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In the context of turbomachinery design, a small variation
in the blade characteristics due to manufacturing tolerances
can affect the structural symmetry creating mistuning which
increases the forced response. However, it is possible to de-
tune the mistuned system in order to reduce the forced re-
sponse amplification. The main technological methods to
introduce detuning are based on modifying either the blade
material properties, either the interface between blades and
disk, or the blade shapes. This paper presents a robustness
analysis of mistuning for a given detuning in blade geometry.
Detuning is performed by modifying blade shapes. The dif-
ferent types of blades, obtained by those modifications, are
then distributed on the disk circumference. A new reduced-
order model of the detuned disk is introduced. It is based on
the use of the cyclic modes of the different sectors which can
be obtained from a usual cyclic symmetry modal analysis. Fi-
nally, the robustness of the computational model responses
with respect to uncertainties, is performed with a stochas-
tic analysis using a nonparametric probabilistic approach of
uncertainties which allows both the system-parameter uncer-
tainties and the modeling errors to be taken into account.

1 INTRODUCTION
Small variations in the blade characteristics of cyclic struc-
tures due to manufacturing tolerances affect the structural
cyclic symmetry creating mistuning which increases the
forced response amplitudes (e.g. see [1–3]). However, it
is possible (e.g. see [4–8]) to intentionally detune the mis-
tuned system in order to reduce the forced response amplifi-
cation. The main technologic solutions to introduce detuning
are based on modifying blade material properties, the inter-
face between blade and disk, or the blade shape by introduc-
ing several types of blades with different geometries corre-
sponding to geometrical modifications of the nominal blades.
In the present paper, it is assumed that detuning is performed
by modifying blade shapes and the disk is not mistuned.

∗Adress all correspondance to this author.

Vibration analysis of cyclic structures is usually performed
using their cyclic symmetry and formulated for one sector
from which the dynamics of the structure is obtained. This
is no longer the case for mistuned and/or detuned structures
which need a full structure formulation. To reduce numerical
computational costs while solving the mistuning problem
on finite element meshes of realistic bladed disks, many
reduced-order methods have been introduced (see [6,9–16]).
In general, reduced-order models are obtained by substruc-
turing a bladed disk into disk and blades components (see
e.g. [9, 10]), as this allows an easy implementation of blade
mistuning. However, a different approach [11] called SNM
has been proposed by Yang and Griffin, in which the tuned
system cyclic modes are used without substructuring to
generate a reduced-order model. This technique is very
efficient in the case of cyclic structures with blade material
properties modifications but may be inefficient for the case
of blade geometric modifications for the following reasons.
It is well known that the tuned modes constitute a basis of
the admissible space of the displacements for the mistuned
bladed disk. Nevertheless, such a basis is generally not
really efficient with respect to the convergence speed and a
large number of tuned modes are required for such a case.
It should be noted that, if convergence is slow, then the
reduced-order model is not sufficiently small and so would
not be efficient and effective to implement the probabilistic
model of uncertainties and above all, to perform a robust
design optimization. In another hand, it is well recognized
today that, if the use of the tuned modes for constructing the
reduced-order model is efficient for blade material properties
modifications, it is not always the case for blade geometric
modifications (see for instance [14, 17]). In addition, the
blade geometric modifications induce a problem related to
incompatibility representations between the tuned modes
calculated with the mesh of the tuned bladed disk and the
structural matrices of the geometrically modified bladed
disk calculated with another mesh. In these conditions,
the nominal and the geometrically modified meshes are
incompatible. Consequently, these incompatible finite



