [47, 48]. Note
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that for α > 1 the optimality result does not necessarily go through. In [37] sufficient conditions on the
reward processes are given though in order to guarantee optimality of the Gittins policy for the discounted
cost criterion when α > 1.

In the presence of restless bandits, finding an optimal control is typically intractable. Whittle [49]
proposed therefore to solve a relaxed optimization problem where the constraint of having at most α
bandits active at a time is relaxed to a time-average or discounted version of the constraint. He observed
that in case the bandits satisfy a so-called indexability property, an optimal solution to the relaxed
optimization problem can be described by index values. The latter, in their turn, provide a heuristic for
the original restless bandit problem, which is in the literature referred to as Whittle’s index policy. In
fact, this policy reduces to Gittins index policy when passive bandits are static (the non-restless case).
In [20] the authors extend Whittle’s index heuristic to the setting where for each bandit from multiple
actions may be chosen, i.e., representing a divisible resource to a collection of bandits. Over the years,
Whittle’s index policy has been extensively applied and numerically evaluated in various application
areas such as e.g. wireless downlink scheduling [5, 26, 36], systems with delayed state observation [13],
broadcast systems [39], multi-channel access models [1, 29], stochastic scheduling problems [2, 22, 34]
and scheduling in the presence of impatient customers [7, 21, 35].

As opposed to Gittins policy, Whittle’s index policy is in general not an optimal solution. Only in
some particular cases optimality has been proved. See for example [1, 29] where this has been proved
for a symmetric restless bandit problem modeling a multi-channel access system. For a general restless
bandit model, in [25] Whittle’s index policy has been shown to be optimal for α = 1 in case (i) there is
one dominant bandit or when (ii) all bandits immediately reinitialize when made passive. Other results
on optimality of Whittle’s index policy exist for asymptotic regimes: In [49] Whittle conjectured that
Whittle’s index policy is nearly optimal as the number of bandits that can be simultaneously made active
grows proportionally with the total number of bandits in the system. In the case of symmetric bandits,
i.e., all bandits are governed by the same transition rules, this conjecture was proved by Weber and
Weiss [45] assuming that the differential equation describing the fluid approximation of the system has
a global attractor. Not all bandit problems satisfy this condition though, as was demonstrated in [45]
with an example for which Whittle’s index policy is not asymptotically optimal. A more recent result
on asymptotic optimality is in [36] where the authors consider a particular model as studied in [29] with
two classes of bandits. They prove asymptotic optimality of Whittle’s index policy under a recurrence
condition. The latter condition replaces the global attractor condition needed in [45] and is numerically
verified to hold for their model.

For a dynamic population of restless bandits, that is, when new bandits can arrive to the system,
there exist few papers on the performance of index policies. We refer here to [5, 6, 7, 26] where this has
been studied in the context of wireless downlink channels. In particular, in [5, 7, 26] Whittle’s index
policy was obtained assuming no future arrivals of bandits and numerically shown to perform very well
when including arrivals of bandits (the dynamic setting). In [6] it was shown that this heuristic is in
fact maximum stable and asymptotically fluid optimal under the dynamic setting. We note that the
asymptotic regime studied in [6] is different than the one as proposed by Whittle [45]. More precisely,
in [6] at most one bandit can be made active at a time (the fluid scaling is obtained by scaling both space
and time), while in [45] (as well as in this paper) the number of active bandits scales. In fact, in [6] it was
shown that any policy that gives strict priority to a bandit being currently in its best possible channel
condition (breaking ties according to a size-based rule), is asymptotically fluid optimal. This leaves
however unanswered the question of which bandit to serve when there is currently no bandit present in
its best possible state. As far as we know, no further results on (asymptotic) optimality in restless bandit
models exist for the dynamic setting.

Including arrivals of new “entities” to the system can also be modelled by a fixed population of restless
bandits. In that case a bandit represents a certain type of entities, and the state of a bandit represents
the number of this type of entities. Hence, a new arrival will change the state of the bandit. In the
context of queueing systems this has been studied for example in [2, 21]. A Whittle’s index obtained
from the relaxation of this problem formulation will be state-dependent, i.e., Whittle’s index of a certain
type of tasks depends on the number of tasks present in the system and on the arrival characteristics.
This in contrary to [5, 7, 26], where the index, obtained using the dynamic population formulation, does
not depend on the number of bandits present or on the arrival characteristics. Asymptotic optimality
results for a fixed population of bandits modeling arrivals of new “entities” has been obtained in for
example [21] where Whittle’s index is shown to be optimal both in the light-traffic and the heavy-traffic
limit.
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In this paper we study the asymptotic optimal control of a general multi-class restless bandit problem
and consider both a fixed population of bandits as well as a dynamic scenario where bandits can arrive
and depart from the system. The asymptotic regime is obtained by letting the number of bandits that
can be simultaneously made active grow proportionally with the population of bandits. We derive a set
of priority policies that are asymptotically optimal when certain conditions are satisfied. For a fixed
population of bandits these conditions reduce to a certain differential equation having a global attractor,
which coincides with the condition as needed by Weber and Weiss [45]. For a dynamic population
of bandits additional technical conditions are needed due to the infinite state space. To illustrate the
applicability of the results, we present a large class of restless bandit problems for which we show the
technical condition is satisfied. This class is characterized by the fact that a bandit that is kept passive will
eventually leave the system. This can represent many practical situations such as impatient customers,
companies that go bankrupt, perishable items, etc. As an example, we present a multi-class M/M/S+M
queue, which is inside the above described class. We derive the priority policy that satisfies the global
attractor property and is hence asymptotic optimal.

In case the bandits are indexable we prove that Whittle’s index policy is contained in the class
of asymptotically optimal policies, both for a fixed population as well as for a dynamic population of
bandits. This generalizes the result of Weber and Weiss [45] from a symmetric fixed population of bandits
to the setting of: (i) several classes of bandits, and (ii) possible arrivals of new bandits. Moreover, as
opposed to Whittle’s index policy, we do not need the restless bandits to be indexable in order to define
asymptotically optimal policies.

Another extension presented in the paper is the possibility of choosing among multiple actions per
bandit. This is referred to as “superprocess” in the literature [19]. We derive that under a strong form
of indexability the asymptotic optimality results for the priority policies and Whittle’s index rule go
through.

In the paper we will consider a generalization of the standard restless bandit formulation: Instead of
having at each moment in time exactly α bandits active, we allow strictly less than α bandits to be active
at a time. We handle this by introducing so-called dummy bandits. In particular, we derive that it is
asymptotically optimal to make those bandits active having currently the greatest, but positive, Whittle’s
indices. Hence, whenever a bandit is in a state having a negative Whittle’s index, this bandit will never
be made active.

Our proof technique relies on a combination of fluid-scaling techniques and linear programming results:
First we describe the fluid dynamics of the restless bandit problem taking only into account the average
behavior of the original stochastic system. The optimal equilibrium points of the fluid dynamics are
described by an LP problem. We prove that the optimal value of the LP provides a lower bound on
the cost of the original stochastic system. The optimal fluid equilibrium point is then used to describe
priority policies for the original system whose fluid-scaled cost coincides with the lower bound, and are
hence referred to as asymptotically optimal policies. In order to prove that Whittle’s index policy is one
of these asymptotically optimal policies we then reformulate the relaxed optimization problem by the
corresponding LP problem whose optimal solution is proved to coincide with that of the LP problem
corresponding to the fluid problem as described above. This is a different proof approach than that taken
in [45] and allows to include arrivals of bandits to the system, whereas the approach of [45] does not.
The proposed class of priority policies are based on the optimal solution(s) of the LP formulation. Other
papers where LP solutions have been used to derive asymptotic optimal policies are for example [24]
where in the context of loss networks an admission control policy is derived by targeting at each moment
in time for the optimal solution of the LP using a penalty function, and [15, 28] in the context of revenue
management where the LP solution determines the set of products to be offered over a finite-time horizon.

In the context of restless bandits, an LP-based proof approach was previously used in [9, 32, 33]. In [32,
33] it allowed to characterize and compute indexability of restless bandits. In [9] a set of LP relaxations
was presented, providing performance bounds for the restless bandit problem under the discounted-cost
criterion. In addition, in [9] the primal-dual index heuristic was proposed (its definition does not require
indexability of the system), and proved to have a suboptimality guarantee. We will see that an adapted
version of the primal-dual index heuristic is included in the set of priority policies for which we obtain
asymptotic optimality results.

The remainder of the paper is organized as follows. In Section 2 we define the multi-class restless bandit
problem. The asymptotic optimality results for a class of priority policies are presented in Section 3. In
Section 4 we define Whittle’s index policy and prove its asymptotic optimality, both for a fixed population
as well as for a dynamic population of bandits. In Section 5 we discuss the conditions required in order
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to prove the asymptotic optimality result. In Section 6 we present the M/M/S+M queue as an example
of the obtained results.

2 Model description

We consider a multi-class restless bandit problem in continuous time. There are K classes of bandits.
New class-k bandits arrive according to a Poisson process with arrival rate λk ≥ 0, k = 1, . . . ,K. At any
moment in time, a class-k bandit is in a certain state j ∈ {1, 2, . . . , Jk}, with Jk < ∞. When a class-k
bandit arrives, with probability pk(0, j) this bandit starts in state j ∈ {1, . . . , Jk}.

Decision epochs are defined as the moments when an event takes place, i.e., an arrival of a new bandit,
a change in the state of a bandit, or a departure of a bandit. At each decision epoch, the controller can
choose for each bandit between two actions: action a = 0, that is, making the bandit passive, or action
a = 1, that is, making the bandit active. When control a is performed on a class-k bandit in state i,
it goes to state j after an exponentially distributed amount of time with rate qak(i, j), j = 0, 1, . . . , Jk,
j 6= i, where we interpret j = 0 as the fact that the bandit has departed from the system. Note that
the evolution of one bandit (given its action) is independent of that of all the other bandits. We write

qak(j, j) = −
∑Jk
i=0,i6=j q

a
k(j, i) and define qak(j) := −qak(j, j) as the total transition rate out of state j for a

class-k bandit under action a. At any moment in time at most α bandits can be made active. This is a
generalization of the standard restless bandit formulation for a fixed population of bandits where at each
moment in time exactly α bandits needs to be made active1.

We note that this problem is referred to as the restless bandit problem since even though a bandit is
passive, it can still change from state.

A policy decides at each decision epoch which bandits are made active. For a given policy π we define
Xπ(t) := (Xπ,a

j,k (t); k = 1, . . . ,K, j = 1, . . . , Jk, a = 0, 1) with Xπ,a
j,k (t) the number of class-k bandits at

time t that are in state j and see action a. We further denote by Xπ
j,k(t) :=

∑1
a=0X

π,a
j,k (t) the total

number of class-k bandits in state j and Xπ
k (t) :=

∑Jk
j=1X

π
j,k(t) the total number of class-k bandits.

The cost per unit of time of having a class-k customer in state j under action a is equal to Caj,k ∈ R.
We note that the cost Caj,k can be negative, i.e., representing a reward. The objective is to minimize
the long-run average holding cost among all Markovian policies (policies that base their decisions on the
current state and time), i.e., find a Markovian policy π∗ that minimizes

K∑
k=1

Jk∑
j=1

1∑
a=0

lim sup
T→∞

1

T
E(

∫ T

t=0

Caj,kX
π,a
j,k (t)dt), (1)

under the constraint that at any moment in time at most α bandits can be made active, that is,

K∑
k=1

Jk∑
j=1

X1
j,k(t) ≤ α, for all time t. (2)

Throughout this paper we will consider two different scenarios: a fixed population of bandits, and a
dynamic population of bandits. Below we further specify the model for the different settings:

• Fixed population: In this case there are no new arrivals of bandits, i.e., λk = 0 for all k = 1, . . . ,K,
and there are no departures, i.e., qak(j, 0) = 0 for all k = 1, . . . ,K, j = 1, . . . , Jk, a = 0, 1. Hence,
Xπ
k (t) = Xk(0) for any time t and any policy π.

