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SPECTRUM OF HYPERSURFACES WITH SMALL EXTRINSIC
RADIUS OR LARGE )\; IN EUCLIDEAN SPACES

ERWANN AUBRY, JEAN-FRANCOIS GROSJEAN

ABSTRACT. The Reilly and Hasanis-Koutroufiotis inequalities give sharp bounds on A; and
on the extrinsic radius of Euclidean hypersurfaces in term of the L? norm of their mean
curvature. The equality case of these inequalities characterizes the Euclidean spheres. In
this paper, we study the spectral properties of the almost extremal hypersurfaces. We
prove that the spectrum of the limit sphere asymptotically appears in the spectrum of
almost extremal hypersurfaces for these inequalities. We also construct some examples
of extremizing sequences that prove that the limit spectrum can be essentially any closed
subset of RT that contains the spectrum of the limit sphere. We also provide natural sharp
condition to recover exactly the spectrum of the unit sphere.

1. INTRODUCTION

Throughout the paper, X: M™ — R"*! is a closed, connected, immersed Euclidean hy-
persurface (with n > 2). We let vy, be its volume, Bjs its second fundamental form,
Hy = %tr By its mean curvature, r); its extrinsic radius (i.e. the least radius of the Euc-
lidean balls containing M), 0 = A} < AM < A} < ... the non-decreasing sequence of its
eigenvalues labelled with multiplicities, Sp(M) = (AM);cy and its center of mass. For any

function f: M — R, we set || f]la = ( L / \f|0‘dv>
M

Q=

UM

The Hasanis-Koutroufiotis inequality ([8], see also section 3 of this paper) and the Reilly
inequality ([12], see also section 3 of this paper) assert respectively that

(L) {1 <rar[[Hurll2} and {M! < nl|Hy |3}

with equality in one of these inequalities if and only if M is a Euclidean sphere (which is
then uniquely determined).

Our aim is to study the spectral properties of the hypersurfaces that are almost extremal
for at least one of the inequalities (1.1). In the sequel, for any immersed hypersurface

— 1
M < R we let S); be the sphere of radius m and center X = — Xdv. It
UM JM
follows from the above-mentioned results of Hasanis-Koutroufiotis and Reilly that equality
holds in one of the inequalities in (1.1) if and only if M = Sj;.
For any k& > 0, we let ,ugM := k(n+k—1)||H||3 be the k-th eigenvalue of Sy, (labelled

without multiplicities) and my be its multiplicity.

Our first result is the following
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Theorem 1.1. We fit n > 2 and 7 > 0. Then, there exists 9(n,k,7) > 0 depending only
onn, T and k such that for any € < go(n, k,7) and any immersed hypersurface M — R"**1
satisfying

(1.2) either {1 <ryl||H|2 <1+¢€} or {)\M n||H|j2 < (1 —1—5))\{\/[}

then the interval [(1 — T),LLSM
with multiplicities.

(1+ T)uk | contains at least my, eigenvalues of M counted

We will see in the proof that eg(n,k,7) tends to 0 when & — oo or 7 — 0. Note that
almost extremal hypersurfaces for the Reilly inequality must have at least n+ 1 eigenvalues
close to )\fM = n||H||3. However, they can have the topology of any immersed hypersurface
of R"*! (see below) and can be as close as wanted of any closed, connected subset of R"+!
that contains S™ (see [3]). So almost extremal hypersurfaces for the Reilly inequality are
very different from almost extremal manifolds for the Lichnerowicz Inequality in positive
Ricci curvature (see for instance [1]).

Now for any sequence (My)ken, let us define

leSet Sp(My) : m U Sp(My).
keNL>k

This is the union of the limit-sets of all the sequences (uy)reny with ux € Sp(My) for

any k € N. Obviously if (Sp(Mj))r converges to a set F' for the Attouch-Wetts-Hausdorff

distance (see section 2 below for the definition), then Li}gnSet Sp(My) = F. As a consequence
— 00

of Theorem 1.1, we have

Corollary 1.2. Let (My)ren be a sequence of immersed hypersurfaces of R"1 normalized
by |Har,|l2 =1 and such that

(1.3) either { lim 7y, = 1} or { lim /\iw’c = n}
k—oo k—o0

Then we have
LimSet Sp(Mj) D Sp(S").

k—o0

In other words, F' O Sp(S"™) for any limit-point F of the sequence (Sp(Mk))keN for the
Attouch- Wetts-Hausdorff distance.

Conversely, our result is optimal in the sense that any closed set containing the spectrum
of a Euclidean sphere can be achieved as the spectrum of an ”almost extremal” manifold.
This is the object of our second result:

Theorem 1.3. Let M < R"! be any immersed hypersurface. Let F be any closed subset
such that Sp(S") € F C [0,400] . Then there exists a sequence (i) of immersions
ir : M — R such that, denoting M, := i (M), it satisfies

lim ra ||[Hazll2 =1 and lim Sp(My) = F
k—+o0 k—o0

for the Attouch- Wetts-Hausdorff distance. If moreover we have F' C {0} U [n,+oo[ then we
A

AT — 1. The sequence of immersions iy : M — R s such that
k

can obtain limg_, 4 oo



IHar |2 =1 and klim vpm, = vsn. In addition, we have the following curvature properties
—00

(1.4) lim |BMk|°‘dv:/ Ben [*du
k S

k—00 M,

forany 1 < a<n.

Theorem 1.3 is a special case (M; = S™ and My = M) of the more general Theorem 2.1
of Section 3.

Remark 1.4. In the case a = n, we are only able to get a weak version of Theorem 1.3
with F = Sp(M1) U G, where G is a finite set whose elements are known up to an error

term and such that lim IB|"dv is bounded above by a constant that depends on M, on
My,
the cardinal of G, on the distance between G and Sp(My), and on the error term.

We now investigate a natural condition on ”almost extremal” manifolds to rule out the
formation of a non-spherical spectrum. As proved by the authors in [3], any ”almost
extremal” hypersurface is arbitrary Hausdorff-close to its spherical model provided an
L*—control (a > n) on the second fundamental form. This result combined with the
CP pre-compactness theorem of [9] (or a Moser iteration as in [2]) implies the following
stability in Lipschitz distance dy, :

Theorem 1.5. We fix a € (n,+o0], A >0 and 7 > 0. Then there exists eo(n,a, A,7) >0
depending only on n, o, A and T such that for any € < g9 and any immersed hypersurface
M — R™ satisfying

either {1 <ry|Hll2 <1+e} or {M! <nlH|3 < (1+e)A}

and
om|[Blle < A,
then M 1is diffeomorphic to Sy and satisfies dp (M, Sy) < 7.
Moreover there exists e1(n, k,a, A, 7) > 0 depending only on n, k, a, A and T such that
ife <er then N — )\EMI <7

Therefore, Theorem 1.3 is optimal in the sense that it is enough to improve slightly (1.4)
to get convergence to the spectrum of the sphere.

In the following theorem proved in [2], we construct almost extremal hypersurfaces for the
Hasanis-Koutroufiotis inequality, not diffeomorphic to Sp;, Gromov-Hausdorff close to Sy,
with ||H||cc bounded, where the limit spectrum is that of S". But the number of eigenvalues
of M close to each eigenvalue pjp of S™ is a multiple of the multiplicity my.