element meshes induce a difficulty for constructing the
projection of the geometrically modified mass and stiffness
matrices using the tuned bladed disk sector cyclic modes.
That is why, in [11], proportional mistuning by perturbing
the Young moduli of individual blades is only simulated.
A simple model derived from SNM and known as the
Fundamental Mistuning Model (FMM) that reduces the set
of nominal modes to a single modal family [12, 13], had
also been introduced. Nevertheless, its application field
is limited to a modal family with nearly equal frequency.
An extension of the FMM, for the case in which all modes
of the family do not share the same frequency, known
as Asymptotic Mistuning model (AMM), has also been
introduced in [15,16]. This method is a perturbation method
in which the small parameters are the small frequency
corrections induced by mistuning and the small damping
of the tuned modes, or the first aerodynamic correction of
the purely structural vibration characteristics. Consequently,
large geometric detuning can be difficult to take into account
with such a method. To solve the problem of geometric
detuning, without using substructuring, a method named
Static Mode Compensation (SMC) has been proposed
in [14], and used in [18], in which the mistuned system is
represented by the full tuned system and by virtual mis-
tuning components. But this method needs a convergence
acceleration to be performed, which requires a large amount
of computation. It should also be noted that a new method
has been proposed by Sinha in [17] in order to improve the
SNM method. It consists in including tuned modes with
blades having geometries perturbed along important proper
orthogonal decomposition (POD) features as basis functions.

In this paper, for solving the problem of detuning with
geometric modification, it is assumed that a commercial
software (black box) is used to compute the cyclic modes
and mass and stiffness matrices of the different bladed disk
sector types in independent calculations. In this particular
context, we propose here a new method which uses the
cyclic modes of the different bladed disk sectors and which
consist on reducing each sector mass and stiffness matrices
by its own modes. Linear constraints are then applied on
common boundaries between sectors to make the displace-
ment field admissible. The purpose of this paper for the
proposed reduced-order model is to build a reduced-order
model which can solve large geometric mistuning for an
optimization over the detuning pattern of the different blade
geometries. This reduction method is different to the one
proposed in [17] by the way it uses the real modes of
each sector instead of using tuned modes of blades having
geometries perturbed along important POD. This reduction
method has already been developed in [19]. An application
is done on a realistic bladed disk model by comparing its
forced responses using this reduction method and a full
model.

The random nature of blade mistuning due to manufac-
turing tolerances and dispersion of materials has been a mo-
tivation to construct a stochastic model of uncertainties in or-

der to perform a statistical analysis for a robust prediction of
the effects of mistuning. In this context we use the nonpara-
metric probabilistic approach of uncertainties which allows
a prior stochastic model to be constructed in taking into ac-
count both the system-parameter uncertainties and the model
uncertainties induced by modeling errors. This nonparamet-
ric probability model is directly constructed using the mean
reduced matrix model, and the Maximum entropy (MaxEnt)
principle under the constraints defined by the available infor-
mation.

2 CONSTRUCTION OF THE MEAN REDUCED
MODEL
The reduced model is built using the reduced-order

method presented in [19] which is an extension of the ap-
proach proposed by Yang and Griffin in [11], and which takes
into account geometrical modifications of blades. Instead of
projecting perturbed mass and stiffness matrices on a basis of
tuned cyclic modes, the method proposed consists in project-
ing the mass and stiffness matrices of a sector on a basis of its
own cyclic modes, and in assembling the whole bladed disk
reduced model by insuring the displacement-field continuity
between all the adjacent sectors.

2.1 Dynamic equation of the detuned system
Let us consider the finite element model of a detuned

structure withN blades, with detuning resulting from geo-
metrical modifications of some blades. The frequency band
is B = [ωmin,ωmax] with 0< ωmin < ωmax. For the frequency
bandB, the mean (or nominal) computational model of the
detuned bladed disk is written as

(−ω2[M]+ jω[D]+ [K])u(ω) = fexc(ω)+ faero(ω,u(ω)),
(1)

with j2 = −1 and wherefexc is the vector of unsteady forces
applied to the blades and due to an aerodynamic excitation
source. In the above equation,faero represents the vector of
unsteady aeroelastic forces applied to the blades due to the
blades deformations. The vector,u, is the finite element dis-
cretization of the displacement field of the complete detuned
structure. Finally, the matrices[M], [D] and[K] are the mass,
damping and stiffness matrices. The dimension of vectoru
is ndof which represents the number of degrees-of-freedom
of the computational model. Linear constraints relationships
must be added to Eq.(1). The constraints are written between
what we call the vector of constrained degrees-of-freedom
uc(ω) and the vector of free degrees-of-freedomu ℓ(ω). The
vectoru(ω) can then be written

u(ω) = (uℓ(ω),uc(ω)), (2)

where

uc(ω) = [B]uℓ(ω). (3)



