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SPECTRUM OF HYPERSURFACES WITH SMALL EXTRINSIC
RADIUS OR LARGE )\; IN EUCLIDEAN SPACES

ERWANN AUBRY, JEAN-FRANCOIS GROSJEAN

ABSTRACT. In this paper, we prove that Euclidean hypersurfaces with almost ex-
tremal extrinsic radius or A1 have a spectrum that asymptotically contains the spec-
trum of the extremal sphere in the Reilly or Hasanis-Koutroufiotis Inequalities. We
also consider almost extremal hypersurfaces which satisfy a supplementary bound
on vy ||B|la and show that their spectral and topological properties depends on the
position of o with respect to the critical value di . The study of the metric shape
of these extremal hypersurfaces will be done in";# using estimates of the present

paper.

1. INTRODUCTION

Throughout the paper, X: M"™ — R"*! is a closed, connected, immersed Euclidean
hypersurface (with n > 2). We set vy its volume, B its second fundamental form,
H = %trB its mean curvature, rps its extrinsic radius (i.e. the least radius of the
Euclidean balls containing M), ()\fw )ien the non-decreasing sequence of its eigenvalues
labelled with multiplicities and X := ﬁ J o Xdv. For any function f: M — R, we set

1711 = 537 Jar 112 v

The Hasanis-Koutroufiotis inequality asserts that

(1.1) ru|[Hll2 > 1,

with equality if and only if M is the Euclidean sphere Sj; with center X and radius
1

IH]2 °
The Reilly inequality asserts that

(1.2) A < n|H3,

once again with equality if anc]%()ei)lly if M is the sphere Sy (we give some short proof
of these inequalities in section ).

Our aim is to study the spectral properties of the hypersurfaces that are almost
ex%inal for each of this Inequalities. The results and estimates of this paper are used
in [[3] to study the metric shape of the almost extremal hypersurfaces.

We set MSM = k(n+k—1)||H||3 the k-th eigenvalue of Sy (labelled without multipli-
cities) and my, its multiplicity. Throughout the paper we shall adopt the notation that
7(e|n,---) is a positive function which depends on n,--- and which converges to zero
with € — 0 when n,--- are fixed.

Date: 19th October 2012.
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Theorem 1.1. For any immersed hypersurface M — R™ ™ with vy ||H|ls < 1+ ¢ (or

2
with % < 1+¢) and for any k < W the interval [(1—7-(g|n))lufM, (1+T(€|n))lu2M]

contains at least my, eigenvalues of M counted with multiplicities.
aintheo

Note that by Theorem T.T, almost extremal hypersurfaces for the Reilly inequality

2
% <M< <A < (14 7(en))n||H|3 and so must have at least

n+1 eigenvalues close to A{™ = n|[H||2. This is very different from the almgst extremal
manifolds for the Lichnerowicz Inequality in positive Ricci curvature (see [I]).

aintheo
The proof of Theorem h@sed on estimates for the restrictions to M of homogen-
eous, harmonic polynomials of the ambient space R"*!. Such a polynomial of degree k
satisfies the equality AS™ P = n||H||3dP(X) + |H|3D%dP(X, X) = ,ugMP whereas its
restriction on M satisfies AM P = nHdP(v) + D°dP(v,v) where D°dP is the Euclidean
Hessian and v a local unit, normal vector to M. We prove that on almost extremal

hypersurfaces, the quantities v — HX and |H| — ||H||2 are small in Lz—norms,a‘f/mhlscthe,i ont
p carefu Lomputations, gives essentially the following estimates (see Lemmas 5.3 and

resquor

must satisfy

(1.3) oPlZ2 a0y = 19 P72 (5, < T(eln, K0Pl L2(5,);
(1.4) |aMpp — M£MSDPHL2(M) < 7(eln, k) |oPll L2 (arys

where ¢ is a cut function localized near Sj;. The main difficulty in proving this estimate
is that there is no known good local control of the measure on M involving only the

L2-norm of the mean curvature.

aintheo
Theorem [I.T does not say that the spectrum of almost extremal hypersurfaces is

close to the spectrum of Sy, but only that the spectrum of Sy; asymptotically appears
in the spectrum of M. Our next result shows that it is optimal in dimension larger
than 2, even under a supplementary (not too strong) bound on the sectional curvature.

Theorem 1.2. Let My, My — R™"1 be two immersed compact submanifolds of dimen-
sion m = 3, My# M, be their connected sum and F be any closed subset of |0, +oo[ con-
taining Sp(M1)\{0}. Then there exists a sequence of immersions iy, : My#My — R
such that

1) ip(M1#Ms) converges to My in Hausdorff topology,
2) the curvatures of i (Mi1#Ma) satisfy

/ [H|* — / |H|* for any o € [1,m),
i (M1 # M) M,

/ IB|* — / IB|¢ for any o € [1,m),
i (M1 # M) M,

3) NkenUizkSp (it (M #Ms)) = F U{0},
4) Vol (’Lk(Ml#Mg)) — Vol Ml.

To get almost extremal submanifolds from the previous result, we just have to con-
sider the case where M; = S" (and F' C [n,4o00[). It gives almost extremal hyper-
surfaces for the Reilly or Hasanis-Koutroufiotis Inequalities with the topology of any
immersible Euclidean hypersurface, a spectrum as Hausdorff-close as we want of any
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closed set containing Sp(S™) (and contained in [n, +00]), even if we assume a bound on
v ||Bl|2 for any a < n. .
On the other hand, if we assume a bound on ||BJ|, with a > n, we prove in %’
that the almost extremal hypersrfaces converge to in Hausdorff distance, which
combined with the C1# pre-co getness theorem of or a Moser iteration as in the
previous version of this paper %imply the following stability in Lipschitz distance.

Theorem 1.3. Let n < o < oo. Any immersed hypersurface M — R with
o ||Bl2 < A and ry||Hll2 < 1+ ¢ (or with vy |B||l < A and %Hl”% <l+4¢)is
diffeomorphic to Syr and satisfies dr(M,Sy) < 7(eln,a, A). In particular, we have
IAM )\EM] < 7(elk,n,a, A) for any k € N.

Eventually, the critical case where we assume an upper bound on v/||BJ|7* will be
studied in a forthcoming, but we construct in the present paper some examples of
almost extremal hypersurfaces satisfying CS;%IICe})I( alelzound as a preliminary. First of all,
considering the constructions of Theorem h_.ZTlEﬂTe case a = n, we get almost extremal
hypersurfaces for the two inequalities with the topology of any immersible hypersurface,
with va||Blf;; bounded and whose spectrym asymptotically contains Sp(Sy) and a
finite subset of R\ Sp(Sas) (see sectionjg.—ﬁ. Note however that the bound on vy/||BJ|?
will depend on the topology of the extremal hypersurfaces and on the values and number
of their eiger%\éa_zﬁgles not close to Sp(Sar).

In section 6.2, we construct almost extremal hypersurfaces for the Hasanis-Koutroufiotis
inequality, not diffeomorphic to Sjs, not Gromov-Hausdorff close to Sps, with limit
spectrum larger than the spectrum of S” and with ||H||o bounded. We set E(x) the
integral part of z.

Example 1.4. For any couple (I,p) of integers there exists a sequence of embedded
hypersurfaces M; — R+ diffeomorphic to p spheres S™ glued by connected sum along

I points, such that |H;||,, < C(n), ||H|2 = 1, ||Bj|,, < C(n), H|XJ| - 1”00 — 0,
H\H]] — 1H1 — 0, and for any o € N we have )\yj — )\SEn(g). In particular, the M; have
P

at least p eigenvalues close to O whereas its extrinsic radius is close to 1.

Example 1.5. There exists sequence of immersed hypersurfaces M; — R™ 1 diffeo-
morphic to 2 spheres S™ glued by connected sum along 1 great subsphere S*~2, such
that ||H;|l < C(n), [Hjll2 = 1, [Bjlly < C(n), [[1X;] = 1|, — 0, [[[H;] = 1[|; = 0,

v,

and for any o € N we have )\(],Y[j — )\JSE(;), where S is the sphere S™ endowed with
2

the singular metric, pulled-back of the canonical metric of S™ by the map 7 : (y, z,7) €
S!xS"2x[0,Z] — (y?,z,7) € S'x S"2 x [0, Z], where S' x S*=2 x [0, 2] is identified
with S* C R? x R~ via the map ®(y,z,r) = ((sinr)y, (cosr)z). Note that S™¢ has
infinitely many eigenvalues that are not eigenvalues of S™.

rel
The structure of the paper is as follows: after a preliminary section 5, where we
give short proofs of the Reilly and Hasanis-Koutroufiotis inequalities, we prove some
concentration properties for the volume, Jhean cur: dﬁ&ggg and position vector X of

A . concentrati A
almost extremal hypersurfaces in Section B. Section @ is devoted to estimates on the

.. ) 3 3 . . n+1

resjcrlctlon on hyper§urface§ of tgl,éamhomogeneous, h Ionic opolylrlolrnlals of R . Thesge

estimates are used in Section g t Brove Iheorem i.l. We ePcL the ager in section ki
ctrexple lctrexple trexgi

by the constructions of Theorem T.2 and of Examples [[.4 and 1T.5.
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Throughout the paper we adopt the notation that C'(n,k,p,---) is function greater
than 1 which depends on p, q, n, ---. It eases the exposition to disregard the explicit
nature of these functions. The convenience of this notation is that even though C' might
change from line to line in a calculation it still maintains these basic features.

