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Abstract

Current diagnostic methods for skin cancers are based on some morphological characteristics
of the pigmented skin lesions, including the geometry of their contour. The aim of this article
is to model the early growth of melanoma accounting for the biomechanical characteristics of
the tumor micro-environment, and evaluating their influence on the tumor morphology and its
evolution. The spatial distribution of tumor cells and diffusing molecules are explicitly described
in a three-dimensional multiphase model, which incorporates general cell-to-cell mechanical in-
teractions, a dependence of cell proliferation on contact inhibition, as well as a local diffusion
of nutrients and inhibiting molecules. A two-dimensional model is derived in a lubrication limit
accounting for the thin geometry of the epidermis. First, the dynamical and spatial properties of
planar and circular tumor fronts are studied, with both numerical and analytical techniques. A
WKB method is then developed in order to analyze the solution of the governing partial differen-
tial equations and to derive the threshold conditions for a contour instability of the growing tumor.
A control parameter and a critical wavelength are identified, showing that high cell proliferation,
high cell adhesion, large tumor radius and slow tumor growth correlate with the occurrence of a
contour instability. Finally, comparing the theoretical results with a large amount of clinical data
we show that our predictions describe accurately both the morphology of melanoma observed
in vivo and its variations with the tumor growth rate. This study represents a fundamental step
to understand more complex microstructural patterns observed during skin tumor growth. Its re-
sults have important implications for the improvement of the diagnostic methods for melanoma,
possibly driving progress towards a personalized screening.
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Contour instability, Tumor multiphase model, WKB analysis, Skin cancer morphology, Clinical
dermatology
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Figure 1: Dermatoscopy images illustrating the importance of morphological features in the clinical diagnosis of
melanoma. Benign melanocytic nevus with a regular contour (A) and malignant melanoma with irregular contour and
pigmentation (B). Courtesy of Dr. Harald Kittler (Department for Dermatology, University of Vienna) and Dr. Pascale
Guitera (Sydney Melanoma Diagnostic Centre)

1. Introduction

Nowadays, skin cancer represents one third of all cancers that are diagnosed every year all
over the world. It has been evaluated that over the past 31 years, more people have had skin
cancer than all other cancers combined [1]. According to the American Cancer Society, more
than two millions of new cases of non-melanoma skin cancers and about 70.000 of melanoma
have been diagnosed in the United States in 2010 1. Although melanoma represent less than five
percent of all skin cancer, it is responsible for more than 75% of skin cancer death. While the
incidence rate of many common cancer is falling, the one of melanoma increased by about 4% a
year in the last 40 years, making its early diagnosis a priority for public health [2].
Melanoma arises usually from a preexisting benign tumor (nevi), but sometimes without clin-

ical precursor lesion [3], and appears at the skin surface with an irregular pattern (Fig.1B). In the
early stages, melanoma and nevi can present close clinical and histo-pathological properties and
poor diagnosis is unfortunately common [4]. Indeed, extensive clinical investigations attempt
to assess the malignancy of a lesion from the morphological changes of this mark at the skin
surface [5, 6]. In particular, dermoscopy images show that melanomas are usually characterized
by an irregular growth pattern, and nevi by a regular circumferential growth [3]. Some mor-
phological criteria to detect these lesions are worldwide adopted in clinical practice, such as the
’ABCDE rule’ (Asymmetry, Border irregularity, Color variation, large Diameter, Evolution in
time) or the ’7-Point Checklist’ (Atypical pigment network, Blue-white veil, Atypical vascula-
ture, Irregular structures at the border, Irregular pigmentation, Dots or globules, White scar-like
areas) [7]. After early detection and proper treatment, melanoma prognosis is excellent and the
10-year survival rate is estimated to be about 95%. Once it spreads, the prognosis becomes very
poor despite recent advances in targeted therapy and immunotherapy [8, 9]. According to the
Cancer Research UK, for a stage III melanoma, which has spread to nearby lymph nodes, the
survival rate drops to 15-24%. However clinical examinations alone have been shown to have
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a rather low specificity and sensitivity in the early stage of melanoma evolution [10], and only
80% of melanoma are diagnosed before they spread [3].
Most melanomas are characterized by a first radial growth phase within the epidermis. The

skin can be divided in three main layers: an inner layer, the hypodermis, constituted mainly of
fibroblasts and adipocytes (this layer contains 50% of body fat insuring thermal insulation); an
intermediate layer, the dermis, containing blood and lymphatic vasculature, hair follicles, glands,
nerves and a network of collagen and elastic fibers providing skin elasticity; an external layer, the
epidermis, which is an avascular stratified epithelium separated from the dermis by a basement
membrane, a 50 nm thick wavy structure made of a dense extracellular matrix. The epidermis
is mainly composed by keratinocytes that proliferate on the basement membrane and migrate to
the skin surface while differentiating over a life-period of about 26 days, producing ultimately an
insulating layer of lipids, keratin and dead keratinocytes called stratum corneum. Melanocytes
are another important epidermis constituent, located on the basement membrane and producing
melanin, responsible for skin pigmentation and protection from sun damage. In a normal skin,
epidermal-melanin units are composed of an approximately constant ratio of 36 keratinocytes for
one melanocyte [11].
Cutaneous melanoma results from a deregulation and anomalous proliferation of these pig-

mented cells. Melanomagenesis is a multistep process involving the modification of sev-
eral molecular mechanisms (Fig.2): downregulation of proteins important for keratinocyte-
melanocyte communication and adhesion (E-cadherin, desmoglein and connexins), upregulation
of proteins for melanocyte-melanocyte communication and adhesion (N-cadherin, Mel-CAM,
integrin, ALCAM and connexins) [12], modification of signaling pathways controlling cell cycle
and proliferation (eg. contact inhibition, complexes paracrines regulations) and immortalization
by inactivation of tumor suppressor proteins [13]. Deviation from homeostasis leads in particular
to an increase of the normally constant population ratio between melanocytes and keratinocytes,
causing invasion of the surrounding tissue.
The aim of this article is to identify the parameters in the tumor micro-environment which

might control some aspects of melanoma morphology and evolution, typical of aggressive neo-
plasia [15]. Eikenburry et al. [16] recently performed a numerical analysis concerning the in-
teraction between melanoma and immune system, using a mathematical model to investigate the
metastasis dynamics after primary tumor removal. In this work, we deal with the early radial
growth of melanoma for its diagnostic importance, and we focus on the occurrence of shape
irregularities at the border of the growing lesion. Contour instabilities have been studied in
simplified single phase tumor models [17, 18] but there still lacks a description in a realistic
framework that would take into account many important constituents of a complex tissue like
the skin. In a recent review, Lowengrub et al. [19] provided an overview of the various ap-
proaches in tumor modeling, from discrete models describing individual cells [20] to continuum
models at the tissue scale [21] and hybrid multiscale continuum-discrete models [22]. In par-
ticular, in the last ten years a wide range of problems related to tumor development has been
successfully described in the context of mixture theory, as reviewed in [19, 23]. These models
are rather realistic but hard to handle analytically, being mostly used through numerical investi-
gations [24, 25, 26]. Some of the numerical simulations actually exhibit growth instabilities, in
various contexts and geometries [27], but little has been done to understand their physical and
mathematical origins [17, 19, 28]. In a recent work [28] we have shown analytically and numeri-
cally the occurence of a contour instability in two-dimensional mixture models of tumour growth
with nutrient limited proliferation. In the following, we develop a multiphase model for the early
radial growth of melanoma in the epidermis, accounting for the complex structure of this skin
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Figure 2: Interactions between keratinocytes, melanocytes and melanoma cells. Melanocytes and keratinocytes adhere
via E-cadherin, desmogleins and connexins (gap junctions) which enable cell contact communication. Paracrine (resp.
endocrine) regulation control normal melanocyte proliferation with the diffusion of cytokines and growth factors pro-
duced by the keratinocytes (resp. by the melanocyte itself). During melanogenesis, melanoma cells become immortal
(inactivation of tumor suppressor proteins, such as p16), melanocyte-keratinocyte interaction proteins are down reg-
ulated (E-cadherin, desmoglein, connexins) and new proteins enable melanocyte-melanocyte interaction (N-cadherin,
Mel-CAM, intergin, ALCAM and connexins). Melanoma cells become insensible to the inhibitor effect of some growth
factors and produce new growth factors stimulating proliferation. For a detailed description of the different cytokines
and growth factors see the review of Làzàr-Molnàr et al. [14].

layer and for the variety of mechanisms involved in melanoma development, but simple enough
to have some physical insight into the morphogenesis of the lesion. We give a detailed stability
analysis of this model using the method described in [28] with a lubrication approximation in
the three-dimensional governing equations and investigating the effects of growth inhibitors and
cell-adhesion regulation mechanisms.

The work is organized as follows. In Section 2 we present a three-dimensional (3D) model
for early melanoma growth describing a mixture of a tumor cell phase and of an interstitial fluid.
Taking into account the thin geometry of the epidermis, we derive from the 3Dmodel a simplified
two-dimensional (2D) model using the lubrication limit. In Section 3.1, we report the spatial and
dynamical growth properties of a planar front. We focus in particular on three different regulation
mechanisms for tumor cell proliferation: contact inhibition, autocrine inhibition and nutrient
limited growth. In Section 3.1.2, we perform a linear stability analysis on the planar front,
focusing on the occurrence of a wavy tumor contour with a typical finite wavelength. In Section
3.2.1, we extend our stability analysis for the growth of a circular tumor front, investigating the
effects of a finite curvature on the morphology of the tumor lesion. Finally, we compare our
theoretical predictions to the clinical observations of melanoma morphology and evolution rate,
discussing the extent of our results for mathematical modeling and its applications in medical
oncology.
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2. Multiphase modeling of a melanoma spreading in the epidermis

In this section we will define a multiphase mixture theory for modeling the early dynamics of
a tumor lesion in the epidermis. First, we introduce the general constitutive equation for a two-
phase model. Secondly, we make the assumption of thin geometry and we derive the simplified
governing equations for an averaged 2D model.

