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Evolution of altruistic punishment in heterogeneous populations

Harmen de Weerda,∗, Rineke Verbruggea

aInstitute of Artificial Intelligence, Faculty of Mathematics and Natural Sciences, University of Groningen, PO Box 407,

9700 AK Groningen, The Netherlands

Abstract

Evolutionary models for altruistic behaviour typically make the assumption of homogeneity: each individ-

ual has the same costs and benefits associated with cooperating with each other and punishing for selfish

behaviour. In this paper, we relax this assumption by separating the population into heterogeneous classes,

such that individuals from different classes differ in their ability to punish for selfishness. We compare the

effects of introducing heterogeneity this way across two population models, that each represents a different

type of population: the infinite and well-mixed population describes the way workers of social insects such

as ants are organized, while a spatially structured population is more related to the way social norms evolve

and are maintained in a social network.

We find that heterogeneity in the effectiveness of punishment by itself has little to no effect on whether or

not altruistic behaviour will stabilize in a population. In contrast, heterogeneity in the cost that individuals

pay to punish for selfish behaviour allows altruistic behaviour to be maintained more easily. Fewer punishers

are needed to deter selfish behaviour, and the individuals that punish will mostly belong to the class that

pays a lower cost to do so. This effect is amplified when individuals that pay a lower cost for punishing

inflict a higher punishment.

The two population models differ when individuals that pay a low cost for punishing also inflict a lower

punishment. In this situation, altruistic behaviour becomes harder to maintain in an infinite and well-mixed

population. However, this effect does not occur when the population is spatially structured.

Keywords: agent-based models, evolution of cooperation, non-uniform costs and payoffs, strong

reciprocity, emergent behaviour

1. Introduction

The question of how cooperation has evolved represents one of the more enduring puzzles in biology and

social sciences, in which the role of many pieces is understood even if some pieces do not yet seem to fit

together [1–5]. The paradox of cooperation is that although cooperation adds to the common good of a
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group of individuals, contributing to the common good generally bears a higher cost than the individual

returns [2, 6]. Individuals that enjoy the cooperation of others without being cooperative themselves are

therefore at an evolutionary advantage. At first sight, a group of individuals thus seems to be destined to

never cooperate, even if the combined benefit of every single individual cooperating outweighs the cost of

contributing.

Even though cooperation seems to be destined to fail in theory, many social animals engage in cooperative

action, ranging over a wide variety of activities [7–10]. To explain why cooperation stabilizes in many

animal societies, a number of mechanisms have been proposed, varying in the assumptions they make on

individual cognitive abilities [see among others 5, 11]. One of the mechanisms that may stabilize cooperation

is punishment [12–15]. Punishment can provide the necessary incentive to stabilize cooperation in animal

[16, 17] as well as in human societies [18, 19]. Experiments have shown that human subjects have a high

willingness to sacrifice in order to punish selfish behaviour, even when punishment is understood to yield no

future benefits [20–24].

An N -person extension of the prisoner’s dilemma, known as the public goods game [19, 25], has been

investigated in simulations of the evolution of cooperation. In the public goods game, the game is played

by N > 2 individuals, each of which receives an initial capital C. They may choose to keep that capital to

themselves, or invest any part of it in a common pool. Once every player has decided how much to invest,

the capital in the common pool is doubled, and divided equally among the players, irrespective of their

investment. If every player invests their entire capital, each will end up with 2C and therefore double their

initial capital. However, each individual is faced with the temptation of exploiting the common pool. Since

every individual investment is divided equally among all N > 2 individuals, the return on the individual

investment is negative. The game-theoretical dominant strategy would therefore be to invest nothing. But if

none of the players invests, each will end up with their initial capital C, which is half the capital they would

have gained if everyone had invested. In experiments with volunteers with actual economic incentives, human

players do tend to invest a reasonable sum. Typically, in the first round, participants choose to invest at

least half their capital. When the game is repeated over several rounds, the amount invested quickly declines

until nobody invests anything, unless there is an opportunity to punish individuals for low investments [19]

or opt out of playing the public goods game [26, 27].

The models that have been proposed so far to explain why cooperation and punishment persist and would

even be able to invade in a population of selfish individuals, commonly make the assumption of homogeneity.

In a homogeneous society, individuals can use different strategies, but the payoffs of an encounter between two

individuals depend only on the strategy the individuals adopt. Individuals have the same cost of punishing,

and the same benefit of their partner cooperating. In this article, we propose to relax this assumption

of homogeneity by allowing for populations that consist of two or more different sub-classes. By allowing
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the costs and benefits of cooperation to vary across sub-classes, individuals from different classes may have

different opportunities. Empirical research shows that differences in marginal benefit from contributions to

a public good changes the willingness to contribute and punish [28, 29]. Subjects that enjoy a higher benefit

not only tend to contribute more to the public good, but are also expected to do so, and are punished more

severely by other players if they contribute less than their fair share.

In this research, we determine the effects of a heterogeneous population of individuals on the evolution of

altruistic punishment, and the resulting structure of the population in a simulated environment. We adjust

the model of the public goods game with voluntary participation introduced by Hauert et al. [30, 31] and

further extended to include altruistic punishment [15, 32] to allow for heterogeneous classes of individuals.

Specifically, we investigate the effect of individual differences in the cost for punishing a co-player as well as

the cost of being punished by another individual. We compare these effects across two different population

models. In our first model, discussed in Section 2, the public goods game is played in an infinite size and

well-mixed population, where individuals are assumed never to encounter each other more than once in the

same setting. Section 3 describes the second model, which imposes a spatial structure on the population

in the form of a lattice, such that individuals only interact with a small selection of close neighbours. For

both population models, we present a model for a population that is divided into M classes of individuals,

and show the results of an implementation of the model for the case of M = 2 classes. The individuals we

simulate share the knowledge that the population is heterogeneous, but not how this affects the rewards.

Simulation results are presented separately for each model, while Section 4 summarizes these results and

provides directions for further research.

2. Infinite population model

To determine the effect of heterogeneity of individuals on the evolution of altruistic punishment, we have

constructed two model variations of the public goods game. In this section, we will discuss a model based

on the assumption of an infinite sized, well-mixed population of individuals. This model can be used to

represent any sufficiently large population in which individuals are very unlikely to encounter the same co-

player twice in the setting of a public goods game over the course of their lifetime. The infinite population

model may therefore describe the public goods game in a large colony of social insects, such as ants, bees

or wasps. In these societies, workers generally exhibit altruistic behaviour by sacrificing most or all of their

direct reproduction to help rear the offspring of the queen [33]. Interestingly, in some species of social insects,

infertile workers can still lay haploid eggs destined to be males [34]. There is an evolutionary incentive to

do so when the queen is mated to more than two males, in the sense that workers are more related to their

own sons than to sons of their queen mother and sons of their sister workers [35, 36]. The reward for such

behaviour is therefore an increase in their inclusive fitness, that is the probability of their genes surviving.
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Natural selection would therefore favour the social insect that lays its own eggs. However, workers lay eggs

at the expense of performing their duties to the colony. Punishment for this selfish behaviour takes the

form of queen and worker policing [17]. Through this mechanism, worker-laid eggs are destroyed, effectively

removing all benefits from the selfish behaviour.

Even though workers, queens and males in a colony of social insects represent morphologically different

castes that perform different tasks, the homogeneous infinite population model can be used to model the

interactions between the workers of large colonies. However, some colonies of social insects exhibit a further

subdivision of the worker caste [33] up to a point where a heterogeneous infinite population model would fit

the situation better. For example, leaf-cutting ant workers exhibit a 200-fold variation in body mass [37],

while in weaver ants of the genus Oecophylla, workers show a clear bimodal size distribution, with almost no

overlap in size between minor and major workers [38]. In cases like these, morphologically different workers

typically perform different tasks depending on their physical traits. In general, the minor workers stay in the

nest to tend to the queen and her brood, while major workers perform the more dangerous tasks of foraging

and defending the colony [38].