For the entire detuned bladed disk, the constraint equation is
then written as

u(ω) = [B ]uℓ(ω). (4)

Introducing the dynamic stiffness matrix

[E(ω)] =−ω2[M]+ jω[D]+ [K], (5)

the dynamic equation Eq. (1), which integrates the con-
straints relationships, becomes

[B]T [E(ω)][B]uℓ(ω) = [B]T(fexc(ω)+ faero(ω, [B]uℓ(ω)).
(6)

The detuned bladed disk is made ofN sectors compatible on
their coupling interfaces. Consequently, the dynamic stiff-
ness matrix is made up ofN×N sub-matrices, each one hav-
ing n×n components. The displacements and forces vectors
are constituted ofN sub-vectors. We then have,

[E] =

⎛

⎜

⎝

[E]0 · · · [0]
...

. . .
...

[0] · · · [E]N−1

⎞

⎟

⎠
, (7)

u =

⎛

⎜

⎝

u0

...
uN−1

⎞

⎟

⎠
, f =

⎛

⎜

⎝

f0

...
fN−1

⎞

⎟

⎠
, (8)

for which the vectorup contains the displacements of the
n degrees-of-freedom associated with sectorp. For a
given sector, this number involves its inner and boundaries
degrees-of-freedom. The boundaries degrees-of-freedom are
common to the two adjacent sectors. It should be noted that
matrix [E] is a bloc diagonal matrix. Therefore, the mass and
stiffness matrices are written as

[M] =

⎛

⎜

⎝

[M]0 · · · [0]
...

. . .
...

[0] · · · [M]N−1

⎞

⎟

⎠
, (9)

[K] =

⎛

⎜

⎝

[K]0 · · · [0]
...

. . .
...

[0] · · · [K]N−1

⎞

⎟

⎠
, (10)

where then×n sector mass and stiffness matrices,[M] and
[K], are symmetric matrices. We have

[M]p =

⎛

⎝

[Mℓℓ] [Mℓi ] [0]
[Mℓi ]

T [Mii ] [Mir ]
[0] [Mir ]

T [Mrr ]

⎞

⎠ , (11)

[K]p =

⎛

⎝

[Kℓℓ] [Kℓi] [0]
[Kℓi ]

T [K ii ] [K ir ]
[0] [K ir ]

T [Krr ]

⎞

⎠ , (12)

where subscriptsi, ℓ and r are related to the inner, the left
side coupling interface and the right side coupling interface
degrees-of-freedom. At this step, the dynamic system oper-
ators and displacement vector are expressed in local blade
coordinates system associated with each sectorΩ p, for all p
in {0,1, . . . ,N−1}.

2.2 Reduced order model
The reduced-order model is constructed by using a

modal basis[Ψ]pro j of real modes obtained in the global
cyclic coordinates system. This projection basis[Ψ] pro j is
obtained by using an initial basis[Ψ] of non continuous
modes which are put in phase. For more details about the
projection basis, we refer the reader to [19].

2.2.1 Generalized dynamic equation of the detuned sys-
tem

The displacement vector is written as

u(ω) = [Ψpro j]q(ω), (13)

where the complex vectorq = (q
0
, . . . ,q

N−1
) is made up of

all the generalized coordinates associated with the system.
In the global coordinates system, the reduced-order compu-
tational model is thus written as

[Ered(ω)]q(ω) =[Ψpro j]T fexc(ω)+

[Ψpro j]T faero(ω, [Ψ
pro j]q(ω)), (14)

Using Eq.(7) and the expression of matrix[Ψ pro j], it can
be deduced that the reduced dynamic stiffness matrix,
[Ered(ω)], is fully populated and we have,

[Ered(ω)] = [Ψpro j]T [E(ω)][Ψpro j], (15)

[Ered(ω)]β,α =
N−1

∑
p=0

(

(ψpro j)
Ωp

β

)T
[E(ω)]pp

(

(ψpro j)
Ωp

α

)

.