2.1. Constitutive equations for a two-phase mixture

�

� �

�

� �

Figure 3: (A) Sketch of a mechanically consistent cell-to-cell potential interaction, attractive under a volume fraction φe
and repulsive above. The presence of a minimum of interaction for φ = φ∗ can eventually lead to a spinodal decomposi-
tion. (B) Sketch of a biologically relevant variation of the cell proliferation rate with cell volume fraction. At φ = φinhib
the apoptosis and necrosis compensate the cell divisions, and the cells are in a quiescent state.

Let us consider two main constituents of the epidermis: an interstitial fluid phase with vol-
ume fraction φl and velocity vl, containing soluble factors such as cell wastes and nutrients,
and a proliferating cancerous cell phase with volume fraction φc and velocity vc. Keratinocytes
are assumed to be dispersed in the interstitial fluid, the melanoma being a compact mass of tu-
mor cells. Typical volume fractions in healthy tissues have been measured in rat skin at about
φc = 0.57 − 0.58 [29] and in human epidermis at φc = 0.63 − 0.87 [30, 31]. Although sim-
plificative (other cellular components of the epidermis are not considered), a two-phase model
has the advantage to allow a deeper analytical treatment of the problem and, therefore, a better
insight into the tumor dynamics and morphogenesis. The proliferation rate Γc(φc, nO2 , ninhib) of
the cancerous cells depends on the tumor micro-environnement [32, 33] through modified en-
docrine/paracrine and cell cycle regulations. We will focus here on the dependence on the local
concentrations nO2 and ninhib of oxygen [34, 35, 36] and of a generic growth inhibitor (eg. toxic
cell wastes, cytokines) [14, 37, 38], respectively, as well as on the influence of cell crowding
[35, 39, 40, 41]. In particular Creasey et al. [39] reported the doubling time for human primary
melanoma grown in culture, leading to a typical proliferation rate at Γc ∼ γ = 0.2 − 0.67 day−1.
The mass balance equations can be written as follows:

ρi

(
∂φi

∂t
+ ∇ · (φivi)

)
= ρiΓi with i = l, c (1)
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where the mass densities ρi will be assumed constant and equal to the water mass density ρ, and
we assume saturation of the mixture, imposing φl + φc = 1 and Γl = −Γc so that the incompress-
ibility condition reads:

∇ · (φcvc + φlvl) = 0 (2)

For biological consistency, Γc has to vanish, at given nO2 and ninhib, both for φc = 0 and for
a given φinhib > 0 corresponding to a balance between cell proliferation and contact inhibition
(Γ < 0 for φc > φinhib see Fig.3B).
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Figure 4: Epidermis layer with typical thickness h ∼ 0.1 − 1 mm [42, 43] confined between an atmosphere/epidermis
boundary at z = h (Stratum Corneum) and an epidermis/dermis boundary at z = 0 (Basement membrane). Oxygen and
inhibitor have a fixed concentration in the atmosphere and in the dermis and diffuse through the epidermis boundaries
generating fluxes Jat and Jderm which depend on the local concentrations in z = h (nSC ) and z = 0 (nbasal).

Oxygen is consumed by cells at a rate δO2 ∼ 1190 − 3030 day−1 [44, 45] and diffuses in
the interstitial fluid phase from the dermis and the atmosphere [44]. The oxygen fluxes JO2at
and JO2derm through the atmosphere/epidermis boundary (stratum corneum (SC)) and through the
epidermis/dermis boundary (basement membrane) are given by the difference of concentration
between the two sides of these boundaries (see Fig.4), as follows:

JO2at = α
O2
at (nat − nSC) (3)

JO2derm = α
O2
derm(nbasal − nderm) (4)

with αO2at and α
O2
derm being the permeability coefficients of the stratum corneum and of the base-

ment membrane, respectively. In particular, Stücker et al. [44] measured the variation with depth
of oxygen partial pressure in healthy skin, decreasing from nSC = 78mmHg to nbasal = 25mmHg
in the epidermis layer. According to Bedogni et al. [46], the skin micro-environment is mildly
hypoxic at such concentrations, suggesting that a strong hypoxia can occur in the tumor center
if tissue homeostasis is disrupted. Similarly, inhibitors of cell proliferation, such as toxic wastes
and cytokines, are produced by tumor cells at a rate δinhib, also diffusing through the atmosphere
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and the dermis. Assuming constant uptake/production rates, the advection-reaction-diffusion
equations read:

∂nO2
∂t

+ ∇ · (nO2vl) = ∇ · (DO2∇nO2) − δO2nO2φc (5)

∂ninhib
∂t

+ ∇ · (ninhibvl) = ∇ · (Dinhib∇ninhib) + δinhibφc (6)

where the parallel mobility coefficients (D�
O2 and D

�

inhib) can be different from the perpendicular
coefficients (DzO2 and D

z
inhib), mimicking an anisotropic diffusion. However, no experimental ev-

idence exists that a longitudinal gradient of nutrients can provoke a transverse flux (or viceversa)
so that a diagonal diffusion tensor is assumed. Johnson et al. [47] evaluated from experimen-
tal data that the parallel oxygen diffusion coefficient in the stratum corneum (external layer of
skin composed of dead cells and rich in lipids) is about D�

O2 = 39.7mm
2 day−1, while a slightly

smaller perpendicular coefficient for oxygen diffusion is given as DzO2 = 18.5 − 26.6 mm2 day
−1

using the distribution of oxygen partial pressure in the skin, as reported by Stücker et al [44].
The diffusion coefficients for the inhibitors are expected to be much smaller, because of their
larger molecular volume. Considering the time scales involved in this growth process [48], the
molecular concentrations can be assumed to be at diffusion equilibrium and we can neglect the
left hand side of Eqs.(5,6).
During malignant progression, melanoma cells acquire new cell-cell communication abilities,

as reviewed by Hass et al. [12]. In particular, melanoma cells change interaction properties
activating new adhesion molecules, e.g. N-cadherin, Mel-CAM ligand, αvβ3 integrin, ALCAM
and connexins. These interaction mechanisms, as well as other weakly non-local interactions be-
tween cells of the same species (eg. chemotaxis, haptotaxis), can be introduced in the expression
of the Helmholtz free energy for the cell phase [49], which reads:

F =

∫
Ω

ψ(φc) + ε2/2|∇φc|2dΩ (7)

with ψ the free energy per unit of volume and ε � 1. The main source of energy dissipation in
the system can be assumed to be the viscous interaction between cells and the viscous drag of the
cells moving relatively to the interstitial fluid. The energy dissipation can therefore be written

W =

∫
Ω

τφc

2
(vc − vl)2 +

μφc

2
(∇ · vc)2dΩ (8)

with μ the cell phase viscosity and τ a constant friction parameter. Measurements of the Darcy
law in rat skin [31, 50] gives an estimate of this friction parameter in the range τ = 7.24 −
87.0mm−2 mmHgday. Following Doi and Onuki [51] we use Rayleigh’s variational principle
indicating that the overdamped system dynamics can be obtained by minimizing the Rayleighian
R = W + dF/dt with respect to the velocities vc and vl. The incompressibility constraint given
in Eq.(2) is accounted for by adding a Lagrange multiplier p so, using Eq.(1) the Rayleighian
reads:

R =

∫
Ω

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
τφc

2
(vc − vl)2 +

μ

2
φc(∇ · vc)2︸�������������������������������︷︷�������������������������������︸

dissipation

+

(
∂ψ

∂φc
− ε2Δφc

)
(−∇ · (φcvc) + Γc)︸�������������������������������������︷︷�������������������������������������︸

variation of free energy

− p∇ · (φcvc + φlvl)︸����������������︷︷����������������︸
incompressibility

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
dΩ

(9)
7



Minimizing this functional with respect to vc and vl gives the governing equilibrium equations
for the phases:

τφc (vc − vl) + φc∇
(
∂ψ

∂φc
− ε2Δφc

)
+ φc∇p − μφcΔvc = 0 (10)

τφc (vl − vc) + φl∇p = 0 (11)

These equations can be interpreted as the mechanical equilibrium in each phase for a system with
negligible inertia, with p the hydrostatic pressure and

∂ψ

∂φc
− ε2Δφc = Σ (12)