Theorem 1.6. For any integers l,p there exists sequence of embedded hypersurfaces (Mj),;
of R diffeomorphic to p spheres S™ glued by connected sum along | points, such that
1Bl < COV, 1Byll, < CO), ar, — 1, [Hills — 1, and for any o € N we have

)\U(Mj) — /\E(%)(Sn)
In particular, the M; have at least pmy, eigenvalues close to juy.
The structure of the paper is as follows: in section 2 we state the theorem 2.1 which is a

general construction which gives the theorem 1.3. After a preliminary section 3, where we
give short proofs of the Reilly and Hasanis-Koutroufiotis inequalities, we prove in section 4
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some concentration properties for the volume, the mean curvature and the position vector
X for almost extremal hypersurfaces. Section 5 is devoted to estimates on the restriction
to hypersurfaces of the homogeneous, harmonic polynomials of R"*!. These estimates are
used in Section 6 to prove Theorem 1.1. We end the paper in section 7 by the proof of the
constructions of Theorem 2.1. The results and estimates of this paper are used in [3] to
study the metric shape of the almost extremal hypersurfaces.

Notations: Note that throughout the paper we adopt the notation that C'(n,k,p,---) is
function greater than 1 which depends on p, ¢, n, - - -. It eases the exposition to disregard the
explicit nature of these functions. The convenience of this notation is that even though C
might change from line to line in a calculation it still maintains these basic features. Note
that all these constants are computable. For convenience, we will often write B = By,
H = Hj,, and more generally we will drop the index M in the geometric quantities.

Acknowledgments: Part of this work was done while E.A was invited at the MSI, ANU
Canberra, funded by the PICS-CNRS Progress in Geometric Analysis and Applications.
E.A. thanks P.Delanoe, J.Clutterbuck and J.X. Wang for giving him this opportunity. This
paper was partially funded by the ANR-10-BLAN-0105 (ANR ACG). The authors are
grateful to the anonymous referee for his/her very constructive remarks that helped improve
the presentation of the paper.

2. MISCELLANEOUS ON THEOREMS 1.1 AND 1.3

We will prove the general construction Theorem 2.1 below. As mentioned in the intro-
duction, Theorem 1.3 is an immediate consequence of Theorem 2.1.

Theorem 2.1. Let My, My — R be two immersed compact submanifolds of dimension
m > 3, Mi#Ms be their connected sum and F be any closed subset of (0,+00) containing
Sp(My). Then there exists a sequence of immersions iy : Mi#May — R with induced
metric gr and volume vy such that

(1) ix(M1#Ms) converges to My in Hausdorff topology,
(2) the curvatures of gy satisfy

1 1
lim / IB|%dv = / IB|%dv  for any 1 <a <m
k—o0 Vi ik(Ml#M2) ’UMI M,

1 1
lim / [H|%dv = / H|%v  forany 1< a<m
k—o00 Vk i (M1 #My) UMy J My

(3) klim Sp(in(Mi#Ms)) = F, for the Attouch- Wetts-Hausdorff distance,
—00

(4) lim v = vpy.
k—ro00

Remark 2.2. In the case a = m, we are only able to get a weak version of Theorem 2.1
with F' = Sp(M;) U G, where G is a finite set whose elements are known up to an error

term and where the point (2) is replaced by / IB|"dv is bounded by a constant that
i (M1#M2)
depend on My, My, on the cardinal of G, on the distance between G and Sp(My) and on

the error term.

Now we recall the definition of the Attouch-Wetts-Hausdorff distance for the sets of R. If
da : R — R denotes the distance function to the subset A, we have dy (A, B) = ||da —dB||
and so the Hausdorff topology on compact subsets of R coincides with the topology of
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the uniform convergence on R of the associated distance functions. Seemingly, on the
set, of closed subset of R we consider the Attouch-Wetts topology, that is the topology of
the uniform convergence on compact subsets of the distance functions. It is a complete,
metrizable topology induced by the distance

daw (A, B) Z 2” Nlnf 1, sup |da(z)—dp(z))
NeN* z€[0,N]
We have h,]fm daw (Ag, B) = 0 if and only if li}fn dn(Ag, B) =0 for any N € N large enough,
where
dn(A,B) =inf{e >0| AN[0,N] C B- et BN[0,N] C A:}
and A; :={z € R|d(z,A) < €} (see the proof of Proposition 3.1.6 in [5]).

In the proof of theorem of 2.1, we will need of the following construction. If F'is a closed
subset of R, there exists an increasing sequence of finite sets Fyy := {x1,- - ,zk, } such that

kn

1 1

Fy C[0,N]NF C U <azz — 3y i + N> = Fy1/n- In this case we can easily prove that
1=

lim daw(Fy,F)=0and F = LimSetFly.

N—00 N—00

3. SOME GEOMETRIC OPTIMAL INEQUALITIES

Any function F on R"*! gives rise to a function Fo X on M which, for more convenience,
will be also denoted F' subsequently. If A denotes the Laplace operator of (M, g), then we
have

(3.1) AF = nHdF (v) + A°F + VdF (v,v),
where v denotes a local normal vector field of M in R**!, V0 is the Euclidean connection

and AY is the Laplace operator of R"*!. Applied to F(z) = (r — X,z — X), where (-,-) is
the canonical product on R**!, Formula 3.1 gives the Hsiung formulae,

1 — — —
(3.2) 5A|X—X|2 =nH (v, X - X) —n, / H(v, X — X)dv = vy
M

3.1. A rough geometrical bound. The integrated Hsiung formula (3.2) and the Cauchy-
Schwarz inequality give the following

H{v, X — X)dv —
(33 1= [ FEE S ) x - X
M UM

This inequality ||H||2[|X — X2 > 1 is optimal since M satisfies ||H]|2[X — XH2 =1 if and
only if M is a sphere of radius W and center X. Indeed, in this case X — X and v are
collinear on M \ {H = 0}, hence | X — X|? (and so H) is locally constant on M \ {H = 0}.
By connectedness and compactness of M, this implies that H is constant and non zero on
M. {H = 0} = () and that X is an isometric-cover of M on the sphere S of center X and
radius || X — X |2 = m, hence an isometry.

3.2. Hasanis-Koutroufiotis inequality on extrinsic radius. We set R the extrinsic
Radius of M, i.e. the least radius of the balls of R"*! which contain M. Then Inequality
(3.3) gives [[Hllgrar = [[Hll; infyegnts [ X —ulloo > |H][2 inf X —ull = |[H[2 X - X >

1 and ryr = if and only if we have equality in (3.3).

1
[[Hl2
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3.3. Reilly inequality on )\11\4. Since we have ﬁ / (X; — X;) dv = 0 for any component
_ M
function of X — X, by the min-max principle and Inequality (3.3), we have A\}M HHHQ <
M|IX - X3 = )\{WZHXZ - X3 < ZHVXzH% = n where AM is the first non-zero
i i

eigenvalue of M and where the last equality comes from the fact that Z |VX;|? is the

i
trace with respect to the canonical scalar product of the quadratic form Q(u) = |p(u)|?,
where p is the orthogonal projector from R™"*! to T, M. This gives the Reilly inequality in
(1.1).