(16)
The generalized forces are defined by

g
exc

(ω) = [Ψpro j]T fexc(ω),

g
aero

(ω,q(ω)) = [Ψpro j]T faero(ω, [Ψ
pro j]q(ω)). (17)

Clearly, the projection basis is constructed with respect to the
distribution of the different sector types and by keeping or-
thogonality properties between modes. Note that the reduced



dynamic stiffness operator exhibits off diagonal terms. This
implies that the detuning couples tuned cyclic modes with
different number of nodal diameters. The aerodynamic gen-
eralized forces can be expressed by introducing an aeroelas-
tic matrix such that

g
aero

(ω, [Ψpro j]q(ω)) =−[Ared(ω)]q(ω). (18)

The real part and the imaginary parts of this aeroelastic ma-
trix depend onω and the imaginary part can be viewed as a
”damping” matrix. We then write this aeroelastic matrix as

[Ared(ω)] = [AR
red(ω)]+ j [AI

red(ω)]. (19)

The reduced-order computational model can then be rewrit-
ten as

{−ω2[Mred]+ jω([Dred]+ [AI
red(ω)])+ [Kred]+ (20)

[AR
red(ω)]}q(ω) = g

exc
(ω),

2.2.2 Particular case of a structural damping intro-
duced by a modal damping ratio

The way the reduced structural damping matrix is writ-
ten by using the projection basis[Ψ pro j] depends on the way
structural damping is taken into account. In fact, when damp-
ing is taken into account by a fully populated matrix or a ma-
trix expressed in function of the mass and the stiffness matri-
ces ([D] = a[M]+b[K]), the reduced structural damping ma-
trix is fully populated with this projection basis. Although,
if a modal damping ratio is considered, it is necessary to di-
agonalize the structural mass and stiffness reduced matrices
to be able to write the reduced structural damping matrix in
a diagonal form. To do so, the generalized eigenvalue prob-
lem associated with the conservative structural reduced-order
computational model (without damping forces nor aerody-
namic forces) is solved at first,

([Kred]−λ[Mred])y = 0, (21)

whereλ is an eigenvalue andy is the associated eigenvector.
Since matrices[Kred] and[Mred] are real and symmetric, the
eigenvectors are real and verify the orthogonality property,

< [Kred]y
α, yβ >= ω2

α µα δαβ, (22)

< [Mred]y
α, yβ >= µαδαβ, (23)

whereµα andωα are the generalized mass and the eigenfre-
quency for the modeα. By choice, the reduced structural
damping matrix is written as a diagonal matrix

< [Dred]y
α,yβ >= 2ξα ωα µα δαβ, (24)

whereξα is the modal damping ratio associated with mode
α. Note that, in the global coordinates system, the real modes
uα of the detuned bladed disk are written as

uα = [Ψpro j]yα. (25)

Let [y] be the matrix whose columns are the vectorsyα . Let
us introduce a new variableη such thatq(ω)= [y]η(ω). Then
the generalized problem becomes

{−ω2[Mdiag]+ jω[Ddiag]+ [Kdiag]}η(ω) = [y]Tg
exc

(ω),
(26)

where[Mdiag], [Kdiag] and[Ddiag] are diagonal and are writ-
ten as

[Mdiag] = [y]T [Mred][y] =

⎛

⎜

⎝

µ1 · · · 0
...

...
...

0 · · · µm

⎞

⎟

⎠
, (27)

[Kdiag] = [y]T [Kred][y] =

⎛

⎜

⎝

ω2
1µ1 · · · 0
...

...
...

0 · · · ω2
mµm

⎞

⎟

⎠
, (28)

[Ddiag] = [y]T [Dred][y] =

⎛

⎜

⎝

2ξ1ω1µ1 · · · 0
...

...
...