Σ being the excess pressure generated by cell-cell interactions. A typical order of magnitude χ
for this pressure Σ can be estimated from the interstitial fluid pressures reported in the review
by Jain [30] for various tumors and tissues: a value χ ∼ 1mmHg is found in healthy rat skin,
while χ ∼ 10mmHg for carcinoma in rat skin. This is compatible with the results both of
Wiig et al. [29] (giving χ ∼ 1 mmHg for rat skin) and of Kristensen et al. [52] (reporting
χ = 1.6−28.5mmHg for human melanoma). For physical and biological consistency, Σ(φc,Δφc)
has to vanish for φc → 0 and to diverge for φc → 1 showing a strong repulsion at high cancerous
cell concentration, as depicted in Fig.3A. The presence of a minimum in Σ for a given volume
fraction φ∗ can eventually lead to a spinodal decomposition due to negative diffusion coefficients
for φc < φ∗. However the development of these structures is obtained for specific parameters
of the model, as we will show in a forthcoming work. We will consider here only situations
where this instability doesn’t appear and we can therefore neglect the dependence of Σ on the
derivatives of φc (ε = 0). Eliminating p from Eqs.(10,11) and recalling the saturation constraint
φc + φl = 1 we get the relation for the relative velocity between the cell and fluid phases

vc − vl = ((1 − φc)φc/τ)∇ · (−Σ1 + ∇vc) (13)

2.2. Lubrication approximation for thin geometry
During its radial phase, the melanoma spreads superficially in the epidermis layer. The thick-

ness h of the epidermis can be considered much smaller than the radial size L of the tumor
(typically h = 0.1 − 1mm and L ∼ 5mm [42, 43, 6]), and a 2D approximation in thin geometry
can be formulated, using the scalings x = x̂L, y = ŷL, z = ẑh, vi,x,y = v̂i,x,yV�, vi,z = v̂i,zVz with
i = (c, l), and Σ = χΣ̂, with h/L � 1 and Vz/V� � 1. At the leading order in h/L and Vz/V�,
Eq.(13) can be rewritten as:

v̂c,x − v̂l,x =
(1 − φc)φcχ
τLV�

∂Σ̂

∂x̂
+
(1 − φc)φcμ

τh2
∂2v̂c,x
∂ẑ2

(14)

v̂c,y − v̂l,y =
(1 − φc)φcχ
τLV�︸��������︷︷��������︸
θ1

∂Σ̂

∂ŷ
+
(1 − φc)φcμ

τh2︸��������︷︷��������︸
θ2

∂2v̂c,y
∂ẑ2

(15)

v̂c,z − v̂l,z =
(1 − φc)φcχ

τhVz︸��������︷︷��������︸
θ3

∂Σ̂

∂ẑ
+
(1 − φc)φcμ

τh2︸��������︷︷��������︸
θ4

∂2v̂c,z
∂ẑ2

(16)
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From biological data [29, 31, 50, 52, 53], we estimate θ3 ∼ 33.3 − 1.43 × 104 � 1 and we can
therefore neglect the left hand side in Eq.(16) for the z component. Comparing the viscous term
and the Σ term, we get θ3/θ4 = 3.83 × 105 − 1.56 × 109 � 1 [54], showing that Eq.(16) can be
rewritten as:

∂Σ

∂z
� 0 (17)

Recalling that Σ = Σ(φc), this equation implies in particular that ∂φc/∂z = 0, i.e. a homogeneous
tumor cell volume fraction along z. Comparing the viscous term and the Σ term in the x and y
components given by Eqs.(14,15), we get that θ1/θ2 = 3.46 − 4.1 × 105 � 1. The horizontal
velocity is therefore given by:

vc,� − vl,� =
(1 − φc)φc

τ
∇�Σ(φc) (18)

where we use the notation x� = x − (x · ez)ez for describing a geometrical projection on a plane
perpendicular to the unit vector ez.
Integrating Eq.(2) between z = 0 and z = h with the boundary condition Vmix,z(0) = Vmix,z(h) =

0 and dividing by h leads to the two dimensional incompressibility condition

∇� · 〈Vmix,�〉 = 0 (19)

with Vmix = φcvc + φlvl the total mixture velocity and the average quantities defined by 〈(·)〉 =
h−1

∫ h
0 (·)dz. For a general mixture Eq.(19) is not sufficient to close the system of equations and

one would need additional assumptions on the velocities [55]. However in the following we will
consider systems with planar or radial symmetry, the unrealistic planar case being simpler for the
analytical treatment. In these situations the symmetry restrictions provide the missing equations,
and an explicit solution can be given with respect to the phase velocities, as follows:

〈vc,�〉 = −K(φc)∇�Σ(φc) (20)

K(φc) =
(1 − φc)2φc

τ
∇�Σ(φc) (21)

which is an extension of the Darcy law for the two-phase mixture. We notice that for a system
without particular symmetry an additional constitutive equation on the velocity fields must be
given.
Integrating Eqs.(1,5,6) between z = 0 and z = h, and dividing by h, we can rewrite the

governing equations in the following averaged form:

∂φc

∂t
− ∇� · (φcK(φc)∇�Σ) = Γ̃c(φc, 〈nO2〉, 〈ninhib〉) (22)

0 = ∇� · (D�
O2∇�〈nO2〉) − δO2φc〈nO2〉 +

DzO2
h

[
∂nO2
∂z

]h
0

(23)

0 = ∇� · (D�
inhib∇�〈ninhib〉) + δinhibφc +

Dzinhib
h

[
∂ninhib
∂z

]h
0

(24)

where Γ̃c = h−1
∫ h
0 Γc(φc, nO2 , ninhib)dz. In order to determine the last term in Eqs.(23,24), let us

look for a solution to Eq.(5) mainly two dimensional but with a tiny contribution that has a sharp
variation with the thickness h in the form:

nO2 (x, y, z) = n0(x, y) + (h/L)
2n1(x, y, z(L/h)2) + (h/L)4n2(x, y, z(L/h)2) + o((h/L)4) (25)
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Setting nSC = nO2(z = h) and nbasal = nO2 (z = 0) the boundary conditions given by Eqs.(3,4) can
be rewritten at the leading order in h/L as follows:

DzO2
∂nO2
∂z
(h) = DzO2

∂n1
∂z(L/h)2

(h) = JO2at = α
n
at(nat − n0) + O((h/L)2) (26)

DzO2
∂nO2
∂z
(0) = DzO2

∂n1
∂z(L/h)2

(0) = JO2derm = αnderm(n0 − nderm) + O((h/L)2) (27)

Finally, the equation for the mean concentration N = 〈nO2〉 reads:

∇� · (D�
O2∇�N) − δnφcN + Db,N(Ne − N) = 0 (28)

with Db,N = 1/(h(αO2at + α
O2
derm)) and Ne = (α

O2
at nat + α

O2
dermnderm)/(α

O2
at + α

O2
derm). A similar analysis

for the mean inhibitor concentration I = 〈ninhib〉 gives:

∇� · (D�
inhib∇�I) + δinhibφc − Db,I I = 0 (29)

with Db,I = 1/(h(αinhibat + αinhibderm)). Notice that the neglected terms in Eqs.(28,29) are of order
h/L while these equations include terms of order L/h and 1. In particular, Db,N , Db,I diverge at
vanishing h, imposing N = Ne and I = 0, and the resulting system is governed by the following
equation:

∂φc

∂t
− ∇� · (φcK(φc)∇�Σ) = Γ̃c(φc) (30)

which is the mean equation for tumor cell mobility in the simplified 2D model, considering only
contact inhibition of growth.

2.3. Governing equations in dimensionless form

The governing equations can be rewritten in terms of the dimensionless quantities x̄ =√
τγ/χx, t̄ = γt, Ī = (τγD�

inhib/(δinhibχ))I, N̄ = N−1e N, Σ̄ = χ−1Σ, K̄(φc) = τK(φc), Γ̄ = (γh)−1Γ̃c,
γ being a characteristic value of the proliferation rate Γc. Dropping the bars, the tildes, the sub-
scripts for the cell phase and the parallel indices in the following, we get the governing equations
together with the boundary conditions at the tumor border xb. In particular, assuming a stress
free boundary, with unit normal vector n at xb, imposing φ(xb) = φe with Σ(φe) = 0 [56], the
dimensionless governing equations read:

∂φ

∂t
+ ∇ · (φv) = Γ(φ,N, I), φ(xb) = φe (31)

v = −K(φ)∇Σ, n · dxb/dt = n · v(xb) = Vb (32)
0 = ΔN − β1φcN + β2(1 − N), N(xb) = 1 (33)

0 = ΔI + φc − αI, I(xb) = 0 (34)

The governing parameters are the dimensionless functions Γ and Σ, and the dimensionless con-
stants α = Db,Iχ/(τγD

�
inhib), β1 = χδO2/(τγD

�
O2 ), β2 = χDb,N/(τγδO2 ). The choice of the time

unit is motivated by giving the growth rate in terms to the typical cell proliferation rate γ, in order
to validate the results with clinical data on melanomas [48].
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Parameter Value Ref
Equilibrium cell volume fraction φe 0.57 − 0.87 [29, 31]
Typical proliferation rate γ 0.2 − 0.67 day−1 [35, 39, 57]
Oxygen consumption rate δO2 1190 − 3030 day−1 [44, 45]
Parallel oxygen diffusion coefficient 39.7mm2 day−1 [47]
in the epidermis D�

O2
Perpendicular oxygen diffusion coefficient 18.5 − 26.6 mm2 day−1 [44]
in the epidermis DzO2
Oxygen partial pressure in 78mmHg [44]
the stratum corneum nSC
Oxygen partial pressure in 25mmHg [44]
the basal layer nbasal
Typical pressure resulting from 1 − 28.5mmHg [29, 30, 52]
cell-cell interactions χ
cell phase viscosity μ 300 − 103 Pa s [54]
Friction between cell and fluid phases τ 7.24 − 87.0mm−2 mmHgday [31, 50]
Epidermis thickness H 0.1 − 1mm [6, 42, 43]
Typical cell death rate in the absence of nutrients δ 0.05 − 1.65 [39, 57]

Table 1: Physical parameters estimated from experimental studies in clinical oncology.