Acknowledgments: Part of this work was done while E.A was invited at the MSI, ANU
Canberra, funded by the PICS-CNRS Progress in Geometric Analysis and Applications.
E.A. thanks P.Delanoe, J.Clutterbuck and J.X. Wang for giving him this opportunity.

2. SOME GEOMETRIC OPTIMAL INEQUALITIES

Any function F on R™! gives rise to a function F' o X on M which, for more
convenience, will be also denoted F' subsequently. An easy computation gives the
formula

(2.1) AF =nHdF(v) + A°F + VdF (v, v),

where v denotes a local normal vector field of M in R**!, VY is the Euclidean con-
nection, A denotes the Laplace operator of (M, g) and A° is the Laplace operator of
R™*!. This formula is fundamental to control the geometry of a hypersurface by its
mean curvatureif oitpplied to F(x) = (z,z), where (-,-) is the canonical product on

R™*! Formula gives the Hsiung formulae,

hsiung| (2.2) §A|X|2 =nH (v, X) —n, / H{v, X)dv = vy
M

rbog . . . hsiun
2.1. A rough geometrical bound. The integrated Hsiung formula (2.2) and the

Cauchy-Schwarz inequality give the following

prim2| (2.3) 1 :/ w < HHHQHX —7“2
M UM

This inequality ||H|[2||X — X2 > 1 is optlmal since M satisfies ||H||2 HX XH2 =1if
and only if M is a sphere of radius ”H” and center X. Indeed, in this case X — X and

v are collinear on M \ {H = 0}, hence |X — X|? is locally constant on M \ {H = 0}.
This implies that {H = 0} = () and that X is an isometric-cover of M on the sphere S
of center X and radius || X — Xz = m, hence an isometry.

2.2. Hasanis-Koutroufiotis inequality on extrinsic radius. We set R the ex-
trinsic Rad'ursioj M, i.e. the least radius of the balls of R"*! which contain M. Then
Inequaiy (E3Fgives [Hlyrar = [Hl, infycaers |X—ulc > [ inf, s X —ulla =
[H|[2]|X — X||2 > 1 and ry; = W if and only if we have equality in (%_KSL

2.3. Reilly inequality on A}M. Since we have -1 f (X — X;)dv =0 for any com-

Y,
ponent function of X — X, by the min-max principle and Inequality ( we have

M ”Hl”2 < AMX = X3 =AY 01X — X2 < XL IVXG3 = n where A{W is the

first non-zero eigenvalue of M and where the last equality comes from the fact that
> IVX;|? is the trace of the quadratic form Q(u) = |p(u)|? with respect to the canon-
ical scalar product, w oL pis the orthogonal projector from R™*! to T,,M. This gives
the Reilly inequality (i.Zi
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i . . . . . rim2 . .
Here also, equality in the Reilly inequality gives equality in 5.3 and so it characterizes
the sphere of radius ”H1”2 =[| X2 = < -
1

3. CONCENTRATION ESTIMATES

We say that M satlﬁﬁescthe p Pdwlag P, ) when |H||,||X — X||2 < 1+e¢. From the
proofs of Inequalities (T.1) and (Il Z) above, it appears that pinchings ry/||H|js < 1+ ¢
or n|[H||3/A1 < 1+ ¢ imply the pinching (P275)

From now on, we assume, without loss of generality, that X = 0. Let X7 (x) denote
the orthogonal projection of X (z) on the tangent space T, M.

Lemma 3.1. If (Py.) holds, then we have || XT |2 < v3e||X|2 and || X — IH”QV”Q <
V3| X2

Proof. Since we have 1 = fM (X, v)dv < ||H||2[|[(X, v)]]2, Inequality (P ) gives us
1X12 < (A4)IILX, 1)]l2 and 1 < [Hll2[[ X[l2 < 1+ Hence [|X — (X, )r; < \/_HXHz

and X — 4 3 = X3 - H? < 3¢ | X 3.
14 1—
We set Ay = B (||H||17)\BO( H|n)

Lemma 3.2. If (P,.) (forp > 2), or n|H||3/A < 1+¢, or ray||H|2 < 1+ ¢ holds
(with < < 1b). then we have || X|| — |, < 155 V&, I1H] — [Hll2ll2 < CY2]H]2

and Vol (M \ Agz) < C/evn, where C' =6 x 2522 in the case (Ppe) and C =100 in
the other cases.

Proof. When (P, ) holds, we have
1—2 2
[Hlp[[ Xl < (1 +¢) < A+ )|[H]p [ X2, < U +)|[Hp[ X1 " I1X]3,

1 IXIh o 1 9% 1 . .
hence we get H]X\ T H2 | X 25, + I < 292 TR Combined with the

5
anall%%
second inequality of Lemma E? [, 1t glves

[[1H] = [[H 2], < [[HIE]]X] -

I, < +WWW

HI{H2H2 |2 H2\~(7\/_H}{H2

Now, by the Chebyshev inequality and Lemma l3 T, We get

IIH\

G
IIHH > ||HH2}

When rpy||H||, < 1+ € holds. We set XO the center of the circumsphere to M of

Vol (M \ A gz) = Vol{:c e M/ ||X(m

radius rp;. We have || X — Xol|3 = | X3 + | Xo* = 73, < (ﬁgﬁf and then we have
2
V3e 1+3 ¢
| Xo| < —||H?|)|€2 and | X| < | Xo| + v < +H£[ So we have THE |X|? e [”I\ﬁg, ”Hl”2] on
M\ Ayz. Chebyshev inequality and (% 3; give us
Vol (M \ A 4
(M\Awz) e <L 1 1 xP 1 XP 1 <9\/‘

AN

Y [H[I5 M\A 4 _[H[3 om Juna, [FH[I3 ™ [H3
Yz
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where in the last inequality we have used | X| < lﬁr}‘;"f and, so we get

1 1

2
I X| — ——|, = — 1 X| — ——
1= G = o, = T 5o S, 1~ TS
VE +Vol(M\A%) 1 10[
SR o THE < THR

analite 8
Combined with the second inequality of Lemma E? [, we get || ”H1”2 - ”EH‘Q Il < ?H\ﬁ;

When n|H||3/A" < 1+ ¢ holds, we have [, (]X|* — [|X]||3)dv = 0 and so by the

. . . 2 _ 4XxT)2 12(1+¢)2%¢| X1 .
Poincare inequality we get ||| X]? — HX||%H2 < ”)\MHQ < & rl)HlTQH l2 2”?2%, which
: 1 2 1 2 12,/¢
gives ||H||2H‘X’ ||H||2H2 [1X1% = [EIE o < 112 = IX3]], + [I1X113 — ||H||2| S THE

and then we get the estimate on the volume of A 4z by the same Chebyshev procedure
as for P,. and the estimate on the mean curvature by the same procedure as for
ra||[Hlle < 1+e. O

Let :[0,00) — [0,1] be a smooth function with =0 outside [(1,”21;”%5)2’ (H”QHIH‘GZE)Q]
2 2
_ (- WE)? (4 We)?
and =1 on [, S )
¢(z) = ¥(|X,|?) and the vector field Z on M defined by Z = v — HX. The previous
estimates then imply the following.

Let us consider the function ¢ on M defined by

Lemma 3.3. (P,.) (for p > 2) or n|H|3 /)\1 < 1+4¢ or ry||H|l2 < 14 & implies

lo?(H? — || H|3 )H1 < CVEHIB, [[9Z]l2 < Ce% and ||l¢l3 — 1| < CYZ, where C is a
constant which depends on p in the case (P,.).