0 · · · 2ξmωmµm

⎞

⎟

⎠
. (29)

3 VALIDATION OF THE REDUCTION METHOD
A validation of this reduction method has already been

provided in [19]. In this part, another test case configuration
is only presented. The test case considered here is an indus-
trial blisk with 23 blades. The commercial software, AN-
SYS, is used to compute the cyclic modes and the mass and
stiffness matrices for constructing the reduced-order model
inputs, and the forced response of the 360-deg full-rotor
model. For the detuned system, four other types of blades
are created from the nominal one by shape modifications of
the blade upper part (see Fig. 1). Then a detuned bladed
disk with 5 different blades is obtained. The bladed disk is

(a) (b) (c) (d) (e)

Fig. 1. Finite element models of blades: a reference blade (a) and

geometrically modified blades (b-e).



detuned by modifying arbitrarily four of its blades to make
them have the shapes shown in Fig. 1. The test case we
are going to study is shown in Fig. 2. The forced responses

Fig. 2. Complete intentionally detuned bladed disk with arbitrary ge-

ometric modifications of four blades.

are displayed in Fig. 3 for an engine order excitation which
is 9, for a low level of damping (0.1%) in order to increase
the coupling effects and for the frequency band[4150,4550]
Hz in order to get a comparison between the full and the
reduced-order models. The results show a sufficient accu-
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Fig. 3. Forced responses of the 23 blades to an engine order exci-

tation which is 9 and for the frequency band [4150,4550] Hz: Full

model (left) and reduced-order model (right).

racy of the proposed reduced-order model in capturing the
detuned blisk forced responses.

4 NONPARAMETRIC MODEL OF RANDOM UN-
CERTAINTIES FOR BLADE MISTUNING
The purpose here is to model uncertainties due to mis-

tuning. Mistuning are mainly due to manufacturing toler-
ances and the framework of the probability theory is well
adapted to take into account mistuning. Consequently, a
prior stochastic model of uncertainties has to be constructed
in order to increase the robustness of the predictions of the
computational model with respect to uncertainties. If no ex-
perimental data are available, then the prior stochastic model
cannot be improved in constructing a posterior stochastic

model using the prior stochastic model, the experimental
data and the Bayes method. In such a case, the best way
to construct the prior stochastic model, is to use Information
Theory which is a powerful and validated theory. The Max-
imum Entropy (MaxEnt)principle of Information Theory al-
lows the prior probability distributions to be constructed un-
der the constraints defined by the available information. It
is proven that, if there is no available information related to
statistical dependencies between random variables, then the
best prior stochastic model given by the MaxEnt is to con-
sider these random variables as independent. In this condi-
tion, for the stochastic model of blade uncertainties due to
mistuning, it is then assumed a statistical independence from
blade to blade, each blade being detuned (intentional mistun-
ing) or not. To take into account both the system-parameter
uncertainties and the model uncertainties induced by model-
ing errors, the nonparametric stochastic model of uncertain-
ties is used. The main results concerning this nonparametric
stochastic model to construct a prior stochastic model of un-
certainties in structural dynamics can be found in [20, 21].
Such a probabilistic approach requires the construction of
a mean reduced matrix model for each uncertain sector. It
should be noted that the nominal computational model, that
is to say the computational model with the nominal values of
the system parameters, presently called the mean computa-
tional model, is assumed to be a good computational model.
If no experimental data are available to update the nominal
values of the parameters, these nominal values are consid-
ered as good. If the parametric probabilistic approach was
used to take into account system-parameter uncertainties, the
prior stochastic model of the uncertain system parameters
would be constructed by writing that the mean value of the
random system parameters are equal to the nominal values.
There is no other solution if no experimental data are avail-
able and in the context of Information Theory. When the
nonparametric probabilistic approach is used to take into ac-
count both the system-parameter uncertainties and model un-
certainties induced by modeling errors, the same strategy is
used to construct the prior stochastic model of uncertainties.
It is thus written that the mean values of the random opera-
tors of the computational model are equal to the nominal val-
ues of these operators. The introduction of the reduced-order
model leads us to introduce C1 below as an available infor-
mation. In addition, the stochastic model has to be consistent
with the mathematical and mechanical properties leading us
to introduce C2 and C3 below as an available information.
Thus, it has to satisfy the following constraints which consti-
tute the only available information:

- C1: the mean reduced matrix is equal to the mean value
of the random reduced matrix;

- C2: the signature of the random reduced matrix is re-
spected: it means that the random reduced matrix has to be
positive definite if its corresponding mean reduced matrix is
positive definite;

- C3: the second-order moment of the physical random
response of the bladed disk has to exist, for getting a second-
order displacement field.