• Dynamic population: In this case there are new arrivals of bandits, i.e., λk > 0 for all k = 1, . . . ,K,
and each bandit can depart from the system, i.e., for each class k there is at least one state j and
one action a such that qak(j, 0) > 0.

1The standard formulation can be retrieved by replacing C0
j,k (as defined in this section) with C0

j,k+C for all j, k, where

C represents an additional cost of having an passive bandit. The average additional cost for having passive bandits in the
system is equal to (N − A)C, with N the total number of bandits in the system (we have a fixed population of bandits)
and A the average number of active bandits in the system. When C is large enough, the cost of having inactive bandits
becomes more important then the original cost function. Hence, an optimal policy will necessarily have A = α. How to
share the number of active places among the bandits in the system will be determined by Whittle’s index.
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For a given policy π, we will call the system stable if the process ~Xπ(t) has a unique invariant
probability distribution. In the case of a fixed population of bandits, the state space is finite, hence
the process Xπ(t) being unichain would be a sufficient condition for stability. In the case of a dynamic
population of bandits the stability condition is more involved. Whether or not the system is stable can
depend strongly on the employed policy.

Throughout the paper we will need to make additional restrictions on the model and policies considered
in order for the results to hold. When doing so, we will make a distinction between (i) assumptions made
on the model parameters (referred to as “Assumption”) and (ii) conditions that are posed on the policy
under investigation (referred to as “Condition”).

Remark 2.1 (Multi actions) In the model description we assumed there are only two possible actions
per bandit: a = 0 (passive bandit) and a = 1 (active bandit). A natural generalization is to consider
the possibility of multiple actions per bandit, that is, for a class-k bandit in state j the scheduler can
chose from any action a ∈ {0, . . . , Aj,k} and at most α bandits can be made active at a time, i.e.,∑K
k=1

∑Jk
j=1

∑Aj,k
a=1 X

a
j,k(t) ≤ α. This is referred to as “superprocess” in the literature [19]. For the

non-restless bandit problem with α = 1 an index policy is known to be optimal in case each state has
a dominant action, that is, if an optimal policy selects a class-k bandit in state j to be made active, it
always choses the same control aj,k, with aj,k ∈ {1, . . . , Aj,k}. A less strict condition is given in [19,
Condition D].

In this paper we consider the restless bandit problem and present the asymptotic optimality results for
Aj,k = 1. We note that all results obtained will go through in the multi-action context when modifying
accordingly the definition for the policies, see Remark 3.5 and Remark 4.1.

3 Fluid analysis and asymptotic optimality

In this section we consider a fluid formulation of the multi-class restless bandit problem, which allows to
derive a class of priority policies that asymptotically minimize the cost of the original stochastic model
(as given in (1)). More precisely, in Section 3.1 we introduce a fluid control problem and show that its
optimal fluid cost provides a lower bound on the cost in the original stochastic model. In Section 3.2
we then define a class of priority policies for the original stochastic model based on the optimal fluid
solution, which are shown to be asymptotically optimal in Section 3.3.

3.1 Fluid control problem and lower bound

The fluid control problem arises from the original stochastic model by only taking into account the mean
drifts. For a given control u(t), let xu,aj,k (t) denote the amount of class-k fluid in state j under action a at

time t and let xuj,k(t) = xu,0j,k (t) + xu,1j,k (t) be the amount of class-k fluid in state j. Its dynamics is then
described by

dxuj,k(t)

dt
= λkpk(0, j) +

1∑
a=0

Jk∑
i=1,i6=j

xu,ai,k (t)qak(i, j)−
1∑
a=0

xu,aj,k (t)qak(j), (3)

with the constraint on the total amount of active fluid given by
∑K
k=1

∑Jk
j=1 x

u,1
j,k (t) ≤ α, for all t ≥ 0.

We are interested in finding an optimal equilibrium point of the fluid dynamics, as given in (3), with as
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goal to minimize its holding cost. Hence, we pose the following linear optimization problem:

(LP ) min
(xaj,k)

K∑
k=1

Jk∑
j=1

1∑
a=0

Caj,kx
a
j,k

s.t. 0 = λkpk(0, j) +

1∑
a=0

Jk∑
i=1,i6=j

xai,kq
a
k(i, j)−

1∑
a=0

xaj,kq
a
k(j), ∀ j, k, (4)

K∑
k=1

Jk∑
j=1

x1j,k ≤ α,

Jk∑
j=1

1∑
a=0

xaj,k = xk(0), if λk = 0, ∀ k, (5)

xaj,k ≥ 0, ∀ j, k, a,

where the constraint (5) follows since by (3) we have
∑Jk
j=1

d
dtx

u
j,k(t) = 0 if λk = 0, for all t ≥ 0.

We denote by x∗ an optimal solution of the above problem (LP), assuming it exists, and denote the
optimal value by

V ∗(α) :=

K∑
k=1

Jk∑
j=1

1∑
a=0

Caj,kx
∗,a
j,k .

We now prove some results for the optimization problem (LP).

Lemma 3.1 If there exists a policy π such that the process Xπ(t) has a unique invariant probability
distribution with finite first moment, then the feasible set of (LP) is non-empty and V ∗(α) <∞.

Proof: Let π be a policy for which a unique invariant distribution exists having finite first moment. Let
Xk(0) = xk(0).

For a fixed population, we have that limt→∞
Xπj,k(t)

t ≤ limt→∞
Xk(0)
t = 0, for all j, k. For a dynamic

population, stability of policy π implies rate-stability, that is, limt→∞
Xπj,k(t)

t = 0, for all j, k. Hence, in
both cases we conclude that

lim
t→∞

Xπ
j,k(t)

t
= 0, for all j, k. (6)

Note that
∫ t
0
Xπ,a
j,k (s)ds is the total aggregated amount of time spent on action a on class-k bandits

in state j during the interval (0, t]. Hence, we can write the following sample-path construction of the
process Xπ

j,k(t):

Xπ
j,k(t) = Xπ

j,k(0)+Nλkpk(0,j)(t)+

1∑
a=0

Jk∑
i=1,i6=j

Nqak(i,j)

(∫ t

0

Xπ,a
i,k (s)ds

)
−

1∑
a=0

Nqak(j)

(∫ t

0

Xπ,a
j,k (s)ds

)
, (7)

whereNλkpk(0,j)(t), Nqak(i,j)(t) andNqak(j)(t) are independent Poisson processes with rates λkpk(0, j)(t), qak(i, j)
and qak(j), respectively, i, j = 1, . . . , Jk, k = 1, . . . ,K, a = 0, 1. By the ergodic theorem [12], we obtain

that 1
t

∫ t
0
Xπ,a
j,k (s)ds converges to the mean, denoted by X

π,a

j,k < ∞, for all j, k, a. Hence, when dividing

both sides in (7) by t, using that Nθ(at)/t→ aθ as t→∞, and together with (6), we obtain that

0 = λkpk(0, j) +

1∑
a=0

Jk∑
i=1,i6=j

qak(i, j)X
π,a

i,k −
1∑
a=0

X
π,a

j,k q
a
k(j), a.s.,

that is, X
π

satisfies Equation (4). By definition, X
π

satisfies
∑
k,j X

π,1

j,k ≤ α, X
π,a

j,k ≥ 0 and if λk = 0,

then
∑Jk
j=1

∑1
a=0X

π,a

j,k = xk(0). Hence, X
π

is a feasible solution of (LP).
Since the feasible set is non-empty and the objective is to minimize the cost, the optimal value satisfies

V ∗(α) <∞. �

The optimal solution of the fluid control problem (LP) serves as a lower bound on the cost of the original
stochastic optimization problem (1), see the following lemma. The proof can be found in Appendix A.
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Lemma 3.2 We have

K∑
k=1

Jk∑
j=1

1∑
a=0

lim inf
T→∞

1

T
E

(∫ T

0

Caj,kX
π,a
j,k (t)dt

)
≥ V ∗(α), (8)

for either

• a fixed population of bandits and for any policy π, or,

• a dynamic population of bandits and for any stable policy π, or,

• a dynamic population of bandits with Caj,k > 0 for all j, k, a and for any policy π that is either rate-

stable (i.e., limt→∞
∑
j,k

Xπj,k(t)

t = 0 almost surely) or mean rate-stable (i.e., limt→∞
∑
j,k

E(Xπj,k(t))
t =

0).

3.2 Priority policies

A priority policy is defined as follows. There is a predefined priority ordering on the states each bandit
can be in. At any moment in time a priority policy makes active a maximum number of bandits being in
the states having the highest priority among all the bandits present. In addition, the policy can prescribe
that certain states are never made active.

Below we define a set of priority policies, Π∗, that will play a key role in the remaining of the paper.
In Section 3.3 we will show that a policy in this class is asymptotically optimal if it satisfies certain
conditions. We emphasize that we do not require the bandits to be indexable in order to define the set
of priority policies Π∗. This as opposed to the definition of Whittle’s index policy, which is only well
defined in case the system is indexable. We note that Whittle’s index policy is included in Π∗, as will be
proved in Section 4.3.

Definition 3.3 (Set of priority policies) We define the set of priority policies Π∗ as follows. Let
X∗ := {x∗ an optimal solution of (LP) }. Then,

Π∗ := ∪x∗∈X∗Π(x∗),

where Π(x∗) is the set of priority policies that satisfy the following rules:

1. A bandit in state (j, k) with x∗,1j,k > 0 and x∗,0j,k = 0 is given higher priority than a bandit in state

(j̃, k̃) with x∗,0
j̃,k̃

> 0.

2. A bandit in state (j, k) with x∗,0j,k > 0 and x∗,1j,k > 0 is given higher priority than a bandit in state

(j̃, k̃) with x∗,0
j̃,k̃

> 0 and x∗,1
j̃,k̃

= 0.

3. If
∑K
k=1

∑Jk
j=1 x

∗,1
j,k < α, then any class-k bandit in state j with x∗,1j,k = 0 and x∗,0j,k > 0 will never be

made active.

In case there exists a policy such that the system is stable, then by Lemma 3.1 the feasible set of (LP)
is non-empty, and hence, the set Π∗ is non-empty.

Before continuing we first give an example of Definition 3.3.

Example 3.4 Assume K = 2 and Jk = 2. Let x∗ be such that for class 1 we have x∗,01,1 = 0, x∗,02,1 = 4,

x∗,11,1 = 3, x∗,12,1 = 1 and for class 2 we have x∗,01,2 = 2, x∗,02,2 = 0, x∗,11,2 = 0, x∗,12,2 = 5 and α = 10. The priority
policies associated to x∗ in the set Π(x∗), as defined in Definition 3.3, satisfy the following rules: By
point 1.): Class-1 bandits in state 1 and class-2 bandits in state 2 are given the highest priority. By point
3.): Since x∗,11,1 + x∗,12,1 + x∗,11,2 + x∗,12,2 = 9 < α, class-2 bandits in state 1 are never made active. Hence, the
set Π(x∗) contains two policies: either give priority according to (1, 1) � (2, 2) � (2, 1) or give priority
according to (2, 2) � (1, 1) � (2, 1), where a state (j, k) denotes a class-k bandit in state j. In both cases
state (1, 2) is never made active.
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Remark 3.5 (Multi actions) In this remark we explain how to define the set of priority policies Π∗

in case of multiple actions per bandit. Recall that for a class-k bandit in state j the scheduler can chose
from any action a ∈ {0, 1, 2, . . . , Aj,k}.