Proof. We have ||?(H* — [[H||3) 11 < [[[H] — [Hll2[|,2]|H|l2 < C2[[H[3 and

I

1 1
leZll5 =—/ 0| ZPdv = —/ ©*(1—2H(v, X) + H*[ X |*)dv
UM J M UM JMm

||HH%/ 2 H 2 1 / 2 2\ 2 2 2
_ 2% - P L [ E - A1 — X de
o & X ey /R :

UM

2172 2
2 0% (1 — [H]3)[[,
<IHIG|X — vl +8 Ve :
I g I3
banalit Vol (M\ A Vol (A s, NM
which gives the result by Lemma e llr?ally, we have 1— — (A ge) < o1 (4 geOM)

vMm VM

O A

3 and [lo]3 <1

4. HOMOGENEOUS, HARMONIC POLYNOMIALS OF DEGREE k

In this section, we give some estimates on harmonic homogeneous polynomials re-
stricted to almost extremal hypersurfaces. They will be used subsequently to derive
our result on the spectrum and on the volume of almost extremal manifolds. Let us
begin by general estimates on harmonic, homogeneous polynomials.
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4.1. General estimates. Let H* (R™1) be the space of homogeneous, harmonic poly-
nomials of degree k on R"*!. Note that H*(R"*!) induces on S™ the spaces of eigen-
functions of AS" associated to the eigenvalues py := k(n 4+ k — 1) with multiplicity
— <n+kz—1> n+2k—1

ke k n+k—1"

On the space H*(R" 1), we set (P, Q)gn := W Jsn PQdvcan , where dvcq, denotes
the element volume of the sphere with its standard metric.

Remind that for any P € H*¥(R"*!) and any Y € R"*! we have dP(X) = kP(X)
and V%dP(X,Y) = (k — 1)dP(Y).

Lemma 4.1. For any x € R""! and P € HF(R"*1), we have |P(z)|* < || P||Z.mu|x|**.

Proof. Let (P;)1<i<m, be an orthonormal basis of H*¥(R"!). For any = € S", Q.(P) =
P2(z) is a quadratic form on H¥(R"*1) whose trace is given by > /"% P?(z). Since for
any ' € S” and any O € Oy,41 such that 2’ = Ox we have Q,/(P) = Q,(PoO) and since
P — PoOQ is an isometry of H¥(R"*1), we have Y™ P2(x) = tr (Q,) = itk P2(z') =
tr (Qu). We infer that > e [go PA(@)dv = mi = voter Jon (i P2 (%)) dv and
so Y. P?(z) = my. By homogeneity of the P; we get

mg
(4.1) > P (w) = myaf*,
=1

and by the Cauchy-Schwarz inequality applied to P(x) = ), (P, P;)sn P;(x), we get the
result. U

As an immediate consequence, we have the following lemma.

Lemma 4.2. For any z,u € R™"! and P € H*(R"11), we have
d Pw) 2 < |[PIZwre (5 220Dl 4 (k2 = £2) (u, 2)2 22572
n n

Proof. Let x € S™ and u € S™ so that (u,z) = 0. Once again the quadratic forms
Qzu(P) = (de(u))2 are conjugate (since O,y acts transitively on orthonormal

my

couples) and so Z(dei(u))Q does not depend on v € - nor on x € S”. By choosing
=1

an orthonormal basis (u;)1<j<n of 1, we obtain that

mpg 9 1 mip n 9 1 mg n
;(dmpz‘(u)) = ;;(dmmuﬁ) = nVolsn /g Zl V>R

1 .- S Ml
= PAS' P = LR
nVol S® /Sn ; ‘ ‘ n
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Now suppose that v € R""!. Then u = v + (u, )z, where v = u — (u, )z, and we have

mp mg

Z(dgﬁpz(u))Q - Z(darpz(v) + k(u,x>P,(x))2
=1 i=1

- %(dmﬂ-(v)) + 2k{u, z) Zd Pi(v) Pi(x) + my(u, z)?k?
=1 =1

= TR 02 1 g, 2)2K2 = (%W + (62 = B2 w22,
n n n

P o
where we have taken the derivative the equality (h_l) to compute dePZ(U)PZ(CU) By

i=1
homogeneity of P; we get %(dei(u))Q = my, (L |z 2* D)2+ (k2 — L5 ) (u, z)2|z]2*=2))
and conclude once again ﬁ;yl the Cauchy-Schwarz inequality. O
Lemma 4.3. For any x € R"! and P € HF(R"1), we have
VOdP(2)? < || P|gwmpan iz 2,

where oy, = (k — 1)(k* + i) (n + 2k — 3) < C(n)k?.
Proof. The Bochner equality gives

% V4P ()2 = % ((dAOP dP) — le\dP-\2>

i=1 Z i=1 T2 Z

(4.2) _ —%mk (k% 4 ) A% X 52 = g | X2

O

4.2. Estimates on hypersurfaces. Let H*(M) = {Po X , P € HFR" 1)} be
the space of functions induced on M by HFR"*!). We will identify P and P o X
subsequently. There is no ambiguity since we have

Lemma 4.4. Let M™ be a compact manifold immersed by X in R"*! and let (Py, ..., Py,)
be a linearly independent set of homogeneous polynomials of degree k on R"*1. Then
the set (Pyo X, ..., Py oX) is also linearly independent.

Proof. Any homogeneous polynomial P which is zero on M is zero on the cone R*-M.
Since M is compact there exists a point x € M so that X, ¢ T, M and so R™-M has
non empty interior. Hence P o X = 0 implies P = 0. U

We now compare the L?-norm of P on M with L?-norm of P on the sphere Sy; =
S™. We still denote 9 : [0,00) — [0,1] a smooth function which is 0 outside

||H||2

[ 1|H||22’ (ﬁﬁﬁ J,is 1 on [“ﬁgﬁ?g, “H?Q] and satisfies the upper bounds |¢/| < 4”H”2
2 2 2

and W”‘ |H”4 . We set ¢(z) = ¢(‘X$’ ) on M.

Lemma 4.5. With the above restrictions on ¥ we have

192(|H||3 16n||H||2
1A% < — 21 X7)5 + TQIIsoZHl



Ppresquortho

Proof. An easy computation yields that
A(p?) = =) (IXP)dX P + @) (X ) AlX
= —4@W*)"(IXP)IXT]? = 2n(4?) (|1 X ) (v, Z)
But the bound on the derivatives of 1 gives us |(¢?)'| < SHH”% and |(v?)"] < 48'1712{”%.
Hence we get A2 < 2R | T2 4 20000E o7y, 0

Lemma 4.6. Let ¢ : M — [0,1] be as above. There exists a constant C' = C(n) such
that for any isometrically immersed hypersurface M of R" and any P € HF(M), we

2 k 2
have [[H3EIoPIR — IPIZ.] < (1= llel3 + DC) Sy m(l +n)**) I1PIZ., where

200(|H||2 2(H2—||H||2
D = llZlls + 023 + 252 | X4 3 + L2 2|, + LAl
Proof. For any P € H¥(M) we have

loVOPI3 = lledP ()| + lledPlI3

2 2 2 1 2 P2A(‘P2)
= |ledP(Z)||5 + k°||eHP|5 + o | (2kHdP(pZ)pP + ¢ PAP — T)dv
fondhes
Now, Formula (boi ) apphed to P € HF¥(R™1) gives
(4.3) AP = uH2P + (n 4 2k — 2)HdP(Z) 4+ V°dP(Z, Z)
hence, we get
lpVOPI5 =[ldP(02Z)5 + (1 + k) |[HePll3
1 P2A(?
o ( 2PV°dP(Z,Z) + (n+ 4k — 2)pHdP(pZ)P — #)dv
_ L / (i + K2) (H2 = [HIB)? P? + (1 + 4k — HAP(02)P) do
ZA 2
L[ (pvoap(pz.pz) - AW )y,
UM M 2
+ (e + K [H[3[l0Pl5 + [dP(02)]13
Now we have
2 n 2
(1.4) IVOPllg. = |[V5"P|| |, + K2 IPIZ. = (e + KD P13,

Hence

U352 oVOP 3 —[[VOP g, = (un+ k) (IHIZE P13 — [ PI13) + [IHIZ 2| dP(02) 13
2k—2
” HM /¢2P((Mk+k2)(H2—][H\\%)P+H(n+4k—2)dP(Z)—i—VOdP(Z,Z))dv
M

CIH]EE 2/ P2A(¢?)
VM M 2
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Which gives
(4.5)

2
\HHH%%PH% ~ I1PI3.