The stochastic model of uncertainties is then derived by



using the MAxEnt principle under the constraints defined by
constraints C1, C2 and C3.

4.1 Random Reduced Matrix Model for the Bladed-
Disk

Using the methodology derived from [3, 20], the non-
parametric probabilistic approach consists in modeling the
reduced dynamic stiffness matrix for sectorp as the random
matrix

[Ered(ω)
p] =−ω2[M p

red]+ jω[Dp
red]+ [K p

red], (30)

in which [M p
red], [D

p
red] and [K p

red] are independent random
matrices corresponding to the random reduced mass, damp-
ing, and stiffness matrices of sectorp, and modeling the
complex aeroelastic matrix as the random matrix[A red(ω)

p].
Then, constraint C1 is written as

E

{

[M p
red]

}

= [Mp
red], E

{

[Dp
red]

}

= [Dp
red],

E

{

[K p
red]

}

= [Kp
red], E

{

[Ap
red]

}

= [Ap
red], (31)

whereE {.} is the mathematical expectation. The first step
of the implementation of the nonparametric probabilistic ap-
proach of uncertainties consists in normalizing the mass, the
damping, the stiffness and the aeroelastic random matrices
such that the mean value of each normalized random matrix
is the unity matrix. Such a construction requires the factor-
ization of the mean reduced matrices. The mean reduced
mass, damping and stiffness matrices are real positive defi-
nite matrices. So, their Choleski factorization yields

[Mp
red] = [Lp

M]T [Lp
M], [Dp

red] = [Lp
D]

T [Lp
D],

[Kp
red] = [Lp

K ]
T [Lp

K ]. (32)

Then, the real random matrices can be written as

[M p
red] = [Lp

M]T [Gp
M][Lp

M], [Dp
red] = [Lp

D]
T [Gp

D][L
p
D],

[K p
red] = [Lp

K ]
T [Gp

K ][L
p
K ], (33)

where[Gp
M], [Gp

D] and[Gp
K ] are real normalized random ma-

trices whose mean value is the unity matrix. For the com-
plex aeroelastic matrix, we follow the methodology proposed
in [21]. A singular value decomposition is used to perform
the factorization. By this way, the complex matrix[Ared ] is
written as

[Ared(ω)] = [U(ω)][T(ω)], (34)

in which [U(ω)] is a complex unitary matrix and[T(ω)] is a
Hermitian positive definite matrix admitting a Choleski fac-
torization. The stochastic model of the aeroelastic matrix is
then written as

[Ared(ω)] = [U(ω)][LT(ω)]
T [GA][LT(ω)], (35)

where[GA] is a real normalized random matrix whose mean
value is the unity matrix. Constraints C2 and C3 mean that
the normalized random matrices[G p

M], [Gp
D], [G

p
K ] and[GA]

are real positive definite matrices verifying

E

{

||[Gp
M]−1||2

F

}

<+∞, E
{

||[Gp
D]

−1||2
F

}

<+∞,

E

{

||[Gp
K ]

−1||2
F

}

<+∞, E
{

||[GA]
−1||2

F

}

<+∞, (36)

where||[.]||F = (tr([.][.]T))
1
2 . The dispersion level of these

four normalized random matrices is controlled by the fol-
lowing positive real parametersδ p

M, δp
D, δp

K andδA which are
defined by

δF =

{

E

{

||[GF ]− [GF ]||
2
F

}

[GF ]

} 1
2

with F = {M ,D,K ,A}.

(37)
From Eqs. (33) and (35), it can be deduced that these param-
eters allow the dispersion level of random matrices[M p

red],
[Dp

red], [K
p
red] and[Ared] to be controlled.