In the remainder of this section, we will discuss how heterogeneity between individuals affects the evo-

lution of altruistic punishment in the infinite population model. As a starting point, we use the model

introduced by Brandt et al. [32], which already allows for voluntary participation. This model is extended in

the present work by dividing the population into M heterogeneous classes of individuals. For the simulation

results, we restrict ourselves to the case M = 2.

2.1. Infinite population model: Methods

In the infinite population model, we follow Brandt et al. [32]. Their model is an extension of the basic

public goods model, in which players may choose not to share in the public good and instead receive a

fixed payoff. We further extend their model to allow for heterogeneous groups within the population. In

our case, the population is assumed to consist of M classes of individuals, which occur at a fixed ratio

within the population. That is, although evolutionary dynamics affect the frequencies at which the different

strategies occur within each class, this has no effect on the relative frequency of the different classes within

the population. In effect, this means there is no genetic basis that determines the individual membership

to a class. Each class of individuals occurs at a constant frequency 0 < fi < 1 (1 ≤ i ≤ M), such that∑
i fi = 1.

Each class of individuals i is further divided by the strategy they adopt: the loners xi,L, altruistic non-

punishers or cooperators xi,AN , selfish non-punishers or defectors xi,SN and altruistic punishers xi,AP , where

xi,L, xi,AN , xi,SN , xi,AP refer to the fraction of the population adopting their respective strategy such that

xi,AN + xi,AP + xi,SN + xi,L = fi for all 1 ≤ i ≤M.
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For convenience, the notation xs is used to denote the fraction of the entire population that adopts stategy

s. That is,

xs :=

M∑
i=1

xi,s for all strategies s ∈ {AN,AP, SN,L}.

Note that in this setting individuals only play pure strategies. We assume that the public goods game is

not played by the entire population simultaneously. Instead, the game is played by a random sample of N

individuals. The expected payoffs of each of the strategies are calculated accordingly.

When a random sample of size N is drawn, the public goods game is played by all the individuals in this

group except for the loners. Loners refuse to play the game and instead of sharing in the public goods, they

receive a fixed payoff σ. They have no share in the public good, but they also do not contribute to it, and

are not punished for failing to contribute.

Among the individuals that decide to play the game, altruistic individuals choose to invest an amount

c in the public goods. The total amount contributed in the public goods by all of the N individuals is

multiplied by a factor r > 1 before it is distributed among all individuals playing the game, whether they

are altruistic or selfish, but excluding the loners. That is, in a group of nA := N(xAP + xAN ) altruistic

individuals and nL := NxL loners, the public goods yield the non-loners a benefit of rc · nA/(N − nL) at

a cost c to each of the altruistic individuals. However, there is an exception to this rule. When the group

consists of N − 1 loners, the only individual willing to participate in the public goods game is forced to be

a loner as well. Furthermore, it is assumed that (r − 1)c > σ > 0, such that a loner receives a better payoff

than the members of a group of selfish individuals that receive 0 payoff, but worse than the members of a

group of altruistic individuals, where each individual receives (r − 1)c.

After all contributions have been made and the public good is shared, punishing individuals punish the

selfish individuals. Selfish individuals in this setting are individuals that choose to participate in the public

goods game, but do not contribute to the public good. The punishment they receive for this behaviour

depends on the class of the altruistic punisher. Altruistic punishers of class i inflict a cost βi > 0 to each

selfish individual at a personal cost of γi > 0. Following Brandt et al. [32], altruistic punishers furthermore

punish individuals that fail to punish selfish participants. In this context, altruistic non-punishers are also

termed second-order free-riders, since they do contribute to the public good, but do not contribute to the

punishment system. Altruistic punishers in class i punish second-order free-riders for a fraction 0 ≤ α ≤ 1

of the punishment they inflict to selfish individuals. That is, at a cost of αγi to themselves, they lower the

payoff of altruistic non-punishers by αβi. However, when there are no selfish individuals in the group, none

of the participants of the public goods game will punish, and altruistic non-punishers can therefore not be

detected. Second-order free-riding is therefore only punished if there are at least one altruistic punisher, at

least one altruistic non-punisher, and at least one selfish individual present in the group.

Evolution in well-mixed, infinite populations is traditionally studied using replicator dynamics [39, 40].
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We follow the method outlined in Brandt et al. [32] to determine the expected payoffs Pi,s for individuals of

class i that adopt strategy s. This results in the following expected payoffs:

Pi,L = σ

Pi,AN = σxN−1
L + rc(xAP + xAN )B(xL)− cF (xL)− αG(xSN )

M∑
j=1

βj(N − 1)xj,AP

Pi,SN = σxN−1
L + rc(xAP + xAN )B(xL)−

M∑
j=1

βj(N − 1)xj,AP

Pi,AP = σxN−1
L + rc(xAP + xAN )B(xL)− cF (xL)− γi(N − 1)

(
xSN + αxANG(xSN )

)
,

where the auxiliary functions B,F and G are defined analogously to Brandt et al. [32]:

B(xL) =
1

1− xL

(
1−

1− xN
L

N(1− xL)

)

F (xL) = 1 + xN−1
L (r − 1)−

r

N

1− xN
L

1− xL

G(xSN ) = 1− (1 − xSN )N−2.

Note that in our heterogeneous setting, the class of an individual only affects the cost for punishing (γi)

as well as the effectiveness of punishment (βi). The costs and benefits of participating in the public goods

game, as well as the loner payoff, are the same for all individuals in the population.

2.2. Infinite population model: Results

To determine the effects of heterogeneity of individuals within a population on the behaviour of a well-

mixed infinite population, the model outlined in Section 2.1 has been implemented in Java. Following Brandt

et al. [32], we use the parameter setting c = σ = γ = 1.0, β = 1.2, α = 0.1, r = 3.0, N = 5.

Since the proportions of the population that have adopted the strategy AN , SN , L and AP sum up to

one, the configuration of strategies in a single homogeneous population (M = 1) can be represented as a

point in the simplex S4; the convex hull of the pure strategies AN , SN , L and AP . Each point p within

the simplex represents a configuration for which the relative frequency of each strategy is proportional to

the distance of p to the corresponding corner. Similar to Brandt et al. [32], we find that any point in the

interior of the simplex is drawn to either one of two attractors 1. That is, given enough time, any population

will eventually settle into one of two possible situations. Which situation the population will end up in is

only determined by the initial proportions of the different strategies. Since the interactions between the

proportions of the four strategies are no longer mathematically tractable, Figure B.1a shows the results of

1See Brandt et al. [32] for a complete discussion of the results in a homogeneous population.
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numerical simulations. Each dot indicates an initial state of the population in the interior of the simplex.

That is, for each dot in Figure B.1a, each of the proportions xSN , xAN , xAP and xL is initially non-zero.

The brightness of the dot indicates the final destiny of the population. The first possibility, indicated by

dark grey dots in Figure B.1a, is the set of periodic orbits in the plane xAP = 0. In this case, all punishers

are eliminated from the population, and the population settles in a periodic orbit in the AN-SN-L plane.

The second attractor is the AP-AN edge, in which the population only consists of altruistic individuals. The

initial states that end up in this situation are indicated by white dots in Figure B.1a.

To determine the effects of heterogeneity, we introduced the heterogeneous classes of individuals as

described in Section 2.1. That is, the population is subdivided into M > 1 classes such that the return

on punishment βi and the cost of punishment γi are homogeneous within a class, but heterogeneous across

classes. For our simulation, the number of classes was limited to M = 2. The average values β̄ and γ̄

were fixed such that the average effectiveness of punishment and average cost of punishing are the same for

the homogeneous and the heterogeneous populations in the initial configuration. Figures B.1b-B.1f show

simulation results2 in the case each class represents half the population, and the initial configuration of

strategies is constant across classes. That is, for each strategy s ∈ {SN,AN,AP,L}, x1,s = x2,s at the

beginning of the simulation. This way, the results can be presented in a simplex similar to the homogeneous

case. Like before, initial configurations for which the entire population is drawn to the AP-AN edge are

represented by a white dot in Figure B.1. Similarly, a dark grey dot indicates that an initial configuration is

drawn to the AN-SN-L plane. A new situation arises when for some initial configuration, different classes of

individuals within the population are drawn to different attractors. In Figure B.1, such initial configurations

are indicated by a light grey dot.

