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Abstract

This paper deals with a short overview on stochastic modeling of uncertainties. We
introduce the types of uncertainties, the variability of real systems, the types of prob-
abilistic approaches, the representations for the stochastic models of uncertainties, the
construction of the stochastic models using the maximum entropy principle, the prop-
agation of uncertainties, the methods to solve the stochastic dynamical equations, the
identification of the prior and the posterior stochastic models, the robust updating of
the computational models and the robust design with uncertain computational models.
We present recent theoretical advances in this field concerning the parametric and the
nonparametric probabilistic approaches of uncertainties in computational structural dy-
namics for the construction of the prior stochastic models of both the uncertainties on
the computational model parameters and on the modeling uncertainties, and for their
identification with experimental data. We also present the construction of the posterior
stochastic model of uncertainties using the Bayesian method when experimental data
are available.

Keywords: Uncertainties, stochastic modeling, structural dynamics, computational
model.

1. Introduction

This paper is devoted to a short overview on stochastic modeling of uncertainties and
on related topics, including recent theoretical advances. Many references are given
in order to give an idea of the large number of works published in this field. How-
ever, this area is too vast to being exhaustive. We have then limited the references to
those adapted to the guideline of the synthesis proposed in this paper. In Section 3,
an overview on stochastic modeling of uncertainties is presented, introducing the types
of uncertainties, the variability of real systems, the types of probabilistic approaches
and the representations for the stochastic models of uncertainties. The construction
of the prior stochastic models using the maximum entropy principle is recalled. The
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different problems related to the propagation of uncertainties and the methods to solve
the stochastic dynamical equations are briefly presented. The fundamental problem
relative to the identification of the prior and the posterior stochastic models is devel-
oped. All these tools allow the robust updating of the computational models and the
robust design with uncertain computational models to be performed. Sections 4 and 5
deal with recent theoretical advances concerning the parametric and the nonparamet-
ric probabilistic approaches of uncertainties in computational structural dynamics for
the construction of the prior stochastic models of both the uncertainties on the com-
putational model parameters and on the modeling uncertainties. Finally, Section 6 is
devoted to the construction of the posterior stochastic model of uncertainties using the
Bayesian method when experimental data are available.

2. Comments concerning notation used

In this paper, the following notations are used:
(1) A lower case letter is a real deterministic variable (e.g.x).
(2) A boldface lower case letter is a real deterministic vector (e.g.x = (x1, . . . , xN ).
(3) An upper case letter is a real random variable (e.g.X).
(4) A boldface upper case letter is a real random vector (e.g.X = (X 1, . . . , XN)).
(5) An upper case letter between brackets is a real deterministic matrix (e.g.[A ]).
(6) A boldface upper case letter between brackets is a real random matrix (e.g.[A]).
(7) Any deterministic quantities above (e.g.x, x, [A ]) with an underline (e.g.x, x, [A ])
means that these deterministic quantities are related to the mean model (or to the nom-
inal model).

3. Short overview on stochastic modeling of uncertainties and on related topics

3.1. Uncertainties and variability

Thedesigned systemis used to manufacture thereal systemand to construct the nomi-
nal computational model (also called themean computational modelor sometimes, the
mean model) using a mathematical-mechanical modeling process for which the main
objective is the prediction of the responses of the real system in its environment. The
real system, submitted to a given environment, can exhibit a variability in its responses
due to fluctuations in the manufacturing process and due to small variations of the con-
figuration around a nominal configuration associated with the designed system. The
mean computational model which results from a mathematical-mechanical modeling
process of the design system, has parameters which can be uncertain. In this case,
there areuncertainties on the computational model parameters. In an other hand, the
modeling process induces some modeling errors defined as themodeling uncertainties.
It is important to take into account both the uncertainties on the computational model
parameters and the modeling uncertainties to improve the predictions of computational
models in order to use such a computational model to carry out robust optimization,
robust design and robust updating with respect to uncertainties. Today, it is well under-
stood that, as soon as the probability theory can be used, then the probabilistic approach
of uncertainties is certainly the most powerful, efficient and effective tool for modeling
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and for solving direct and inverse problem. The developments presented in this paper
are limited to the probabilistic approaches.