[IHI3 209" PI3 = [V°P 2,

[k + k2
IIHH% ’

g + k2
2%k —2 2 2
P2|A(p
H H /(¢2|H2—HHH%|P2+7‘ 2( )‘)dv

Pcarre
By Lemma lZ[ , we have

| (0 + 4k =2l PlIdP(e2)] + P2 + |PIV°dPlloZP)

H|3"? mkIIPH n HHII% ’
I O M U 1 (B
©?(H? — [[H|3)|:
< HPHén mk(1+n)2k” ( = ||2 H2)H
I[H3
In the same way, we have
H 2k—2 P2 A A S02 1
I H / | v < HPHénmk(lJrn)%H H(HH2)||
2

-% d
and using Lemma .ra, we get
H 2k 2 k1P, IH 2k 2
UM M UM M
< HPHén myk(L+ ) 9 Z||2

and
Zk‘ 2 2k; 2

) < HPHén myk?(1 +77)2kH<PZHz
ess
Finally, using Lemma iZI.B we get
||HH2k ’ 0 2 H % ? 2(k—1) 2
IPIIV dP||lpZ|* < || PlIg«m/anx IXI Nez|? dv

<N Plgn M/ @ (1 + n)QkIISDZHQ

|1ntermed1a1re normgrad0
which, combined with (4.5) and equation (4.4), gives

2k—2
I3 PI3 - 1PIZ| _ [IHIE1eV°PI3 — [V°P5,
g ) IVOP2
A 2 H2_ H 2
+Cmu(t+ ozl + ez + LLE M I (T Iy
T2 e

0 [ o ol
IVOPI3.

+C(n)my,(1+n)**D

\



Ppresquortho?

dimension

almosteigenf

11
In particular for k = 1, we have |V°P| constant equal to (1 + n)||P||Z. and so

[IHIZl¢PlI3 — 1PlI5] < (1 = llll3 + C(n)ma (1 +1)*D) || Pllg.

2
Now, let By = sup{|”H”%k”“)P”2 ik | P e HFRM) N\ {0}} Then using that

LL%P JEaa0
VOP € HE-L(R" 1) and (nO we get

By < By + C(n)mi(14+7)*D <1 —|g]3 + C(n) DZmz 1+ n)*
i=1

aintheo
5. PROOF OF THEOREM [i ]

aintheo [banalitelestinormphiz
Under the assumption of The(%]l“lem [T we ¢an use Lemmas B.1T and B.3 to improve
ﬁ G an th

the estimate in Lemma e case n = 2 Ve.

Lemma 5.1. For any isometrically immersed hypersurface M < R™ T with rpr||H||2 <
L+e (or M(1+¢)2 = n|H|2 or (Py.) for p>2) and for any P € H*(M), we have

13" Pl3 — I1Plls.] < C %2 Plgn
where C = C(n, k) in the first two cases and C = C(p,k,n) in the latter case.

As a consequence, the map P — P is injective on H¥(M) for € small enough.

. Ppresquortho2, k(0
Lemma 5.2. Under the assumption of Lemma 5.1, 2%6 < (20)32 then dim(eH"(M)) =

my.
Ppresauortth . .
Lemma 5.1 allows us to prove the following estimate on AP.

. Ppresquortho2 1
Lemma 5.3. Under the assumptions of Lemma 151, z% €< GO then for any P €
H*(M), we have || A(P) — SMgpPHz < %ngﬂgpPHg where C' = C(n,k) (C =
C(n, k,p) under the pinching (P,

fondhess

Proof. Let P € H¥(M). Using (E.1) we have
A(pP) =PAg — 2(dP,dy) + pAP = PAp — 2(dP,dp) + onHdP(v) + oV dP (v, v)
H
—PAp = 2{dP.d) + el HIHIaP + (0 + &~ ) H]2dP(2)

Tt k- 1)%(\}11 ~|H2)dP(v) + ¢V dP(v, 2)

hence, we get
IA(pP) — uillH|30Pl2 < [(Ap) P2 + 2| (dp, dP) |2 + pill (| H| = | H]l2) P2/ H]12

(5.1)
+ (n+k=1)|[Hl2[l0|dP||Z][|2 + (n+k=1)||o(H| — [[H|l2)dP(¥)]|, + [l¢|V°dP||Z||2
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Let us estimate ||[(Ap)P|2.

I(Ap) Pz <

N

N

<

o [ XX + 2ml (X2 P
M JM

mi 2 2

2 ([ XPE (g (XPIXTE + 2l (X P)12) ) |PIE,

Um M

mi (142 Y2 SIHS, orp2 , o 20HI3 )
o T (T2 X 42 1Z])%av) | P,
o HIF Vs, V2 Ve

2 16/

%(1"‘2 1\6/5)2k (/ 128HHH§|XT|4—|—32TLQHHH%|Z|2(1’0) ||P||2
2k 4 8 Sn
UM IH |5 Ay 16 Ve Ve

. T . estinormphiz | 9
Slnce we have |X'| < |X| and since Lemma i3.3 is valid with ||¢Z]|5 replaced by

U]M fA ‘Z‘

we get

Cn, k) | P2 Tk i
I(AQ)P3 < S/A (MU oy, W 712,

vm [IH|Z

I H|3

Ve Ve

2 167z
2
1H |13 ¥/ || Pllsn

Ppresquorthe2 | X
From the lemma b1, ¢ < 543 232 implies that

(5.2)

which gives

S @0)
2
I1Plls» < 213" |0 Pl3

5:3) IADPIE < Clon Ryl H1 Y0P
Now
2 / 2 T 2 16HHH§ T2 2
I (o dP) I < 4l (XX 1P < S XTRiaP R
M Jay
16 _
< i, [ T Pk XD
Veunm Ay 19z
(5.4 < Ol Ky YR | I3, < (o k) [HI 9E P

By the same way, we get

(5.5)

leldPIZ|[3 < C(n, k)| HIZ Vel Pl

estimplus
Now, by Lemma &3.2, we have

mg
I(H] = [[H]l2)¢ Pl < —IIPllén/ [ H| = | H 2| X [* p*dv

(5.6)

C(n, ) 2
< 1PlIg: le(H| — [1H]12)]
[T ’

< C(n, k)| HIIZ VelloPll3

By the same way, we get

(5.7)

lo([H] = [Hl2)dP )15 < C(n, k), Vel Hl3llo P13
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til
Now let us estimate the last terms of (E.S i
(j(n’k)ﬂk —
lelVoaP|| Z]]5 < 7HPH§n/ P X Z P d
VM M

(5-8) < C(n, k)| H|3 Vel o Pl

lesti2 Jesti3 |lesti7 lesti4 |esti8 estib lestil
Reporting (5.3), (5.4), (6.5), (6.6), (6.7) and (Ib 8) in (b.1) we get

IA@P) = el H 30 Pll2 < C(n, k) Ve HI3 0P

O

Let Ej} be the space spanned by the eigenfunctions of M associated to an eigenvalue
in the interval [(1 — /22C(n, k))py SM (1 4+ 19220 (k,n))p SM] If dim Ef < my, then
there exists P € (¢HF(M)) \ {0} which is L%-orthogonal to EY. Let P = Zfz

7
be the decomposition of @ P in the Hilbert basis given by the eigenfunctions f; of M
associated respectively to A;. Putting N := {i/ f; ¢ E}}, by assumption on P we have

4C (n, K2V e P13 < 3 (A — ) 1:l13 = 1A (0 P) — i3 o P13
1EN

< (U)2C (n, k)2 2|0 P 3

which gives a contradiction. We then have dim Ef > my,.

6. SOME EXAMPLES

ctrexpled nn,Takl,AG1
6.1. Proof of Theorem [1.2. %Ne adapt the constructions made in [4, 12, 3]. e

consider submanifolds obtained by connected sum of a small submanifold eMs with
a fixed submanifold M; along a small, adequately pinched cylinder e7. This is a 2
scales collapsing sequence of submanifolds. Gluing several such cylinders (with M,
replaced by S™ for the supplementary cylinders) adds any finite set of eigenvalues to
the spectrum of M. Since [\ Sp(M1) is the Hausdorff limit of a sequence of finite
sets, this will give Theorem h_.Z._V?Ve_ﬁrst describe precisely the construction in the case
of one gluing, taking a special care of the case o = n.