For completeness, Figure B.1b shows the situation of a population consisting of two homogeneous classes.

In this setting, the population is subdivided into two classes, but the individuals of the different classes

are completely homogeneous. Conceptually, this setup should produce the same results as a population

consisting of only one class of homogeneous individuals, although numerical simulation could introduce some

differences. Instead of a single homogeneous population, the population is divided into two classes consisting

of indistinguishable individuals that can only learn from other individuals in the same class. However, since

the initial state of each class is the same, both classes react exactly the same.

To determine the effects of heterogeneity, we first consider the situation in which the cost of punishing γi

is taken to be heterogeneous across classes, but the effectiveness of punishment βi is constant across classes.

In this case, payoffs are dependent on the individual’s class, since altruistic punishers of class 1 will pay a

lower cost for punishing selfishness (γ1 = 0.2) while individuals adopting the same strategy in class 2 will pay

2Results for the entire interior of the simplex are available online at http://www.ai.rug.nl/SocialCognition/?p=83
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a higher cost (γ2 = 1.8) . Although each class of individuals still has the same two attractors as in the case

of the homogeneous population, different classes may be drawn to different attractors. Individuals of class

1 may find it lucrative to punish in the sense that punishing reduces the fitness of selfish individuals more

than it reduces the fitness of the punishers themselves, while for class 2 the penalty incurred for selfishness

may be too low when offset against the costs of inflicting such a penalty.

Figure B.1c shows the effect of heterogeneous cost of punishment on the final state of the population.

The light grey dots indicate initial configurations for which class 1, having the lower cost of punishment

γ1 = 0.2, is drawn to the AP-AN edge, while the higher cost of punishment γ2 = 1.8 causes all altruistic

punishers to disappear from class 2. In the simulation, each of these situations resulted in a population of

only altruists, under the influence of the altruistic punishers of class 1. In effect, in these cases the burden

of punishing selfishness is carried by the individuals best suited for the task in the sense that they are the

more efficient punishers.

One effect that appears in Figure B.1c is that under heterogeneous classes, an initial configuration will

end up in an end state without punishers more readily when the proportions of selfish non-punishers and

altruistic non-punishers are balanced. This is due to the fact that altruistic non-punishers will contribute to

the common good, which helps selfish non-punishers and altruistic punishers equally in terms of fitness. In

effect, altruistic non-punishers compensate selfish non-punishers for the punishment they receive.

When instead of the cost of punishing γi we consider the situation in which the returns on punishment βi

vary across classes, the picture changes. Note that changes in βi only affect the payoff of selfish individuals

and, more importantly, uniformly so for all classes. In this case the payoff of an individual only depends

on the strategy it adopts, and is independent of its class. Therefore, the results for this heterogeneous

population model are similar to the homogeneous population model. Whether an individual will be drawn

to a final state with only altruistic individuals (the AP-AN edge) or tend to a solution without punishers (the

AN-SN-L plane) is also independent of class. There is no configuration which leads to different classes being

drawn to different attractors. Moreover, if the initial proportions of strategies are the same for each class,

the population as a whole will react exactly the same as a homogeneous class of individuals with β =
∑

fiβi,

where fi denotes the relative frequency of individuals belonging to class i. This result is shown in Figure

B.1d. Even though the two classes in this simulation differ in the effectiveness of their punishment (β1 = 0.3

and β2 = 2.1), since their (weighted) average effectiveness is the same as the case with homogeneous classes

shown in Figure B.1b, there are no real differences between the figures.

Even though heterogeneity in the returns on punishment βi between classes does not influence the be-

haviour of the population by itself, it does change the behaviour of the population when the cost of punishing

γi is also heterogeneous. Figure B.1e shows that the interaction between the two types of heterogeneity can

deter altruistic punishment. In this situation, class 1 inflicts a low punishment at a low cost (γ1 = 0.2 and
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β1 = 0.3), while class 2 inflicts high punishment at a high cost (γ1 = 1.8 and β1 = 2.1). When classes differ

in the level of punishment they inflict this way, Figure B.1e shows that the proportion of final states that

include punishers falls below the baseline performance of the homogeneous population. In an infinite and

well-mixed population, punishing at different levels may hinder the evolution of altruistic punishment.

Figure B.1f shows that the interaction between heterogeneity in cost for and returns on punishment can

work both ways. When class 1 has a lower than average cost of punishment γ1 = 0.2 and also a higher than

average return on punishment β1 = 2.1, this increases the proportion of initial configurations for which the

final state includes punishers. This effect is stronger than the separate effect of heterogeneity in the costs

for punishing, despite the fact that class 2 is virtually ineffective at punishing for selfishness, with altruistic

punishers paying a cost of γ2 = 1.8 to inflict a punishment of β2 = 0.3.

2.3. Infinite population model: Discussion

We have shown that for the infinite population model, a population can take advantage of heterogeneity

in the ability to punish for selfish behaviour by specialization. When the cost for punishing is differentiated,

punishing co-players for selfish behaviour can be feasible for some class of individuals, while it may be too

expensive for another class. Heterogeneity in the cost for punishing makes it easier for altruistic behaviour

to evolve; a lower proportion of altruistic punishers is needed to ensure that a population will end up in

a state without selfish individuals. In situations in which the difference in cost is high, or when there are

many individuals exhibiting selfish behaviour, this may lead to a clear specialization. Altruistic punishers

disappear from the class with the highest cost for punishing, which leaves the class with the lowest cost for

punishing with the responsibility of enforcing altruistic behaviour through punishment. The model therefore

predicts that when individual differences in the costs of punishing are sufficiently high, these differences will

cause a division of labour in a well-mixed population.

In contrast, the infinite and well-mixed population proved insensitive to heterogeneity in the returns on

punishment. When controlled for the average value, variations in the returns on punishment across classes

of individuals do not change the way altruistic behaviour and punishment evolve. However, variations in

the returns on punishment do interact with heterogeneity of punishing cost. If some class of individuals

can inflict high punishment, doing so at a low cost further increases the chances for altruistic behaviour to

stabilize. If, on the other hand, high punishment can only be achieved by a high cost, the combined effect

will make it harder for the population to stabilize altruistic behaviour than in the case of a homogeneous

population. The model therefore predicts that large differences in the level of punishment are rare in well-

mixed populations, and that when individuals that pay a lower cost for punishing for selfishness also inflict

a higher punishment, these individuals are likely to become solely responsible for punishing.
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3. Spatial model

In Section 2, we derived a model for playing the public goods game under the assumption of an infinite

size, well-mixed population of individuals. From simulations with repeated pairwise interactions between in-

dividuals, such as the prisoner’s dilemma or the ultimatum game, it is known that including spatial structure

to the model of the population can have strong effects on the evolution of cooperation and punishment [41–

43]. The spatial structure allows altruistic individuals to persist through positive assortment, locally avoiding

exploitation from selfish individuals by clustering together. In this section, we will derive a model for playing

the public goods game in a spatially structured environment, and extend it to allow for heterogeneous classes

of individuals.

Unlike in the infinite population model, in which individuals indiscriminately interact with every other

individual they encounter, each individual in the spatial model only interacts with a specific group of other

individuals. In this sense, the spatial model can be used to represent models such as kin or group selection.

In these models, individuals preferentially interact with specific individuals, either because of relatedness, or

more pragmatic reasons such as spatial distance [1, 44–48].

In the remainder of this section, we discuss a spatial model of playing the public goods game [inspired by

30, 31], and extend it in the present work to allow for the population to be subdivided into M heterogeneous

classes. To determine the effects of heterogeneity on the evolution of altruistic punishment, we present

simulation results of this model, in which the number of classes is restricted to M = 2.