3. Linear stability analysis for planar and radial tumor fronts

We consider the horizontal spreading in the early development of melanoma, occurring before
the vertical phase which concerns penetration inside the dermis. First, we assume a negligible
mechanical resistance exerted by the underlying healthy tissue. Starting from an initial circular
shape with radius R0, here we study both analytically and numerically the evolution of the tumor
mass, as given by Eqs.(31,32,33,34).
In order to understand the influence of the different growth mechanisms driving melanoma

evolution, we will consider three distinct regimes: a contact-inhibition limited growth (CI),
inhibitor-diffusion limited growth (ID) and oxygen-diffusion limited growth (OD). These regimes
correspond to the values of material parameters reported in Table 2. For the sake of completeness,
we remind that most of the results hold for general expressions Γ and Σ satisfying the constraints
explained in Section (2.1). For the (OD) regime, typical cell death and mass decrease rate in the
absence of nutrients can be estimated from the results of Creasey et al. [39] and Cardenas et al.
[57], corresponding to δ = 0.05 − 1.65 for different cell lines.

3.1. Contour instability of a planar tumor front

Let us first consider the limit case of an infinite tumor radius R, discussing later the more
realistic finite case. This limit corresponds to the one dimensional growth along a x axis of a
tumor initially invariant along y (φ(x, y, 0) = φini(x)). Numerical simulations of the three regimes
in such geometry give travelling wave solutions with a front at x = L(t) moving at a constant
velocity L(t) = L0 + Ut, independently of the initial conditions of the initial conditions (see
Fig.5), to be compared with the constant growth rate observed in vivo [48]. Using the moving

11



Regime limit N I Γ

Contact Inhibition (CI) β2 → +∞, α→ +∞ = 1 = 0 (φinhib − φ)φ3
Inhibitor Diffusion (ID) α→ +∞ = 1 (1 − δI)φ
Oxygen Diffusion (OD) β2 → +∞ = 0 (N − δ)φ

Table 2: Three different regulation mechanisms for the tumor cell proliferation rate Γ, considered separately in three
regimes: regulation by contact inhibition (through the tumor cell volume fraction φ), regulation by the local concentration
I in a growth inhibitor produced by the cells or regulation by the local oxygen concentration N.

reference coordinate z = x−L(t), a travelling wave solution (φ0(z), N0(z), I0(z)) propagating from
z = −∞ satisfies the following ordinary differential equations:

−Uφ′0 − (φ0K(φ0)Σφ(φ0)φ′0)′ = Γ(φ0,N0, I0) (35)
0 = N′′0 − β1φ0N0 + β2(1 − N0) (36)
0 = I′′0 + φ0 − αI0 (37)

where the prime denotes the derivative with respect to z and Σφ = dΣ/dφ.

3.1.1. Properties of the travelling wave solutions
In the (CI) regime and for φinhib > φe, a solution φ0(z), found also numerically, is a decreasing

function of z (see Fig.5). An asymptotic analysis of Eq.(35) for z → −∞ shows that the cell
volume fraction in the tumor center is Φ0 = φinhib, corresponding to a complete contact inhibi-
tion of growth (Γ(φinhib) = 0). All the proliferating activity is thus confined in an outer ring of
typical size lp. Although a solution with φ = 0 in the tumor center is coherent with the asymp-
totic analysis, it cannot be observed because the uniform solution φ = 0 is unstable for small
perturbations of φ. If φinhib < φe another solution is given by a decreasing function of z with
U < 0, corresponding to a regressing tumor [58, 59, 60].
In the (ID) regime, an asymptotic analysis in z = −∞ of Eqs.(35,37) shows that the cell volume

fraction in the tumor center is Φ0 = α/δ, corresponding to the ratio between the evacuation rate
of inhibitors and the inhibition rate of proliferation. For Φ0 > φe the solution is a decreasing
function φ0(z) with higher cell volume fraction at its center, and for Φ0 < φe, φ0 has a maximum
near the tumor border at z = zm, as depicted Fig.(5C,5D). As previously discussed, a solution
with φ = 0 in the tumor center satisfy the asymptotic analysis but is not a stable solution. The
distribution of inhibitors in the tumor can be easily determined from Eq.(37), being:

I0(z) =
1√
α

∫ 0

z
φ0sinh

(√
α(z − z′)

)
dz′ − Φ0

α
sinh(

√
αz) (38)

The size of the proliferating region lp is then given by the typical size of decay of I near the
tumor border, with a scaling given by:

lp ∼ 1/
√
α (39)

Finally, in the (OD) regime the asymptotic analysis of Eqs.(35,36) gives a nutrient concentra-
tion δ and a cell volume fraction (β2/β1)(δ−1 −1) = Φ0 in the tumor center (for z→ −∞). Again,
if Φ0 > φe the solution has a maximum in cell volume fraction near the tumor border at z = zm
and is monotonic otherwise, as depicted Fig.(5E,5F). Looking for solutions to the homogeneous

12
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Figure 5: (A,B) φ0 from 1D numerical simulation of the model in the (CI) regime at time t = 0 (black), 10 (red), 20
(green), 30 (blue), 40 (blue). The simulation parameters are φe = 0.6, φinhib = 0.5 (A) and φinhib = 0.9 (B), and the initial
condition is φini(x) = (φa−(φa−φe)(x/R0)2) with φa = 0.8 and R = 3. In the inset, the linear growth of L after a transitory
regime, independent of the initial conditions, here R = 3 and φa = 0.3 (green dashed line), 0.8 (black continuous line),
0.95 (red dashed line), and R = 6 and φa = 0.8 (blue dashed line). (C,D) φ0 (continuous lines) and I0 (dashed lines) from
1D numerical simulation of the model in the (ID) regime at time t = 5 (red), 10 (green), 15 (blue). φe = 0.6, δ = 10,
α = 5 (C) and α = 9 (D). (E,F) φ0 (continuous lines) and N0 (dashed lines) from 1D numerical simulation of the model
in the (OD) regime at time t = 5 (red), 10 (green), 15(blue). φe = 0.6, δ = 0.4, β1 = 4, β2 = 1.33 (E) and β2 = 2.4
(F). The travelling wave regime with constant velocity is found independent of the initial condition in the (ID) and (OD)
regimes as well.

part of Eq.(37), written in the form N0 = exp[S (z)], and performing a WKB approximation
13



(|S ′(z)| � 1 [61]), we get the following expression for the approximate solution of Eq.(36):

N0(z) ≈ β2
∫ 0

z

sinh(S (z) − S (z′))
S ′(z′)

dz′ +
β2

2(β1φe + β2)
eS (z) +

(
1 − β2

2(β1φe + β2)

)
e−S (z) (40)

with S (z) =
∫ 0
z
√
β1φ0 + β2dz′. In particular, it allows an estimation both of the penetration

length of the oxygen through the surrounding tissue, and of the size of the proliferating region,
expressed as:

lp ∼
√
β1φe + β2

β1φe
(41)

3.1.2. Stability analysis of the planar front

Figure 6: Cell volume fraction φ during an instability in the (OD) regime occurring on a planar front, propagating along
x, initially invariant along y and periodic along y axis above instability threshold. The numerical simulations describe
a front instability with characteristic finite wavelength Λ and stabilization of the pattern at long times. Dimensionless
parameters are β1 = 4, β2 = 0, φe = 0.6, δ = 0.4, and t = 0, 10, 20, 80 from left to right.

For some range of parameters, in numerical simulations we observe the development of an
instability, along the y axis, which grows and saturates up to a certain size (Fig.6). An infinites-
imal front perturbation with wavelength Λ = 2π/κ inducing a perturbation of φ, N and I can be
written as:

L(t, y) = L0(t) + εcos(κy)eλt (42)
φ(x, y, t) = φ0(z) + ε f (z)cos(κy)eλt (43)
I(x, y, t) = I0(z) + εp(z)cos(κy)eλt (44)
N(x, y, t) = N0(z) + εg(z)cos(κy)eλt (45)

with ε � 1. Introducing this perturbation in Eqs.(31,34,33) we get at the order ε the following
relations:

λ f − U f ′ + κ2φ0K(φ)Σφ f − (φ0K(φ)Σφ f )′′ − Γφ f = ΓNg + ΓI p (46)
−κ2p + p′′ + αp = − f (47)
−κ2g + g′′ − β1φ0g − β2g = β1N0 f (48)

14



with the boundary conditions f (0) = −φ′0(0) (B1), g(0) = −N′0, p(0) = −I′0(0) and K(φ)Σφ( f ′(0)+
φ′′0 ) = −λ (B2). Notice that the perturbation is not symmetric, so that Eq.(19) is no longer suf-
ficient to solve our system of equations. A closure problem arises again when perturbing the
symmetrical solution, as the first-order solution has two additional variables (the two tangen-
tial components of the phase velocities) while only one extra equation is given from Eq.(13):
one constitutive mobility assumption is therefore necessary. Although many different behaviors
might be assumed fulfilling obvious thermodynamic restrictions (e.g. chemotactic/haptotactic
mobility in potential flow models for cells [55], or time-correlated molecular motions in entan-
gled systems [62], we assume that Vmix = 0 even at first order. This is a physically-consistent
assumption for a highly viscous system with negligible inertia, because it imposes that the per-
turbation alone cannot introduce a movement of the center of mass of the mixture in absence of
external forces. The long wavelength limit of a system similar to the (OD) regime with β2 = 0
was studied by Ciarletta et al. [63]. This analysis gives the parameter range for the stability
of travelling wave solutions against long wavelength perturbations. However we found numeri-
cally that the instabilities usually appear before entering the unstable domain of long wavelength,
suggesting for λ the scenario sketched in Fig.7. This is also coherent with the numerical observa-
tions of a saturation of the amplitude and the definition of a typical finite wavelength of induced
contour undulations in Fig.6 and Fig.10, as also observed in clinical dermatology [64, 65].
Using the change of function f̂ = exp(−