Similar to the non-restless bandit problem, we are interested in priority policies such that if a class-k
bandit in state j is chosen to be active, it will always be chosen to be made active in a fixed mode aj,k.

We therefore need to restrict the set X∗ to optimal solutions of (LP) that satisfy x∗,aj,kx
∗,ã
j,k = 0 for all

a, ã ∈ {1, . . . , Aj,k}. The latter implies that for all activation modes a = 1, . . . , Aj,k one has x∗,aj.k = 0,

with the exception of at most one active mode, denoted by aj,k. Hence we have x
∗,aj,k
j,k ≥ 0 (instead of

being equal to 0).
The set Π(x∗) is now defined as in Definition 3.3, replacing the action a = 1 by a = aj,k. All results

obtained in Section 3 remain now valid, by simply by replacing a = 1 by a = aj,k.

Remark 3.6 In [9] a heuristic is proposed for the multi-class restless bandit problem for a fixed popula-
tion of bandits: the so-called primal-dual heuristic. This is defined based on the optimal (primal and dual)
solution of a LP problem corresponding to the discounted-cost criterion. In fact, if the primal-dual heuris-
tic would have been defined based on the problem (LP), it can be checked that it satisfies the properties of
Definition 3.3, and hence is included in the set of asymptotically optimal priority policies Π∗.

In order to prove asymptotic optimality of a policy π∗ ∈ Π∗, as will be done in Section 3.3, we will
investigate its fluid dynamics, that is, we study the process xu(t), as defined in (3), with as control u the
strict priority rule as given by π∗. For ease of notation we will write x∗(t) instead of xπ

∗
(t). The process

x∗(t) is hence defined by

dx∗j,k(t)

dt
= λkpk(0, j) +

1∑
a=0

Jk∑
i=1,i6=j

x∗,ai,k (t)qak(i, j)−
1∑
a=0

x∗,aj,k (t)qak(j), ∀ j, k, (9)

with x∗,1j,k(t) = min

(α−
∑

(i,l)∈S∗
j,k

x∗i,l(t))
+, x∗j,k(t)

 , if (j, k) /∈ I∗, ∀ j, k,

x∗,1j,k(t) = 0, if (j, k) ∈ I∗, ∀ j, k,

x∗,0j,k(t) = x∗j,k(t)− x∗,1j,k(t), ∀ j, k.

where S∗j,k is defined as the set of all states (i, l), i = 1, . . . , Jl, l = 1, . . . ,K, such that class-l bandits in
state i have higher priority than class-k bandits in state j under policy π∗, and I∗ is the set of all states
that will never be made active under policy π∗. It follows directly that an optimal solution x∗ of (LP) is
in fact an equilibrium point of the process x∗(t) under a policy π∗ ∈ Π(x∗).

Lemma 3.7 Let π∗ ∈ Π∗ and let x∗ be a point such that π∗ ∈ Π(x∗). Then x∗ is an equilibrium point
of the process x∗(t) as defined in (9) for the policy π∗.

Proof: Since x∗ is an optimal solution of (LP), it follows directly from the definition of Π(x∗) that x∗ is
an equilibrium point of the process x∗(t). �

Besides x∗ being an equilibrium point, in order to prove asymptotic optimality of π∗ it will be needed
that x∗ is the unique equilibrium point of (9) and in addition is a global attractor, i.e., all trajectories
converge to x∗. This is not true in general, which is why we state it as a condition that a policy needs to
satisfy. In Section 5.1 we will further comment on this condition.

Condition 3.8 Given a policy π∗ ∈ Π(x∗) ⊂ Π∗, for an x∗ ∈ X∗. The point x∗ is the unique equilibrium
point and the global attractor of the process x∗(t) as defined in (9) for the policy π∗. I.e., for any initial
point (for a given value of xk(0), k = 1, . . . ,K, in case λk = 0) the process x∗(t) converges to the point x∗.

3.3 Asymptotic optimality of priority policies

In this section we present results showing the asymptotic optimality of priority policies in the set Π∗. In
particular, we obtain that, after a fluid scaling, the long-run average holding cost is optimized under a
priority policy in Π∗.
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We will consider the multi-class restless bandit problem in the following fluid-scaling regime: we scale
by r both the arrival rates and the number of bandits that can be made active per time unit. That is,
class-k bandits arrive at rate λk · r, k = 1, . . . ,K, and α · r bandits can be made active at any moment
in time. We let Xr

j,k(0) = r · xj,k(0), with xj,k(0) ≥ 0.

For a given policy π, we denote by Xr,π,a
j,k (t) the number of class-k bandits in state j experiencing

action a at time t under scaling parameter r. We will be interested in the process after the fluid scaling,
i.e., space is scaled linearly with the parameter r:

xr,π,aj,k (t) := Xr,π,a
j,k (t)/r. (10)

We consider the cost of the stochastic model after fluid scaling, that is, we are interested in

lim sup
T→∞

1

T

K∑
k=1

Jk∑
j=1

1∑
a=0

E

(∫ T

0

Caj,kx
r,π,a
j,k (t)dt

)
. (11)

Our goal is to find policies that minimize the above as r →∞. We directly obtain from Lemma 3.2 that
V ∗(α) provides a lower bound on this cost. We will therefore call a policy asymptotically optimal when
the fluid-scaled cost (11) converges to this lower bound.

In the remainder of this section we prove asymptotic optimality of priority policies in the set Π∗. The
proof consists in the following steps: given a policy π∗ ∈ Π(x∗), we show that the fluid-scaled steady-
state queue length vector converges to x∗. Since x∗ is an optimal solution of the fluid control problem
(LP) and has cost value V ∗(α), this implies that the fluid-scaled cost (11) under policy π∗ converges to
V ∗(α). Since V ∗(α) serves as a lower bound on the average cost, this allows us to conclude for asymptotic
optimality of the priority policy π∗.

We need the following technical condition.

Condition 3.9 Given a policy π∗ ∈ Π∗.

a) The process xr,π
∗
(t) has a unique invariant probability distribution pr,π

∗
, which has a finite first

moment, for all r.

b) The family {pr,π∗
, r} is tight.

c) The family {pr,π∗
, r} is uniform integrable.

For a fixed population of bandits, b) and c) are always satisfied since the state space of xr,π
∗
(t) is

finite. A sufficient condition for Condition 3.9 a) to be satisfied (for the fixed population of bandits) is the
Markov process xr,π

∗
(t) to be unichain (there is a state x such that there is a path from any state to x,

i.e., state x is recurrent), for any r [42]. For the dynamic population setting, we will show in Section 5.2
the Condition 3.9 to be always satisfied for a large class of restless bandit problems.

We can now state the asymptotic optimality result.

Proposition 3.10 For a given policy π∗ ∈ Π(x∗) ⊂ Π∗, assume Condition 3.8 and Condition 3.9 are
satisfied. Then,

lim
r→∞

lim
T→∞

1

T

K∑
k=1

Jk∑
j=1

1∑
a=0

E

(∫ T

0

Caj,kx
r,π∗,a
j,k (t)dt

)
= V ∗(α).

In particular, we have

lim
r→∞

lim
T→∞

1

T

K∑
k=1

Jk∑
j=1

1∑
a=0

E

(∫ T

0

Caj,kx
r,π∗,a
j,k (t)dt

)

≤ lim inf
r→∞

lim inf
T→∞

1

T

K∑
k=1

Jk∑
j=1

1∑
a=0

E

(∫ T

0

Caj,kx
r,π,a(t)dt

)
, (12)

for either

• a fixed population of bandits and for any policy π, or,
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• a dynamic population of bandits and for any stable policy π, or,

• a dynamic population of bandits with Caj,k > 0 for all j, k, a and for any policy π that is either rate-

stable (i.e., limt→∞
∑
j,k

Xπj,k(t)

t = 0 almost surely) or mean rate-stable (i.e., limt→∞
∑
j,k

E(Xπj,k(t))
t =

0).

Proof: The transition rates of the process xr,π
∗
(t) are defined as follows:

x→ x+
ej,k
r at rate rλkpk(0, j), k = 1, . . . ,K, j = 1, . . . , Jk, (13)

x→ x− ej,k
r at rate r

1∑
a=0

xaj,kq
a
k(j, 0), k = 1, . . . ,K, j = 1, . . . , Jk, (14)

x→ x− ej,k
r +

ei,k
r at rate r

1∑
a=0

xaj,kq
a
k(j, i), k = 1, . . . ,K, i, j = 1, . . . , Jk, (15)

where x1j,k = min
(

(α−
∑

(i,l)∈S∗
j,k
xi,l)

+, xj,k

)
, if (j, k) /∈ I∗, and x1j,k = 0 otherwise, x0j,k = xj,k − x1j,k,

and ej,k is a vector composed of all zeros except for component (j, k) which is one. Here S∗j,k is defined
as the set of all states (i, l), i = 1, . . . , Jl, l = 1, . . . ,K, such that class-l bandits in state i have higher
priority than class-k bandits in state j under policy π∗, and I∗ is the set of all states that will never be
made active under policy π∗.

From (13)–(15) it follows that there exists a continuous function bl(x), with l ∈ L and L composed
of a finite number of vectors in N

∑
k Jk , such that the transition rates of the process xr,π

∗
(t) from x to

x + l/r have the form rbl(x). Hence, the process xr,π
∗

j,k (t) belongs to the family of density dependent
population processes as defined in [14, Chapter 11].

Note that the process x∗(t) as defined in (9) can equivalently be written as dx∗(t)
dt = F (x∗(t)), with

F (x∗) =
∑
l∈L lbl(x

∗). We note that F (·) is Lipschitz continuous. From Condition 3.8 we have that x∗

is the unique global attractor of x∗(t).
The family {pr,π∗} being tight, together with Condition 3.8 and [16, Theorem 4], it follows that

pr,π
∗
(x) converges to the Dirac measure in x∗, the global attractor of x∗(t). Hence, we can write

K∑
k=1

Jk∑
j=1

1∑
a=0

lim
r→∞

lim sup
T→∞

1

T
E

(∫ T

0

Caj,kx
r,π∗,a
j,k (t)dt

)

=

K∑
k=1

Jk∑
j=1

1∑
a=0

lim
r→∞

∑
x

pr,π
∗
(x)Caj,kx

a
j,k =

K∑
k=1

Jk∑
j=1

1∑
a=0

Caj,kx
∗,a
j,k = V ∗(α),

where the first step follows from the ergodicity theorem [42, 12] (applicable since the first moment of
pr,π

∗
is finite), the second step (interchange of limit and summation) follows from uniform integrability

of {pr,π∗} and the fact that pr,π
∗

converges to the Dirac measure in x∗, and the last step follows since x∗

is an optimal solution of (LP).
We conclude the proof by noting that V ∗(α) is a lower bound on the steady-state cost, as shown in

Lemma 3.2. �

4 Whittle’s index policy

In Section 3.3 we found that priority policies inside the set Π∗ are asymptotically optimal. In this section
we will show that Whittle’s index policy is in fact included in Π∗ and is hence asymptotically optimal.

In Section 4.1 we first define Whittle’s index policy. In Section 4.2 and Section 4.3 we then give
sufficient conditions under which Whittle’s index policy is asymptotically optimal, both in the case of a
fixed population of bandits, and in the case of a dynamic population of bandits, respectively.