3.1. Spatial model: Methods

In order to keep the results of the spatially structured world comparable to the results of the infinite

well-mixed population model of Section 2, we chose to organize the individuals on a square lattice similar to

Hauert et al. [30]. In the lattice setting, interactions between individuals are limited to include only those

within a certain spatial neighbourhood. To prevent edge effects, periodic boundaries are assumed. That is,

the lattice represents a torus, such that the left edge of the lattice is first connected to the right edge, and

the top edge is then connected to the bottom.

The size of the interaction neighbourhood affects the eventual state of the population. Ifti et al. [49]

show that in the Continuous Prisoner’s Dilemma, in which cooperation is measured as an amount invested

in cooperation rather than a binary choice, smaller neighbourhoods tend to favour cooperation, while coop-

eration becomes unsustainable when the interactions are possible over larger distances. Ifti et al. [49] also

report that when the learning and interaction neighbourhood differ in size, the final state of any population

playing the Continuous Prisoner’s Dilemma game is zero cooperation. Even though our models differs from

the one used in Ifti et al., we choose to keep the interaction and learning neighbourhood of equal size. That

is, every individual will compare its fitness only with individuals that it played the public goods game with
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during that round. As with the infinite and well-mixed population of Section 2, individuals only compare

their fitness to the fitness of individuals with which they share a class.

In the spatial model we investigated, a public goods game is played by an individual and its four direct

neighbours3. Thus, all public goods games played have a maximum of five participants if none of them

chooses to be a loner. Also, since each of the individuals “hosts” one game, each individual plays the public

goods game a total of five times. The game is divided into discrete rounds. After each round, all individuals

simultaneously update their strategy by adopting the strategy that yielded the highest fitness among those

individuals they interacted with during that round.

In the spatial model, the payoffs of the public goods game are actual payoffs rather than expected payoffs.

We define ni,s as the number of individuals in the group that are of class i and have adopted strategy s, and

ns as the total number of individuals that have adopted strategy s such that

ns :=

M∑
i=1

ni,s for all strategies s ∈ {AN,AP, SN,L}.

In each of the games for which there are at least N − 1 loners, the payoff for each individual is σ. In any

other case, the payoff Pi,s of an individual of class i and adopting strategy s is given by

Pi,L = σ

Pi,AN = rc
nAP + nAN

N − nL

− c− αG∗(nSN )

M∑
j=1

βj · nj,AP

Pi,SN = rc
nAP + nAN

N − nL

−

M∑
j=1

βj · nj,AP

Pi,AP = rc
nAP + nAN

N − nL

− c− γi
(
nSN + αnANG∗(nSN )

)
,

where G∗(n) = 1 if n > 0 and 0 otherwise.

3.2. Spatial model: Results

The model described in the previous subsection has been implemented in Java in order to determine

the effects of heterogeneity on the evolution of altruistic punishment in a spatially structured world. Due

to the effects of assortment, the parameters for the infinite and well-mixed population of Section 2 cannot

be used for the spatial model. Appendix A shows the derivation of the parameter setting for the spatial

model. All results in this section are obtained by simulation on a 50 by 50 lattice4 with periodic boundaries.

Each individual simulation ran for 500 rounds of lead time, which was found to be generally sufficient for the

population to reach a stable situation. Furthermore, the results were averaged over 200 simulation runs, each

3This type of neighbourhood is also known as a Von Neumann neighbourhood
4Experiments with different lattice sizes showed results similar to the ones reported here.
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with a randomized initial configuration. Experiments with a larger number of repetitions did not improve

the results any further.

In the spatial model, we characterize the end state of the population by the proportion of individuals

that have adopted an altruistic (either punishing or non-punishing) strategy, as well as the distribution of

altruistic punishers across the two classes. Figure B.2 summarizes the results for the simulations in six

different settings5. In every setting, the brightness of a dot represents the average proportion of altruistic

individuals such that lighter dots indicate that a larger proportion of the population has adopted an altruistic

strategy. The differences between classes are illustrated by the colour and hatching of a dot. Red, vertically

hatched dots indicate that the majority of the altruistic punishers are of class 1, while blue, horizontally

hatched dots indicate that class 2 holds most of the altruistic punishers. When the number of altruistic

punishers is divided equally between classes, the dot appears solid grey in Figure B.2.

In every setting shown in Figure B.2 the parameter values σ = 0.75, c = 1.0 and r = 1.9 were fixed.

Furthermore, the average value of the return on punishment and the cost of punishing were constant across

the simulation runs such that β̄ = 0.2 and γ̄ = 2.0. As for the results of the infinite population model, the

position of a dot determines the relative frequencies of the strategies such that each corner of the simplex

represents an initial state where every individual adopts the strategy indicated by the corresponding label.

Note that Figure B.2 shows the interior of the simplex, such that the proportion of each strategy is non-zero

for each of the dots.

Figure B.2a shows the results for a single homogeneous population. In contrast with the infinite popu-

lation model, separating the homogeneous population into two homogeneous classes does have an effect on

the results for the spatial model. In this setting, the population is homogeneous, but subdivided into two

classes. The two classes interact normally, but individuals only learn behaviour from individuals from the

same class. Figure B.2b shows that when individuals only learn from part of the individuals in their interac-

tion neighbourhood, altruistic behaviour fails to stabilize more often in the spatially structured population.

The fact that there is no inter-class learning favours selfish behaviour by allowing it to exploit altruistic

individuals without causing those individuals to become selfish as well. This diminishes the opportunity for

positive assortment by breaking up the cluster structure that benefits cooperation and punishment in the

spatial model [50, 51].

The introduction of two homogeneous classes does not cause great variation in the number of altruistic

punishers between classes. This is as expected, since there are no differences in the individual abilities

between the two classes. Figure B.2b shows mostly solid grey dots, with some more colour in the dark

grey area in which altruistic behaviour mostly fails. In this area, altruistic punishment regularly disappears

5Results for the entire interior of the simplex are available online at http://www.ai.rug.nl/SocialCognition/?p=83
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from one or both classes because of an unfavourable initial situation. The colour and hatching in this area

therefore indicate that one of the classes had a higher proportion of altruistic punishers over 200 separate

runs by random chance.

The results when heterogeneity in the cost of punishing γi is introduced, while the effectiveness of

punishment βi remains constant across classes are shown in Figure B.2c. The proportion of altruistic

individuals appears to be fairly insensitive to changes in the cost of punishing, but heterogeneity in the

cost of punishing does provide an opportunity for altruistic behaviour to evolve. However, this effect is fairly

limited compared to the differences in costs between classes (γ1 = 0.2 against γ2 = 3.8). The advantage

for altruistic behaviour in the case of heterogeneous cost of punishing may result in specialization between

classes. As indicated by the predominantly red vertical hatching in Figure B.2c, whenever the population

does not end up in a state of all altruists or no altruists, punishment is mainly performed by class 1, the class

paying the lowest cost for punishing. Note however that the effect is stronger when the initial configuration

is close to the AP-SN edge, where the red and vertically hatched dots are more abundant. When the initial

configuration includes more altruistic non-punishers or loners, the dots remains closer to solid grey, indicating

that the distribution of altruistic punishers over the two classes is more equalized.

When instead of the cost of punishing γi, the returns on punishment βi are taken to be heterogeneous

across classes, Figure B.2d shows that heterogeneity has little effect on the evolution of cooperation. The

population is slightly more likely to end up in a state with mostly altruistic individuals when the initial

proportion of altruists is high, and slightly less likely to end up in such a state when selfish individuals and

loners are more common in the initial configuration of strategies. However, the changes in the structure of

the population are more pronounced. The majority of punishment is performed by the class of individuals

with the highest returns on punishment. As opposed to the case where the cost of punishing is taken to be

heterogeneous, classes that differ in the returns on punishment show the most specialization when altruists

dominate the initial configuration, while the dots in Figure B.2d remains closer to solid grey when there are

many loners and selfish non-punishers.