6.1.1. Flattening of submanifolds. For any submanifold M of R™™! we set M€ the
submanifold of R"*! obtained by flattening M at the neighbourhood of a point zg € M
along the following procedure:

M is locally equal to {xo +w+ f(w), w € By(10ep) C Ty, M} where f : By(10gg) C
TyoM — Ny M is a smooth function and Ny M is the normal bundle M at zg. Let
¢ : Ry — [0,1] be a smooth function such that ¢ = 0 on [0,4ep] and ¢ = 1 on
[5e0,+00). We set M the submanifold obtained by replacing the subset {zg + w +
f(w), w € By(10e9) C TyyM} by {x0 + w + fo(w), w € By(10eg) C Ty, M}, with
fe(w) = f(go(%)w) for any & < 2eg, and M® = M¢ \ B,,(3¢). Note that M¢ is a
smooth deformation of M in a neighbourhood of zg and that the boundary of M¢ has
a neighbourhood isometric to the flat annulus By(4¢) \ Bo(3¢) in R™. Note also for
what follows that for € small enough, M*®\ B,,(10¢) is a subset of M. As a graph, the
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curvatures of M¢ at the neighbourhood of z( are given by the formulae
m n+1 o
IB.|? = Z Z Ddf,(e;, ex) Ddf,(e;, ) H HM'GP1
1,4,k l=1p,q=m+1
1 n+1 m N
He = — > Z Ddfy(ei, e ) HY GFU(V fi — 1)
k,l=m+11,5=1
where (e, ,€n,) is an ONB of Ty, My, (em+1,- -+ ,ent1) an ONB of Ny M, fo(w) =
S fiw)es, G = S+ (Vi Vfi) and Hyy = g + (dfe(ex), df-(er)). Now fe
converges in C* norm to f on any compact subset of By(gg) \ {0}, while |df.| and
|Ddf.| remain uniformly bounded on By(eg) when ¢ tends to 0. By the Lebesgue
convergence theorem, we have

lim |H.[%dv = lim/ ]Hgladv:/ |H|*dv
0 e—0 Me M

=0 J e

lim IBe|“dv = lim/ \Bglo‘dv:/ IB|“dv
e—0 Me e—0 Me M

for any a > 1. By the same way, any function on M can be seen as a function on Me
and this identification of H'(M) with H'(M¢) tends to an isometry as ¢ tends to 0.

6.1.2. Control of the curvature of the gluing. Let M7, Ms be 2 manifolds of dimension m
isometrically immersed in R"*! and A, L be some fixed, positive real numbers, with \ ¢
Sp(M;) and L > max(%w, 1), where d is the distance between A and Sp(}M;) in
R. We consider the flattenings ]\21'26 of My around the point x9 and M7 of M; around z;.
Let D be a smooth hypersurface of revolution of R”™*!, composed of three parts, Dy,
Do, D3, where D is a cylinder of revolution isometric to By(3) \ Bo(2) € R™*! at the
neighbourhood of one of its boundary component and isometric to [0,1] x S™~! at the
neighbourhood of its other boundary component, where Dy = [0, L] x S™~! and where
Ds is a disc of revolution with pole x3 and isometric to [0,1] x S™~! at its boundary
and to a flat disc at the neighbourhood of z3. Let C be a cylinder of revolution of
dimension m isometric to By(2) \ Bo(1) C R™ at the neighbourhood of its 2 boundary

components.
D
D, D, D,
c

There exists vy > 0 such that for any v €]0, [ the gluing of M5 \ By, (2v), of vC
and of D\ By, (2v) along their isometric boundary components is a smoothly immersed
submanifold T, of dimension m. By standard arguments (see for instance ]}?Zﬁlgor what is
done in section %T%Tl%more complicate case), when v tends to 0, the Dirichlet spec-
trum of T}, converges to the disjoint union of the Dirichlet spectrum of D and of the spec-
trum of M. Moreover, for v small enough, AP (7)) depends continuously on v. We infer
that for any € €]0,e0(Ma, A, L, D1, D3)| there exists a v, €]0,v9(Ma, A\, L, D1, D3)[ such
that AP (T},.) = X and M) (T},.) = Ao(L, Ma, A, Dy, D3) > 0. We set T, = ¢T},_. Note
that we have fTE IBIP < " PCy(Ma, \, L, D1, D3) for any p < m, lim._,q fTE IB|I™ =
Jar, BI™+ [, BI™ + [, IBI™ + LC(m), AP(Tt) = X and AP (T2) > 22 for any € < &.
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T,
M, .C D

We set M. the m-submanifold of R™*! obtained by gluing M§ and T. along their
boundaries in a fixed direction v € N, M;. Note that M. is a smooth immersion of
M # My (resp. an embedding when M; and My are embedded).

By the computations above, the sequence iy (M#Msy) = M% converges to M; in
Hausdorff distance and we have

lim |H€|O‘dv:/ |H|“dv lim/ |B€|O‘dv:/ |B|*dv
e—0 M. M e—0 M. M

for any @ < m and

lim \mm:/ wm+/ mw+cmw+/ [H [
e=0 S, M D1UDs Mo

lim [ [B.f" = / B + / BI™ + C(m)L + / B™
e=0 /. M; D1UDs M,

6.1.3. Computation of the spectrum of M.. We will prove that there exists a sequence

(ep)pen such that £, — 0 and the spectrum of M., converges to the disjoint union of

Sp(M;) and of {\}, where X satisfies A\ — % <A< SLizlllce the collapsing
nn a.

of M. is multiscale, the cutting and rescaling technique of lZI, 121 has to be adapted.

Indeed, after rescaling of T, we get another collapsing sequence of submanifolds with

no uniform control of the trace and Sobolev Inequalities.

We denote by (Ag)gen the union with multiplicities of the spectrum of M; and of
{A}, by (AL)ken the spectrum of M. and by (u})ren the Dirichlet spectrum of the
disjoint union M, =T, U <M16 \ Bq, (105)). By the Dirichlet principle, we have A7 < puf
for any & € N. It is well known (see for instance %]) that the Dirichlet spectrum of
M7 \ By, (10¢) converges to the spectrum of M;. We infer that u; — Ay as € — 0 and
so limsup A}, < A; for any k € N.

We set aj = liminf, ;o A7. To get some lower bound on the oy, we need some
local trace inequalities. We set S; = {z € T./d(x,0T.) = —t} for any ¢ < 0 and
Sy = {z € Mi/d(x,0M7) = t} for any ¢t > 0. We also set By, = Ufy/|s—|<r}Ss;
N, = M{ U B+ —r for any r < 0 and N, :Mf\B%% for any » > 0. Let aps, be a

2772 ’

constant such that the volume density . of M, in normal coordinates to S_o. satisfies
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a}b B+ L)t > 0:(t,u) = an, (3+ £)™ ! for any ¢ € [~2¢,apy,] and any u € S_s..
1
Let ed be the distance in M. between M§ and €Dy and C(D;) be a constant such that

for any t € [-(L +d + 2)e, —2¢] and any u € S_y. we have eﬁ(s(gg)u) € [C(})l) C(Dy)).

M1

Let n : [-2¢,ap,] — [0,1] be a smooth function such that n(¢) = 1 for any ¢ < )
n(ar,) =0 and || < -2 [—2¢,aps, /2] and any f € HY(M,), we have

L= () et ms) o
[ [ o s

W (3 4r/e)mt 2
<C(M1)/r st\\f“m(m)

which gives
(6.1) g £2 < e(M1)Be + ) I

when m > 3. By the same way, for any r € [—(L + d 4 2)e, —2¢], we have

(6.2) : f? < —c(My, Dy)(e + 7“)||f||%11(M )

We now use this local trace inequality to get some estimates on the eigenfunctions of
M. We set ¢ : M. — [0, 1] be a smooth function equal to 1 on Ny /o U (M6 \ N,E/Q),

equal to 0 o EmdegME %d such that |¢'| < 4. For any f1, fo € H'(M.), integration of
Inequalities (b I) and (6.2) glves us

(6.3) | /M fifs— /M ol < /M 62 — 1l llfal < eI il 2o | ol o

and
/ ldpfi]* < / || f7 + 20 f1(df1, o) + ¢°[df1]?
M. M.
16 8
< S AlZesuppany T ZIHFillesuppaon dfll2 + lldfi 2
(6.4) < (M)l fillFr oy
Let (f7) bea L?-orthonormal, complete set of eigenfunctions of M,.. For any k, we set

utdir

fk the function on M1 equal to ¢ f; on Nyg. and extended by 0. By Inequality (6.4), we
have | f£||2 (M) < ¢(My)(1 + Ag) for € small enough. We infer by diagonal extraction

that there exists some sequences (ep)pen and (hy)gen € HY(M7)N such that AP — oy,
and (f;?), converges weakly in H'(M;) and strongly in L?(M) to hy, for any k. It is
easy to prove that hy is a weak solution of Ahy = aghy on HY (M \ {z1}) = HY(M).
By elliptic regularity, either hy = 0 or «j is an eigenvalue of Mj.