Here also, equality in the Reilly inequality gives equality in 3.3 and so it characterizes the

sphere of radius ”H” = X2 = \/%

4. CONCENTRATION ESTIMATES

In the section, we prove that almost extremal hypersurfaces are close to a sphere and
have almost constant mean curvature in L?-norm.

We say that M satisfies the pinching (P, ) when ||[H||,||X — X||2 < 1+¢. From the proofs
of Inequalities (1.1) above, it appears that pinchings rp/||H|l2 < 1+ ¢ or n||H||3/A\ < 1+¢
imply the pinching (P2.). In all the results of this section, we have 0 < ¢ < 1.

From now on, we assume, without loss of generality, that X = 0. Let X7 (x) denote the
orthogonal projection of X (x) on the tangent space T, M. In the following lemma, we see
that the position vector X almost satisfies, in L?-norm, characteristics properties of the
Euclidean spheres (X7 = 0).

Lemma 4.1. If (Py.) holds, then we have | XT|2 < V3| X|2 and || X — ﬁl/”g <
2
V3¢ ]| X2
Proof. Since we have 1 = U}M/ H(X,v)dv < |H|2|{(X,v)||2, Inequality (P.) gives us
M

X2 < (1 +€)||<X V)2 and 1 < HH\IzllXHz < 1+e Hence [X — (X, v)r]y < V3e|X],
and [|X — 3 (3 = XI5 — [HIZ? < 3¢ [1X]5.

HHII2

In the lemma below, we see that in L?-norm, M is close to a sphere and has L?-almost
constant mean curvature. In particular, the volume of M is concentrated in a tubular

neighborhood A, of the sphere Sy; where A, := By( ‘II;‘Z) \ BO( LI L) for some 7.

Lemma 4.2. If (P,.) (for p > 2), or n||H|3/AM < 1+¢, or ry||H|l2 < 1+ ¢ holds
(with & < 100) then we have |HX| ”H”2H2 < m\@, IIH] — [|[H||2]l2 < C¥¢|H|l2 and

Vol (M \ Agz) < C¥/evn, where C =6 x 2522 in the case (Pp:) and C =100 in the other

cases.

Proof. When (P, ) holds, we have

1—2 2
[H[lpll X2 < (1 +e) < @+ [ H[p[1 X2 < @+ H]L[X, X2,



2 X 2p_
hence we get H]X]—mHg = HXH%—2|‘|‘HH21 + oy < 2072

EIE ﬁa. Combined with the second
2 2

inequality of Lemma 4.1, it gives

1] = E, < [HIE]IX] - + [H[3][1X] - CVellH]2

gl TR

Now, by the Chebyshev inequality and Lemma 4.1, we get
4
_ 7} > ﬁ}
[z~ [H]2
||H||2 /
| X dv < C(p)vevm
| IIHH ’

When 7/ ||H||5 < 14 € holds. We set Xo the center of the circumsphere to M of radius

Vol (M\A%) :VOI{:EEM/HX(:E)

rar. We have | X — Xol3 = || X3+ X0 =73, < (ﬁ;ﬁ% and then we have | Xy| < ﬁ and
2
| X| < | Xo|+rm < llJer:I))II[ So we have ”Hl”% — X% € [Hf{/“i T H2] on M\ Ayz. Chebyshev
inequality and (3.3) give us
Vol(M\ Aa 4 1 1
WA Age) VE L ( 2—\X|2>dv
UM IHIZ ~ oa Jana, \IHI3
1 1 9
<o [ (1XP - ) o<
v Juna, IH[2 IIH]3
where in the last inequality we have used |X| < IIJIFI;))IT/E and, so we get
1 1 1 2
I X|— ——|, = — | X — dv+ — | X| — ——|"dv
H ([H][2 I Y MﬂA%‘ ||H||2‘ Y M\A%‘ ||H||2‘
VE +V01(M\A%) 1 10\[
T UM |13 HH||2
Combined with the second inequality of Lemma 4.1, we get HL 1 C Ve
duatity Rl (11 P | PR 1P

When n||H||2/AM < 14¢ holds, we have / (|X|2 - HXH%) dv = 0 and so by the Poincare
M

. . 2 4||x72 12(14€)2¢|| X ||2

inequality we get H]X\2—|]X|]§H2 ”/\MHQ < ( ﬁ%ﬂi‘ I3 < nzlﬁgﬁ%,
2 2 12,/

||H||2H2 < [[IxP? - ||H||2H2 < [[1IXP = IX13 ], + [1X15 — ||H|\2| < 7apz and then we get the

estimate on the volume of A 4z by the same Chebyshev procedure as for P,. and the

. . 1
which gives |1X]—

estimate on the mean curvature by the same procedure as for ry/||Hlj2 < 1 +e. O

For our last estimates, we need some notations. Let 1:[0,00) — [0,1] be a smooth

: : — ; (-2 Ye)? (142 1«%)2} _ (- We)? (1+ We)?
function with ¢=0 outside [ 2 and =1 on | HE A ]. Let us
consider the function ¢ on M defined by p(z) = (| X,|*) and the vector field Z on M
defined by Z = v — HX. For any sphere RS", Z is vanishing. The previous estimates then

imply the following lemma and we see that in L?-norm, Z is small.
Lemma 4.3. (P,.) (for p > 2) or n|[H[3/A\ < 1+ ¢ or ry||H[l2 < 1+ € implies |[H* —

||H||%H1 < C¥e|HIE, 122 < Cess and loll2 — 1] < C¥e, where C is a constant which
depends on p in the case (P,:).
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Proof WehaveHHLHHHQHlé?HIH\ Hl2 |, [[H> < € §/]H]3 and

1
||Z||2—/ ‘Z| dy = — / 1 — 2H(v, X>+H2|X| dv
UM
HHHz/’ 2o+ — / (IH[3 - H2)(1 — [X[2[|H[3)dv
||H||2 ||H||2 oM
|H? — [[H]3]
<[H)3)1x - FBNE
2l ”HH? vl |13
Vol (M\ A Vol (A g_NM
which gives the result by Lemma 4.1. Finally, we have 1— 2 (m\j ve) < o v?jm ) < HQDH%
and [|p||3 < 1. -

5. HOMOGENEOUS, HARMONIC POLYNOMIALS OF DEGREE k

The eigenfunctions of S™ are restrictions to S™ of homogeneous, harmonic polynomials
of the ambient space R**!. To prove Theorem 1.1, we will use restrictions to M of homo-
geneous, harmonic polynomials as quasi-modes. In that purpose, we prove in this section,
some estimates on harmonic homogeneous polynomials and their restrictions to Euclidean
hypersurfaces.

5.1. General estimates. Let H*(R"*!) be the space of homogeneous, harmonic polyno-
mials of degree k on R™!'. Note that H*(R"*!) induces on S™ the spaces of eigenfunc-

tions of A" associated to the eigenvalues py := k(n + k — 1) with multiplicity mj, :=
n+k—1\n+2k-1
k n+k—1"
1
On the space H*(R" 1), we set (P, Q)g = / PQdvcan , where dveq, denotes the
'USTL n

element volume of the sphere with its standard metric.
Remind that for any P € H*(R"*!) and any X,Y € R"*!, we have the Euler identities

(5.1) dx P(X) = kP(X) and V'dx P(X,Y) = (k — 1)dx P(Y).
Lemma 5.1. For any z € R"*! and P € H*¥(R"*1Y), we have |P(x)? < ||P||2.my|z|?.