∫ 0
z U/(2G)dz

′)G f , with G = φ0K(φ)Σφ, the Eq.(46)
can be formally rewritten as:

f̂ ′′ − (κ2 + ζλ(z)) f̂ = (ΓI p + ΓNg)e−
∫ 0
z U/(2G)dz

′ ≈ 0 (49)

ζλ =
UG′

2G2
+
1
4

(U
G

)2
− Γφ − λ

G
(50)

where Γi = dΓ/di for i = φ, I, N. We neglected here the terms in the right hand side of Eq.(46).
Such an approximation is exact for the (CI) regime and is justified in the (ID) and (OD) regimes
by the large values taken by the function ζλ (see Fig.7B) if compared to ΓI and ΓN (equal to one in
our model). Ellem and Kay [35] have shown for example the variation of melanoma proliferation
rate with nutrient concentration in a culture medium, from which we can get an overestimate of
ΓN ≈ 0.3.
Let us consider the short wavelength limit (κ � 1) of Eq.(49) setting λ = o(κ2), as any

other scalings would be incompatible with the condition (B2). The non divergingWKB solution
satisfying the boundary condition (B1) is f̂ (z) = −φ′0(0)exp(κz). At the leading order in κ, the
boundary condition (B2) gives then λ = K(φ)Σφφ′0(0)κ that can be rewritten as:

λ = −Uκ (51)

For a growing tumor U > 0 and λ is always negative, which means that instabilities cannot de-
velop in the short wavelength domain. On the contrary, for a regressing tumor U < 0 and, there-
fore, a short wavelength contour instability always develops during a regression. For melanoma,
such regression could be immunologically mediated by T lymphocytes as found by Halliday et
al. [66] or eventually due to a clinical treatment. Regression phenomena are usually associated
to scar-like patterns on the tumor contour, as indicated by our analysis. Notice that our macro-
scopic model is valid only on scales larger than the cell size, typically 6 − 20μm for melanoma
cells [67], and microscopic effects, out of reach for a mixture model, may change the behavior of
the eigenvalue λ near this size, eventually stabilizing the very short wavelength domain. More-
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Figure 7: (A) Eigenvalue λ as a function of perturbation wavenumber κ. Analytical results give the behavior near κ = 0
and κ = +∞, respectively λ ∼ λ1κ and λ ∼ −Uκ2, with λ1 the control parameter defined in [63] for a system similar
to the (OD) regime. A WKB analysis of the perturbations governing equation gives the existence of two roots κ1 > κ2
converging to a single root κ0 for T → 1+, where T the control parameter defined in Eq.62. The continuous, dashed
and dotted lines sketch the likely variation of the eigenvalue with wavenumber for T < 1 (stable front), T = 1 (stability
threshold) and T > 1 (unstable front) respectively. (B) Potential ζ0 from a 1D simulation in the (OD) regime. A WKB
analysis of Eq.(49) shows the existence of two solutions satisfying the boundary conditions for a control parameter T > 1.
The first solution with κ1 > κ0 =

√
−ζ0(0) is decaying exponentially and the second with κ2 < κ0 is oscillating until it

reaches a turning point at z1 with ζ0(z1) = −κ22. These solutions converge to κ0 for T → 1+ and disappear for T < 1.
Simulation parameters where φe = 0.6, δ = 0.4, β1 = 4. and β2 = 1.33.

over, short wavelength contour undulations are subject to noise [68], being hard to handle for a
diagnostic purpose.
In the case of spreading tumors, instabilities should appear first in the domain of finite wave-

lengths, as suggested by the numerical simulations and in accordance with clinical observations,
16



while the instability threshold is formally given by the condition λ = dλ/dκ = 0, as depicted
in Fig.7A. We can now look for the roots of λ(κ), solving Eq.(49) for λ = 0. Let us first notice
that this equation is analog to a Schrödinger equation for a quantum particle with a finite energy
−κ2 in the potential ζ0. This analogy enables a better mathematical understanding of the linear
stability analysis. Using the definition of the velocity at the tumor border z = 0, we get for the
potential the following expression:

ζ0(0) = −
U
G

(
(K(φ)Σφ)φU
2φe(K(φ)Σφ)2

+
U

4K(φ)Σφφe
+
Γφ

U

)
(52)

In the (ID) and (OD) regimes, we can make the phenomenological assumption that Γ is pro-
portional to φ, and the potential ζ0 is therefore negative (for growing tumors) near the tumor
border. In the (CI) regime a sufficient condition for ζ0(0) < 0 is Γφ(φe) > 0 (a necessary and
sufficient condition is Γφ(φe) > −(φ′0/2)2(2(K(φ)Σφ)φ + K(φ)Σφ/φe)). If the cell volume fraction
is low enough in the tumor center (Φ0 < φ∗), there exists a point z∗ where Σφ cancels and ζ0
diverge, acting as centrifugal barrier. As discussed in Section 2.1, this situation can eventually
lead to a spinodal decomposition, anyway occuring for specific initial conditions and parameter
values, which do not correspond to the objectives of this work. Finally, an asymptotic analysis
in z → −∞ gives ζ0 ∼ (U/2G)2 − Γφ/G. Moreover Γφ → 0 in the (ID) and (OD) regime and
Γφ → Γφ(φinhib) < 0 in the (CI) regime such that ζ0 is strictly positive for z → −∞ and nega-
tive only on a finite sized domain z > z1 near the tumor border. From quantum mechanics we
know that the spectrum of eigenvalues κ2 for such potentials is discrete and finite. This spectrum
should converge to a single finite eigenvalue κ20 at the instability threshold.
In order to account for the boundary conditions of f̂ at z = 0, let us first write Eq.(35) at the

tumor border as:

−Uφ′0 − (K(φ)Σφφ0φ′′0 + K(φ)Σφφ′20 + (K(φ)Σφ)φφ0φ′20 ) = Γ (53)

Using the expression of the velocity at the tumor border,−U = K(φ)Σφφ′0, we can further simplify
the previous expression as:

φ′′0
φ′0

=
Γ

Uφ0
− (K(φ)Σφ)φφ

′
0

K(φ)Σφ
(54)

Recalling the definition f̂ = exp(−
∫ 0
z U/(2G)dz

′)G f , its differentiation reads:

f̂ ′

f̂
=
U
2G

+
G′

G
+
f ′

f
(55)

Substituting the expression of G and of the velocity at the tumor border, we get U/(2G) =
−φ′0/(2φ0) and G′/G = φ′0/φ0 + (K(φ)Σφ)φφ

′
0/(K(φ)Σφ). The boundary condition with λ = 0 is

given by f ′/ f = φ′′0 /φ
′
0, so that using Eqs.(54,55) we can write the boundary condition for f̂ as:

f̂ ′

f̂
=

φ′0
2φ0

+
γ − δ
U

(56)

Let us look forWKB solutions f̂ = A+exp(S (z))+A−exp(−S (z)) with theWKB phase S ′(z)2 =
κ2+ζ0(z). This is a typical method of QuantumMechanics for finding eigenvalues and eigenstates
of the Shrödinger equation for a particule in a potential well, and the following derivation is
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Figure 8: Potential ζ0(z) in the (CI) regime (red continuous line, φinhib = 0.9), (OD) regime (green dashed line, δ = 0.4,
β1 = 4, β2 = 1.32) and (ID) regime (blue dotted line, δ = 10, α = 5). The potential ζ0 is positive at the tumor center
(z→ −∞, A) and negative near the tumor border (z = 0, B).

similar to standard analysis [61, 69]. For κ2 > κ20 = −ζ0(0), S ′2 is always positive and the non
divergingWKB solution is given by:

f̂ (z) = f̂ (0) exp
(
−

∫ 0

z

√
κ2 + ζ0(z′)dz′

)
(57)
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This function must satisfy the boundary condition in Eq.(56), formally imposing:
√
κ2 + ζ0(z) =

φ′0
2φe

+
Γ

Uφe
= − φ′0

2φe
(T − 1) (58)

For a parameter T = −2Γ/(Uφ′0) > 1 this relation gives a first root κ1. Notice that the solution f̂
corresponding to κ = κ1 vanishes on a typical lengthscale given by φ′0/(2φ0)(T − 1), giving also
an estimate of the penetration length of the instability inside the tumor. For κ2 < ζ0(0), there can
be a turning point for zt > z1 where the WKB phase vanishes. In the domain zt < z < 0 the WKB
solution is oscillating, and expressed by:

f̂ (z) = f̂ (0)
sin(S (z) + ψκ)
sin(S (0) + ψκ)