3.2. Types of approach for stochastic modeling of uncertainties
Theparametric probabilistic approachconsists in modeling theuncertain parameters
of the computational modelby random variables and then in constructing the stochas-
tic model of these random variables using the available information. Such an approach
is very well adapted and very efficient to take into account the uncertainties on the
computational model parameters as soon as the probability theory can be used. Many
works have been published in this field and a state-of-the-art can be found, for instance,
in [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]. Nevertheless, the parametric probabilistic approach
does not allow the modeling uncertainties to be taken into account (see for instance
[12, 13]).

Concerningmodeling uncertaintiesinduced bymodeling errors, it is today well un-
derstood that the prior and posterior stochastic models of the uncertain parameters of
the computational model are not sufficient and do not have the capability to take into
account modeling uncertainties in the context of computational mechanics (see for in-
stance [12, 13, 14, 15]). Two main methods can be used to take into account modeling
uncertainties (modeling errors).
(i) The first one consists in introducing a stochastic model of theoutput-prediction-
error, considered as a noise, which is the difference between the real system output
and the computational model output [12]. In this approach, the modeling errors and the
measurements errors are simultaneously taken into account and cannot really be sepa-
rately identified. Note that if no experimental data are available, such a method cannot
be used because, generally, there are no information for constructing the stochastic
model of such a noise. Such an approach is simple and efficient but requires exper-
imental data. It should be noted that a lot of experimental data are required in high
dimension. However, with such an approach, the posterior stochastic model of the
uncertain parameters of the computational model strongly depends on the stochastic
model of the noise which is added to the model output and which is often unknown.
In addition, for many problems, it can be necessary to take into account the modeling
errors at the operators level of the mean computational model (for instance, to take into
account the modeling errors on the mass and stiffness operators in order to analyze the
generalized eigenvalue problem related to a dynamical system, or, if the design param-
eters of the computational model are not fixed but run through an admissible set of
values in the context of the robust design optimization).
(ii) The second one is based on thenonparametric probabilistic approachof model-
ing uncertainties (modeling errors) which has been proposed in [13] as an alternative
method to the output-prediction-error method in order to take into account modeling
errors at the operators level and not at the model output level by the introduction of an
additive noise. It should be noted that such an approach allows a prior stochastic model
of modeling uncertainties to be constructed even if no experimental data are available.
The nonparametric probabilistic approach is based on the use of a reduced-order model
and the random matrix theory. It consists in directly constructing the stochastic mod-
eling of the operators of the mean computational model. The random matrix theory
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[16] (see also [17, 18, 19] for such a theory in the context of linear acoustics) is used to
construct the prior probability distribution of the random matrices modeling the uncer-
tain operators of the mean computational model. This prior probability distribution is
constructed by using the Maximum Entropy Principle [20] (from Information Theory
[21]) for which the constraints are defined by the available information [13, 14, 22, 15].
Since the paper [13], many works have been published in order to validate the nonpara-
metric probabilistic approach of model uncertainties with experimental results (see for
instance [23, 24, 25, 26, 27, 28, 15, 29]), to extend the applicability of the theory
to other areas [30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41], to extend the theory
to new ensembles of positive-definite random matrices yielding a more flexible de-
scription of the dispersion levels [42], to apply the theory for the analysis of complex
dynamical systems in the medium-frequency range, including vibroacoustic systems,
[43, 44, 23, 45, 25, 26, 27, 28, 46, 47, 48, 39], to analyze nonlinear dynamical systems
(i) for local nonlinear elements [49, 50, 37, 51, 52, 53, 54] and (ii) for distributed non-
linear elements or nonlinear geometrical effects [55].