Proof. Let (P;)1<i<m, be an orthonormal basis of H*(R"*!). For any = € S", Q.(P) =
my

P2%(z) is a quadratic form on H¥(R"*!) whose trace is given by Z P?(x). Since for any
i=1

' € S" and any O € O,y such that ' = Ox we have Q./(P) = Qz(P o O) and since

mpg k
P +— PoO is an isometry of H¥(R"*!) we have ZPiQ(x) = tr(Q) = ZPZQ(QC’) =
i=1 ]

tr (Q,). We infer that Z / P2 )dVcan = My = — <Z P2 ) dVean and so
vsn n

Z P?(x) = my. By homogeneity of the P; we get

my
(5.2) > P(x) = my|z*",
i=1
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and by the Cauchy-Schwarz inequality applied to P(z) = Z(P, P;)sn Py(x), we get the

)

result. O
As an immediate consequence, we have the following lemma.

Lemma 5.2. For any z,u € R"™! and P € H¥(R"*1), we have

Hk - Mk _
|d P (u)]? < HPHénmk <?|$\2(k 1)]u|2 + (k2 — ;)(u, x>2|x]2(k 2))_

Proof. Let x € S™ and u € S™ so that (u,z) = 0. Once again the quadratic forms
Qzu(P) = (algCP(u))2 are conjugate (since Op41 acts transitively on orthonormal couples)

my
and so Z(dzPZ(u))2 does not depend on u € - nor on z € S*. By choosing an orthonor-
i=1
mal basis (u;)1<j<n of 1, we obtain that
mg

S (deP(w)’ = %ZZ(dei(uj))Q _ / SO VS Py 2dvean
i=1

nu
i=1 i=1 j=1 S

1 o M
- / ZPZAg -Pidvcan - e
" =1

nuvsn n

Now suppose that v € R"*!. Then u = v + (u, )z, where v = u — (u, )z, and we have

S (dePi(w)? =D (doPi(v) + ku, 2)Pi(x))?
=1 =1
= Zk:(dei(v))Q + 2k (u, z) Zk: dy P;(v) Py() + my (u, z)%k?
=1 =1

= MMZ + my (u, x>2k2 = my <%|ul2 + (k2 — %) <u,x>2) ,
n n n

my
where we have taken the derivative the equality (5.2) to compute Zdsz(v)Pz(m) By
i=1

mg
homogeneity of P; we get Z(alggpz(u))2 = (B |z 2E D0 4 (k2 — 25 (u, 3)2|z]2*-2)

and conclude once again by_the Cauchy-Schwarz inequality. U
Lemma 5.3. For any x € R"! and P € HF(R™1), we have
VOdP(@)* < || Pgwmpcrn iz,
where oy g = (k — 1)(k* + i) (n + 2k — 3) < C(n)k?.
Proof. The Bochner equality gives

mp my

1
> IVdP(z)P =) ((dAOR,dR) - QAO\dP,-F)

i=1 i=1

1 _ _
(5_3) = _imk(kQ + Mk)AofX!% 2 _ mkan,k!X!% 4
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5.2. Estimates on hypersurfaces. The main result of this section is the Lemma 5.6
which is fundamental in the proof of theorem 1.1. It controls the defect of the localized
restriction map P € H¥(R"!)  |[H||5pP o X € L?(M) to be an isometry. Note that it
applies to any Euclidean hypersurface. In the case of almost extremal hypersurface, it will
proves that the localized restriction map is a quasi isometry (see Lemma 6.1).

Let H¥(M) = {Po X , P € H¥(R"!)} be the space of functions induced on M by
HF(R™1). We will identify P and Po X subsequently. There is no ambiguity since we have

Lemma 5.4. Let M™ be a compact manifold immersed by X in R**! and let (Py,..., Py)
be a linearly independent set of homogeneous polynomials of degree k on R"™1. Then the
set (Pro X, ..., Py oX) is also linearly independent.

Proof. Any homogeneous polynomial P which is zero on M is zero on the cone RT-M. Since
M is compact there exists a point € M so that X, ¢ T,,M and so R*-M has non empty
interior. Hence P o X = 0 implies P = 0. (|

We first need to precise the localisation functions ¢ for which Lemma 5.6 applies. Let

0 < n < 1 be fixed. We still denote ¢ : [0, 00) — [0, 1] a smooth function which is 0 outside
4||H||3

(1-n)? (1+n)2] - [(1*77/2)2 (1+n/2)2] ; /

THIZ ”HJJ% ,is 1 on HE ] and satisfies the upper bounds |¢| < 7 and
"] < 8”77%. We set o(z) = (| X.|?) on M.
Lemma 5.5. With the above restrictions on v we have

192||H||3 167/ H||3
1A% < — 52211 XT3 + — 21 Zx
Proof. An easy computation yields that
Ap?) = =" (I X)X + () (1 X *)AlX [
= —4*)" (IXP)XT[? = 2n(0?) (1X[) (v, Z)
- : 2v/|  SIHI3 2y 48[H[I3
But the bound on the derivatives of ¥ gives us |(%)’| < 7~ and |(*)"| < 7 - Hence
192||H||4 16n||H||2

we get [|Ap?y < 2G| X T2 4 nEE 7). 0

Lemma 5.6. Let ¢ : M — [0,1] be as above. There exists a constant C = C(n) such that
for any isometrically immersed hypersurface M of R" and any P € HF (M), we have

k
2 2 !
[IH[I3*19PlI5 = [lell3 | Pll3:| < DC(n) [PlI3. Y mi(1+n)*
=1
IH2—|[H] 13l
(IH||2

Proof. For any P € H*(M), the Euler identities (5.1) give us
leVOPI3 = ledPW)5 + loV™ Pl
=llpdP(2)|3 + | dP(HX)]3

2
where D = ||Zl2 + 1|1 2|3 + 2212 x4 )12 + 102 z1], + and Z = v — XH.

- Ui (20*HdP(Z)dP(X) + (VM p? P, VM P) — %(VM<,02, vMP?))dv
M JM

1 1
~llpdP(2) 5+ RIGHPIE + - [ (2HHAP(pZ)oP + ¢*PAP - SPA)do



11
Now, Formula (3.1) applied to P € H*(R"*1) gives

(5.4) AP = i H2P + (n+ 2k — 2)HdP(Z) + V°dP(Z, Z)

hence, we get

lpVOPI3 =[dP(0Z)|3 + (ux + k)[[HeP|3

1 1
+— ( 2pPV°P(Z,Z) 4 (n + 4k — 2)pHdP(pZ)P — §P2A(g02))dv
/ (ur, + &) (H? — |H|)3)¢*P? + (n + 4k — 2)HdP(<pZ)gpP> dv

1

+— [ (PVY%P(pZ,oZ) — =P>A(p?))dv
UM JMm 2

+ (u + K)HE[ZI0PIZ + [dP(2)]3

Now we have

2 n 2
(55) V0PI, = |95 P|| , + K2 1P = G+ K 1P

Hence

IH[3521 oV PI3=llll3 VO30 = (52 (IHIZE |0 PIB~ Il el3 11PI13:) + I HIZE 2] dP(02)]3
H 2k—2
”JJM /M @2P((uk + k%) (H? — ||H||3) P + H(n + 4k — 2)dP(Z) + V'dP(Z, Z))dv