4.2 Probability Distributions of the Random Matrices
Using the MaxEnt principle with available information

defined by constraints C1, C2 and C3 related to normalized
random matrices, an explicit algebraic representation of ma-
trix [G] is introduced and completely defines its probability
distribution. Such a representation yields a generator of in-
dependent realizations which is used for the Monte Carlo nu-
merical simulation in order to solve the stochastic equation.
According to [20] (in which all the details concerning the
construction of the stochastic model of the normalized ran-
dom matrix[G] can be found), the random matrix[G] can be
written as

[G] = [LG]
T [LG], (38)

in which [L G] is ann×n real upper triangular random matrix
such that

- random variables
{

[LG] j j ′ , j ≤ j ′
}

are independent;
- for j < j ′, real-valued random variable[L G] j j ′ can be

written as

[LG] j j ′ = δ(n+1)−1/2U j j ′ , (39)

in whichU j j ′ is a real-valued Gaussian random variable with
zero mean value and variance equal to 1;

- for j = j ′, positive-valued random variable[L G] j j can
be written as

[LG] j j = δ(n+1)−1/2
√

2Vj , (40)

in which Vj is a positive-valued gamma random variable
whose probability density functionpVj (v) with respect todv



is written as

pVj (v)=1
R

+(v)
1

Γ(αn, j )
v(αn, j )

−1
e−v, αn, j =

n+1
2δ2 +

1− j
2

.

(41)
It should be noted that all the entries{[G] jk} jk are statisti-
cally dependent random variables.

5 NUMERICAL ILLUSTRATION FOR AN INDUS-
TRIAL BLADED DISK
The bladed disk considered is the same blisk used to

validate the reduced-order model. This blisk is considered
under rotation. Mistuning is modeled using the nonparamet-
ric probabilistic method and detuning is introduced by per-
forming a shape modification of some blades and distribut-
ing them so that they create alternate detuning. For the forced
response considerations, a conventional 9 engine order exci-
tation is considered in the analysis over the excitation fre-
quency rangeB = [4400,4750] Hz. Forced response mag-
nitude of the mistuned system is normalized with respect to
the maximum magnitude of the equivalent tuned blisk under
the same excitation conditions. The structural damping loss
factor is set to 0.3%. For the reduced order model, the projec-
tion basis is constituted of modes belonging to the frequency
band[0,5000] Hz.

5.1 Detuning method
Different types of intentional mistuning patterns have

been adopted in the past, such as ”alternate” mistuning, by
alternating high- and low-frequency blades [22], periodic
mistuning [23, 24], harmonic mistuning [6–8, 25], and lin-
ear mistuning [26]. The purpose here is not to find the best
intentional mistuning pattern but to analyze the forced re-
sponse sensitivity to mistuning, of a detuned system with
a fixed chosen pattern. For the sake of simplicity, we only
consider two types of blades : a reference blade (R) and a
lower frequency blade (L). So the fixed pattern chosen here
is 6R6L6R5L. To get the lower frequency blades, the blade
shape is modified by removing locally 20% of the blade
thickness on the upper part of the blade and adding locally
20% of the blade thickness on the lower part. This can be
called a 20% modification. We present on Fig. 4, a 80% mod-
ification to highlight the geometric modification performed.
To estimate the level of perturbation induced by this modi-
fication on aerodynamic characteristics, the Mach field (see
Fig. 5) has been displayed on the different types of blades
in cyclic symmetry configuration. Thus, we can see that the
air flow has not greatly been perturbed, but little differences
may appear on the damping characteristics of the two types
of blade. These differences can be taken into account by
the stochastic model of uncertainties, but to do so, we need
a method for estimating the aeroelastic dispersion parame-
ter between the two configurations like the one developed
in [27]. For the sake of simplicity, this will not be treated
here, and an aeroelastic null dispersion parameter is consid-
ered for the test.

(a) (b)

Fig. 4. Reference blade shape (a) and modified blade shape (b).

Fig. 5. Comparison of the Mach field on reference and modified

blades.