Since heterogeneity in the cost for punishing has a positive effect on the proportion of altruistic individuals

in the end state of the spatially structured population, and heterogeneity in the returns on punishment does

not have a clear positive or negative effect, this leaves us with the issue of how these effects interact. Figure

B.2e shows the results when individuals of class 1 can only inflict low punishment at a low cost (γ1 = 0.2

and β1 = 0.05) while individuals of class 2 inflict high punishment at a high personal cost (γ2 = 3.8 and

β2 = 0.35). Compared to the situation in which only the cost for punishing is heterogeneous, altruistic

behaviour has a slightly harder time to stabilize in the population. However, unlike the situation for the

infinite and well-mixed population, this type of heterogeneity still represents a beneficial effect for altruistic

behaviour compared to the homogeneous classes.
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The case of low punishment at a low cost and high punishment at a high cost also exhibits an interesting

pattern of specialization between classes in the spatially structured population, combining the separate spe-

cialization effects of heterogeneity in cost for punishing and those of heterogeneity in returns on punishment.

In the combined setup, which class contains most of the altruistic punishers in the final state depends on

the initial configuration of strategies in the population. When altruistic non-punishers are initially rare,

punishment is carried out by the class with the lowest cost, as illustrated by the red vertical hatching along

the AP-SN edge in Figure B.2e. On the other hand, when altruistic non-punishers are more common in the

initial layout, the class with the highest returns on punishment ends up carrying out most of the punishment.

Finally, Figure B.2f shows that when one group is strictly better at punishing (β1 > β2 and γ1 < γ2),

this results in an advantage for altruistic behaviour that is stronger than in the situation in which only the

cost for punishing is heterogeneous. Moreover, the population exhibits a high degree of specialization, where

almost all punishment is carried out by the efficient punishers. This specialization is mostly independent

of the initial configuration of strategies. Only when there is a moderate proportion of loners in the initial

configuration, the final distribution of altruistic punishers is more equalized.

3.3. Spatial model: Discussion

Where the infinite population model represents a large population in which individuals are unlikely to

meet the same co-player twice in the setting of a public goods game, the spatial model described in Section

3.1 represents a relatively small population with a rigid interaction structure. Individuals only interact with

a small selection of other individuals, and always in the same groups. The spatial model can therefore be

used to model individuals that are arranged in a strict geographical structure, but also social connections

between individuals. In the latter interpretation, the spatially structured population can be used to model

the evolution and enforcing of social norms, in which the payoff of the public goods game is interpreted as

a personal utility rather than evolutionary fitness.

Note that this utility is not necessarily an external reward: experiments reveal that children show a

strong tendency to help others at a very young age, even in the absence of material or social rewards [52].

In fact, Warneken and Tomasello [53] show that providing a reward for helping diminishes the children’s

motivation to help in the future.

Social norms are customary rules of behaviour that people will conform to given the expectation that

others will conform to it too [54, 55]. The individuals in our model have no way of explicitly forming

expectations about the actions of others. They simply imitate the strategy of the individual with the highest

payoff. The implicit expectation is that imitating the most successful strategy will raise their own payoff.

In the setting of the public goods game, altruistic strategies yield the highest payoff when they are used by

everyone else in the interaction neighbourhood. Altruistic punishment can therefore become a social norm,
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since individuals prefer to imitate the altruistic behaviour on the condition that everyone else is an altruistic

punisher.

As expected from results of two-player games [41–43], altruistic behaviour and punishment in the public

goods game can evolve more easily in a spatial model than in the infinite and well-mixed population. Because

of the localized interactions, altruists are at a lower risk of being exploited by selfish individuals, while

punishers only punish selfish individuals which they will encounter again in the public goods game. Moreover,

if selfish behaviour is highly profitable, some of the altruistic individuals that the selfish individual has

interacted with will imitate the strategy, withholding cooperation the next round. In this sense, the spatial

structure provides a form of direct reciprocity.

We have shown that in a spatially structured population, heterogeneity in the returns on punishment

by itself has little effect on whether or not altruistic behaviour will stabilize. Differentiation in the cost

of punishing does have a positive effect for altruistic behaviour, although the effect does not seem to be

as pronounced as in the case of the infinite and well-mixed population. However, heterogeneous classes

readily specialize in the spatial model such that punishment is carried out by the class of individuals best

suited for the task, whether this is because they enjoy a higher return on punishment or because they pay

a lower cost for punishing. When a class of individuals combines both benefits to their ability to punish,

inflicting a higher punishment at a lower cost, punishment becomes the almost sole responsibility of this class.

Compared to the homogeneous case, heterogeneity of this kind has a clear positive effect on the evolution

of altruistic behaviour in the sense that fewer punishers are needed in the initial configuration to reliably

stabilize altruistic behaviour in the entire population. As with the infinite and well-mixed population, the

combined effect of heterogeneity in the costs of punishing and the returns on punishment is stronger than

the separate effects.

The ability of the spatial model to specialize is best illustrated in the case where the two heterogeneous

classes differ in their level of punishment, such that one class inflicts high punishment at a high cost, while

the other inflicts a lower punishment at a lower cost. In this case, which class will specialize into becoming

the class of punishing individuals depends on the initial proportions of strategies. When altruistic behaviour

is already common, the class that inflicts high punishment will contain most altruistic punishers. On the

other hand, if altruistic behaviour is less common, and punishers are faced with more selfish individuals to

punish, the class enjoying a lower cost for punishing will take over the responsibility of punishing.

In the interpretation of social norms that are maintained by a group of people, the spatial model predicts

that punishment will be carried out either by the ones paying the lowest personal cost or the ones inflicting

the highest punishment. When there is a choice between low punishment at a low cost and high punishment

at a high cost, the level of punishment depends on the popularity of the social norm. When a social norm is

popular in the sense that many individuals adhere to it, the model predicts that violation of the norm will
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be punished severely, even if it comes at a high personal cost to the punishers. When only few individuals

adhere to the norm in the initial situation, punishment for violating it will be lower. Note however that this

choice in the level of punishment is not made individually in our model. Individuals may choose whether or

not they punish for selfish behaviour, while the level of punishment is entirely determined by their individual

abilities.

The specialization that occurs in the spatially structured population shows some similarities with ex-

perimental results on the bystander effect. In general, bystanders are slower to help and help less often

during an emergency situation when other bystanders are present [56]. However, experimental research has

shown that this bystander effect does not occur when subjects consider other bystanders to be unable to help

[57]. Moreover, when subjects consider themselves to be more competent in dealing with the emergency,

the presence of other bystanders does not inhibit helping either [58, 59]. In naturally occurring situations,

bystanders that intervene in a crime generally describe themselves as being physically strong and appear to

act out of a sense of capability through training experience or personal strength [60]. On the other hand,

preschoolers are less likely to respond to the distress of one of their peers when a competent adult caregiver

is present [61]. This sense of responsibility, where emergencies and norm violations are handled by the

individual most competent to complete the task, also appears in the spatially structured population. Our

results show that even if the individual abilities of others are not observable, norm violation will be punished

by the individuals best suited for the task. However, if none of these individuals are present in the group

playing the public goods game, norm violation is likely to go unpunished.

4. Conclusions and future research

Most models in the literature concerned with the question of how altruistic and punishing behaviour

may have evolved assume that the population consists of homogeneous individuals [41–43, 62–64]. Each

individual in the population has the same costs and benefits of cooperating, as well as the same costs and

effectiveness of punishing for selfish behaviour. We have shown that relaxing this assumption of homogeneity

by allowing for populations that consist of two or more different sub-classes affects the evolution of altruistic

punishment. In this section, we will present our conclusions and provide directions for future research.