4.1 Relaxed constraint optimization problem and Whittle’s indices

Whittle’s index policy has been proposed by Whittle [49] as an efficient heuristic for the multi-class restless
bandit problem ([19, Section 6] and [50, Section II.14]). Under this policy each bandit is associated a
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Whittle’s index being a function of the state a bandit is in, making those bandits active having currently
the greatest indices. In this section we will describe how these Whittle’s indices are derived. In order to
do so, we will need to introduce a new optimization problem. We note that this problem is different than
that originally posed in Section 2. In fact, in Section 4.2 and Section 4.3 we make the connection with
the original problem as we show that Whittle’s index policy is asymptotically optimal for the original
problem as posed in Section 2.

The optimization problem: In order to define the Whittle’s indices, we consider the following
optimization problem: Assume we have a population of bandits (at least one bandit from each class) and
assume there are no further arrivals in the future. At any moment in time at most α bandits can be
made active and we restrict ourselves to the class of stationary and Markovian policies. As cost criterion
we will consider one of the following: the average-cost criterion

Cav(Y (·)) := lim
T→∞

1

T
E

(∫ T

0

Y (t)dt

)
, (16)

or the discounted-cost criterion

Cβ(Y (·)) := E
(∫ ∞

0

e−βtY (t)dt

)
,

for β > 0. The objective is to find a policy that minimizes

K∑
k=1

Jk∑
j=1

1∑
a=0

Cf (Caj,kX
π,a
j,k (·)), (17)

with f ∈ {av, β}. We note that the objective posed in (1) was that of the average-cost criterion. In
Section 4.3 it will become clear why in this section we also need to introduce the discounted-cost criterion.

Relaxed constraint optimization problem: The restless property of the bandits makes the above-
described optimization problem often infeasible to solve. Instead, Whittle [49] proposed to study the
so-called relaxed constraint optimization problem, which is defined as follows: find a policy that mini-
mizes (17) under the relaxed constraint

K∑
k=1

Jk∑
j=1

Cf (Xπ,1
j,k (·)) ≤ α(f), (18)

with α(av) = α and α(β) =
∫∞
0
αe−βtdt = α/β for β > 0. That is, the constraint that at most α bandits

can be made active at any moment in time is replaced by its time-average or discounted version, (18).
Hence, the cost under the optimal policy of the relaxed constraint optimization problem provides a lower
bound on the cost for any policy that satisfies the original constraint.

Dummy bandits: In standard restless bandit problems the constraint (18) needs to be satisfied in
the strict sense, that is, with an “=” sign. In this paper we allowed however strictly less than α bandits
to be active at a time. In order to be able to deal with this within the original framework of Whittle, we
introduce so-called dummy bandits. That is, besides the initial population of bandits, we assume there
are α(f) additional bandits that will never change state. We denote the state these bandits are in by B,
so qa(B,B) = 1 for all a. We set CaB = 0, a = 0, 1. The introduction of these α(f) dummy bandits allows
to reformulate the relaxed constraint problem as follows: Minimize (17) under the relaxed constraint

Cf (Xπ,1
B (·)) +

K∑
k=1

Jk∑
j=1

Cf (Xπ,1
j,k (·)) = α(f). (19)

This constraint is equivalent to (18) since, for a given set of active bandits, activating additional dummy
bandits does not modify the behavior of the system.

Lagrangian relaxation: Using the Lagrangian approach, we write the relaxed constraint problem
(minimize (17) under constraint (19)) as the problem of finding a policy π that minimizes

K∑
k=1

Jk∑
j=1

Cf (C0
j,kX

π,0
j,k (·) + C1

j,kX
π,1
j,k (·) + νXπ,1

j,k (·)) + Cf (νXπ,1
B (·)). (20)
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The Lagrange multiplier ν can be viewed as the cost to be paid per active bandit. From Lagrangian relax-
ation theory we have that there exists a value of the Lagrange multiplier ν such that the constraint (19)
is satisfied.

Optimization problem per bandit: Since there is no more a common constraint for the bandits,
problem (20) can be decomposed into several subproblems, one for each bandit. So, for each class-k
bandit the subproblem is to minimize

Cf (C
Ak(·)
Jk(·),k + ν1(Ak(·)=1)), (21)

where Jk(t) and Ak(t) denote the state and action chosen for the class-k bandit at time t, respectively,
and for each dummy bandit the problem is to minimize

ν Cf (1(AB(·)=1)), (22)

with AB(t) the action chosen for the dummy bandit at time t.

Whittle’s index: For a given optimization criterion f , Whittle defines the index νfj,k as the least

value of ν for which it is optimal in (21) to make the class-k bandit in state j passive. We refer to νfj,k
as Whittle’s index for the optimization criterion f . Similarly, we define the index νfB as the least value
of ν for which it could be optimal in (22) to make a dummy bandit passive.

A bandit is called indexable if the set of states where it is optimal in (21) to make a class-k bandit
passive forms an increasing sequence of sets (from the empty set to the set {1, . . . , Jk}), as ν increases.
We refer to the problem as being indexable if all bandits are indexable. Note that whether a problem
is indexable or not can depend on the choice for f (and β). We refer to [34] for a survey on indexation
results. In particular, [34] presents sufficient conditions for a restless bandit to be indexable and provides
a method to calculate Whittle’s indices. Sufficient conditions for indexability can also be found in [29, 44].

We note that the dynamics of a bandit in state B is independent of the action chosen. Since ν
represents the cost to be paid when active, it will be optimal in (22) to make a bandit in state B passive

if and only if ν ≥ 0. As a consequence, a dummy bandit is always indexable and νfB = 0.
Optimal solution per bandit: If the bandit problem is indexable, an optimal policy for the sub-

problem (21) is then such that the class-k bandit in state j is made active if νfj,k > ν, is made passive if

νfj,k < ν, and any action is optimal if νfj,k = ν, [49].
Optimal solution of relaxed constraint problem: An optimal solution to (17) under the relaxed

constraint (19) is now obtained by setting ν at the appropriate level ν∗ such that (19) is satisfied and to

make a class-k bandit in state j active if νfj,k > ν∗, and passive if νfj,k < ν∗. When a class-k bandit is in

a state j such that νfj,k = ν∗, one needs to appropriately randomize the action in this state such that the
relaxed constraint (19) is satisfied, [45, 49]. In case ν∗ = 0, we take the convention that the randomization
is done among the bandits in state B (possible since there are exactly α(f) dummy bandits) while any

class-k bandit in a state j with νfj,k = 0 is kept passive.
Since there are always α(f) bandits in state B, we necessarily have that an optimal action for class-k

bandits in state j with νfj,k ≤ 0 = νfB (having lower priority than bandits in state B) is to be passive. In
particular, this implies that ν∗ ≥ 0.

Heuristic: Whittle’s index policy: Obviously the above optimal control for the relaxed problem
is not feasible for the original optimization problem (as posed in the beginning of Section 4.1) having as
constraint that at most α bandits can be made active at any moment in time. Whittle [49] therefore
proposed the following heuristic: At any moment in time, make α bandits active having currently the
greatest Whittle’s indices. Hence, if νfj,k < νfi,l, then a class-l bandit in state i is given higher priority than

a class-k bandit in state j. Recall that a class-k bandit in state j with νfj,k ≤ 0 will never be made active
in the optimal solution of the relaxed problem. Hence, analogously, we define that under Whittle’s index
policy a class-k bandit in state j will never be made active if νfj,k ≤ 0 (even though it would be possible
to activate this bandit). Further, in case different states have the same Whittle index, an arbitrary fixed
priority rule is used.

The above described heuristic is referred to in the literature as Whittle’s index policy for the average
cost (f = av) or discounted cost (f = β) criterion. In the next two sections we will prove that this
heuristic is asymptotically optimal, both for the static and dynamic population.
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Remark 4.1 (Multi actions) In this remark we define Whittle’s index heuristic in case of multiple
actions. For that we need to assume a stronger form of indexability that says that for a class-k bandit in
state j there is an index vfj,k and an optimal activation mode afj,k such that an optimal solution for (21)

is to be active in mode afj,k if ν < νfj,k and to be passive if ν > νfj,k. Whittle’s index rule is then defined

as above, simply by replacing the action a = 1 by a = afj,k.
If the restless bandit problem satisfies this stronger form of indexability, then one can reduce the

multi-action problem to the single-action problem and hence all asymptotic optimality results as obtained
in Section 4.2 and Section 4.3 will be valid (simply replace action a = 1 by a = aj,k).

4.2 Asymptotic optimality for a fixed population of bandits

In this section we will prove asymptotic optimality of Whittle’s index policy in the setting of a fixed pop-
ulation of bandits. More precisely, we show that Whittle’s index policy (defined for the time-average cost
criterion f = av) is included in the set of asymptotically optimal policies Π∗, as obtained in Section 3.3,
in case the bandit problem is indexable.

We will need the following assumption. (The same assumption was made in [45].)

Assumption 4.2 The transition rates of the state of one class-k bandit are such that they form a
unichain (there is a state j ∈ {1, . . . , Jk} such that there is a path from any state i ∈ {1, . . . , Jk} to
state j), for all k, regardless of the policy employed.

The next proposition shows that Whittle’s index policy is included in the set of asymptotically optimal
policies. The proof can be found in Appendix B.

Proposition 4.3 Consider a fixed population of bandits. If Assumption 4.2 holds and if the restless
bandit problem is indexable for the average-cost criterion, then there is an x∗ ∈ X∗ such that Whittle’s
index policy (νavj,k) is included in the set Π(x∗) ⊂ Π∗.

We can now conclude that Whittle’s index policy is asymptotically optimal.

Corollary 4.4 Consider a fixed population of bandits. If the assumptions of Proposition 4.3 are satisfied
and if Condition 3.8 holds for Whittle’s index policy (νavj,k), then policy (νavj,k) is asymptotically optimal.
That is, for any policy π,

lim
r→∞

lim
T→∞

1

T

K∑
k=1

Jk∑
j=1

1∑
a=0

E(

∫ T

0

Caj,kx
r,νav,a
j,k (t)dt)

≤ lim inf
r→∞

lim inf
T→∞

1

T

K∑
k=1

Jk∑
j=1

1∑
a=0

E(

∫ T

0

Caj,kx
r,π,a(t)dt).

Proof: From Proposition 3.10 and Proposition 4.3 we obtain the desired result. �

Remark 4.5 (Weber and Weiss, 1990) The above corollary was previously proved by Weber and
Weiss in [45] for the case of symmetric bandits, i.e., K = 1. We note that the assumptions made
in [45] in order to prove the asymptotic optimality result are the same as the ones in Corollary 4.4.

The proof technique used in Weber and Weiss is different from the one used here. In [45] the cost
under an optimal policy is lower bounded by the optimal cost in the relaxed problem and upper bounded by
the cost under Whittle’s index policy. By showing that both bounds converge to the same value, the fluid
approximation, the asymptotic optimality of Whittle’s index policy is concluded. In this paper we have
used another approach in order to prove the result. In particular, our approach allowed to include the
case of a dynamic population of bandits, see Section 4.3, whereas the approach of [45] did not (note that
for a dynamic population, the optimal cost cannot be lower bounded by any relaxed optimization problem).
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4.3 Asymptotic optimality for a dynamic population of bandits

In this section we will introduce an index policy based on Whittle’s indices and show it to be asymptoti-
cally optimal in the setting of a dynamic population of bandits. More precisely, we show the index policy
to be included in the set of asymptotically optimal policies Π∗, as obtained in Section 3.3.