H 2k—2 1
” H / *PQA(QOQ)CZ'U
VM M 2
Which gives

(5.6) ’IIHH%'“IIwPII%—||90||§||P!|§n

< | IHIE 219 PI = el VO,
B3 . S
+ 122 | ((n+ 4k = 2)H|g| PllAP(02)] + |dP(p2)] + [PV P4 Z]?)
i+ kS
L I3

P2
/ (¥*[H? - ||H||§\132+f2 |A(p?)])dv
M

By Lemma 5.1, we have

[ e P [
Tl [ gy < T e - ) X P

UM

) 22 — ()l
Pl mi(L )™ E e
2

In the same way, we have

HHH% 2/ P2 2 2 2k||A802||1
—|A(e)|dv < ||P||sn mi(1+1n
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and using Lemma 5.2, we get

2 ok 2
=2 [ Q2| PdP(Z)H|dv < || P2 mek(1 4+ n)*][0* 2|2
VM M
and
\Hu% ! , [H]j22 H”‘” 2 o
/ dP(o2)? < ||P||Znmick / o Z P X 2D

< |IP|g. mkk2(1 + n)QkHclelz
Finally, using Lemma 5.3, we get
HIIHQk 2 ‘ 2k 2
[PV Pz < Pl [ X Pz do

< |IPllg mk\/an,k(l + 77)%HSOZH2
which, combined with (5.6) and equation (5.5), gives

2k—2 2
WP — Dl 1PI3 _ [TELIE 21 °PI3 — el | 9Pyl

HpHén h HvopHgn
1A, 9?(H2 = [[H|)]]
+ Cme@ + 0 (22l + 9213 + ||H||2‘ i IIHIIHQ 5
2 2

2
O e o 2 1 il
V0PI,

C(nymy,(1 +n)* D

where we have used the previous lemma. Since in case k = 1, |[VP| is constant we get

2 2
H[310P5 = lell3 1 Pllge| < Cn)ma(l +n)*DIIP|5,

2
Now, let By = sup{ ‘”HH%IQH@PH‘EH;MEHPHS”| | P e HFRM N\ {0}} Then using that for
sn

any P € HE(R"1), we have [VOP|2 =Y, |0;P|? with 0;P € HFL(R"1), we get

113211 VOPIB — 0l |0 Pl[5a] < D IHIZ2ll00:PI3 — 013 10: P13 |
i
<Bg-1 Z 10:P|I5. = Bi—1 HVOPH;
i

and by (5.5), it gives By, < By_1 + C(n)mg(1+1)?*D < C(n)D Zle m;(1+n)?. 0

6. PROOF OF THEOREM 1.1

To prove theorem 1.1 we will show (Lemma 6.3) that for extremal hypersurfaces M, the
fucntions P are almost eigenfunctions of M in L? sense.

The estimates of Lemmas 6.3 and 6.1 need to be compared to the fact proved in proved in
[3] that the limit set for the Hausdorff distance of an extremizing sequence of hypersurfaces
can contain any closed, connected subset of R®*! that contains S™.

Under the assumption of Theorem 1.1, we can use Lemma 4.1, Lemma 4.3 and the
pinching P, . to improve the estimate in Lemma 5.6 in the case n = 2 Y/e.
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Lemma 6.1. For any isometrically immersed hypersurface M < R™ 1 with rp||H||o < 1+€
(or M1 (1 +¢)? = n||H||2 or (P,e) for p>2) and for any P € H¥(M), we have

Il PlI3 — I Plls] < C ¥/EIPll5n

where C'= C(n, k) in the first two cases and C' = C(p, k,n) in the latter case. Note that C
tends to infinity when k tends to infinity.

As a consequence, the map P+ @P is injective on H¥(M) for ¢ small enough and is a
quasi-isometry.

Lemma 6.2. Under the assumption of Lemma 6.1, if € < W then dim(eH*(M)) = my.

Lemma 6.1 allows us to prove the following estimate on AP, which says that for extremal
hypersurfaces, P is in L?-norm an almost eigenfunction on M.

Lemma 6.3. Under the assumptions of Lemma 6.1, if € < ﬁ, then for any P € H* (M),

we have ||A(pP) — SM(,OPHQ %MEI\JHQOPHQ where C' = C(n, k) (C = C(n,k,p) under
the pinching (P,¢)).

Proof. Let P € H¥(M). Using (3.1) we have
A(pP) =PAyp — 2(dP,dyp) + pAP = PA@ — 2(dP,dyp) + onHdP(v) + ¢V dP(v,v)

H
=PAp — 2(dP, dy) + o H|||H||2P + p(n + k — 1)@

(IH| — [H]l2)dP(v) + oV dP (v, Z)

[H||2dP(Z)

+ ¢ (n+k:—1)| i

hence, we get

IA(PP) — prl H|I30Pll2 < [[(Ap)Pllz + 2[| {de, dP) [l + || (|H| — [ H [[2)¢ Pll2|[H]|2
(6.1)
+ (n+k=1)[[H[2llp|dP|| Z]l|2 + (n+k—=1)||o(H| — [H]}2)dP(¥)]|, + o[V dP||Z]]2

Let us estimate ||(Ag)P||2.

1 I /
I(A¢)Pllz < — / (A" (IXIXT? + 20]y(1X )| 2])* P2dv
M JM

m 2
<o /M X2 (41 (XX + 20l (1X )] 121) o) (123
my (142 /2) 81213 2] )
<o TEE (221X 4 2n =22 2)) o) || P
UM | HQ Ay 162 Ve Ve
1+ 2 ¥/e)%k 128||H H
o me(L+2 V) / ( LIS yrya g2 1AL ||2|Z|2> o) 1P,
o [HIE Vi, \ Ve Ve

2 16z
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Since we have | X 7| < |X| and since Lemma 4.3 is valid with || Z||3 replaced by i / | Z|%dv,
Ay 1gz

we get

C(n, k). || Pgn H|S H|4

UM HHHQ Ay 162 e f
C(n, k) g
< SO Bk 14 92 IR,
I H]]3
From the lemma 6.1, € < (20)32 implies that

(6.2) 1P[3 < 2[HI3* o Pll3
which gives
(6.3) 1(Ap)PII3 < C(n, k)ux| | H|l2 VelloP|3
Now

16(|H||4
I (o, dP) I < 4l (X P)xT 1P| 3 < 291l [ ixtPiappa

Wevn 216z
16||H
< 16“ ||2 HPHSn/ ’XT|2mknk2’X’2(k71)d,U
fv 216z
(6.4) < Cln, k), WelHI3™ P[5, < Cln, k)[IH]I3 Vel 0P
By the same way, we get
(6.5) leldP|Z|[5 < C(n, k) |HIIZ Vel PlI3

Now, by Lemma 4.2, we have

mg
I([H] = [IH]l2) P13 < - IIPllén/ [H| = | H 2| X [*p*dv

C( k) 2
< 1PN3 le (| H | = [ H]I2)]3
[EiP
(6.6) < C(n, k)| H|J3 Vel o PlI3
By the same way, we get
(6.7) le(1H] — [H][2)dP(v)|3 < C(n, k) Vel H2ll0 Pl

Now let us estimate the last terms of (6.1)
C(n, k) _
loiv°apl|ZII3 < S iR, [ sz
vM M
(6.8) < C(n, k)l H |3 Vel Pl
Reporting (6.3), (6.4), (6.5), (6.6), (6.7) and (6.8) in (6.1) we get
IA(@P) = p | H|30Pl2 < C(n, k) ¥epxl| H |30 Pll2
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Let Ej} be the space spanned by the eigenfunctions of M associated to an eigenvalue in the
interval [(1 — ¥/22C(n, k:))ufM, (14 ¥/e2C(n, k:))ufM] If dim £} < my, then there exists
@P € (pH*(M))\ {0} which is L%-orthogonal to E¥. Let ¢P = Z fi be the decomposition

i
of P in the Hilbert basis given by the eigenfunctions f; of M associated respectively to
Ai. Putting N := {i/ f; ¢ E;}, by assumption on P we have

2
4C(n, k)2 V(™)1 ePll3 < Y (N — ™) NI £ill3 = 1A(9P) — 1M 0P|
iEN
< (upM)2C(n, k) Vel P13

which gives a contradiction. We then have dim E} > my. This complete the proof of
theorem 1.1.