(59)

with S (z) =
∫ z
zt

√
−κ2 − ζ(z′)dz′. In the neighborhood of zt, Eq.(49) can be approximated by

κ2 + ζ(z) = −a(z − zt), and thus solved in terms of Airy functions. The convergence of the
solution for z → −∞ imposes a phase angle ψκ = π/4. The boundary condition for the non-
diverging solution can therefore be expressed as:

f̂ ′

f̂
= S ′(0)cotan

(
π

4
+ S (0)

)
(60)

The selected κ value should thus satisfy the following relation:

√
−κ2 − ζ(0)cotan

(∫ 0

zt

√
−κ2 − ζ(z)dz + π

4

)
= − φ′0

2φ0
(T − 1) (61)

The function on the left hand side is vanishing and positive for κ → −ζ0(0) (zt → 0) and we
conclude that there is at least one solution κ2 to Eq.(61) for 0 < T − 1 � 1. The solution f̂ ,
corresponding to κ = κ2, is non-zero on a domain whose size is |zt | and vanishes exponentially
for z < zt, |z1| giving a higher bound for |zt|, and therefore for the penetration length of the
instability.
We have identified here a parameter T such that, for T > 1 there exist two distinct eigenvalues

κ1 > κ2 which are solutions of Eq.(46) for λ = 0, corresponding to the roots depicted in Fig.7.
At the stability threshold T = 1 these eigenvalues converge to κ0, giving the wavelength of the
contour instability as Λ0 = 2π/κ0. This linear stability analysis is only valid near the stability
threshold, however for T > 1 we expect that the nonlinearities will give a finite amplitude to
the contour undulation that should stay stationary, and eventually a correction to the undulation
wavelength Λ0. In particular that the spectrum depicted in Fig.7 is similar to the spectrum of
Rayleigh-Bénard instability for which the perturbation amplitude saturates at a finite size [70].

3.1.3. Growth instability properties of the planar front
Growth instabilities are therefore controlled at finite wavelength by the parameter T , which

can be rewritten in physical units as:

T =
2ΓK(φe)Σφ(φe)

V2f
(62)
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This expression shows that cell proliferation (Γ) and attractive cell-cell interactions (Σ) are fac-
tors of instability. This finding agrees with earlier results obtained for continuous single-phase
models of tumor spheroids and extends it to full multiphase models. Byrne and Chaplain [18]
first found an instability driven by competition between an expensive force due to cell prolifer-
ation and a restraining force due to cell adhesion. Similarly, Cristini et al. [71] identified two
parameters representing the ratio between mitosis and apoptosis and the relative rate of mitosis to
the relaxation mechanisms, finding a good agreement with in vitro experiments on glioblastoma
tumor spheroids [72]. Our control parameter additionally predicts that slow growing tumors (Vf )
are more unstable.
Using the simple scaling φ′0(0) = −φe/lp, with lp being the size of the proliferating domain,

we get the following scaling for the control parameter:

T ∼ 2Γlp
V fφe

(63)

which can be interpreted as the ratio between the mass creation rate in the proliferating area of
the tumor and the mass evacuation rate, the contour instability occurring when the proliferation
rate is too high, or when the melanoma growth is too slow. The WKB analysis shows that the
selected wavenumber κ is scaled by ζ0, which is in turn scaled as φ′0/φ0. Therefore, using the
same simple scaling, we get an estimation of the instability wavelength as follows:

Λ0 ∼ 2πlp (64)

Finally, the domain ζ0 < 0 corresponds to the region out of which the term Γφ/G in ζ0 is negligible
or negative, its size being therefore scaled by lp. The WKB solution of Eq.(49) shows that the
perturbation f̂ is vanishing outside this region, meaning that the instability is localized in the
outer part of the tumor, within a width comparable to the instability wavelength and to the width
of the proliferating domain of the tumor. In a recent study, Dervaux and Ben Amar [73] found a
similar result in a poro-elastic growth model, validated by experiments on biomimetic swelling
gels.

3.2. Contour instability of a circular tumor front
In the more realistic case of a circular tumor front, we observe numericaly that a quiescent

(or necrotic) core develops quickly, so that all the cancer activity is confined in a ring of quasi-
constant width l. Moreover, the tumor radius R(t) grows linearly in time (dR/dt = U) after a
transitory regime dependent on the initial conditions, as observed in vivo [48, 74]. Using polar
coordinates (r, θ), Eq.(31) can be rewritten as:

∂φ

∂t
− 1
r
∂

∂r
rφK(φ)Σφ

∂

∂r
φ − 1

r2
∂

∂θ
φK(φ)Σφ

∂

∂θ
φ = Γ(φ,N, I) (65)

We can perform the conformal transformation z = R ln(r/R), y = Rθ and look for adiabatic
solutions φR(t, z, y) of the transformed equation, expressed as:

∂φR

∂t
− U(1 − z

R
)φ′R − e−2z/R(φRK(φR)Σφφ′R)′ − e−2z/R

∂

∂y
φRK(φR)Σφ

∂

∂y
φR = Γ (66)

which is very similar to Eq.(46) for the planar case. For the sake of simplicity, we drop the indice
R in the following.
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Figure 9: After a conformal mapping Z = z + iy = R ln(reiθ/R), the radial growth is transformed into a planar growth
invariant along the y-axis and propagating from z = −∞ along a x-axis in the moving frame z = x − L(t), with the tumor
border L(t)

3.2.1. Linear stability analysis of the circular front
From the numerical simulations depicted in Fig.10, we acknowledge that a radially symmetric

solution φ0(z) exists, satisfying ∂φ0/∂t = ∂φ0/∂y = 0 in Eq.(66). Such a solution is also unstable
for some range of the physical parameters. Considering a contour perturbation with wavelength
2π/κ along y = Rθ, the governing equation can be rewritten as:

λ f − U(1 − z
R
) f ′ − De−2z/R(φ0K(φ)Σφ f )′′ + Dκ2e−2z/RφK(φ)Σφ f − Γφ f = ΓNg + ΓIh (67)

with the boundary conditions given by K(φ)Σφ(φ′′0 (0) − φ′0/R + f ′(0)) = −λ and f (0) = −φ′0(0).
Considering the change of function f̂ = G exp(−

∫ 0
z U(1 − z′/R)e2z

′/R/(2G)dz′) f with G =

φ0K(φ)Σφ, we get an equation similar to Eq.(49), defining a potential ζλ,R(z) as:

ζλ,R(z) =
U(1 − z

R )G
′e2z/R

2G2
+
U(1 − 2z

R )e
2z/R

2RG
+
1
4

⎛⎜⎜⎜⎜⎝U(1 −
z
R )e

2z/R

G

⎞⎟⎟⎟⎟⎠
2

− Γφ − λ
G

e2z/R (68)

In the short wavelength limit (κ � 1), the equation for f̂ is the same as the planar case, and
the solution is f̂ (z) = −φ′0(0)exp(κz), leading to λ = K(φ)Σφφ′0(0)κ = −Uκ < 0. As expected,
stability properties in this wavelength domain are unchanged, and only regressing tumors are
unstable.
Looking for κ with λ = 0, we need to solve Eq.(49) with the potential ζ0,R given in Eq.(68),

and we can perform the same analysis as for the planar case. Let us first notice that ζ0,R(z) is a
decreasing function of R, which is large and positive at the beginning of the growth (ζ0,R(z) ∼ 1/R
for R � 1) and negative close to the tumor border when R exceeds a critical radius 1/Rc =

2(γ − δ)/U −G′/G − U/(2G), so that we can write ζ0,R(0) = (U/(2G))(1/R − 1/Rc). As for the
planar case, the circular front become unstable if it exits κ > 0 satisfying the following relation:√

κ2 + ζ0,R(0) = −
φ′0
2φ0

(T − 1) − 1
R

(69)

A necessary condition is therefore given by 1/R < −φ′0/(2φ0)(T − 1) = 1/Re, with:

− φ′0
2φ0

(T − 1) = (γ − δ)/U + φ′0/(2φ0) (70)
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Figure 10: Contour instability occurring during the radial growth of a tumor initially circular in the (OD) regime. (A)
Tumor contour at time t = 0, t = 10, t = 20, t = 30 and t = 40 from smaller to larger diameter. Notice the definition of a
typical wavelength. (B) Cell volume fraction φ at t = 40. β1 = 4, β2 = 0, φe = 0.6, δ = 0.4

The sign of ζ0,R is given by 1/R − 1/Rc, so that:

1
Rc

= 2
γ − δ
U

− φ′0
2φ0

− Wφ,φφ
′
0

Wφ

>
1
Re

(71)

showing that ζ0,R is negative for R > Re > Rc and that it exists a κ > 0 satisfying Eq.(69).
We conclude that the circular front becomes unstable only after that the tumor size reaches a
threshold radius Re, which becomes infinite when T → 1+. For large T , let us remind that this
analysis holds only after the steady growth regime is reached, typically after the development of
a quiescent or necrotic core, and therefore the tumor radius must be larger than the proliferating
domain size lp.