Let ko € N such that Ay, = A. Since Dy isometric to [0,L] x S™~!, any f,” can be
seen as a function on [0,e,L] x €,S™~ 1. For any f = D icko Bif;" € Vect{f;"/i < ko},
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we define tlag rescaling F), on ¢ = [0, 1] x S™! by Fy(t,z) = 61,%71[7%]‘(6],[1, epx). By

Inequality , we have

1 2
[E=om [ £ <conya+ DIk
c P epD2
/ o L 72 < “ML D)+ VIS
{0} xSm—1 Lep ep(D1ND2) L
1 d
and / . £2 < (14 Ne(My, D) (1 + )| 13,
{1} xSm~1 Lep ep(D3NDz) L

for p large enough (note that we have d > 2 by construction). Moreover, we have
[ |dF, 2 < e Ds |df|? < Al|f]|3. So we can assume that there exists Fl,, € H!(c) such

that the sequence (F},) converges to Fi, weakly in H'(c) and strongly in L?(c). We
set jp(t) = me  F (t x)dr and joo(t) = fgm 1 Fo(t, x)dz, we have jp, joo € H([0,1])

(with j,(t) = Jgm- at (1, x)dw), Jp — Joo strongly in L%([0, 1]) and weakly in H1([0, 1]).
By the estlmates above and the compactness of the trace operator on ¢, we have

e (0)] < SRR and [jo (1) < VIFAf[2C(M1). Hence I(t) = joolt) —

(Joo(0) 4 (Joo (1) — joo (0))t) is in HJ([0,1]). For any ¢ € C°([0,1]), we set ¢, (t,z) =
epr(epLL) seen as a function in Hi(e,D2). We have

/111;) dt = /Oljooq,z/dt

= hm/ g ( t)dt = hm p¢ = lim — / (df , dip,) dt dx
’ P oeZVLJepe
= hmz Aid \F frppdtds =) o L% lime;, / F; i dt du
i epD2 i p c

=0,

where F; ,(t,z) = Ep%ilLféff”(sth, epx). We infer [ is harmonic and in H{ ([0, 1]), i.e
=0 and joo(t) = Joo(0) + (Joo (1) — Joo(0))t on [0, 1]. Since the Poincare inequality on
Sm=1 gives us

1 2 1
2 2
/m—l Fp(t’x) dx < VOl Smil (/S\m—l Fp(t’x) dx) + m—1 /S\m—l |dSm_le|

1 ‘ 5
S W‘ﬁ’(t) + ﬁ / —_ | sm1 f*(epLt, x) du,
Ep m—
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we get that
1
2 / Rl R
[0,epV L] xepSm—1 [0, £]xsm=1

\F 2 1 / 9
t)dt + ————— de,sm-1f
VOl Sm Vol Sm—1 / (m — 1)L [0,epV/I] xpST—1 | epS |

vz 2 2
S = MEAOL R ) I
COn)( + N2

W/fjoo t)? dt+( ) Hf”2 NG

If the family (h;);<g, is not free in L?(Mj), then either one h; is null or they are
all eigenfunctions of M;. Since the eigenspaces are in direct sum, we infer that there
exists p1 < A1 and (B;) € R¥\ {0} such that > B2 =1,>.Bihi =0and a; = p for
any 4 such that 3; # 0. We set f =", ﬁszp and 7 : M., — [0,1] a smooth function
equal to 1 on M, \N—(2+d+ﬁ)sp’ equal to 0 on N_(o4q)., and such that [¢'| < EPL\/Z
We then have

| / ) — g /M (nf)?] = | / dnf2 £ + (df (2 f)) — /M (nf)?|

CM 1 )\ 5 £ 15
“%* 1B+ [ S0 - s sy

Mep i,

65) <
|cutscal = |Spep . 1 :

Inequalities (6.3) and (6. Z) 1mply that [ M., > — 1. Since nf € H{(T:,) and since by

construction of 7%, we have A\P(T¢,) = )\ we then have fM dnf)]? = )‘st (nf)?

trict
Letting p tend to oo in Inequality (E Bicwe get that A — )\ko, < %, which

contradicts the choice made on L at the beginning of this subsection.

We infer that (h;);<g, is free in L2(Mj). This implies that «; is an eigenvalue of M
and h; is an eigenfunction of M; for any ¢ < kg. Since o; = lim )\?” < No= N(My)
for any i < ko, we infer that o; = \; for any ¢ < ko and that the (h;);<k, is a basis
of the eigenspaces of Mj associated to the first ky eigenvalues. By the same way, if
hik, # 0, then ag, = Ag,—1 (since it is an eigenvalue of M; less than A) and so the
family (h;)i<k, is not free. The same argument as above gives a contradiction. So we
have that hy, = 0.

Assulme that there ex1sts another index l 75 ko such that hl = (0. Then, Inequality

t
(EuBSiC%\ées that fT of f — 0, fTE of ) — 1 and fT ¢f;?)? — 1 and Inequal-
utalr
ity (‘6 1) gives that fT |dgo ko ?|2 and fTsp |dg0fl€”|2 remain bounded as g, — 0. We set
gp a unitary elgenfunctlon of T, for the Dirichlet problem associated to the eigenvalue
A If we set (gof,ig)mp = ﬂzogp + 52’0 and (gpflep)‘TEp = B gp + 6}, with ﬁzo,ﬁlp € R and
5Z .0 orthogonal to g, in H&(Tgp). The previous relations and the lower bound on
AP (T.,) imply that

A
/ [d(efi)P = MBE)? + M2 (T )10, 132, ) = (BEPA+ 108, 122z, -
e p

P
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By the same way, (8 )2)\—1— H5pHL2 T.,) is bounded, and so ||6} HLQ(TE and H5pHL2 T.,)
tend to 0 with &,. Now, we have (Br,)? —i—H5 HLQ(TE —1 and so | B | = 1. By the same
way, we have |8| — 1, which contradicts the fact that fT of go fl — 0. We infer that

for any k € N\{ko} we have that o, is an eigenvalye of M1 Moreover if we decompose

(gofk )ITsp BRgp + 68 as above, Inequality ( ‘64) mnplies that ( ﬁk) ||6pHL2 T.,)
remains bounded and so we have lim ||}/, T,) = = 0 and Inequality ( glves
0= hm/ = lim ﬁgﬁk = lim ﬂk

cutscal
and so (¢ fk )ITE — 0 in L*(T: ,) for any k # ko. Once again, Inequality (% 3) gives us
that for any k,1 € N\ {ko}, we have

/ hihy = 6p.
My

From the min-max principle, it gives that we have oy > A for any k # ky. Since we
have oy, < Ay, for any k € N, we infer that for any k& € N\ {ko} we have oy = \i. Finally,

t
Inequality (%S.Sni Capphed to f = fk and p = oy, gives that ag, € [\ — %, Al

ctrexpled
6.1.4. End of the proof of Theorem b?_a‘;ﬁ?ase a = m. Since we can take L as laéreX led
as needed while keeping [,  [B|* — [, |B|* for any @ < n, we get Theorem ﬁ_Z_L
for FF = Sp(M;) U {A} by diagonal extraction. Iterating the construction (with M,
replaced by S™ for any supplementary gluing) we get the result for any disjoint union
F = Sp(M;) U {finite set} and then for any F, since any closed set F' is the limit in
pointed-Hausdorff topology of a sequence of finite sets.

In the case a = m, the limit Mo ]%lm depend on L and so we are only able to
get a weak version of Theorem .2 with F' = Sp(M;) U G, where G is a finite set
whose elements are known up to an error term and where the point 2) is replaced by
fik(Ml#Mg) IB|™ is bounded by a constant that depend on Mj, My, Dy, D3, G and on
the error term.

ctrexplel
6.2. Example 1.4. )V_Ve set I, = [e,5] for e > 0 and let ¢ : I, — (—1,+00) be a
function continuous on I, and smooth on (e, §]. For any 0 < k < n — 2, we consider
the map

P, :S"FIxSkx . — RV =RMFgRF
x=(y,z,7) +— (14+¢(r))(ysinr+ zcosr)

whose image X, is a smooth embedded submanifold (with boundary) diffeomorphic
to S™ \ B(S¥,£). We denote respectively by B,(¢) and Hy(¢) the second fundamental
form and the mean curvature of X, at the point q. They are given by the following
formulae.
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Lemma 6.1. Let x = (y,z,7) € S * 1 x Sk x I, ¢ = ®,(x) and (u,v,h) € T, X..
Then we have

nHy(¢) = (¢ + L+ 9)%) [ = (L o))" () + (1 + 0(r))? + 2%(r)]

(90,2 + (1 +Q0)2)_1/2
14 (1)

[—(n —k—=1)¢ (r)cotr + (n —1)(1 + (1)) + ko' (r) tan 7"]

Be()| =
(14 o(r)! maX(u _

r 1/2
(1+ (282"

ctrexplel
To prove Theorem .4, we set a < {; and define the function ¢. on I. by

(@) — (14 0)¢" D

@
1 (pcotr{ {1—{— (ptanr‘ ‘1—|— @/24_(1_’_@)2

c dt
fg(r):s/ ife<r<a+e,
B 1 A /tQ(n—k‘—l) —1
pe(r) = ue(7) ifr>a+e,
be if r > 2a+e¢,

where b. is a constant and wu. is chosen so that ¢. is smooth on (e, g] and strictly

concave on (g,2a + ¢]. Since we have f.(z) — 0, fl(x) — 0, f/(x) — 0 for any fixed
x € (g,a + €], the concavity implies that b, — 0 as ¢ — 0 (hence b. can be chosen
less than %), that ¢, — 0 uniformly on I, and that . converges uniformly to 0 on
any compact subset of (g, §]. Moreover, u. can be chosen such that ¢’ converges to 0
uniformly on any compact subset of (e, 5.