5.2 Random magnification factor
Mistuning is expressed in terms of dispersion level on the
stiffness matrix. In fact, in [27], by solving the inverse prob-
lem of specifying the blade manufacturing tolerances, it was
found that the dispersion level of the mass matrix, induced by
manufacturing tolerances, is about 1000 times less than the
stiffness matrix one. The observation considered to control
the forced responses is the random dynamic magnification
factor{B(ω),ω ∈ B } which is such that

B(ω) = sup
p∈{0,...,N−1}

Bp(ω), Bp(ω) =
|up(ω)|

up
∞

,

up
∞ = sup

ω∈B
|up(ω)|, B∞ = sup

ω∈B
B(ω), (42)

in which for bladep, up(ω) is the random physical displace-
ment of a tip node of the vibrating bladep, u p(ω) is the
mean value ofup(ω). The quantityB∞ is the random dy-
namic magnification factor over the frequency bandB . The
realizations of the random variableB∞ are computed with the
Monte Carlo numerical simulation and mathematical statis-
tics are used for estimating the probability distribution. A
convergence analysis has been carried out for the magnifica-
tion factor. Since the second-order mean convergence yields
the convergence in probability distribution, the convergence
analysis has been limited to the second-order convergence
of random magnification factor and damping coefficient. A
1000 Monte Carlo simulation has been performed for each
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Fig. 6. Second-order mean convergence of B∞ with mistun-

ing: the curves, from the lower to the upper, correspond to

a Monte Carlo simulation with 1000 realizations and for δK =
0.005,0.01,0.1,0.02,0.07,0.06,0.05,0.04and 0.03.

value of δK and Fig. 6 shows that convergence is already
reached for 500 simulations. Fig. 7 shows a well known be-
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Fig. 7. Influence of the mistuning rate: graph such that P(B∞ ≤
Bp) = p. The lower, middle and upper curves correspond to a prob-

ability level of p= 0.50,0.95and 0.99.

havior of small mistuned bladed disks: the forced response
increases for low rates of mistuning, reaches a maximum
value and decreases slightly while the level of mistuning still
increases.

5.3 Sensitivity analysis of mistuning for a given detun-
ing

The purpose is to reduce the bladed disk sensitivity to
mistuning by reducing the forced response magnification in-
duced. Thus, we are interested in relatively small mistun-
ing. A Monte Carlo simulation has also been performed with
1000 realizations for each value ofδK and Fig. 8 shows that
convergence is reached for 1000 realizations, although the
bladed disk is detuned. The detuning performed is very ef-
fective for low mistuning levels as shown in Fig. 9. While
the reference magnification factor has a well behavior, the
detuned system magnification factor is lightly increasing but
still remain under reference curve for the three probability
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Fig. 8. Second-order mean convergence of B∞ with mistuning and

detuning: the curves, from the lower to the upper, correspond

to a Monte Carlo simulation with 600 realizations and for δK =
0.005,0.01,0.01,0.03,0.04,0.05,0.1,0.06and 0.07.
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Fig. 9. Influence of the mistuning rate: graph such that P(B∞ ≤
Bp) = p. The solid curves with circles (and the dashed curves with

triangles) are related to the tuned (and to the detuned) system. The

lower, middle and upper curves correspond respectively to a proba-

bility level p= 0.50,0.95and 0.99.

levels which are considered. Moreover, at high mistuning
levels, the detuned magnification factor curves tends to the
reference one, showing that at high mistuning levels, the dis-
order degree is so high that the detuning performed is cover
by the mistuning.

6 CONCLUSION
A methodology has been developed to perform the ro-

bust design of bladed disks in forced response with a detun-
ing technic in presence of mistuning. Detuning is performed
by modifying blade shapes without significantly perturbing
the aeroelastic forces. Mistuning is taken into account by
using a new reduction method (recently published) and the
nonparametric probabilistic approach of both the system-
parameter uncertainties and modeling errors. An example of
reducing a bladed disk sensitivity to mistuning is presented.
This analysis shows that although the detuning pattern is not
optimized, the geometrical modifications of blades can re-
duce blade sensitivity to mistuning. Then, by combining
blade geometric modifications with a detuning pattern op-



timization, as the one proposed in [5, 28], an optimal robust
design model minimizing the forced responses, while keep-
ing stability, can be obtained. This is the purpose of works
in progress.
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