Concerning the coupling of the parametric probabilistic approach of the uncertainties
on the computational model parameters with the nonparametric probabilistic approach
of modeling uncertainties (modeling errors), a methodology has recently been pro-
posed in computational mechanics [56]. Thisgeneralized probabilistic approachof
uncertainties in computational dynamics uses the random matrix theory. The proposed
approach allows the prior stochastic model of each type of uncertainties (uncertain-
ties on the computational model parameters and modeling uncertainties) to be sepa-
rately constructed and identified. The modeling errors are not taken into account with
the usual output-prediction-error method but with the nonparametric probabilistic ap-
proach.

3.3. Types of representation for the stochastic modeling of uncertainties
A fundamental question is the construction of the prior stochastic model of uncer-
tainties on the computational model parameters and also the prior stochastic model of
modeling uncertainties. Such a prior stochastic model can then be used to study the
propagation of uncertainties through the mechanical system which is analyzed. If ex-
perimental data are available for the mechanical system, then they can be used (1) to
identify the parameters of the prior stochastic model [29] using, for instance, the max-
imum likelihood method [57, 58] or (2) to construct a posterior stochastic model [12]
using, for instance, the Bayesian method (see for instance [59, 60, 61, 62, 58]).

Two main methods are available to construct the prior stochastic model of a random
vectorθ �→ X(θ) = (X1(θ), . . . , XN(θ)) defined on a probability space(Θ, T ,P),
with values inRN and whose probability distribution onRN is denoted byPX(dx) (this
random vector can be the approximation in finite dimension of a stochastic process or
a random field). It should be noted the two following methods can also be used for
random matrices, random fields, etc. We introduce the spaceL2

N of all the second-
order random variables such that

E{‖X‖2} =

∫

RN

‖x‖2 PX(dx) < +∞ , (1)
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in which E is the mathematical expectation, wherex = (x1, . . . , xN ) and‖x‖2 =
x2
1 + . . .+ x2

N is the square of the Euclidean norm of vectorx.

(i)- The first method is a direct approach which consists in directly constructing the
probability distributionPX(dx) onRN in using, for instance, the maximum entropy
principle (see Section 3.4).

(ii) - The second one is an indirect approach which consists in introducing a repre-
sentationX = h(Ξ) for which X is the transformation by a deterministic nonlinear
(measurable) mappingh (which has to be constructed) of aR np -valued random vari-
ableΞ = (Ξ1, . . . ,Ξnp

) whose probability distributionPΞ(dξ) is given and then is
known. ThenPX is the transformation ofPΞ by mappingh. Two main types of meth-
ods can be used.

(ii.1) - The first one corresponds to the spectral methods such as the Polynomial Chaos
representations (see [63, 64] and also [65, 66, 67, 68, 69, 70, 71, 72, 73]) which can be
applied in infinite dimension for stochastic processes and random fields, which allow
the effective construction of mappingh to be carried out and which allow any random
variableX in L2

N , to be written as

X = Σ+∞
j1=0 . . .Σ

+∞
jnp=0 aj1,...,jnp

ψj1(Ξ1)× . . .× ψjnp
(Ξnp

) , (2)

in which ψjk are given real polynomials related to the probability distribution ofΞ

and whereaj1,...,jnp
are deterministic coefficients inRN . Introducing the multi-index

α = (j1, . . . , jnp
) and the multi-dimensional polynomialsψα(Ξ) = ψj1(Ξ1)× . . .×

ψjnp
(Ξnp

) of random vectorΞ, the previous polynomial chaos decomposition can be
rewritten as

X = Σα aα ψα(Ξ) . (3)

The multi-dimensional polynomialsψα(Ξ) are orthogonal and normalized,

E{ψα(Ξ)ψβ(Ξ)} =

∫

Rnp

ψα(ξ)ψβ(ξ)PΞ(dξ) = δαβ , (4)

in which δαα = 1 andδαβ = 0. The coefficientsaα = aj1,...,jnp
are vectors inRN

which completely define mappingg and which are given by

aα = E{Xψα(Ξ)} . (5)

The construction ofh then consists in identifying the vector-valued coefficientsa α. If
Ξ is a normalized Gaussian random vector, then the polynomials are the normalized
Hermite polynomials. Today, many applications of such an approach have been carried
out for direct and inverse problems. We refer the reader to [65, 74, 75, 76, 77, 78,
79, 80, 81] and in particular, to Section 3.7 for a short overview concerning the iden-
tification and inverse stochastic problems related to the parametric and nonparametric
probabilistic approaches of uncertainties.