3.2.2. Growth instability properties of the circular front
Recalling the simple scaling φ0/φ′0 ∼ lp, we can get an estimate of the threshold radius as

follows:
Re ∼

2lp
T − 1 (72)

In particular the phase diagram in Fig.11 shows the stability of the tumor contour as a function the
tumor radius and of the ratio between the tumor growth rate and the tumor cell proliferation at the
tumor border. Furthermore, the expression of ζ0,R(0) shows that the instability wavelength Λ is a
decreasing function of R, with Λ � 1 for R � Re andΛ0 ∼ 2πlp for R � Re. Again, these results
are in agreement with the biomimetic growth model of Dervaux and Ben Amar [73]. Indeed,
in their study they found that the tumor becomes more unstable when the ratio between the size
of the proliferating ring and the outer radius decreases, which appears in our model through the
existence of a threshold radius. Their control parameter corresponds to the amount of growth in
the proliferating ring and can be estimated as Γτc, where τc = lp/Vf is the characteristic time
of evacuation of the created mass. This leads a control parameter of about Γlp/Vf , very similar
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Figure 11: Stability of the radial growth as a function of tumor radius and of the ratio between the tumor growth rate Vf
and the mean tumor cell proliferation at the tumor border Γ/φe. Regressing tumors with Vf < 0 are always unstable.

Morphology Stable contour Unstable contour
Control parameter T < 1 > 1
Tumor radius R < Re > Re (Λ decreases with R)

cell-cell interactions Σ weak attraction strong attraction (Λ ∼ lp)
cell proliferation Γ low high (λ ∼ lp)
tumor growth rate Vf fast progression slow progression (Λ ∼ lp)

regression (Λ � lp)

Table 3: Stability properties of the tumor contour in our two-phase model. Correlation with the tumor cells phenotype,
e.g. mechanical interactions (Σ) and proliferation rate(Γ), and macroscopic tumor properties, e.g. growth rate (Vf ) and
radius (R).

to the one found in our analysis, while the threshold has the same qualitative dependance on the
tumor radius. Pham et al. [75] also found a similar behavior in a single phase model, with a
control parameter corresponding to cell adhesion and a stability threshold decreasing with the
tumor radius.

4. Discussion and comparison with clinical observations

In this work, we have proved the existence of contour instabilities in a mixture model of the
early growth of melanoma, using both analytical and numerical techniques. The proposed multi-
phase model considers the influence of cancer cells proliferation/inhibitionmechanisms (nutrient
diffusion, contact inhibition, endocrine/paracrine regulations) as well as of the mechanical inter-
action between cells.
In Section 2 we have derived a 2D multiphase model in the lubrication limit of a 3D model,

with governing equation expressed by Eqs.(31,32,33,34), taking into account the thin geometry
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Figure 12: Control parameter T estimated from Eq.63 for slow growing melanoma (Superficial Spreading and Acral
Lentiginous types) and fast growing melanoma (Nodular and Desmoplastic types). Median tumor growth rate are taken
from [48] and model parameters are reported in table 1. Fast growing tumors with T < 1 are characterized by a sym-
metrical radial growth while the fast growing tumors with T > 1 are usually asymmetric. Images are a courtesy of Dr.
Pascale Guitera (Superficial Spreading Melanoma), the Skin Cancer Foundation [76] (Acral Lentigunous Melanoma)
and the Cliveland clinic [77] (Nodular and Desmoplastic Melanoma).

of the epidermis. The physical values for the model parameters have been extracted from ex-
perimental results in related literature, and reported in Table 1. In Section 3.1.1, the numerical
simulations with given scaling have shown that the tumor cells proliferate only on an external
domain of size lp, which tends to decrease as tumor cell keep on uptaking the diffusing nutrients,
even if both the basement membrane and stratum corneum are permeable to nutrient and growth
inhibitor, as shown in Eqs.(39,41). In Sections 3.1.3 and 3.2.2, we have identified the stability
properties of the melanoma contour in our model for both planar and circular fronts. As sum-
marized in Table 3, regressing melanoma (negative growth rate) have always an unstable border
with short wavelength undulations (Eq.(51)), while spreading melanoma present a finite wave-
length contour instability when the control parameter T is larger than 1 (Eq.(62)) and the tumor
radius exceeds a critical value (Eqs.(69,72)). In particular, high cell-to-cell adhesion, high cell
proliferation and slow tumor growth are factors of instability, and the resulting contour undula-
tion Λ has a size comparable to the extend lp of the outer proliferating domain (Eq.(64)). The
experimental data collected in Table 1 give in the (OD) regime typical values of Λ = 0.43 − 2.2
mm, which are compatible with the clinical observations and with the mixture model hypothesis,
the typical melanoma cell size being 6 − 20 μm as reported by Clark et al.[67]. Our results agree
with earlier results on single phase tumor models [18, 71, 72], while applying to a multiphase
mixture. The stability of the tumor front is determined by a competition between the cell prolif-
eration Γ and cell adhesion Σ, where stronger adhesion between cells promotes the occurrence of
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Growth rate Control parameter T Radius threshold Re[
mmday−1

]
[mm]

0.004 (median SSM ) 11 − 18 0.021 − 0.022
0.011 (SSM ) 4 − 6.5 0.065 − 0.073

0.0043 (median LMM ) 10 − 17 0.023 − 0.024
0.013 (median ALM) 3.4 − 5.5 0.079 − 0.092
0.016 (median NM ) 2.75 − 4.5 0.1 − 0.13

0.049 (fast growing NM ) 0.9 − 1.5 > 0.77
0.062 (fast growing DM ) 0.71 − 1.2 > 2.2

Table 4: Abbreviations: superficial spreading melanoma (SSM), lentigo maligna melanoma (LMM), acral lentiginous
melanoma (ALM), nodular melanoma (NM) and desmoplastic melanoma (DM). The parameter T is estimated from
Eq.63 in the (OD) regime and R from Eq.72. The growth rates are reported from [48, 78] and the model parameter are
γ = 0.2day−1 and lp = 0.11 − 0.18mm as reported in table 1.

contour undulations.

Interestingly, our control parameter T indicates a strong correlation between the melanoma
growth rate and the stability of its contour. In particular, theoretical predictions indicate that
fast growing melanoma are more stable than slow growing ones, while regressing melanoma
(negative growth rate) are expected to present short wavelength contour instabilities. Indeed these
results agree with the studies of Liu et al. [48] and Argenziano et al. [78], focused on fast and
slow growingmelanoma, respectively. Using such results, in Table 4 we can estimate the value of
our control parameter for each growth rate, taking into account the reported experimental values
for the model parameters (see Table 1). We typically find T < 1 for fast growing melanoma (i.e.
Vf > 1.5 mm per month, for nodular melanoma), and T > 1 for slow growing melanoma (Vf <
0.4 mm per month), in agreement with the observed morphology of such tumors, respectively
possessing more and less regular contours [48]. We plot in Fig.12 the inverse of this parameter
in function of the growth velocity for different kinds of melanoma.

The combination of our theoretical results and clinical data confirms that general undulations
of the perimeter, known as structure irregularities, may infer the abnormal important histological
signs and have a high correlation with melanomas [68], in opposition with smaller wavelength
texture irregularities. Therefore, the extent of our findings suggests that short-term follow-up
of pigmented skin lesions may be a promising approach to recognize malignant lesion as early
as possible. The correlation of the results from theoretical modeling and simulations tools with
dermoscopy/histopathology data of primary melanomas can eventually drive progress to assess
early diagnostic rules in the short-term clinical follow-up of pigmented skin lesions.

Avascular melanoma is the ideal system model for the theoretical study of tumor devel-
opment, because its radial growth phase can be widely investigated using a simplified two-
dimensional model, both with analytical and numerical techniques. Furthermore, a large amount
of histopathological and clinical data are available in clinical dermatology, allowing validation of
the theoretical predictions with respect to the morphological evolution of different skin lesions.
This work represents a first insight in the multiphase description of such a system model, opening
novel perspectives for future studies concerning the relations between tumor microstructure, cell
phenotypes and contour morphology.
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[14] E. Lázár-Molnár, H. Hegyesi, S. Tóth, A. Falus, Autocrine and paracrine regulation by cytokines and growth factors
in melanoma, Cytokine 12 (2000) 547–554.

[15] V. Cristini, et al., Morphologic instability and cancer invasion, Clin. Cancer Res. 11 (2005) 6772.
[16] S. Eikenberry, C. Thalhauser, Y. Kuang, Tumor-immune interaction, surgical treatment, and cancer recurrence in a

mathematical model of melanoma, PLoS Comput. Biol. 5 (2009) e1000362.
[17] J. R. King, S. J. Franks, Mathematical Modeling of Biological Systems, Birkhauser Edition, Vol. 1, A. Deutsch, L.

Brusch, H. Byrne, G. Vries and H. Herzel, 2007, Ch. Stability properties of some tissue-growth models, p. 175.
[18] H. M. Byrne, M. A. J. Chaplain, Free boundary value problems associated with the growth and development of

multicellular spheroids, Euro. J. Appl. Math. 8 (1997) 639–658.
[19] J. S. Lowengrub, et al., Nonlinear modelling of cancer: Bridging the gap between cells and tumours, Nonlinearity

23 (2010) 1–91.
[20] P. J. Murray, C. M. Edwards, M. J. Tindall, P. K. Maini, From discrete to continuum model of cell dynamics in one

dimension, Phys. Rev. E 80 (2009) 031912.
[21] P. Tracqui, Biophysical models of tumour growth, Rep. Prog. Phys. 72 (2009) 056701–30.
[22] A. R. A. Anderson, V. Quaranta, Integrative mathematical oncology, Nature Rev. Cancer 8 (2008) 227–234.
[23] L. Graziano, L. Preziosi, Modeling of biological materials, Birkhauser Edition, F. Mollica, L. Preziosi and K. R.

Rajagopal, 2007, Ch. Mechanics in tumor growth, pp. 263–313.
[24] C. J. W. Breward, H. M. Byrne, C. E. Lewis, A multiphase model describing vascular tumour growth, Bull. Math.