4.1. Conclusions

In this paper, we investigated the effects of heterogeneity on the evolution of altruistic punishment. In

particular, we determined how individual differences in the cost inflicted by punishment and the personal

cost at which punishment may be performed influence the conditions under which altruistic behaviour can

stabilize in a population, as well as the resulting structure of altruistic punishers in the population. To achieve

this, we extended the public goods game with voluntary participation of Brandt et al. [32] by separating
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the population into two classes such that individuals within the same class are homogeneous, but may differ

in the cost they pay to punish for selfishness and the cost punishers inflict on selfish individuals between

classes. Furthermore, we compared these results for two population models: an infinite size population and

a spatially structured population.

Based on these results, heterogeneity of individuals may certainly have an effect on the evolution of altru-

istic punishment. In the setting of an infinite and well-mixed population, individuals that meet in a public

goods game are unlikely to meet each other again in their lifetime. Heterogeneity in the cost for punishing in

this setting can make it easier for altruistic behaviour to stabilize; compared to a homogeneous population in

which the average cost for punishing is the same, a lower proportion of punishers is needed to ensure that the

population ends up in a state with only altruistic individuals. In contrast, introducing individual differences

in the effectiveness of punishment has no influence on whether or not altruistic behaviour will stabilize in

an infinite population by itself. However, when combined with heterogeneity in the cost of punishing such

that individuals that inflict high punishment do so at a lower cost, individual differences in the effective-

ness of punishment can amplify the positive effect on the evolution of altruistic behaviour. For the infinite

and well-mixed population, the interaction between heterogeneity of cost for punishing and heterogeneity of

returns on punishment can work both ways. When individuals differ in the level of punishment, such that

some individuals inflict a low punishment at a low personal cost, while others inflict high punishment at a

high personal cost, altruistic behaviour can become harder to stabilize.

In addition to the infinite and well-mixed population, we also investigated the effects of heterogeneity

in the individual abilities to punish in a spatially structured population. In this setting, individuals are

assigned a spatial location on a grid, and only play the public goods game within a local neighbourhood.

As in the infinite population model, we found a positive effect of heterogeneity in the cost for punishing.

This effect was amplified when individuals that inflict high punishment pay a low cost to do so. In contrast

with the infinite population model, we found heterogeneity in the returns of punishment makes it slightly

easier to stabilize altruistic behaviour when it is common in the initial situation, but slightly harder when

altruistic behaviour is initially rare. This result becomes even more clear when individuals differ in their

level of punishment. When altruistic behaviour is initially common, individuals that inflict high punishment

at a high cost will perform most of the punishment. However, when altruistic behaviour is initially rare,

punishment becomes the responsibility of individuals that inflict low punishment at a low cost.

Note that in our analysis, individual differences in the returns on and costs for punishing do not affect

the share of the public good the punisher is entitled to. An individual that can punish with unusually high

effectiveness gains no more benefits from punishing than others: the increased effect of discouraging selfish

behaviour is of no greater advantage to them than to others. In nature, dominant animals in a social group are

more likely to punish for failure to contribute to the public good, but they commonly gain a disproportionate
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share of reproduction. This is not simply the right of the strongest, since subordinates are known to challenge

a dominant animal if it takes more than its fair share [16]. This additional immediate benefit of punishing

for selfish behaviour ensures that the punishing individuals have higher stakes in stabilizing cooperation in

the population.

In our model such additional advantages do not exist. The effects of heterogeneous effectiveness of

punishment and the resulting structure of the population are purely caused by differences in the abilities to

punish. Based on these differences, individuals may pay a lower personal cost for punishing, but the act of

punishing always represents a short-term loss in fitness for the punisher.

As a final note, in the models presented here we assumed that there is no mutation. Due to the rock-

paper-scissors dynamics of loners, altruistic non-punishers and selfish non-punishers, adding mutation in the

spatial model prevents convergence by re-introducing strategies that have disappeared from the population

[see also 65]. Appendix B shows results of additional experiments that introduce mutation in the spatial

model. Although the initial configuration of strategies no longer affects the eventual fate of the population,

the results are similar to the ones described in Section 3.

4.2. Future research

A number of issues are left open for further research. In our models, we assumed that the population

consisted of two separate classes of equal size, where the heterogeneity was limited between classes, while

individuals within the same class were homogeneous. We also assumed that individuals were aware of this

division in classes, and were able to determine the class of individuals they interacted with. In general,

however, individuals may have continuously distributed abilities, which others may not be able to determine

correctly.

In the models we discussed, we allowed for only one type of punishment. Altruistic punishers impose a

fee on selfish individuals, as well as on altruists that fail to punish. However, selfish individuals also have

incentive to discourage selfishness of others, which leads to selfish punishment [63, 64, 66]. This type of

punishment also appears in human [67] as well as in animal societies [34]. Furthermore, punishment can also

be directed at loners [65] or altruistic individuals [68–70], which may have a strong negative effect on the

evolution of cooperative behaviour [69, 71–75]. Finally, rather than a system of peer-punishment, in which

punishers individually punish for selfishness and are revealed only after playing the public goods game, a

system of pool-punishment is also a possibility [76]. It remains an open question how different types of

punishing interact with the effects of heterogeneity in the effectiveness and costs of punishment.

The differences between the infinite and well-mixed population and the spatially structured population

are quite large. In the infinite population model there are no repeat encounters. A pair of individuals that

meet in the setting of the public goods game never meet each other in the same setting again. On the

other hand, individuals in the spatially structured population only interact with the same twelve neighbours,
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playing the same five public goods games every round. However, the public goods game is well suited for

an intermediate form, in which co-players are selected at random from a local neighbourhood, combining

elements of both population models.

The simplified representation of individuals raises another issue. Each individual adopts one strategy

and uses that strategy in all the games it plays. Individuals cannot take advantage of past experience when

they encounter a co-player they have met before, which is particularly relevant in the spatially structured

population. This simplified representation precludes the emergence of the hierarchical structure that is

commonly found in animal societies. Research on dominance relations in competitive environments has

resulted in models that allow for these hierarchical structures, such as DomWorld [77–79]. Future research

could shed light on how these competitive hierarchical structures affect cooperative efforts.

In our model of the public goods game, altruistic behaviour is represented as a binary choice; individuals

either invest in the public good, or not. In practice, the amount invested in the public good may be chosen

from a continuous range of possibilities, depending on individual abilities. Empirical research has shown that

human subjects readily accept individual differences and adjust their expectations, punishing only when they

believe their co-players invested less than their fair share [28, 29]. In our models, we have shown that a sense

of “fairness” does seem to emerge in the spatial model, in the sense that punishment is carried out by

individuals that are best suited for the task. This specialization occurs even in the absence of personal

benefits. Whether this primitive form of a “fairness” principle also emerges in a more complex setting where

cooperative behaviour is not simply a binary choice is a question for future research.

In conclusion, it turns out that heterogeneity provides additional opportunities for cooperative behaviour

to be maintained and spread through a population of individuals. But many intriguing questions remain on

how this heterogeneity exactly evolves and what role it plays in animal societies.
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Appendix A. Parameters of the spatial model

It is known from game-theoretical games such as the prisoner’s dilemma that introducing spatial structure

into the model of a population can have a powerful effect on the behaviour of the individuals. Even without

the help of punishing individuals, small clusters of altruistic non-punishers already provide enough of an

advantage to prevent them from copying selfish behaviour [see among others 41–43]. The basic public goods

model we use as a starting point is no exception. Because of this, the parameters used for the infinite and

well-mixed population of section 2 do not produce comparable results when implemented for the spatial

model. In this section, we therefore describe the parameter setting for the spatial model.

One of the effects of spatial structure is that due to localized interactions, selfish individuals can no longer

exploit distant altruistic individuals, which encourages altruistic behaviour. Figure B.3 shows this result by

showing the proportion of altruistic and selfish individuals for different levels of the return on contribution

r. In this setting, every individual is randomly assigned the strategy of altruistic or selfish non-punisher,

after which the proportions of the two strategies after a 500 round lead time was determined. Figure B.3

shows these proportions averaged over 200 runs, for every 0.01 change of r in the range 1.9 ≤ r ≤ 3.1.