(ii.2) - The second one consists in introducing a prior algebraic representationX =
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h(Ξ, s) in which s is a vector parameter with small dimension (which must be identi-
fied), whereΞ is a vector-valued random variable with a given probability distribution
PΞ and whereh is a given nonlinear mapping. For instance, tensor-valued random
fields representations constructed with such an approach can be found in [82, 83, 84].

In theory, method (ii.1) allows any random vectorX in L 2
N to be represented by a

Polynomial Chaos expansion. In practice, the representation can require a very large
number of coefficients to get convergence yielding very difficult problems in high di-
mension for the identification problem and then requires adapted methodologies and
adapted methods [85, 86]. In general, method (ii.2) does not allow any random vector
X in L2

N to be represented but allows a family of representations to be constructed in a
subspace ofL2

N whens runs through all the admissible space ofs (but, in counter part,
the identification ofs is effective and efficient).

3.4. Construction of the stochastic models using the maximum entropy principle under
the constraints defined by the available information

The measure of uncertainties using the entropy has been introduced by Shannon [21]
in the framework of Information Theory. The maximum entropy principle (that is to
say the maximization of the level of uncertainties) has been introduced by Jaynes [20]
to construct the prior stochastic model of a random variable under the constraints de-
fined by the available information. This principle appears as a major tool to construct
the prior stochastic model (1) of the uncertain parameters of the computational model
using the parametric probabilistic approach, (2) of both the uncertainties on the compu-
tational model parameters and modeling uncertainties, using the nonparametric proba-
bilistic approach and (3) of the generalized approach of uncertainties corresponding to
a full coupling of the parametric and nonparametric probabilistic approaches.
Let x = (x1, . . . , xN ) be a real vector and letX = (X1, . . . , XN ) be a second-order
random variable with values inRN whose probability distributionPX is defined by a
probability density functionx �→ pX(x) onRN with respect to dx = dx1 . . . dxN and
which verifies the normalization condition

∫
RN pX(x)dx = 1. In fact, it is assumed

that X is with values in any bounded or unbounded partX of RN and consequently,
the support ofpX is X . The available information defines a constraint equation on
Rµ written asE{g(X)} = f in whichE is the mathematical expectation,f is a given
vector inRµ and wherex �→ g(x) is a given function fromRN into Rµ. Let C be the
set of all the probability density functionsx �→ pX(x) defined onRN , with values in
R+, with supportX , verifying the normalization condition and the constraint equation
E{g(X)} = f. The maximum entropy principle consists in findingpX in C which
maximizes the entropy (that is to say which maximizes the uncertainties),

pX = argmax
p∈C

S(p) , S(p) = −
∫

RN

p(x) log(p(x))dx (6)

in which S(p) is the entropy of the probability density functionp. Introducing the
Lagrange multiplierλ ∈ Lµ ⊂ Rµ (associated with the constraint) whereLµ is the
subset ofRµ of all the admissible values forλ, it can easily be seen that the solution
of the optimization problem can be written as

pX(x) = c0 1X (x) exp(− < λ, g(x) >) , ∀x ∈ RN (7)
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in which< x , y >= x1y1+. . .+xµyµ and where1X is the indicatrix function of setX .
The normalization constantc0 and the Lagrange multiplierλ are calculated in solving
a nonlinear vectorial algebraic equation deduced from the normalization condition and
from the constraint equation. This algebraic equation can be solved using appropriated
algorithms. Then, it is necessary to construct a generator of independent realizations of
random variableX whose probability density function is that which has been built. In
small dimension (N is a few units), there is no difficulty. In high dimension (N hundreds
or thousands), there are two major difficulties. The first one is related to the calculation
of an integral in high dimension of the typec0