Recall that our objective is to find a policy that asymptotically minimizes the average-cost crite-
rion (16). However, we cannot make use of Whittle’s index policy with indices νavj,k as we did in the
previous section: any policy that makes sure that the class-k bandit leaves after a finite amount of time is
an optimal solution of the class-k subproblem (21) for f = av (the average cost will be equal to zero), and
hence, no useful heuristic for a priority structure can be derived. In order to derive a non-trivial index
rule, the authors of [5, 7] consider instead the Whittle’s indices corresponding to the subproblem (21) for
the discounted-cost criterion (f = β, β > 0), which, in case the system is indexable, provide an optimal
solution for (21). They obtain an index rule for the average-cost criterion by considering the limiting
values as β ↓ 0. We propose here the same: for each k, let βl → 0 be some subsequence such that the
βl-discounted problem is indexable and the limit

νlimj,k := lim
l→∞

νβlj,k

is well-defined for all j = 1, . . . , Jk. We will refer to the index policy (νlimj,k ) as Whittle’s index policy for

the average-cost criterion in the dynamic population setting2.
We will need the following assumption on the model parameters. We note that this assumption is

always satisfied in case C0
j,k > 0 for all j, k.

Assumption 4.6 For all k = 1, . . . ,K, the set of optimal solutions of the linear program

min
x

Jk∑
j=1

(C0
j,kx

0
j,k + C1

j,kx
1
j,k + νx1j,k)

s.t. 0 = λkpk(0, j) +

1∑
a=0

Jk∑
i=1,i6=j

xai,kq
a
k(i, j)−

1∑
a=0

xaj,kq
a
k(j), ∀ j,

xaj,k ≥ 0, ∀ j, a.

is bounded when ν > 0.

The next proposition shows that Whittle’s index policy (νlimj,k ) is included in the set of asymptotically
optimal policies. The proof can be found in Appendix C.

Proposition 4.7 Consider a dynamic population of bandits. If Assumption 4.6 holds and if the dis-
counted restless bandit problem is indexable for βl ≤ β, with 0 < β < 1, then there is an x∗ ∈ X∗ such
that Whittle’s index policy (νlimj,k ) is included in the set Π(x∗) ⊂ Π∗.

We can now conclude for asymptotic optimality of Whittle’s index policy.

Corollary 4.8 Consider a dynamic population of bandits. If the assumptions of Proposition 4.7 are
satisfied and if Condition 3.8 and Condition 3.9 hold for Whittle’s index policy (νlimj,k ), then policy (νlimj,k )
is asymptotically optimal, that is,

lim
r→∞

lim
T→∞

1

T

K∑
k=1

Jk∑
j=1

1∑
a=0

E

(∫ T

0

Caj,kx
r,νlimj,k ,a

j,k (t)dt

)

≤ lim inf
r→∞

lim inf
T→∞

1

T

K∑
k=1

Jk∑
j=1

1∑
a=0

E

(∫ T

0

Caj,kx
r,π,a(t)dt

)
, (23)

for any policy π that is stable or for any policy π that is rate-stable or mean rate-stable with Caj,k > 0 for
all j, k, a.

2In the case of multiple actions per bandit, as defined in Remark 2.1, we need to assume the stronger form of indexability

as defined in Remark 4.1, where the optimal activation mode for a class-k bandit in state j, a
βl
j,k, cannot depend on βl, for

βl small enough (i.e., a
βl
j,k = aj,k for l large enough).
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Proof: The result follows directly from Proposition 3.10 and Proposition 4.7. �

Remark 4.9 (No arrivals versus arrivals) The above result for the dynamic population shows that
the heuristic (νlimj,k ) which is based on a model without arrivals is in fact nearly optimal in the presence
of arrivals.

In addition, Whittle’s indices defined for the dynamic setting are robust in the sense that they do not
depend on the arrival characteristics of new bandits or on the exact number of bandits that can be made
active, α. The Whittle’s indices do depend on f (and β) though.

5 On the technical conditions

For a class of priority policies Π∗ we showed in Proposition 3.10 asymptotic optimality under the global
attractor property (Condition 3.8) and a technical condition (Condition 3.9). In this section we fur-
ther discuss these two conditions: In Section 5.1 we comment on the global attractor property and in
Section 5.2 we describe a general class of restless bandit problems for which Condition 3.9 is always
satisfied.

5.1 Condition 3.8

Condition 3.8 is concerned with the process x∗(t), defined by the ODE (9), to have a global attractor. We
note that in [45] the same global attractor property was required in order to prove asymptotic optimality.
The authors of [46] showed that for symmetric bandits (K = 1) with J = 2 or J = 3, the condition
is satisfied. However, in general, no sufficient conditions are available in order for x∗ to be a global
attractor of x∗(t). The asymptotic optimality result under Whittle’s index policy for the case K = 1 [45]
has been cited extensively, where the global attractor property needed for the asymptotic optimality result
was in most cases verified numerically. Furthermore, we like to note that in the context of mean field
interaction models, convergence of the stationary measure also relied on a global attractor assumption of
the corresponding ODE, see for example [8].

The authors of [36] proved asymptotic optimality of Whittle’s index policy for a very specific model
with only two classes of bandits (fixed population of bandits) under a recurrence condition. The latter
condition replaced the global attractor condition, however, the authors needed to resort to numerical
experiments in order to verify this recurrence condition.

In the remainder of this section we describe the necessity of the global attractor property and the
technical challenges in case this condition is not satisfied.

Optimal fluid control problems have been widely used in the literature in order to obtain asymptot-
ically optimal policies for the stochastic model. In the context of this paper, the fluid control problem
related to our results would be to find the optimal control u∗(t) that minimizes

lim
T→∞

1

T

∫ T

0

K∑
k=1

Jk∑
j=1

1∑
a=0

Caj,kx
u,a
j,k (t)dt, (24)

where the dynamics of xu,aj,k (t) is described by (3). The optimal control u∗(t) would then need to be
translated back to the stochastic model in such a way that it is asymptotically optimal. When stating
the global attractor property, the above is exactly what we have in mind. In fact, instead of solving this
transient fluid control problem, we directly consider an optimal equilibrium point of the fluid model and
propose a priority policy based on this equilibrium point. When the global attractor property is satisfied,
this implies that the optimal equilibrium point is indeed reached by the associated strict priority control,
and hence this priority control solves (24).

When, for any π∗ ∈ ∪x∗∈X∗Π(x∗) = Π∗, the global attractor property is not satisfied, this means that
there does not exist a priority control u(t) = π∗ ∈ Π(x∗) such that the fluid process xπ

∗
(t) converges to

x∗. In that case, we can be in either one of the following two situations: 1) There exists a control u∗(t)
for which the process xu

∗
(t) does have as global attractor x∗ ∈ X∗, where X∗ was defined as the set of

optimal equilibrium points. This control u∗(t) is most likely not of priority type. 2) There does not exist
any control that has a global attractor x∗ ∈ X∗. In that case, the optimal control u∗(t) can be such
that the process xu

∗
(t) behaves cyclic or converges to a non-optimal equilibrium point. Hence, in case

Condition 3.8 is not satisfied, in both Situation 1) and Situation 2), one needs to determine the exact
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transient behaviour of the optimal control of (24), u∗(t), which in its turn needs to be translated back
to the stochastic model.

5.2 Condition 3.9

First assume we have a fixed population of bandits. As noted in Section 3.3, points b) and c) of Condi-
tion 3.9 are always satisfied. A sufficient condition for a) to be satisfied, i.e., the stochastic processes of
the number of bandits under policy π∗ to have a unique invariant probability distribution, is the Markov
process to be unichain.

For a dynamic population of bandits we expect it to be satisfied for a large class of restless bandit
problems. In the following proposition we present a very general class of restless bandit problems for
which Condition 3.9 is satisfied. More precisely, we consider problems were if a bandit is kept passive,
it will eventually leave the system. For many real-life situations this assumption arises naturally, think
for example of customers that become impatient and abandon the queue/system, companies that go
bankrupt, perishable items, etc. The proof of the proposition may be found in Appendix D.

Proposition 5.1 Assume for each class k there exists one state jk ∈ {1, . . . , Jk} such that q0k(jk, 0) > 0
and state jk is positive recurrent under the policy that always keeps the class-k bandit passive. For any
priority policy π for which Xπ(t) is irreducible, Condition 3.9 is satisfied.

We note that a very specific example inside the above described class of problems is a bandit problem
in which only active bandits are allowed in the system, i.e., q0k(i, 0) =∞ for all k = 1, . . . ,K, i = 1, . . . , Jk.
This could describe for example the hiring process where new candidates are modeled by new arriving
bandits, room occupation in a casualty departments where patients require direct attention, or a loss
network. When q0k(i, 0) =∞ for all k, i, the state space is finite (there can be at most α bandits present
in the sysem), hence, as for the fixed population, Condition 3.9 would also follow directly from a unichain
assumption.

Condition 3.9 a) concerns stability of the system under a strict priority policy that results from the
fluid analysis. In general, a priority policy does not need to guarantee a stable system. For example,
we refer to [5, 6] where a particular restless bandit problem was studied that modeled a system with
state-dependent capacity. There it was shown that a priority index policy (the cµ rule) could yield an
unstable system, while other priority policies could make the system stable. In [6] it was then shown
that for this model Whittle’s index policy belongs to the class of stable policies. In general, care has to
be taken when applying a fluid optimal control directly to the stochastic system. For example, in the
context of scheduling in networks, there exist examples where priority policies resulting from the fluid
model do not succeed in making the system stable, see for example [41, 43]. We believe that for the
restless bandit problems the LP-based priority policies (in the class Π∗) will be stable, however, this is a
subject of future research.

6 Case study: a multi-server queue with abandonments

In this section we study a multi-class multi-server system with impatient customers, the multi-class
M/M/S+M system. This is an example of a restless bandit problem with a dynamic population. In this
section we will derive a priority policy that is in the class Π∗ and show that it satisfies the two conditions
needed in order to conclude for asymptotic optimality.

We consider a multi-class system with S servers working in parallel. At any moment in time, each
server can serve at most one customer. Class-k customers arrive according to a Poisson process with rate
λk > 0 and require an exponentially distributed service with mean 1/µk < ∞. Server s, s = 1, . . . , S
works at speed 1. Customers waiting (being served) abandon the queue after an exponentially distributed
amount of time with mean 1/θk (1/θ̃k), with θk > 0, θ̃k ≥ 0, for all k. Having one class-k customers
waiting in the queue (in service) costs ck (c̃k) per unit of time. Each abandonment of a waiting class-
k customer (class-k customer being served) costs dk (d̃k). We are interested in finding a policy that
minimizes the total long-run average cost

lim sup
T→∞

1

T

K∑
k=1

E

(∫ T

0

(ckX
π,0
k (t) + c̃kX

π,1
k (t))dt+ dkR

π
k (T ) + d̃kR̃

π
k (T )

)
,
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where Xπ,0
k (t) (Xπ,1

k (t)) denotes the number of class-k customers in the queue (in service) at time t and

Rπk (t) (R̃πk (t)) denotes the number of abandonments of waiting class-k customers (class-k customers being
served) in the interval [0, t], under policy π.

Representing each customer in the queue (in service) by a passive (active) bandit, the problem can
be addressed within the framework of a restless bandit model with the following parameters: Jk =
1, q0k(1, 0) = θk > 0, q1k(1, 0) = µk + θ̃k, C

0
1,k = ck + dkθk, C

1
1,k = c̃k + d̃kθ̃k, k = 1, . . . ,K, and α = S,

where we used that E(Rπk (T )) = θkE(
∫ T
0
Xπ,0
k (t)dt) and E(R̃πk (T )) = θ̃kE(

∫ T
0
Xπ,1
k (t)dt).

We can now define an index policy that we prove to be included in the set Π∗, see the proposition
below. For each class k we set:

ιk := q1k(1, 0)

(
C0

1,k

q0k(1, 0)
−

C1
1,k

q1k(1, 0)

)
.