On (e,a + €], p. satisfies

(n—k—1)(1 +¢2)
(6.6) 90;/ == , ==,
:(e) = 0 and %im oL(t) = 400 = —%im ©¥(t). On (=b,b.), we define @ by P.(t) =
—E —E

¢-1(|t]). Since @, satisfies the equation yy” = (n — k — 1)(1 + (y')?) with initial data
?:(0) = ¢ and @L(0) = 0, it is smooth at 0, hence on (—b.,b.)

Now we consider the two applications ®,_ and ®_,_ defined as above, and we set
M =Xy, M =X_, and M¥ = M U M. MF is a smooth submanifold of R"*+?
since the function F.(p1,p2) = |p1|* — |p|* sin®(p(|p| — 1)), defined on

U={p=(p1,p2) ER" "SR /p1 #0, pp #0, b +1 < |p| < b + 1}
gives a smooth, local equation of M* at the neighborhood of M} N M- that satisfies
VE.(p1,p2) = 2p1 cos’e — 2pysin®e # 0
on M NM.

We denote respectively by H. and B., the mean curvature and the second funda-
mental form of Mf .

Theorem 6.2. ||H. ||, and ||Bc||,_, remain bounded whereas ||[H. — 1|1 — 0 and
|1 X|—=1]|_ — 0 when e — 0.

Remark 6.3. We have ||B.||; = co when ¢ — 0, for any ¢ >n — k.
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Proof. From the lemma % and the definition of ¢e, He and |B.| converge uniformly
to 1 on any compact of M*\ M} N M2. On the neighborhood of M2 N M, we have
n(H.), = nhZ(r) and nhE < hfe + h;e + hét,e, where

12 2\—1/2
+ (1 + Qpe) ) / k
h:l: _ k(spe ! < n
2.:(7) o @, tan(r) - tan z
B (r) = (n = 1)(p2 + (1% p.)?) /3

_ +1
2 + (10?1 £ 0 +208) < 775
- Ue

dif
and by differential Equation (‘Ge.buai We have

2 1+ 2\-1/2
(pf + (1 £ ¢:)%) @ cot(r) + (92 + (1 £ 0:)%)™32(1 £ @, )

P = |-k = 1)

1=+ ¢
(92 + Q£ p)?) 1
<(n—k—1)~"= 1i%€ wécot(r)—;(
n—k—11(e2 + (1 £p.)%)"/? -
- | DLl — (92 (1 02)?) (1 ) (1 + 92
r 14
1
< i (——cot(r))
1—b.\r
—3/2
n(30/52+(1i90€)2) / 12 2 2 12
1+ -1+ 1
T’(l:l:gDE) (pe 905 +( 906) ( 906) ( +(P€)
n /1 n 2+ e @3
< (——cotr)—i—— =
1_b5 r ( ) r(pslitpg [<P22+(1i§05)2]3/2
n 1 n  2+b
< ~ — cot(r)) + =
1—b€(r cot(r) +r¢€1—b6
) Y. € r/e dt e [T dt Lz dt Inz
SIHCGT = ;/1 tQ(n—k;—l) —1 < ; ) \/ﬁandgfl ﬁ/\z_i_oo = we get

that hfe is bounded on M*, hence H. is bounded on M.. By the Lebesgue theorem
we have |[H. — 1|; — 0.

We now bound ||B.||; with ¢ = n — k. The volume element at the neighbourhood of
MF M- s

/
(6.7) dvg. = (1 £ )" (1 + (&)2)1/2 sin™*~1(r) cos® (1) dvy,_j_ 1 dvgdr
£

where dv,,_ ok Iab%g dvy, are the galrllé)drﬁcal volume element of S*~#~1 and SF respectively.
By Lemma % and Equation (ib'.%i, we have

1
(02 + (1 +¢:)?)

/ /
Pe cotr|, |1+ Pe
1+ ¢ 1+
WP+ (n—k—1)(1+0)(1+ )l /r quv

@2+ (1+ ¢c)? o

IB:|?dvg, = max(!l — tan r

)

S

|1+
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Noting that < min(1, z), it is easy to see that, if we set h. = min(1, |©.])

T
V142
/

oL
1:|:<p 1 n T+, cotr
2
VR Ep) VR (ze) ey +11E%

1 he cotr < h)
< + <41+
1 — e (1_90)2

Similarly for r € [¢,7/5 + ¢] and ¢ small enough, we have

|1+ lif tanr| )
gpe +(1i90€)

And since ¢L = 0 for r > 7/5 + €, this inequality is also true for r € (&, 7/2]. Moreover

he
r

<4(1+ hotanr) < 8(1+ her) < 8(1+

1 905 +(n_kj_1)(1i¢€)(1+¢s )305/7‘
1 + /2 2

©2 + (1 £ p.)? 2 + (1 £ )
R A n(L£ @)1+ ) kA
Tldee (@24 (1Ee)2)32 0 2+ (1Ep)? (2 + (£ p)?)l 2
< 2 + nhe (1% ¢)(1+¢2) < 2 2nh5 (1+¢.)°
Slte. r(1-) O2 + (1 +¢.)? S 14, r (1 —p)?

nhe
2
(2-+920)

It follows that

h oL

B.|%dvy. < C(n, k)(1+ f)qdvgs < C(n,k)(r+ he)ir (14 E)dvn g_1dvgdr
[

1
Ve F -1

< C(n, k)yr—t(r + h.)? <1 + )dvn_k_ldvkdr

Now

1
93(i—F-T) 4
1
B.|%dv, < C(n,k (1 d
/M§| <|Ydvg, (n )</6 r <+\/(7“/€)2("_k_1)—1) "

2a+¢ o1 1 q
s, o)
Q2R r/(rJe)2mn—k=1) _ 1
Qm

1 1 2a/€+1 ko1 i q
S C(n’ k) (/1 y <1 + g2(n—k—1) _ 1)d5 * /Qm s (6 + sq) ds)

=1
Since € ¢ < 2?“ + 1 for € small enough we have

E_Tl 9gn—k—1 2a/e+1
/ IBe|?dvy. < C(n, k) <1 +/ L o ds+ /_1 25"*’“*15qu)
ME 92(n—k—1) s =

< CO(n,k)(1+e"F1)

which remains bounded when € — 0. O
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Since . is constant outside a neighborhood of MX N M= (given by a), MF is
a smooth submanifold diffeomorphic to the sum of two spheres S™ along a (great)
subsphere S¥ c S™.

If we denote Mf one connected component of the points of Mek corresponding to r < 3a,
we get some pieces of hypersurfaces

that can be glued together along pieces of spheres of constant curvature to get a smooth
submanifold M, diffeomorphic to p spheres S™ glued g@gg{ (itelier along [ subspheres S;,
and with curvature satisfying the bounds of Thjg{esc 14 {(when all the subspheres have

dimension 0) or of the remark before Theorem [.3.

S

Since the surgeries are performed along subsets of capacity zero, the manifold con-
structed have a spectrum close to the spectrum of p disjoints spheres of radius close
to 1 (i.e. close to the spectrum of the standard S™ with all multiplicities multiplied
by p). More precisely, we set € [2¢, 5], and for any subsphere S;, we set N; . the
tubular neighborhood of radius 7 of the submanifold S; = Mj ;M M_,; in the local
parametrization of M. given by the map ®,_, associated to the subsphere S;. We have
M= U UQy, UNyp U -UN;, - where §2;, . are the connected component
of M\ U;iN; ... The §; . are diffeomorphic to some S;, (which does not depend on ¢
and 1) open set of S” which are complements of neighborhoods of subspheres of dimen-
sion less than n — 2 and radius 7, endowed with metrics which converge in C! topology
to standard metrics of curvature 1 on S;,. Indeed, . converge to 0 in topology C?