∫
X

g(x) exp(− < λ, g(x) >)dx. Such
a calculation is necessary to implement the algorithm for computingc 0 andλ. The sec-
ond one is the construction of the generator oncec 0 etλ have been calculated. These
two aspects can be solved using the Markov Chain Monte Carlo methods (MCMC) (see
for instance [62, 87, 88, 58]). The transition kernel of the homogeneous (stationary)
Markov chain of the MCMC method can be constructed using the Metropolis-Hastings
algorithm [89, 90, 91, 92] or the Gibbs algorithm [93] which is a slightly different al-
gorithm for which the kernel is directly derived from the transition probability density
function and for which the Gibbs realizations are always accepted. These two algo-
rithms construct the transition kernel for which the invariant measure isPX. In general,
these algorithms are effective but can not be when there are regions of attraction that
do not correspond to the invariant measure. These situations can not be easily detected
and are time consuming. Recently, an approach [41] of the class of the Gibbs method
has been proposed to avoid these difficulties and is based on the introduction of an Itô
stochastic differential equation whose unique invariant measure isPX and is the ex-
plicit solution of a Fokker-Planck equation [94]. The algorithm is then obtained by the
discretization of the Itô equation.

3.5. Random Matrix Theory

The random matrix theory were introduced and developed in mathematical statistics by
Wishart and others in the 1930s and was intensively studied by physicists and math-
ematicians in the context of nuclear physics. These works began with Wigner in the
1950s and received an important effort in the 1960s by Wigner, Dyson, Mehta and
others. In 1965, Poter published a volume of important papers in this field, followed,
in 1967 by the first edition of the Mehta book whose second edition [16] published in
1991 is an excellent synthesis of the random matrix theory. We refer the reader to [19]
and [18] for an introduction to random matrix theory presented in the context of Me-
chanics. Concerning multivariate statistical analysis and statistics of random matrices,
the reader will find additional developments in [95] and [96].

3.5.1. Why the Gaussian orthogonal ensemble cannot be used if positiveness property
is required

The Gaussian Orthogonal Ensemble (GOE), for which the mean value is the unity
matrix [In] (see [22]), is the set of random matrices[GGOE]) which can be written as
[GGOE] = [In] + [BGOE] in which [BGOE] belongs to the GOE (see [16]), for which the
mean value is the zero matrix[0], and consequently, would be a second-order centered
random matrix with values inM S

n(R) such thatE{[BGOE]} = [ 0 ] andE{‖[BGOE]‖2F } <
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+∞, and for which the probability density function, with respect tod̃[B] = 2n(n−1)/4

Π1≤i≤j≤n d[B]ij , is written as

p[BGOE]([B]) = Cn × exp

{
− (n+1)

4δ2
tr{[B]2}

}
. (8)

The constantCn of normalization can easily be calculated andδ is the coefficient of
variation of the random matrix[GGOE] which is such thatδ2 = n−1E{‖ [GGOE] −
[In] ‖2F } because‖ [In] ‖2F = n. The real-valued random variables{[BGOE]jk, j ≤ k}
are statistically independent, second order, centered and Gaussian. It can be seen that
[GGOE] is with values inMS

n(R) but is not positive definite. In addition,

E{‖[GGOE]−1‖2} = +∞ . (9)

Consequently,[GGOE] is not acceptable if positiveness property and integrability of the
inverse are required.

3.5.2. Ensemble SG+0 of random matrices
The GOE cannot be used when positiveness property and integrability of the inverse
are required. Consequently, we need new ensembles of random matrices which will be
used to develop the nonparametric probabilistic approach of uncertainties in compu-
tational solid and fluid mechanics and which differ from the GOE and from the other
known ensembles of the random matrix theory.