In the infinite population model, altruistic non-punishers cannot survive in the absence of loners and

punishers, no matter how high the return on contribution. Figure B.3 shows that in the lattice model,

sufficiently dense clusters of altruistic non-punishers can withstand an invasion of selfish non-punishers for

r > 2.1. For r > 2.28, altruistic non-punishers can even outperform selfish non-punishers in terms of fitness,

and will reliably represent over 80% of the population for r > 2.5. For the purposes of comparing the effects

of heterogeneity on the behaviour of a population on a lattice, we therefore set the return on contribution

r = 1.9 instead of using r = 3.0 as in the setting of an infinite size population.

To make sure that the public good remains competitive, the loner payoff σ should be lower than the

maximum payoff for altruistic individuals (r− 1)c. For r = 1.9 and c = 1.0, figure B.4 shows the proportions

of loners, altruistic non-punishers and selfish non-punishers as a function of the loner payoff σ. As before,

the results are averaged over 200 runs. In each of these runs, the population was randomly initialized and

given 500 rounds of lead time before the proportions of the three strategies were determined. This process

was repeated for every 0.01 change in σ in the range 0 < σ ≤ 1.0. Note that the value σ = 0 was omitted

for display purposes.

For σ ≥ 0.9, altruistic behaviour is at a disadvantage to a loner, which means that the population will

eventually end up in the situation of 100% loners. Although some individuals may adopt a non-loner strategy
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in this situation, none of them will have any other non-loner individual in their interaction neighbourhood,

and they are therefore forced to play as a loner as well.

Another discrete step in the graph appears around σ = 0.63. To avoid artefacts caused by either one

of these steps, a loner payoff of σ = 0.75 was chosen for the public goods game simulations. Figure B.5

shows a typical result of this parameter setting when there are no punishers. As in the case with the

infinite population model, altruistic individuals, selfish individuals and loners are locked in an infinite game

of rock-paper-scissors [50]. Selfish individuals exploit the altruistic non-punishers, but the popularity of

their strategy quickly causes individuals in their interaction neighbourhood to adopt the selfish non-punisher

strategy as well, sharply reducing their payoff. This leaves all selfish non-punishers open to become a loner.

In the absence of selfishness, the payoff of altruistic non-punishers increases, tempting the loners to rejoin

the public goods game. Unlike the infinite population model, in which the initial configuration of strategies

determines which periodic orbit the population will eventually reach, the initial state of the population has

little effect on the eventual proportions of strategies in the lattice model. Typically, in the first rounds after

initialization of the population, most of the altruistic and selfish individuals are replaced by loners, after

which remaining clusters of altruists start expanding and the situation of figure B.5 appears.

It is well known from research on two-person games such as the prisoner’s dilemma [41] and hawks and

doves [43] that punishing is much more efficient on a lattice than in an infinite and well-mixed population.

Because of the local interactions, once a cluster of altruistic punishers has appeared, it can easily grow. The

interior of the cluster contains no selfish individuals, which means that the altruistic punishers enjoy the full

benefit of their mutual cooperation, without the burden of having to punish for selfishness. Meanwhile, on

the edge of the cluster, selfish behaviour is punished, causing the payoff for selfishness to decrease. Even

though punishment is costly, as long as the high payoff of other altruistic punishers in the interior of the

cluster is higher than the payoff of the punished selfish individuals, the individuals on the edge will not

change their strategy.

Figure B.6 shows that this effect also holds for the public goods game. The figure shows the proportion

of altruistic punishers after 500 rounds of the public goods game as a function of the return on punishment

β and the cost for punishing γ. In this setting, populations were initialized on a 50 by 50 lattice such that

approximately 40% of the population started as altruistic punisher, 40% started as selfish non-punisher, and

the remaining 20% consisted of loners and altruistic non-punishers. The proportion of altruistic punishers

was recorded after 500 rounds of play, and was averaged over 200 separate runs. Only when the return on

punishment fell short of 0.2 did the proportion of altruistic punishers drop below 50%.

As shown by figure B.6, the evolution of altruistic punishment is largely insensitive of the cost of punishing.

The reason behind this is that due to the synchronous updating, altruistic individuals expand in clusters.

Altruistic punishers at the edge of such a cluster are forced to punish many selfish individuals outside of the
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cluster, sharply reducing their fitness. However, punishers need not reduce the fitness of selfish individuals

below that of their own. When the fitness of the selfish individuals is lower than the fitness of any altruistic

punisher in the cluster, where there are few selfish individuals to punish, altruistic punishers at the edge of

the cluster will not change their strategy.

The parameters used for the lattice model and a homogeneous population areN = 5, σ = 0.75, c = 1.0, r =

1.9, α = 0.1, γ = 2.0 and β = 0.2. Note that these parameters are less favourable for altruistic individuals

and punishers when compared to the parameter setting for the infinite and well-mixed population of section

2.2 (N = 5, c = σ = γ = 1.0, r = 3.0, β = 1.2, α = 0.1). Figure B.7 shows the results of a homogeneous

population for the infinite and well-mixed population model and the lattice model side by side. Figure B.7a

is repeated from section 2.2. In this figure, bright dots indicate initial situations that eventually end up in a

state in which every individual is altruistic, whereas dark dots indicate that such a situation will never occur.

Figure B.7b shows the results for a lattice model, where the brightness of each dot indicates the proportion

of individuals that are altruistic after 500 rounds of playing the public goods game, where brighter dots

indicate more altruistic individuals in the population. For the lattice model, the results are averaged over

200 separate runs. Even though the parameters are less favourable for the lattice model, the results compare

reasonably well to the results for the infinite and well-mixed population model. This parameter setting is

therefore used as the base scenario for determining the effects of heterogeneity in section 3.2.

Appendix B. Effects of mutation on the spatial model

In the models presented in Section 3, we assumed that no mistakes are made in determining which

individual has the highest payoff and in performing the actions associated with the strategy an individual

has adopted. However, noise and mistakes can greatly influence the evolution of altruistic behaviour [see

among others 80–83], especially in spatial games. In this section, we therefore examine the effects of mutation

on our results for the spatially structured population of Section 3.

We implemented mutation as a small probability that an individual adopts a randomly chosen strategy

rather than choosing the one in its learning neighbourhood that received the highest payoff. This way, mu-

tation allows the reintroduction of strategies that had previously been eliminated from the population. Due

to the rock-paper-scissors dynamics of selfish non-punishers, loners and altruistic non-punishers, mutation

therefore effectively prevents the population from converging into a situation where all individuals share the

same strategy of either non-punishers, loners or altruistic non-punishers. Furthermore, in the absence of

selfish individuals, second-order free-riding cannot be detected, which means that through neutral drift, a

population consisting only of altruistic punishers can be invaded by altruistic non-punishers. In Hauert et al.

[65], the population is therefore modeled using a Moran process to derive the average time a system spends

in each absorbing state where all individuals share the same strategy. In this section, we will determine
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the effects of heterogeneity in the effectiveness and costs of punishing on these durations using agent-based

simulation.

Figure B.8 shows the results of our experiments. In each situation, the population is separated into

two classes, such that individuals within each class are homogeneous, but individuals may differ in their

ability to punish across classes. For each class, the pie charts show the average amount of time an individual

spends using each of the four possible strategies selfish non-punisher (black), loner (dark gray), altruistic

non-punisher (light gray) and altruistic punisher (white). These results were obtained by measuring the

proportion of individuals adopting each strategy after 20,000 rounds in the game, averaged over 500 runs.

For each run, the population was randomly initialized with an equal number of individuals per class, who

initially adopted a randomly drawn strategy. The game was played on a 50 by 50 lattice6 with periodic

boundaries. The rate of mutation has been chosen such that on average, one individual per time unit

mutates (μ = 0.0004).

Figure B.8a shows the results for a population that is separated into two homogeneous groups. As

expected, individuals from each class spend the same amount of time as an altruistic punishers (41%), while

they are altruistic 56% of the time.