. i,+
on [r¥y, T], where Sl \/(1 + ¢:)? + (L ;)2 = n since it converges in C' topology on

any compact of [¢, §] and since we have

ik
Tem .
n > / (1—0bi.)dt = (ré:nt —e)(1—b;e)
g
iy &y dt -
n < (14 bio)dt + t = (rey —e)(1+bi)
5 € \/(5)2(n7k71) -1

+oo dt

1 \/12(n—k=1) _ 1
+

so 7z, — 1 when € — 0. So the spectrum of U;§;, . C M. for the Dirichlet problem
converges to the spectrum of I1;S; ,, C II;S™ for the Dirichlet problem as € tends to 0
(by the min-max principle). Since any subsphere of codimension at least 2 has zero
capacity in S", we have that the spectrum of I1;5; ,, C II;S™ for the Dirick%at problem
converges to the spectrum of II;S™ when 7 tends to 0 (see for instance or adapt

+e
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what follows). Since the spectrum of II;S™ is the spectrum of S™ with all multiplicities
multiplied by p, by diagonal extraction we infer the existence of two sequences (g,)
and (7,,) such that €, — 0, 7,, — 0 and the spectrum of U;Q; ;.. ... C M, for the
Dirichlet problem converges to the spectrum of S™ with all multiplicities multiplied by
p. Finally, note that (M) < A\j(Ui€ 2,¢) for any [ by the Dirichlet principle.

On the other hand, by using functions of the distance to the S; we can easily construct
on M, a function ¢, with value in [0, 1], support in U;Q; 5, -, equal to 1 on U;§; 2, - and
whose gradient satisfies [dy.|, < % It readily follows that

4 Vol N;
2 2 < ,2m,€
11 =2l + [ldeellz < (1 + —nz) VoM,

To estimate ) ; Vol N; o, <, note that N; o, . corresponds to the set of points with riE
it

-2, 10 the parametrization of M. given by ®,_, at the neighborhood of S;, where, as

r

b L% s given b
above, r_5, is given by

e
R CET R AR
g

1 ~ : fe
€) < 27 (since we have 1 — ¢ ; > 35). By formula 6.7, we have

hence satisfies 5(r

i+t
€,2n

Tn
Vol Nizne < C(")/ (1- @evz‘)"fl\/(l — o)+ (L)t Nt
3

Tn
+0m) [0 e O e (e
€

<Cn)(An+e)" " < Cln k)"
where we have used that ¢.; < 2 and 2¢ < 7. We then have

Hl - 1/152”1 + Hdwe?H% < C(”? k7lvp)77n_k
To end the proof of the fact that M., has a spectrum close to that of U;Q; . ., we

need the following proposition, whose proof is a classical Moser iteration (we use the
Simon and Michael Sobolev Inequality).

Proposition 6.4. For any q > n there exists a constant C(q,n) so that if (M",g) is
any Riemannian manifold isometrically immersed in R"™ and Ex = (fo, -, fn)is
the space spanned by the eigenfunctions associated to Ag < --- < Ay, then for any
f € En we have

1 lloo < Clam) ((0an) "N + 1)) " 11£ 12

qn

where v = %q—n'

Since we already know that A\,(Mc,,) < Ag(Uiin,, en) = AB(o/p)(S") for any o
when m — oo, we infer that for any N there exists m = m(N) large enough such that
on M, and for any f € En, we have (with ¢ = 2n and since |H||» < C(n))

[fllo < C(p, N,n) || £]]2
By the previous estimates, if we set

L., :feEN—1., f€ H(I)(UiQi,nm,em)
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then we have
IF1I3 = 11 Le, (DI = 1£13 = [F1Z 11 =92 11r = [f115(1 = C(k, L, p, N,n)nj *)

and

oL 2
I4Len (P8 = oy [, 1 + v

1 1
< (1 +h)|df|3 + (1 + —

2 2
S d
h)VolMam Msmf e,

1 _
< (L4 Mldf(5+ (1 + )C s L, Non)l|f 305"
n—k
for any h > 0. We set h = ny,2 . For m = m(k,l,p, N,n) large enough, L. : Enx —
HY (Ui e ) i injective and for any f € Ey, we have

laLen (D3 190, ot o 5
HLem(f)”g )HfH% + ( y by Py ,n)nm

By the min-max principle, we infer that for any ¢ < IV, we have

n—k
2

< (1 +C(k,1,p, N,n)nm

n-k n—k
)‘U(MEm) < AU(UiQi,nm,&?m) < (1 + C(k’ l,p, N’ n)nm2 )AU(MEm) + C(k’ l,p, N’ n)nm2

Since Ao (Uifdimyrem) = AB(o/p)(S™), this gives that Ag(Me,,) = Ap(o/p)(S") for any .
o < N. By diagonal extraction we get the sequence of manifolds (M) of Theorem II.4.

To construct the sequence o C,Eflggoirg{n ;.5, we consider the sequence of embedded
submanifolds (M;) of Theorem .4 for p = 2, k =n—2 and | = 1. Each element of the
sequence admits a covering of degree d given by y — y¢ in the local charts associated
to the maps ®. We endow these covering with the pulled back metrics. Arguing as
above, we get that the spectrum of the new sequence converge to the spectrum of two

disjoint copies of

(Sl x §"72 % [0, g], dr? + d? sin® rgg1 + cos? rggn—2).
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APPENDIX A. PROOF OF LEMMA %MI
Let (u,v,h) € T,:S: and put w = d(®,);(u, v, h) € T, X, where S, = S FIxSkx ..
An easy computation shows that
w = (14 ¢(r))((sinr)u+ (cosr)v)
(A.1) + ' (r)((sinr)y + (cos7)2)h + (1 + () ((cos )y — (sinr)z)h
We set

Ng = =¢'(r)((cos )y — (sinr)z) + (1 + ¢(r))((sinr)y + (cosr)2)

and N, = 1 )2)1/2 is a unit normal vector field on X,. Then we have
4+ 1+
71 2 ~
By(¢)(w, w) = (VON,w) = (&% + (14 9)?) "> (VI,N, w)
n+1
(A.2) = (2 + (1 +92) (3w ah,w)
i=1

where (0;)1<i<n+1 i the canonical basis of R™*1. A straightforward computation shows
that

n+1
Z w(NHO; = — ¢/ (r)((cos r)u — (sinr)v) 4+ (1 4+ @(r))((sinr)u + (cos r)v)
i=1
— " (r)((cosr)y — (sinr)z)h + 24 (r)((sinr)y + (cosr)z)h
+(1+ go(r))((cqs T)y — (sinr)z)h
Reporting this in (%fii)%md using (dl.f hizve get
— 1 —o (r r)) sinr cosr(|ul> — |v|?
B (1,0, (1,,1) = — e [0 (14 907) (juf? = [of?)

+(1+ @(r))* (sin® rlul® + cos® ruf?) — (1 + (1)) " (r)h?® + 20" (r)h? + (1 + ¢(r))h?

Now let (u3)1<i<n_r—1 and (v;)1<i<x be orthonormal bases of respectively S**~1 at y
and S* at z. We set g = % can and £ = (0,0,1), then we have
g(ui? u]) = (1 + SD(T))2 SiIl2 T(Sl'j, g(’U@', v]) = (1 + SD(T))2 COS2 T(Sl'j, g(ul’ v]) =0,
9(6,6) = ¢ + (1 + )%, 9(ui, &) = g(v;,€) = 0.

Now setting @; = d(®y)z(u;), ¥ = d(®y),(u;) and € = d(Py,),(€), the relation above
allows us to compute the trace and norm

B By () (i, 0s)] Bg () (95, 5)| Bq(e)(€,€)
By(i)] = mae(max L S me e S, )
1 ¢’ ¢’ (¢)? = (1+9)¢"
= Ty max<|1—1+(p cotr|, |1+ o tanr|, |1+ (1o D
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of the second fundamental form.

(E. Aubry) LJAD, UNIVERSITE DE NICE SOPHIA-ANTIPOLIS, CNRS; 28 AVENUE VALROSE, 06108
NICE, FRANCE
E-mail address: eaubry@unice.fr

(J.-F. Grosjean) INSTITUT ELIE CARTAN DE LORRAINE (MATHEMATIQUES), UNIVERSITE DE LOR-
RAINE, B.P. 239, F-54506 VAND@®EUVRE-LES-NANCY CEDEX, FRANCE
E-mail address: jean-francois.grosjean@univ-lorraine.fr