7. PROOF OF THEOREM 2.1

We adapt the constructions made in [4, 13, 3]. There will be two steps. We first con-
sider submanifolds obtained by connected sum of a small submanifold e My with a fixed
submanifold M; along a small, adequately pinched cylinder €7}. Note that contrary to the
constructions in [4, 13], this is a 2 scales collapsing sequence of submanifolds. It will first
give Theorem 2.1 in the case where F'\ Sp(M;) is a singleton. We will then get the general
case by iterating the construction (i.e. by glueing several such cylinders).

Subsequently, for any subset A of R"*! we denote by AA the set obtained by applying
an homothety of factor A to A.

7.1. Case F' = Sp(M;) U {A}.

7.1.1. Flattening of submanifolds. For any submanifold M of R"*! and ¢ > 0 small enough,
we set M¢ a submanifold of R"*! obtained by smooth deformation of M at the neighbour-
hood of a point zg € M such that By, (4¢) is flat in M€ and M€ \ B,,(10¢) is a subset of
M. We also set M¢ = M\ By, (3¢) whose boundary has a neighbourhood isometric to the
flat annulus By(4¢) \ Bo(3¢) in R™. We describe precisely how to construct such flattening
M? in [3] so that it also satisfies the following curvature estimates for any a > 1.

lim ]Heladv:lim/ ]H5|adv:/ [H|%dv
e—0 Mg e—0 Me M

lim |Be|“dv = lim/ |Be|“dv —/ IB|“dv
e—0 Ms e—0 Me M
Note that H'(M¢®) tends to isometric to H'(M) as € tends to 0.

For more convenience in this section the norms in the different spaces will not be nor-
malized by the volume.

7.1.2. A small manifold with a prescribed eigenvalue. Let My, Mo be 2 manifolds of di-
mension m isometrically immersed in R®*! and A\, L be some positive real numbers with
A ¢ Sp(M;) and L > max(1, %W), where d is the distance A to Sp(M;) and C'is
a constant that wil be fixed later. 3

Let 0 < 1 < 1 small enough such that the flattening M. of My around the point
exists. Let D be a smooth hypersurface of revolution in R™*!, composed of three parts,
D1, Dy, D3, where D; is a cylinder of revolution isometric to Bo(3) \ Bo(2) € R™*! at
the neighbourhood of one of its boundary component and isometric to [0,1] x S™~! at the
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neighbourhood of its other boundary component, where Dy = [0, L] x S™~! and where D3
is a disc of revolution with pole z3 and isometric to [0,1] x S™~! at its boundary and to
a flat disc at the neighbourhood of x3. Let C' be a cylinder of revolution of dimension m
isometric to By(2) \ Bo(1) C R™ at the neighbourhood of its 2 boundary components.

= 4

For any v < 1/4 small enough, the gluing of My \ By, (2v), of vC and of D\ B,,(2v) along
their isometric boundary components exists and is a smoothly immersed submanifold 7, of
dimension m.

By now classical arguments (see for instance [4]), when v tends to 0, the Dirichlet spec-
trum of T}, converges to the disjoint union of the Dirichlet spectrum of D and of the spectrum
of Mzn . In particular, the limit spectrum has 0 as isolated eigenvalue with multiplicity one.
Moreover, since A (77) has multiplicity one, it depends continuously on v.

We infer that for any e < go(A, ]\;[;7, L, Dy, D3, C) there exists v < vg(A, Mg, L, Dy, Ds,C)
such that AP (7)) = €2\ and AP(T) > Ax(\, My, L, D1, D3,C) > 0. We set T. = T,
Note that for any ¢ < g¢, we have

As
(7.1) M(T) =X and MP(T0) > =
T:
MY .C D

7.1.3. Gluing and control of its curvature. Now let x1 € M7 and ¢ > 0 fixed. We first
assume that By, (4¢) U M; is flat. For any € < ¢, we set M = M{lC \ Bz, (3g). So we set
M. the m-submanifold of R"™! obtained by gluing M{ and T. along their boundaries in a
fixed direction v € Ny, M;. Note that M, is a smooth immersion i of M;#Ms (resp. an
embedding when M; and My are embedded).

By the computations above, the sequence i.(My#Ms) = M, converges to M; in Hausdorff
distance and we have

(7.2) / |He|%dv < e™™¢ (/ |He|“dv + C'(m, ) L —|—/ ]H5|O‘dv>
M. M;IUVECUDluDg My
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(7.3) / IB.|*dv < &m / IB.|*dv + C(m, a) L +/ IB.|"dv
e M;]UI/gCUDluDg My

7.1.4. Computation of the spectrum of M.. We will prove that there exists a sequence
(€p)pen such that €, — 0 and the spectrum of M., converges to the disjoint union of
Sp(M;) and of {)\}, where X satisfies \ — % < A < . The collapsing of M, is
multiscale, after rescaling of T;, we get another collapsing sequence of submanifolds with no
uniform control of the trace and Sobolev Inequalities, so the cutting and rescaling technique
of [4, 13] does not work directly in our case and need to be adapted.

We denote by (Ag)ren the union with multiplicities of the spectrum of M; and of {\},
by (A7)ken the spectrum of M. and by (u})ken the Dirichlet spectrum of the disjoint union
T. U M;. By the Dirichlet principle, we have A\; < uf for any k € N. It is well known (see
for instance [7]) that the Dirichlet spectrum of M7 converges to the spectrum of M;. We

infer that pf — Ay as € — 0 and so lim Sélp A, < A for any k£ € N.
E—>
We set «p = lim iélf M- To get some lower bound on the oy, we need some local trace

inequalities at thea;;eighbourhood of OM;.
Local trace Inequalities.

We set Sy = {x € T, | d(z,0T.) = —t} for any t < 0 and S; = {x € M5 | d(z,0MS) =t}
for any t > 0. Obviously we have 071, = Sy = OM;. Let €l be the distance in M, between
M; and €Dy (i.e. [ is the distance between the two boundary components of Dq in Dy).