Figure B.8b shows that when classes differ in the cost they pay for punishing, individuals spend more

time as an altruistic individual. Individuals that pay a low cost for punishing are altruistic 72% of the time,

whereas the other class behaves altruistically 66% of the time. The responsibility for punishing for selfishness

also shifts towards the class that pays a lower cost for punishing. However, although these individuals spend

more time punishing for selfishness, they also spend more time behaving selfishly themselves.

When instead of the cost for punishing the effectiveness of punishment is heterogeneous, this has a

less pronounced effect on altruistic behaviour, as shown in Figure B.8c. Individuals of either class spend

approximately 60% of their time being altruistic. However, the heterogeneity in effectiveness of punishment

changes the distribution of punishers across classes. Individuals of the class that is more effective in punishing

spends over three times as much time punishing than those that are less effective. In this case, the average

time spent as a punisher across classes is less than the base situation shown in Figure B.8a.

When the two types of heterogeneity are combined, such that one class pays a low cost (γ1 = 0.2)

to impose low punishment (β1 = 0.05) for selfishness, while individuals from the other class pays a high

cost (γ2 = 3.8) to impose a higher punishment (β2 = 0.35), the proportion of punishers in the population

increases compared to the situation that only includes heterogeneity in the effectiveness of punishment.

Although they pay a high cost to do so, individuals that impose high punishment spend over half their time

(53%) punishing others. However, the low cost of the lower punishment also encourages individuals from

6Our experiments show that although larger lattices tend to favour altruistic behaviour, the effects of heterogeneity are

similar to those reported here.
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the other class to spend more time as a punisher (32%) compared to the situation where only effectiveness

of punishment is varied (17%). The additional punishers, increase overall altruistic behaviour such that on

average, individuals spend 63% of their time behaving altruistically.

When high punishment can be achieved at a low cost for one of the classes, while individuals in the

other class pay a higher cost to impose a lower fine, the effects on altruistic behaviour are more dramatic.

Figure B.8e shows that across classes, individuals spend 83% of their time altruistically, with individuals

that punish efficiently spending almost all that time punishing others. Efficient punishers also spends four

times as much time punishing others for selfish behaviour as inefficient punishers. However, individuals in

the class of efficient punishers also spend three times as long being selfish as individuals from the other class.

In this section, we have shown how adding mutation to the spatial model presented in Section 3 affects

the results we obtained. We find that similar to the situation without mutation, heterogeneity in the effec-

tiveness of punishment and costs for punishing increases the proportion of time individuals spend adopting

an altruistic strategy across both classes. The effects on the structure of the population are similar as well.

In general, individuals that are better suited to be punishers, either because they pay a lower cost to punish,

or because they incur a higher punishment, spend more of their time as an altruistic punisher. Altruistic

behaviour benefits most from heterogeneity that separates the population into efficient and ineffective pun-

ishers, such that one class pays a lower cost to incur higher punishment than the rest of the population. In

this case, the time that individuals spend altruistically is highest, while efficient punishers are responsible

for most of the punishment.
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(a) Homogeneous population

β = 1.2, γ = 1.0

(b) β1 = 1.2, γ1 = 1.0

β2 = 1.2, γ2 = 1.0

(c) β1 = 1.2, γ1 = 0.2

β2 = 1.2, γ2 = 1.8

(d) β1 = 0.3, γ1 = 1.0

β2 = 2.1, γ2 = 1.0

(e) β1 = 0.3, γ1 = 0.2

β2 = 2.1, γ2 = 1.8

(f) β1 = 2.1, γ1 = 0.2

β2 = 0.3, γ2 = 1.8

Figure B.1: Interior of the simplex S4 for six different settings: (a) single homogeneous population, (b)

homogeneous classes, (c) low cost, (d) low returns, (e) low returns and low cost, and (f) high returns and

low cost. To improve comparability across situations, the average values β̄ and γ̄ over the two classes in

situations (b) to (f) are fixed. Dark grey dots indicate initial configurations of the population for which

individuals of both classes are drawn to the plane xAP = 0, while configurations drawn to the AP-AN edge

are marked by white dots. When classes are drawn to different attractors, the corresponding point in the

figure is light grey.

(a) Homogeneous population

β = 0.2, γ = 2.0

(b) β1 = 0.2, γ1 = 2.0

β2 = 0.2, γ2 = 2.0

(c) β1 = 0.2, γ1 = 0.2

β2 = 0.2, γ2 = 3.8

(d) β1 = 0.05, γ1 = 2.0

β2 = 0.35, γ2 = 2.0

(e) β1 = 0.05, γ1 = 0.2

β2 = 0.35, γ2 = 3.8

(f) β1 = 0.35, γ1 = 0.2

β2 = 0.05, γ2 = 3.8

Figure B.2: Interior of the simplex S4 for six different settings: (a) single homogeneous population, (b)

homogeneous classes, (c) low cost, (d) low returns, (e) low returns and low cost, and (f) high returns and

low cost. To improve comparability across situations, the average values β̄ and γ̄ over the two classes in

situations (b) to (f) are fixed. The brightness of the dots indicates the proportion of altruistic individuals

(AN and AP) after 500 rounds in the entire population. Colour and hatching of the dots shows the relative

proportion of altruistic punishers across both classes, where a red, vertically hatched dot indicates that most

altruistic punishers are of class 1, while blue and horizontally hatched dots indicate that most altruistic

punishers are of class 2. A more saturated colour indicates a larger difference in the proportion of altruistic

punishers between class 1 and 2. Proportions are averaged over 200 separate runs.

Figure B.3: Effect of the value of returns on contribution (r) on the proportions of altruistic non-punishers

(AN) and selfish non-punishers (SN). The initial distribution of strategies was randomized for each run. The

final proportions were determined after 500 rounds of lead time and averaged over 200 runs, for every 0.01

change of r in the range 1.9 ≤ r ≤ 3.1.
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Figure B.4: Effect of the value of loner payoff (σ) on the proportions of loners (L), altruistic non-punishers

(AN) and selfish non-punishers (SN). The initial distribution of strategies was randomized for each run. The

final proportions were determined after 500 rounds of lead time and averaged over 200 runs, for every 0.01

change of σ in the range 0 < σ ≤ 1.0.

Figure B.5: Typical results of a population with r = 2.0, c = 1.0 and σ = 0.8. Selfish non-punishers (dark

grey) exploit altruistic non-punishers (light grey), until their payoff decreases below the loner (white) payoff.

Figure B.6: Effect of the values of the returns on punishment β and cost of punishing γ on the proportion

of altruistic punishers. The initial distribution of strategies was randomized for each run, such that AP and

SN represent 40% of the population each, and AN and L represent 10% each. The final proportions were

determined after 500 rounds of lead time and averaged over 200 separate runs, for every 0.025 change of β

in the range 0 ≤ β ≤ 0.7 and every 0.2 change of γ in the range 0 ≤ γ ≤ 4.0.

(a) Infinite population model. Each dot represents

an initial configuration that is either drawn to the

plane defined by xAP = 0 (dark dots) or to the

AP-AN edge (bright dots).

(b) Lattice model. The brightness of each dot

indicates the proportion of altruistic individuals

(AN and AP) after 200 rounds in the entire

population. Proportions are averaged over 200

separate runs.

Figure B.7: Interior of the simplex S4 for (a) the infinite and well-mixed population model and (b) the lattice

model, both for a homogeneous population.

(a) β1 = 0.2, β2 = 0.2

γ1 = 2.0, γ2 = 2.0

(b) β1 = 0.2, β2 = 0.2

γ1 = 0.2, γ2 = 3.8

(c) β1 = 0.35, β2 = 0.05

γ1 = 2.0, γ2 = 2.0

(d) β1 = 0.05, β2 = 0.35

γ1 = 0.2, γ2 = 3.8

(e) β1 = 0.35, β2 = 0.05

γ1 = 0.2, γ2 = 3.8

Figure B.8: Proportion of altruistic punishers (white), altruistic non-punishers (light gray), loners (dark

gray) and selfish non-punishers (black) in each class after 20,000 rounds. Results were averaged over 500

runs.
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