The index policy (ιk) is then defined as follows: At any moment in time serve (at most) S customers
present in the system that have the highest, strictly positive, index values, ιk. In case a customer belongs
to a class that has a negative index value, this customer will never be served.

Before continuing, we first give an interpretation of the index ιk. The term 1/qak(1, 0) is the time
it takes until a bandit under action a leaves the system. Hence, Ca1,k/q

a
k(1, 0) is the cost for applying

action a on a class-k bandit until it leaves the system. The difference
C0

1,k

q0k(1,0)
− C1

1,k

q1k(1,0)
is the reduction in

cost when making a class-k bandit active (instead of keeping him passive), so that finally the index ιk
represents the reduction in cost per time unit in case you serve class k. Also note that the index rule (ιk)
is robust, i.e., it does not depend on the arrival rate of the customers or the number of servers present in
the system.

Proposition 6.1 Policy (ιk) is contained in the set Π∗.

Proof: For the multi-class multi-server system with abandonments the linear program (LP) is given by:

min
x

∑
k

(ckx
0
k + c̃kx

1
k + dkθkx

0
k + d̃kθ̃kx

1
k),

s.t. 0 = λk − µkx1k − θkx0k − θ̃kx1k, (25)
K∑
k=1

x1k ≤ S,

x0k, x
1
k ≥ 0.

Equation (25) implies x0k =
λk−(µk+θ̃k)x1

k

θk
. Hence, the above linear program is equivalent to solving

max
x

∑
k

((ck + dkθk)
µk + θ̃k
θk

− c̃k − d̃kθ̃k)x1k,

s.t.

K∑
k=1

x1k ≤ S, and 0 ≤ x1k ≤
λk

µk + θ̃k
.

An optimal solution is to assign maximum values to x1k for those classes having the highest values for

(ck + dkθk)µk+θ̃kθk
− c̃k − d̃kθ̃k = ιk, with ιk > 0, until the constraint

∑
k x

1
k ≤ S is saturated. Denote

this optimal solution by x∗. Assume the classes are ordered such that ι1 ≥ ι2 ≥ . . . ≥ ιK . Hence, there
is an l such that x∗,1k = λk

µk+θ̃k
, and hence x∗,0k = 0, for all k < l, 0 ≤ x∗,1l ≤ λl

µl+θ̃l
and hence x∗,0l ≥ 0,

and x∗,1k = 0, for all k > l. This gives that the index policy (ιk) is included in the set Π(x∗) ⊂ Π∗, see
Definition 3.3. �

Note that the M/M/S+M system belongs to the class of problems as described in Proposition 5.1. Hence,
Condition 3.9 is satisfied. The global attractor property follows in the same way as in [3]. Hence, we
therefore have the following optimality result for the index policy (ιk).
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Proposition 6.2 Consider a system with Sr servers working in parallel and arrival rates λkr, k =
1, . . . ,K. The index policy (ιk) is asymptotically optimal as r →∞, i.e., for any policy π,

lim
r→∞

lim
T→∞

1

T

K∑
k=1

E

(∫ T

0

((ck + dkθk)xr,ι,0k (t) + (c̃k + d̃kθ̃k)xr,ι,1k (t))dt

)

≤ lim inf
r→∞

lim inf
T→∞

1

T

K∑
k=1

E

(∫ T

0

((ck + dkθk)xr,π,0k (t) + (c̃k + d̃kθ̃k)xr,π,1k (t))dt

)
.

Proof: In Proposition 6.1 we showed that (ιk) is included in Π(x∗), with x∗ as given in the proof of
Proposition 6.1. In Appendix E we prove that the process x∗(t) corresponding to policy (ιk), as defined
in (9), has the point x∗ as a unique global attractor, i.e., Condition 3.8 is satisfied. Together with
Proposition 5.1 we then obtain that the index policy (ιk) is asymptotically optimal. �

Remark 6.3 (Existing results in literature) In [3, 4] a special case of the multi-class multi-server
system has been studied, which is obtained by setting c̃k = 0, θ̃k = 0 and ck+dkθk > 0. The authors showed
that the index rule with index ιk = (ck + dkθk)µk/θk asymptotically minimizes the number of customers
present in the queue. We note that if

∑
λk/µk > S, that is, the overload situation, the fluid-scaled cost

V ∗(S) will be non-zero, and hence the optimality result is useful. This is not the case when
∑
λk/µk < S,

the underloaded system, as was also observed in [3, 4]: In underload we have for any non-idling policy
x∗,0k = 0, ∀ k, see Equation (45), which implies V ∗(S) = 0. Hence, any non-idling policy could be called
asymptotically optimal. Therefore, in [27] the fluid control that minimizes instead the transient behavior
until the fluid process hits zero is studied for the underload case. For a two-class abandonment queue it is
shown that the optimal transient fluid control is a state-dependent strategy and hence no longer a strict
priority policy.

The authors of [7] studied a special case of the model (in discrete time) obtained by setting θ̃k =
0, c̃k = ck > 0. Hence, their objective is to minimize the number of customers in the system (and not
just in the queue as was the case in [3, 4]). The authors proved indexability (for any discount factor)

and derived that Whittle’s index νlimk is given by ck(µk−θk)+dkµkθk
θk

. They refer to the corresponding index
policy as the AJN-rule. The latter coincides with the index ιk as defined in Proposition 6.1. Hence, it
follows directly from Proposition 6.2 that the AJN-rule is asymptotically optimal in the continuous-time
setting. Finally, note that for the model of [7], the fluid scaled cost is always strictly positive (V ∗(S) = 0
would imply that xk = 0. However this contradicts with Equation (25) which would read 0 = λk). Hence
the asymptotic optimality result is useful for both an underloaded as well as for an overloaded regime.

7 Conclusion and further research

We have characterized a class of priority policies that are asymptotically optimal for the general multi-
class restless-bandit problem. We studied both the setting of a fixed population of bandits as well as
a dynamic population of bandits. In both cases we showed that Whittle’s index policy is included in
the class of asymptotically optimal policies. Our result extends that of Weber and Weiss [45] in several
directions: (i) we allow various classes of restless bandits and multiple actions, (ii) we allow arrivals of
new restless bandits to the system, and (iii) we do not need the restless bandits to be indexable in order to
define asymptotically optimal policies. In order to obtain the asymptotic optimality results we combined
fluid-scaling techniques with linear programming results. This is a different approach than that taken
in [45] and in particular allows us to include arrivals of bandits to the system.

We considered a slight variation of the standard restless bandit formulation: Instead of having at each
moment in time exactly α bandits active, we allowed strictly less than α bandits to be active at a time. By
introducing so-called dummy bandits we showed that restless bandits having a negative Whittle’s index
are never made active under an optimal policy of the relaxed optimization problem or under Whittle’s
index policy.

As future work it would be interesting to further understand the necessity of the global attractor
property in order for asymptotic optimality results to hold. In addition, it would be interesting to
investigate whether Condition 3.9 would hold in greater generality for restless bandit problems. So far,
we showed it to hold in case any passive bandit will eventually leave. A further interesting thread would
be to estimate the suboptimality gap of the proposed priority policies outside the fluid-scaling regime.
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Appendix A: Proof of Lemma 3.2:

By Fatou’s lemma we have

K∑
k=1

Jk∑
j=1

1∑
a=0

lim inf
T→∞

1

T
E(

∫ T

0

Caj,kX
π,a
j,k (t)dt) ≥

K∑
k=1

Jk∑
j=1

1∑
a=0

E(lim inf
T→∞

1

T

∫ T

0

Caj,kX
π,a
j,k (t)dt).

Hence, it is sufficient to prove that

K∑
k=1

Jk∑
j=1

1∑
a=0

lim inf
T→∞

1

T

∫ T

0

Caj,kX
π,a
j,k (t)dt ≥ V ∗(α), almost surely. (26)

We consider a fixed realization ω of the process. If
∑K
k=1

∑Jk
j=1

∑1
a=0 lim infT→∞

1
T

∫ T
0
Caj,kX

π,a
j,k (t)dt =

∞, then (26) is trivially true, since V ∗(α) <∞ (see Lemma 3.1). Hence, assume this is not the case, and
consider the subsequence tn corresponding to the liminf sequence in (26). Note that for a fixed population

we have that since Xπ,a
j,k (t) ≤ Xk(0), for all t, 1

T

∫ T
0
Xπ,a
j,k (t)dt are bounded sequences. Hence, there is a

subsequence tnl of tn such that 1
tnl

∫ tnl
0

Caj,kX
π,a
j,k (t)dt converges to a constant X

π,a

j,k , for all j, k, a. In the

case of a dynamic population, given the policy π is stable, we have by the ergodicity theorem [12] that
1
T

∫ T
0
Xπ,a
j,k (t)dt converges to the mean, here denoted by X

π,a

j,k .

In addition, it holds that limt→∞Xπ,a
j,k (t)/t ≤ 0, for all j, k, a. For the fixed population this follows

since limt→∞Xπ,a
j,k (t)/t ≤ limt→∞Xk(0)/t = 0, and for the dynamic population this follows since any

stable policy is rate stable.
Hence, when studying (7) in the point tnl , dividing both sides by tnl and using that Nθ(t)/t→ θ as

t→∞, we obtain

0 = λkpk(0, j) +

1∑
a=0

Jk∑
i=1,i6=j

qak(i, j)X
π,a

i,k −
1∑
a=0

X
π,a

j,k q
a
k(j).
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By (2) we also have that
∑K
k=1

∑Jk
j=1X

π,1

j,k ≤ α, hence X
π

is a feasible solution of (LP). We can now
conclude that

K∑
k=1

Jk∑
j=1

1∑
a=0

lim inf
T→∞

1

T

∫ T

0

Caj,kX
π,a
j,k (t)dt =

K∑
k=1

Jk∑
j=1

1∑
a=0

lim
l→∞

1

tnl

∫ tnl

0

Caj,kX
π,a
j,k (t)dt

=

K∑
k=1

Jk∑
j=1

1∑
a=0

Caj,kX
π,a

j,k ≥ V ∗(α),

which proves (8).
We now assume that π is rate-stable and that Caj,k > 0, for all j, k, a. Again we consider a fixed

realization ω of the process. If
∑K
k=1

∑Jk
j=1

∑1
a=0 lim infT→∞

1
T

∫ T
0
Caj,kX

π,a
j,k (t)dt =∞, then the result is

trivially true, since V ∗(α) < ∞ (see Lemma 3.1). Hence, assume this is not the case, and consider the
subsequence tn corresponding to the liminf sequence. So

K∑
k=1

Jk∑
j=1

1∑
a=0

lim
n→∞

1

tn

∫ tn

0

Caj,kX
π,a
j,k (t)dt <∞. (27)

Since Caj,k > 0, this implies that the sequence 1
tn

∫ tn
0
Xπ,a
j,k (t)dt is bounded, for all j, k, a. By the Bolzano-

Weierstrass theorem, there exists a subsubsequence tnl of tn and values X
π,a

j,k ’s such that

liml→∞
1
tnl

∫ tnl
0

Xπ,a
j,k (t)dt = X

π,a

j,k , for all j, k, a. In addition, by rate stability we have that

limt→∞Xπ,a
j,k (t)/t = 0, a.s., for all j, k, a. The proof follows now again as in the fixed population case.