Let n: [—(1+ L+ 1)e,{] — [0,1] be a smooth function such that n(t) = 1 for any t < %,
n(¢) =0 and |1/| < %. For any r € [—(1+ L +1)&,(] and any f € H'(M.), we have :

/ fdo, = f(r, u)20€(7“, u)du
Sr So

2

:/SO< Tgfi[n(')f("u)]dS) O (r, u)du

-/ ( [ (Zmoscovotn) ﬁdw)w u)du
¢

For r € [—¢,({] and m > 3 :

¢ ¢ (14~
/ 95(T, u) ds = / ( + 3e m—1d5
r HE(Sau) r (1 + %)

:<1+L>m*1 3e [_ 1 }
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And if r € [-(1 4+ L + 1)e, —¢] using the fact that 6.(s,u) is increasing in s we have :

< 0. (r,u) 0 (r,u) € 0.(—c,u)
/r Bg(s,u)ds < : eg(s’u)ds + /E mds < C(m)(e+r])

</SO/ @l (o0l u)dsdu> N
) </SO /TC <§sf('7“)>298(s,u)dst> "

(7.4) < (e + DI ary
First estimates on eigenfunctions.
We now use this local trace inequality to get some estimates on the eigenfunctions of
M.. We set ¢ : M. — [0,1] be a smooth function equal to 1 on M?® \ U Ss,
—(I4+L)e<s<e

which gives

f2do, < C(m)(e+|r|)

Sp

equal to 0 on U S, and such that |dg| < 2 on U Ss and |dp| < ﬁ on
—(+L—VTL)e<s<e/2 e/2<s<e
U S,. For any f1, fo € H'(M.), integration of Inequality (7.4) gives us

—(I4+L)e<s<—(I+L—VL)e

flfzdv—/ e fipfadv
M. M,

</ 0% — 1]| ]| feldv
M

c 1/2 1/2
<[ ([nean) ([ inpae) as
—(d+L)e \Js, S,

IS
< (O fullzr s | foll s arey / o eI

—(l+L)e

(7.5) < (¢ L L) full i ary | foll oy
and putting I. = [~(1 4+ L)e, —(I + L — VL)e] U [¢/2, €] we have
| dtorPao < [ (doPs? + 200 (dhrsde) + ol P)de

€

AL (o)
([ o)) () v

(76) < C(C7Z7L)||f1”§{1(M5)

Let (f;) be a L?-orthonormal, complete set of eigenfunctions of M,. For any k, we set
[ the function on M; equal to ¢f; on M7 and extended by 0. By Inequality (7.6), we
have || f; |2 (M) < e(M1)(1+ Ag) for € small enough. We infer by diagonal extraction that

there exists some sequences (£,)pen and (hy)geny € H'(Mp)Y such that A\;? — oy and (f;p)p
converges weakly in H'(M;) and strongly in L?(M;) to hy, for any k. It is easy to prove
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that hy is a weak solution of Ahy, = aghy on H'(My \ {z1}) = H'(M;) (see for instance
[13]). By elliptic regularity, either hy = 0 or «y, is an eigenvalue of M.

Estimate (7.4) will not be good enough to control the eigenvalues A\; whose eigenfunctions
tends to concentrate on 7. so we need to improve it.
Improved estimate on eigenfunctions.

Let ko € N such that Ay, = A. Since Dy isometric to [0, L] x S™~1, any f;p can be seen as
a function on [0,£,L] x £,S™ 1. For any f = Z Bif:? € Vect{f;" | i < ko}, we define the

i<ko

rescaling F, on ¢ = [0,1] x S™~1 by F,(t,z) = sp%_lL_%f(eth,spx). By Inequality (7.4),

we have
/F2dv— L Py = /_d (/ dea)dr
¢’ e2L? J., p, e2L% J_cr4y \Us, '
c(My) /El 2
< e+ r)dr | ||f
E (ﬁ@m< rlyar ) 173 o,
B I+1 1 )
=) (C5 5 NI
1 1
F2dv = — fPdv = — f2do_yg
/{O}xSml P Ley ep(D1ND2) Ley S_dep 6p
M1, D
(7.7 < Carnarnp = P20
and
1 1
2 2 2
S S F2do_
/{1}XSm1 p L&‘p ep(D3ND3) L&‘p Sf(l+L)gp (I+L)ep
141
@ <e© (141 50) @+ NI

Moreover, we have

2
/|de|2dv :/ |dF,*dtda :/ ey L <3f> (epLt, epzx)dtdx
c [0,1]xSm—1 [0,1]xSm—1 S

+ / em L7 Hd " f2 (e, Lt epr)dida
[0,1]xSm—1

2
1 m—
—/ (af> d1)—|—2/ ‘dipg 1f‘2d,u
epDa2 88 L epD2

</|ﬂﬂw<Mm@
M

Note that we have used the fact that L > 1. So we can assume that there exists Fi, € H'(c)
such that the sequence (F,) converges to Fx, weakly in H'(c) and strongly in L*(c). We set
Jp(t) = / Fy(t,z)dx and jo(t) = / Foo(t,x)dz, we have j,,j € H([0,1]) (with

§m—1 §m—1

i) = / S2(t,2)dx), jy — joo strongly in L2([0,1]) and weakly in F'([0, 1)). By the
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estimates 7.7 and 7.8 and the compactness of the trace operator on ¢, we have

i) € SV TE DT

and

()] < (1 + VTR S

Hence £(t) = joo(t) — (joo(U) + (Joo(1) = jo(0))2) is in H([0,1]). For any 1 € C2°([0,1]),
we set ¥, (t, z) = €pL7,/J( ) seen as a function in H(e,Ds). We have

1
/ O dt = / gL dt
_hm/ jp dt—hm/ apwd —hlr)ngp%

/ fsp¢p dt dx = Za,ﬁzL hme /Fmﬂp dtdx =0,

- / {dfoduy) dida

7

where Fj,(t,z) = 5;,%_ L_Effp(sth,spx). We infer £ is harmonic and in H{([0,1]), i.e.
£ =0and jeo(t) = joo(0) + (joo (1) — jiso(0))t on [0, 1]. Since the Poincare inequality on S
gives us

1 S|
/Sm1 Fp(t,x)de < W (/Sml Fp(t,l‘) dl‘) + 7_1 |dgm—1Fp|2dl‘

1 . €
< O+ Gtz ) J%wwdu%umm@
EIJ m—

we get that

1
— / fPdv=1L / Fldtdx
Lep Jo.epvIixepsm (0, 7] xsm

1
L 7T 1 )
<" Hdt + ——— d_ sm1 f|2d
Vol §m~1 / Tplt)di + (m — l)L /[OEpﬁ]xapSml | r® v
f 2
< dt
‘%@ml/ e+ P )HNQ

f .
= g | a0t + 1

L

L+ D+ M| fII3
Now a straightforward computation shows that /ﬁ Joo(t)dt < Q0+ £§/2+ Iz
0

and for p great enough
1 < SO+ DI
2 ~
Le} Jio.e)vT]xepsm-1 VL

Note that this estimate is better than which could be deduced from (7.4).
Control of the limit spectra.