Biol. 65 (2003) 609–640.
[25] A. Ambrosi, L. Preziosi, Cell adhesion mechanisms and stress relaxation in the mechanics of tumours, Biomech.

Model. Mechanobiol. 8 (2009) 397–413.
[26] V. Cristini, X. Li, J. S. Lowengrub, S. M.Wise, Nonlinear simulations of solid tumor growth using a mixture model:

invasion and branching, J. Math. Biol. 58 (2009) 723–763.
[27] S. Astanin, L.Preziosi, Selected Topics in Cancer Modeling, Birkhauser Edition, N. Bellomo, M. Chaplain and E.

de Andelis, 2008, Ch. Multiphase models of tumour growth, p. 1.
26



[28] M. Ben Amar, C. Chatelain, P. Ciarletta, Contour instabilities in early tumor growth models, Phys. Rev. Lett., in
press.

[29] H. Wiig, R. K. Reed, O. Tenstad, Interstitial fluid pressure, composition of interstitium, and interstitial exclusion
of albumin in hypothyroid rats, Am. J. Physiol. Heart Circ. Physiol. 278 (2000) 1627–1639.

[30] R. K. Jain, Transport of molecules in the tumor interstitium: a review, Cancer Res. 47 (1987) 3039–3051.
[31] P. M. van Kemenade, J. M. Huyghe, L. F. A. Douven, Triphasic fe modeling of skin water barrier, Transp. Porous

Media 50 (2003) 93–109.
[32] R. Halaban, S. Ghosh, P. Duray, J. M. Kirkwood, A. B. Lerner, Human melanocytes cultured from nevi and

melanomas, J. Invest. Dermatol. 87 (1986) 95–101.
[33] L. M. Coussens, Z. Werb, Inflammation and cancer, Nature 420 (2002) 860–867.
[34] P. Vaupel, A. Mayer, Hypoxia in cancer : significance and impact on clinical outcome, Cancer Metastasis Rev. 26

(2007) 225–239.
[35] K. A. O. Ellem, G. F. Kay, The nature of conditioning nutrients for human malignant cultures, J. Cell Sci. 62 (1983)

249–166.
[36] B. Bedogni, M. B. Powell, Hypoxia, melanocytes and melanoma - survival and tumor development in the permis-

sive microenvironment of the skin, Pigment Cell Melanoma Res. 22 (2009) 166–174.
[37] U. Rodeck, et al., Transforming growth factor beta production and responsiveness in normal human melanocytes

and melanoma cells, Cancer Res. 54 (1994) 575–581.
[38] K. Krasagakis, C. Grabe, C. C. Zouboulis, C. E. Orfanos, Growth control of melanocytes and melanoma cells by

cytokines, Melanoma Res. 3 (1993) 26.
[39] A. A. Creasey, et al., Biological properties of human melanoma cells in culture, In Vitro 5 (1979) 342–350.
[40] G. Helmlinger, P. A. Netti, H. C. Lichtenbeld, R. J. Melder, R. K. Jain, Solid stress inhibits the growth of multicel-

lular tumor spheroids, Nature Biotech. 15 (1997) 778–783.
[41] M. Chaplain, L. Graziano, L. Preziosi, Mathematical modelling of the loss os tissue compression responsiveness

and its role in solid tumour development, Math. Med. Biol. 23 (2006) 197–229.
[42] A. Breslow, Thickness, cross-sectional areas and depth of invasion in the prognosis of cutaneous melanoma, Ann.

Surgery 5 (1970) 902–908.
[43] H. M. Shaw, W. H. McCarthy, Small-diameter malignant melanoma: a common diagnosis in new south wales,

australia, J. Am. A. Dermatol. 27 (1992) 679–682.
[44] M. Stucker, et al., The cuteneous uptake of atmospheric oxygen contributes significantly to the oxygen supply of

human dermis and epidermis, J. Physiol. 538 (2002) 985–994.
[45] M. E. Hystad, E. K. Rofstad, Oxygen consumption rate and mitochondrial density in human melanoma monolayer

cultures and multicellular spheroids, Int. J. Cancer 57 (1994) 532–537.
[46] B. Bedogni, et al., The hypoxic microenvironment of the skin contributes to akt-mediated melanocyte transforma-

tion, Cancer Cell 8 (2005) 443–454.
[47] M. E. Johnson, D. Blankschtein, R. Langer, Evaluation of solute permeation through the stratum corneum: lateral

bilayer diffusion as the primary transport mechanism, J. Pharm. Sc. 86 (1997) 1162–1172.
[48] W. Liu, et al., Rate of growth in melanomas, Arch. Dermatol. 142 (2006) 1551–1558.
[49] S. M. Wise, J. S. Lowengrub, H. B. Frieboes, V. Cristini, Three-dimensional multispecies nonlinear tumor growth

- I model and numerical method, J. Theor. Biol. 253 (2008) 524–543.
[50] E. A. Swabb, J. Wei, P. M. Gullino, Diffusion and convection in normal and neoplastic tissues, Cancer Res. 34

(1974) 2814–2822.
[51] M. Doi, A. Onuki, Dynamic coupling between stress and composition in polymer solutions and blends, J. Physique

II 2 (1992) 1631–1656.
[52] C. A. Kristensen, M. Nozue, Y. Boucher, R. K. Jain, Reduction of interstitial fluid pressure after tnf-alpha treatment

of three human melanoma xenografts, British J. Cancer 74 (1996) 533–536.
[53] S. B. Hoath, D. G. Leahy, The organization of human epidermis: functional epidermal units and phi proportionality,

J. Invest. Dermatol. 121 (2003) 1440–1446.
[54] Y. Kuwahara, et al., Quantification of hardness, elasticity and viscosity of the skin of patients with systemic sclerosis

using a novel sensing device (vesmeter): a proposal for a new outcome measurement procedure, Rheumatology 47
(2008) 1018–1024.

[55] D. Ambrosi, L. Preziosi, On the closure of mass balance models for tumor growth, Math. Mod. Meth. Appl. Sci.
12 (2002) 737–754.

[56] E. de Angelis, L. Preziosi, Advection-diffusion models for solid tumor evolution in vivo and related free boundary
problem, Math. Models Meth. Appl. Sci. 10 (2000) 379–407.

[57] L. I. Cardenas-Navia, et al., Tumor-dependent kinetics of partial pressure of oxygen fluctuations during air and
oxygen breathing, Cancer Res. 34 (2004) 6010–6017.

[58] R. Sagebiel, Regression and other factors of prognostic interest in malignant melanoma, Arch. Dermatol. 121
(1985) 1125–1126.

27



[59] L. Brogelli, U. M. Reali, S. Moretti, C. Urso, The prognostic significance of histologic regression in cutaneous
melanoma, Melanoma Res. 2 (1992) 87–91.

[60] R. A. Zeff, A. Freitag, C. M. Grin, J. M. Grant-Kels, The immune response in halo nevi, JAAD 37 (1997) 620–624.
[61] C. M. Bender, S. A. Orszag, Ch. WKB theory.
[62] P. de Gennes, Scaling concepts in polymer physics, cornell university press Edition, 1979.
[63] P. Ciarletta, L. Foret, M. Ben Amar, The radial growth phase of malignant melanoma: multiphase modeling,

numerical simulations and linear stability analysis, J. R. Soc. Interface, in pressdoi:doi:10.1098/rsif.2010.0285.
[64] E. Claridge, P. N. Hall, M. Keefe, J. P. Allen, Shape analysis for classification of malignant melanoma, J. Biomed.

Eng. 14 (1992) 229–234.
[65] T. K. Lee, D. I. McLean, M. S. Atkins, Irregularity index: a new border irregularity measure for cutaneous

melanocytic lesions, Med. Image An. 7 (2002) 47–64.
[66] G. M. Halliday, A. Patel, M. J. Hunt, F. J. Tefany, R. S. Barneston, Spontaneous regression of human

melanoma/nonmelanoma skin cancer: association with infiltrating cd4+ t cells, World J. Surg. 19 (1995) 352–358.
[67] W. H. Clark, L. From, E. A. Bernardino, M. C. Mihm, The histogenesis and biological behavior of primary human

malignant melanoma of the skin, Cancer Res. 29 (1969) 705–726.
[68] V. T. Ng, B. Y. Fung, T. K. Leev, Determining the asymmetry of skin lesion with fuzzy borders, Comput. Biol.

Med. 35 (2005) 103–120.
[69] L. D. Landau, L. M. Lifshitz, Quantum Mechanics Non-Relativistic Theory, elsevier science Edition, 1977.
[70] F. Charru, Instabilités hydrodynamiques, edp sciences paris Edition, CNRS, 2007.
[71] V. Cristini, J. S. Lowengrub, Q. Nie, Nonlinear simulation of tumor growth, J. Math. Biol. 46 (2003) 191–224.
[72] H. Frieboes, X. Zheng, C. Sun, B. Tromberg, R. Gatenby, V. Cristini, An integrated computational/experimental

model of tumor invasion, Cancer Res. 66 (2006) 1597–1604.
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� The early growth of melanoma is modeled using mixture theory 

� Diffusion of nutrients though the epidermis is taken into account 

� The effects of endocrine/paracrine regulation mechanisms are investigated 

� A linear stability analysis is performed with analytical and numerical techniques 

� Predictions on tumor morphology are successfully compared with clinical data 

 