The proof in the case of mean-rate stability goes along similar lines as that for rate stability and is
therefore not included here. �

Appendix B: Proof of Proposition 4.3

Recall that the relaxed optimization problem for f = av consists in finding a stationary and Markovian
policy that minimizes

K∑
k=1

Jk∑
j=1

1∑
a=0

lim
T→∞

1

T
E(

∫ T

0

Caj,kX
π,a
j,k (t)dt), (28)

under the relaxed constraint
K∑
k=1

Jk∑
j=1

lim
T→∞

1

T
E(

∫ T

0

Xπ,1
j,k (t)dt) ≤ α. (29)

For a given policy π, we denote by xπ,aj,k the (stationary) state-action frequencies, that is, the average
fraction of time the class-k bandit is in state j and action a is chosen. Assumption 4.2 implies that these
frequencies exist and satisfy the balance equations, that is, they satisfy

0 =

1∑
a=0

qak(j)xπ,aj,k −
1∑
a=0

Jk∑
i=1,i6=j

qak(i, j)xπ,ai,k , ∀j.

We restrict ourselves to the class of policies that are symmetric for bandits in the same class3. Having
xk(0) bandits in class k, Equations (28) and (29) can then equivalently be written as

K∑
k=1

xk(0)

Jk∑
j=1

(
C0
j,kx

π,0
j,k + C1

j,kx
π,1
j,k

)
and

K∑
k=1

xk(0)

Jk∑
j=1

xπ,1j,k ≤ α,

3We can do this without loss of generality, since this is the case for the optimal solution of the relaxed problem as given
by Whittle.
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respectively. We can now formulate the relaxed optimization problem as the following linear program
(D):

(D) min
x

K∑
k=1

xk(0)

Jk∑
j=1

(
C0
j,kx

0
j,k + C1

j,kx
1
j,k

)
s.t. 0 =

1∑
a=0

qak(j)xaj,k −
1∑
a=0

Jk∑
i=1,i6=j

qak(i, j)xai,k, ∀ j, k,

K∑
k=1

xk(0)

Jk∑
j=1

x1j,k ≤ α, (30)

Jk∑
j=1

1∑
a=0

xaj,k = 1, ∀ k, xaj,k ≥ 0, ∀ k, j, a.

We have that for any feasible solution (xaj,k) of (D) there is a stationary policy π such that the state-action

frequencies xπ,aj,k coincide with the value of the feasible solution xaj,k [38, Theorem 8.8.2 b)]. Hence, for

any optimal (symmetric) policy π∗ of the relaxed optimization problem, the state-action frequencies xπ
∗,a
j,k

provide an optimal solution of (D). We further note that (xπ
∗

j,kxk(0)) is an optimal solution of (LP).
We assume the restless bandit problem is indexable. Hence, an optimal policy of the relaxed opti-

mization problem is described in Section 4.1, and will be denoted here by π̃∗. We recall that policy π̃∗ is
described by a value ν∗ ≥ 0 and is such that a class-k bandit in state j is served if νavj,k > ν∗ and is not
served if νavj,k < ν∗. Hence, the state-action frequencies under π̃∗ satisfy

xπ̃
∗,0
j,k = 0 when νavj,k > ν∗, (31)

xπ̃
∗,1
j,k = 0 when νavj,k < ν∗.

By definition of policy π̃∗, for states (ĵ, k̂) with νav
ĵ,k̂

= ν∗ a class-k̂ bandit in state ĵ is made active with

a certain probability, hence xπ̃
∗,0

ĵ,k̂
≥ 0 and xπ̃

∗,1

ĵ,k̂
≥ 0.

Since Whittle’s index policy gives priority to bandits having highest index value, we directly obtain
that Whittle’s index policy (νavj,k) satisfies points 1 and 2 of Definition 3.3 when setting x∗ = (xπ̃

∗

j,kxk(0)).

We now treat point 3 of Definition 3.3: Assume
∑K
k=1

∑Jk
j=1 x

π̃∗,1
j,k xk(0) < α. Hence, under the optimal

policy, on average, strictly less than α bandits are made active. This implies that the remaining fraction
of the time the policy makes dummy bandits in state B active. Hence, νavB ≥ ν∗. Since ν∗ ≥ 0 and
νavB = 0 we necessarily have ν∗ = 0. A policy satisfies point 3 of Definition 3.3 if it never makes a class-k
bandit in state j active that satisfies

xπ̃
∗,1
j,k = 0 and xπ̃

∗,0
j,k > 0. (32)

From (31) (with ν∗ = 0), we obtain that (32) implies νavj,k ≤ 0. By definition of Whittle’s index policy, a
bandit in a state such that νavj,k ≤ 0 will never be made active, hence point 3 is satisfied. We therefore
conclude that Whittle’s index policy (νavj,k) is included in the set of priority policies Π(x∗) ⊂ Π∗, with

x∗ = (xπ̃
∗

j,kxk(0)).

Appendix C: Proof of Proposition 4.7

Let β ≤ β and β > 0. Whittle’s index νβj,k results from solving the following problem for a class-k bandit:

min
Ak(·)

E
(∫ ∞

0

e−βt(C
Ak(t)
Jk(t),k

+ ν1(Ak(t)=1))dt

)
, (33)

see (21), where Ak(t) ∈ {0, 1} and Jk(t) denotes the state of the class-k bandit. This is a continuous-time
discounted Markov decision problem in a finite state space. After uniformization ([23, Remark 3.1], [38,
Section 11.5.2]) this is equivalent to a discrete-time discounted Markov decision problem with discount
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factor β̃ = q
β+q , cost function C̃aj,k =

Cai,k+ν1(a=1)

β+q , and transition probabilities p̃ak(i, j) =
qak(i,j)
q + 1(i=j)

(recall that qak(i, i) = −qak(i) = −
∑Jk
j=0,i6=j q

a
k(i, j)), where q := maxi,k,a q

a
k(i) < ∞. In LP formulation

the discrete-time MDP for the class-k bandit is then as follows (see [38, Section 6.9]):

max
v

Jk∑
j=1

γj,kv(j)

s.t. v(i)− β̃
Jk∑
j=0

p̃ak(i, j)v(j) ≤ C̃ai,k, ∀ i = 1, . . . , Jk, a = 0, 1,

with γj,k > 0 arbitrary. In fact, we will make the choice γj,k = λk(pk0j + ε), with ε > 0. The dual of the
above LP is

(Dk(β, ε)) min
x

Jk∑
j=1

C0
j,kx

0
j,k + C1

j,kx
1
j,k + νx1j,k

β + q

s.t. 0 = λk(pk(0, j) + ε) +

1∑
a=0

Jk∑
i=1,i6=j

qak(i, j)

β + q
xai,k −

β

β + q

1∑
a=0

xaj,k −
1∑
a=0

qak(j)

β + q
xaj,k, . ∀ j,(34)

xaj,k ≥ 0, ∀j, a.

As stated in Section 4.1 (“Optimal solution per bandit”), indexability implies that an optimal policy

for the subproblem (33) is described by a priority ordering according to the indices νβj,k: an optimal

action in state j is a = 1 if νβj,k > ν and a = 0 if νβj,k < ν. By [38, Theorem 6.9.4], this implies that there
exists an optimal solution to (Dk(β, ε)), denoted by x∗k(β, ε), such that

x∗,0j,k(β, ε) = 0 when νβj,k > ν,

x∗,1j,k(β, ε) = 0 when νβj,k < ν.

Since liml→∞ νβlj,k = νlimj,k , we obtain that there exists an L(ν) such that for all l > L(ν) it holds that

x∗,0j,k(βl, ε) = 0 when νlimj,k > ν, (35)

x∗,1j,k(βl, ε) = 0 when νlimj,k < ν. (36)

By change of variable x̃aj,k = xaj,k/(β + q) we obtain that x̃∗k(βl, ε) satisfies (35) and (36) and is an

optimal solution of (D̃k(βl, ε)) defined as:

(D̃k(β, ε)) min
x̃

Jk∑
j=1

(C0
j,kx̃

0
j,k + C1

j,kx̃
1
j,k + νx̃1j,k)

s.t. 0 = λk(pk(0, j) + ε) +

1∑
a=0

Jk∑
i=1,i6=j

qak(i, j)x̃ai,k − β
1∑
a=0

x̃aj,k −
1∑
a=0

qak(j)x̃aj,k, ∀ j, (37)

x̃aj,k ≥ 0, ∀j, a.

By Assumption 4.6 we have that the set of optimal solutions of (D̃k(0, 0)) is bounded and non-empty
when ν > 0. Hence, from [11, Corollary 1] we obtain that the correspondence that gives for each (β, ε)
the set of optimal solutions of (D̃k(β, ε)) is upper semicontinuous in the point (β, ε) = (0, 0). It is a
compact-valued correspondence (after summing (37) over all j, we have that x̃k = λk(1 + εJk)/β, β > 0).
Hence, it follows that there exists a sequence (βln , εn) (with βln a subsequence of βl and εn → 0) such
that x̃∗,aj,k (βln , εn) → x̃∗,aj,k , as n → ∞, and with x̃∗k an optimal solution of (D̃k(0, 0)). For a fixed ν, the
components of x̃∗(βl, ε) that are zero are independent of the exact values for ε > 0, and l > L(ν), see (35)
and (36). Hence, the limit x̃∗, which is an optimal solution of (D̃k(0, 0)), has the same components equal
to zero, i.e., (35) and (36) are satisfied for x̃∗.

Below we will show that there exists a value ν∗ such that there is a vector ỹ∗ that satisfies the
following: (i) ỹ∗k is an optimal solution of (D̃k(0, 0)), for all k, with ν = ν∗, (ii) ỹ∗ is an optimal solution
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of (LP), and (iii) the Whittle index policy (νlimj,k ) is included in the set Π(ỹ∗) ∈ Π∗. The latter then
concludes the proof.

In the remainder of the proof we denote by x̃∗k(ν) the above-described optimal solution x̃∗k of (D̃k(0, 0))
for a given value ν. We have the following properties:

• Property 1:
K∑
k=1

Jk∑
j=1

x̃∗,1j,k(∞) ≤ α. (38)

This can be seen as follows. As ν →∞, the objective of (D̃k(0, 0)) is to minimize
∑Jk
j=1 x̃

1
j,k. For any

feasible solution x of (LP), xk is in the feasible set of D̃k(0, 0). Hence,
∑Jk
j=1 x̃

∗,1
j,k(∞) ≤

∑Jk
j=1 x

1
j,k

with x a feasible solution of (LP). In addition, we have that
∑K
k=1

∑Jk
j=1 x

1
j,k ≤ α with x a feasible

solution of (LP). This proves (38).

• Property 2:
Jk∑
j=1

x̃∗,1j,k(ν) ≥
Jk∑
j=1

x̃∗,1j,k(ν̃), for ν < ν̃. (39)

This can be seen as follows: By definition we have
∑Jk
j=1

∑1
a=0 C

a
j,kx̃

∗,a
j,k (ν) + ν

∑Jk
j=1 x̃

∗,1
j,k(ν) ≤∑Jk

j=1

∑1
a=0 C

a
j,kx̃

∗,a
j,k (ν̃) + ν

∑Jk
j=1 x̃

∗,1
j,k(ν̃) and

∑Jk
j=1

∑1
a=0 C

a
j,kx̃

∗,a
j,k (ν̃) + ν̃

∑Jk
j=1 x̃

∗,1
j,k(ν̃)

≤
∑Jk
j=1

∑1
a=0 C

a
j,kx̃

∗,a
j,k (ν) + ν̃

∑Jk
j=1 x̃

∗,1
j,k(ν). Substracting the latter inequality from the first, we

obtain Equation (39).

• Property 3:
Jk∑
j=1

x̃∗,1j,k(ν) <∞ for ν > 0. (40)

This follows since by Assumption 4.6 the set of optimal solutions of (D̃k(0, 0)) is bounded for ν > 0.