(7.9)
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If the family (h;)i<k, is not free in L?(Mj), then either one h; is null or they are all
eigenfunctions of M;. Since the eigenspaces are in direct sum, we infer that there exists a
not free subfamily of (h;);<k, included in a given eigenspace of M;. In other words there

ko—1 ko—1

exists 1 < Agy—1 and (Bi)i<k, € R¥ \ {0} such that Z B2 =1, Z Bihi =0 and a; =
=0 =0

for any i such that 8; # 0 (we recall that )\Z” — oy, for any k € N and Ay, = \). Setting

ko—1

= Z Bi fa” we then have

‘/ (pue,)| de— /T (gougp)de

P

Ye d”+/ N = w)Bie [ Bip f;F dv
L6 /([ (I+L),—(I+L—+L)]xSm—1) Z ¥ i P

T‘fp 1,7

= ‘/ (\d(p\ngp + thU%Augp)dv - M/T ((pugp)zdv

€p

Since e,([~(1 + L), — (1 + L — v/L)] x S™71) is isometric to [0,e,vL] x £,S™~! we deduce

from 7.9 that
‘ / d(pu,)|2dv — p / (pue,)2dv

(7.10) <c>(1t;><1“ i B+ [ SO — et Byt

We recall that ¢ f,i” |\, COTVErges strongly in L?(Mj) and then pue, converges strongly in
1

Ep i,]

ko—1
L?(My) to Z Bihi = 0. Moreover from (7.5) we have / ((puep)de — 1| = 0. Then we
i=0 Mey
deduce that / (cpuep)de — 1. Since pue, € H} (T%,) and since by construction of T,
T °p

€p
we have AP(T.,) = A = Ay, we then have /T |d(g0u5p)]2dv > )\/T (gpugp)zdv. Then for p
large enough ' ’

<O=Agen) [ (o< 0= [ (o, P

P €p

< /T d(ue, ) 2o — 1 / (pue,)dv

Ep TEp
From now we assume that C(My, D1) > 1/c(¢)(1+1). Letting p tend to oo in (7.10) we get
that d < A — Apy—1 < % which contradicts the choice made on L.

We infer that (h;)i<k, is free in L?(M;). This implies that «; is an eigenvalue of M
and h; is an eigenfunction of M; for any i < kg. Since «; = lim )\? < A= Ni(My) for
any i < ko, we infer that a; = \; for any i < ko and that the (h;)i<k, is a basis of the
eigenspaces of M, associated to the first ko eigenvalues. By the same way, if hy, # 0, then
g, = Ago—1 (since it is an eigenvalue of M; less than A) and so the family (h;)i<k, is not
free. The same argument as above gives a contradiction. So we have that hy, = 0.
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Assume that there exists another index k; # ko such that hy, = 0. Then, Inequality (7.5)
gives that / Pl ofdv — 0, / (¢fi2)?dv — 1 and / (¢f.7)?dv — 1 and Inequality
T.,

Ep TEp

(7.6) gives that / \d(gofzg)|2dv and / \d(gof,if)\de remain bounded as ¢, — 0. We set
gp a unitary eigenfupnction of T, for the Dirichlet problem associated to the eigenvalue A. If
we set (ofel )iz, = Bro9p + Tk, and (0fi)iz, = By, 9p + Yk, with B, 57 € R and 77,7,
orthogonal to g, in H} (T,). The previous relations and the lower bound on M ( T,) imply
that

As
[tz > M8 + XTIl R,y > (L) + 5

p

”’Yko”LQ(TE )

By the same way, (ﬁkl)Q)\—i- ||’)'k1 ||L2 T.,) is bounded, and so ||'yk0||L2 T.,) ) and o7 12, (T2,)

tend to 0 with €,. Now, we have (B ) + HkaHLQ .,) 1 and so |Bp0| — 1. Up to change
of sign of f,ié’, we can assume that Bko — 1. By the same way, we have | B£I| — 1, which
contradicts the fact that / @f,iggpf,ifdv — 0. We infer that for any k& € N\ {ko} we

€p

have that «y is an eigenvalue of M;. Moreover if we decompose (¢ f;p)mp = Bhgp + 7L as
above, Inequality (7.6) implies that (5%)? + ny 12, ) remains bounded and so we have

hm [B7lF L2(1.,) = = 0 and Inequality (7.5) glves

0= lim fEP fgpdv = hm ﬂpﬂp = lim /BZ

p—00

and so (gof,‘:”)|TEp — 0 in L( T:,) for any k # ko. Once again, Inequality (7.5) gives us that
for any k, k" € N\ {ko}, we have

/ hihgdv = lim/ of cpfk dv = hm/ cpf,ifdv
M P=00 Jar
. & 15
= lim . P S pfis dv = Opps

€p

From the min-max principle, it gives that we have ap > A\ for any k # kg. Since we have

ag < A\ for any k € N, we infer that for any k € N\ {ko} we have aj, = \g. Moreover we

have ag, < A, = A. Finally, since gof,ié’h € H} (T:,), Inequality (7.10), applied to f = f
€p

and p = ay, gives that

(A—ako)/ (@fZﬁ)de</T Id(sof,i§)|2dv—ako/ (of)dv

€p €p TEP

c(Q)(I+D(1+N)
VL

Now we have seen that f;g’ tends to hy, = 0 in L?*(M;). It follows that from (7.5),
Q)1+ N1+ 7 )\] '
VL

<

+/‘ux—mwwﬁp%v

P

lim (gof,i;’)de = 1 and we deduce that oy, € [)\ -
p

p—00 T
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At this stage of the proof, we get that for any sequence (gj) such that lilgn er = 0, the
sequence (M;, )ken of immersions of M;# M, satisfies the point (1), (2) and (4) of Theorem

2.1 and we have 1i’£n Sp(M., ) C Sp(M;) U [)\ - Q) —1—/)1%)(1 +1) , )\].

By an easy diagonal extraction taking L = i, there exists a subsequence (g,;)), such that
/ [H|“dv — |B|*dv and / IB|*dv — / IB|*dv for any ao < m (see (7.2) and
My Mep ) My

Ep(4)

(7.3)) and we get Theorem 2.1 for F' = Sp(M1) U {\} when B, (4¢) is flat in M;.

Now if we assume that By, (4¢) is not flat, we use the fact that Sp(Mf) converges to
Sp(M;) and by a new diagonal extraction we get the desired result.

7.2. End of the proof of Theorem 2.1. Let F' be a closed subset containing Sp(M7).
As explained in section 2, there exists an increasing sequence of finite sets Fy such that
Fy C [0,N]NF C Fyin. We can assume that Sp(Mp) N [0, N] is contained in Fy.
Thus Fx = Gy U (Sp(M1) N[0, N]) where Gy and Sp(M;) N [0, N] are disjoint and G is
finite. First we have I’ = Lji\frg%gtF v, F'n converges to F for the distance of Attouch-Wetts-

Hausdorff as well as Gy U Sp(M7) converges to F'.

Now, iterating the construction (with MJ replaced by S™ for any supplementary gluing)
we obtain a sequence My, such that Sp(My,.,) converges to Gy USp(M;) when p tends to
infinity. Since Gy USp(M;) converges to F' when N tends to infinity, by diagonal extraction
there exists subsequences (N)r and (ex)i such that LligrgggztSp(Mka) = F and the point

(2) of the theorem 2.1 on the curvatures is true.

In the case a = m, the limit / |IB|™dv depends on L and so we are only able to get a

weak version of Theorem 2.1 with F = Sp(M1) UG, where G is a finite set whose elements

are known up to an error term and where the point (2) is replaced by / IB|"dv is
ik (M1 #Mz2)
bounded by a constant that depend on My, My, D1, D3, G and on the error term.
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