We define α :=
∑K
k=1

∑Jk
j=1 x̃

∗,1
j,k(0). Equations (38)–(40) imply that there exists a ν∗ ≥ 0 such that

K∑
k=1

Jk∑
j=1

x̃∗,1j,k((ν∗)−) ≥ min(α, α) and

K∑
k=1

Jk∑
j=1

x̃∗,1j,k((ν∗)+) ≤ min(α, α). (41)

From standard LP theory we know that there exists a ν < ∞ such that x̃∗k(ν) is an optimal solution of
(Dk(0, 0)) for all ν ≥ ν, that is x̃∗k(ν) = x̃∗k(ν) for ν ≥ ν. Hence, we can take ν∗ <∞.

From (39) and (41) we obtain that there exists a ỹ∗ = (ỹ∗,aj,k ) with y∗
k̃

being a convex combination

of x̃∗
k̃
((ν∗)−) and x̃∗

k̃
((ν∗)+) and for k 6= k̃, ỹ∗k being equal to either x̃∗k((ν∗)−) or x̃∗k((ν∗)+), such that∑K

k=1

∑Jk
j=1 ỹ

∗,1
j,k = min(α, α). Note that ỹ∗k is still a solution of (D̃k(0, 0)), for all k. Now, if α = min(α, α),

it follows directly that ỹ∗ is also an optimal solution of (LP). If instead α = min(α, α), then ν∗ = 0 and
hence ỹ∗k is an optimal solution of (D̃k(0, 0)) with ν = 0. After summing over k, the latter has the same

objective function as (LP). Together with
∑K
k=1

∑Jk
j=1 ỹ

∗,1
j,k = α ≤ α, it follows that ỹ∗ is also an optimal

solution of (LP).
It remains to be proved that the Whittle index policy is included in the set Π(ỹ∗) ⊂ Π∗. Assume

for class k̃ the states are ordered such that νlim
j1,k̃
≤ νlim

j2,k̃
< . . . ≤ . . . ≤ νlim

jJ
k̃
,k̃

. From ν∗ < ∞ and

Properties (35)–(36) (which hold for x̃∗(ν)) we have that there are n∗ and ñ∗, n∗ ≤ ñ∗, such that
νjn∗ ,k̃ = . . . = νjñ∗ ,k̃ = ν∗ and

x̃∗,1
jm,k̃

((ν∗)−) = 0, for all m = 1, . . . , n∗,

x̃∗,0
jm,k̃

((ν∗)−) = 0, for all m = n∗ + 1, . . . , J,

and

x̃∗,1
jm,k̃

((ν∗)+) = 0, for all m = 1, . . . , ñ∗,

x̃∗,0
jm,k̃

((ν∗)+) = 0, for all m = ñ∗ + 1, . . . , J.
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The vector ỹ∗
k̃

is a convex combination of x̃∗
k̃
((ν∗)−) and x̃∗

k̃
((ν∗)+), hence ỹ∗,1

jm,k̃
= 0 for all m ≤ n∗ and

ỹ∗,0
jm,k̃

= 0 for all m ≥ ñ∗+ 1. Hence, Whittle’s index policy (νlimj,k ) satisfies items 1 and 2 of Definition 3.3

with x∗ = ỹ∗.
If
∑K
k=1

∑Jk
j=1 ỹ

∗,1
j,k < α, then since

∑K
k=1

∑Jk
j=1 ỹ

∗,1
j,k = min(α, α) we have ᾱ < α, so ν∗ = 0. This

implies that for any state (j, k) with ỹ∗,1j,k = 0 and ỹ∗,0j,k > 0 it follows from Property (35) that νlimj,k <

(ν∗)+ = 0+. Hence, by definition of Whittle’s index policy (νlimj,k ), a bandit in this state will never be
made active, which implies that item 3 in Definition 3.3 is satisfied for x∗ = ỹ∗. It hence follows that
Whittle’s index policy (νlimj,k ) is included in the set of priority policies Π(ỹ∗) ⊂ Π∗. �

Appendix D: Proof of Proposition 5.1

Consider an arbitrary priority policy π. By assumption we have that Xr,π(t) is irreducible. The Markov
process Xr,π(t) has unbounded transition rates, however, it follows that it does not die in finite time
(upward jumps are of the order 1). Hence, once we prove the multi-step drift criterion [31, 40], we can
conclude that there is a unique invariant distribution measure.

Hence, we need to prove that the multi-step drift criterion is satisfied: We will show that there is a
δ > 0, a T <∞ and a stopping time τ such that E(

∑K
k=1

∑Jk
j=1X

r,π,0
k (τ)|X(0) = x)−

∑K
k=1

∑Jk
j=1 x

0
j,k ≤

−δ for any x ∈ Cc, with C = {x :
∑K
k=1

∑Jk
j=1 x

0
j,k ≤ c} and such that E(τ |X(0) = x) ≤ T .

We define the stopping time as the first moment that an active bandit is made passive. Hence, during
the interval [0, τ ] the collection of passive bandits does not change.

First assume there exists an x such that E(τ |X(0) = x) = ∞. This implies that when starting in
state x, the collection of passive and active bandits remains fixed. Hence, each passive bandit evolves
according to the transition rates q0j,k and hence, the number of passive class-k bandits is equivalent to that
in an M/G/∞ queue (with arrival rate λkr and phase-type distributed service requirements as described
by the transitions of an inactive class-k bandit), which is stable. By irreducibility, if there is an x, such
that E(τ |X(0) = x) =∞, for any starting point, the process will be in a finite expected amount of time
in state x, hence, stability follows.

We now assume E(τ |X(0) = x) < ∞ for all x. Since there is a finite number of states Jk < ∞ and
the state transitions are exponential, it follows directly that there exists a T <∞ such that E(τ |X(0) =
x) < T for all x. Note that the passive bandits behave independently during the interval [0, τ ]. The
probability that an inactive bandit departs in the interval [0, τ ] can be lower bounded by p0 with p0 > 0.
This follows from the assumption that there exists one state jk ∈ {1, . . . , Jk} such that q0k(jk, 0) > 0 and
state jk is positive recurrent under the policy that always keeps the class-k bandit passive. Hence, the
mean number of passive bandits that leave during the interval [0, τ ] is given by p0

∑K
k=1

∑Jk
j=1 x

0
j,k. We

therefore have as mean drift

E(

K∑
k=1

Jk∑
j=1

Xr,π,0
k (τ)|X(0) = x)−

K∑
k=1

Jk∑
j=1

x0j,k

= λrEx(τ) + 1− p0
K∑
k

Jk∑
j=1

x0j,k < λrT + 1− p0c = −δ,

for x ∈ Cc and c := (λrT + 1 + δ)/p0. The +1 in the mean drift is due to the active bandit that becomes
passive at time τ . By the multistep drift criterion we obtain that there is a unique invariant probability
distribution for the process Xr,π(t), for any r. Recall that we denote this distribution by pr,π.

The number of passive class-k bandits in state j, Xr,π,0
j,k (t), can be stochastically upper bounded by

the number of customers in an M/G/∞ queue with arrival rate λj,kr, λj,k := λkp0,j + maxi q
1
k(i, j)α,

and service requirement Bj,k. Here Bj,k is described by the state transitions of a passive class-k bandit
starting in state j until it exists the system (while kept passive). We denote the total number of customers
in this M/G/∞ queue by Y rj,k(t). The latter serves as an upper bound on Xr,π,0

j,k (t) since λj,k is an upper
bound for the arrival rate of passive class-k bandits (in state j): (i) passive bandits that are made active in
the original process, are considered to stay forever passive in the upper bound process, (ii) maxi q

1
k(i, j)α

represents the maximum at which rate active bandits can be made passive.
The stationary distribution of the process {Y rj,k(t)}, is distributed as a Poisson process with parameter

λj,krE(Bj,k) [40]. It can be checked that this process converges to the Dirac measure in the point
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λj,kE(Bj,k), as r → ∞. By Prohorov’s theorem it then follows that the family {Y rj,k/r} is tight [40].

Furthermore, since E(Y rj,k/r) = λj,kE(Bj,k) and E(limr→∞ Y rj,k/r) = λj,kE(Bj,k), a.s., we obtain from [10,
Theorem 3.6] that the family {Y rj,k/r} is uniform integrable.

Since
∑
j,k Y

r
j,k(t)/r represents a stochastic upper bound on the queue length process

∑K
k=1X

r,π
k (t)/r,

we obtain that the family {pr,π} is tight and uniform integrable as well.

Appendix E: Condition 3.8 for an M/M/S+M queue

Assume the classes are reordered such that ι1 ≥ ι2 ≥ . . . ≥ ιK . We further denote by I∗ := {l : ιl ≤ 0},
the set of classes that will never be served. This set is of the form I∗ = {l̂, . . . ,K}. Under policy (ιk),
the ODE as defined in (9) is given by

dx∗k(t)

dt
= λk − x∗,0k (t)θk − x∗,1k (t)(µk + θ̃k), ∀ k, (42)

with x∗,1k (t) = min

(
(S −

k−1∑
l=1

x∗l (t))
+, x∗k(t)

)
, if k < l̂, ∀ k, (43)

x∗,1k (t) = 0, if k ≥ l̂, ∀ k, (44)

x∗,0k (t) = x∗k(t)− x∗,1k (t), ∀ k.

This ODE has a unique equilibrium point, which is given by

x∗,0k = 0, x∗,1k =
λk

µk + θ̃k
, for k = 1, . . . , k̂, (45)

x∗,0
k̂+1

=
λk − (µk + θ̃k)(S −

∑k̂
l=1

λl
µl+θ̃l

)

θk
, x∗,1

k̂+1
= S −

k̂∑
l=1

λl

µl + θ̃l
, if k̂ + 1 < l̂, (46)

x∗,0k =
λk
θk
, x∗,1k = 0, for k ≥ min(k̂ + 2, l̂), (47)

where k̂ = arg max{k = 0, 1, . . . , l̂ − 1 :
∑k
l=1

λl
µl+θ̃l

≤ S}. This can be seen as follows. If x∗ is an

equilibrium point, it follows from (42) that

λk

µk + θ̃k
= x∗,1k + x∗,0k

θk

µk + θ̃k
. (48)

We first prove (45). Let k = 1 and assume 1 ≤ k̂. Hence, we have λ1

µ1+θ̃1
< S. By (48) we obtain x∗,11 < S.

Together with (43), that is, x∗,11 = min(S, x∗1), we obtain x∗,11 = x∗1 and hence x∗,01 = 0. From (48) we
obtain that x∗,11 = λ1

µ1+θ̃1
. The proof of (45) continues by induction. Assume (45) holds for k ≤ l − 1,

and let l ≤ k̂. For k ≤ l − 1 we have that x∗,1k = λk
µk+θ̃k

. Since
∑l
k=1

λk
µk+θ̃k

≤ S, by (43) we obtain that

x∗,1l = x∗l and hence x∗,0l = 0. From (48) we then obtain that (45) holds for k = l as well.

We now prove (46). Let k̂+1 < l̂. From (45) and (46) we obtain that S−
∑k̂
l=1 x

∗
l < x∗

k̂+1
. So by (43)

we obtain x∗,1
k̂+1

= S −
∑k̂
l=1

λl
µl+θ̃l

as stated in (46).

We now prove (47). From (45) and (46) we obtain that S ≤
∑k̂+1
l=1 x

∗
l , hence x∗,1k = 0 for k such that

k̂ + 1 < k < l̂. Equation (47) for k ≥ l̂ follows directly from (44).
In addition, x∗ is a global attractor, as was shown in [3, Appendix] (this can be seen by replacing the

µi in [3] by µi + θ̃i, making the ODE in [3] coincide with our ODE (42)).
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