The objective of this section is then to summarize the construction given in [13, 14, 22,
15] of the ensemble SG+0 of random matrices[G0] defined on the probability space
(Θ, T ,P), with values in the setM+

n (R) of all the positive definite symmetric(n× n)
real matrices and such that

E{[G0]} = [In] , E{log(det[G0])} = C , |C| < +∞ . (10)

The probability distributionP[G0] = p[G0]([G ]) d̃G is defined by a probability density
function [G ] �→ p[G0]([G ]) fromM+

n (R) intoR+ with respect to the volume element

d̃G on the setMS
n(R) of all the symmetric(n × n) real matrices, which is such that

d̃G = 2n(n−1)/4 Π1≤j≤k≤n dGjk . This probability density function can then verify
the normalization condition,

∫

M+
n (R)

p[G0]([G ]) d̃G = 1 . (11)

Let‖A‖2F =
∑n

j=1

∑n
k=1[A ]2jk be the square of the Frobenius norm of symmetric real

matrix [A]. Let δ be the positive real number defined by

δ =

{
E{‖ [G0]− E{[G0]} ‖2F}

‖E{[G0]} ‖2F

}1/2

=

{
1

n
E{‖ [G0]− [In] ‖2F }

}1/2

, (12)

which will allow the dispersion of the stochastic model of random matrix[G 0] to be
controlled. Forδ such that0 < δ < (n+1)1/2(n+5)−1/2, the use of the maximum en-
tropy principle under the constraints defined by the above available information yields
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the following algebraic expression of the probability density function of random matrix
[G0],

p[G0]([G ]) = 1M+
n (R)([G ])× CG0

×
(
det [G ]

)(n+1) (1−δ2)

2δ2 × e−
(n+1)

2δ2
tr[G ] , (13)

in which1M+
n (R)([G ]) is equal to 1 if[G ] ∈ M+

n (R) and is equal to zero if[G ] /∈
M+

n (R), where tr[G ] is the trace of matrix[G ], wheredet [G ] is the determinant of
matrix [G ] and where the positive constantCG0

is such that

CG0
=(2π)−n(n−1)/4

(
n+ 1

2δ2

)n(n+1)(2δ2)−1{
Πn

j=1Γ
(n+1

2δ2
+

1−j

2

)}−1

, (14)

and where, for allz > 0,Γ(z) =
∫ +∞

0 tz−1 e−t dt. Note that{[G0]jk, 1 ≤ j ≤ k ≤ n}
are dependent random variables.

Let ‖G‖ = sup‖x‖≤1 ‖[G ] x‖ be the operator norm of matrix[G ] which is such that
‖[G ] x‖ ≤ ‖G‖ ‖x‖ for all x in Rn. Let ‖G‖F be the Frobenius norm of[G ] which
is defined by‖G‖2F = tr{[G ]T [G ]} =

∑n
j=1

∑n
k=1[G ]2jk and which is such that

‖G‖ ≤ ‖G‖F ≤ √
n ‖G‖. It is proven [14] that

E{‖[G0]
−1‖2} ≤ E{‖[G0]

−1‖2F } < +∞ . (15)

In general, the above equation does not imply thatn �→ E{‖[G 0]
−1‖2} is a bounded

function with respect ton, but, in the present case, we have the following fundamental
property,

∀n ≥ 2 , E{‖[G0]
−1‖2} ≤ Cδ < +∞ , (16)

in whichCδ is a positive finite constant which is independent ofn but which depends
onδ. The above equation means thatn �→ E{‖[G0]

−1‖2} is a bounded function from
{n ≥ 2} intoR+.

The generator of independent realizations (which is required to solve the random equa-
tions with the Monte Carlo method) can easily be constructed using the following al-
gebraic representation. Random matrix[G0] can be written (Cholesky decomposition)
as[G0] = [L]T [L] in which [L] is an upper triangular(n×n) random matrix such that:

(1) random variables{[L]jj′ , j ≤ j′} are independent;

(2) for j < j ′, the real-valued random variable[L]jj′ is written as[L]jj′ = σnUjj′ in
whichσn = δ(n + 1)−1/2 and whereUjj′ is a real-valued Gaussian random variable
with zero mean and variance equal to1;

(3) for j = j ′, the positive-valued random variable[L]jj is written as[L]jj = σn

√
2Vj

in whichσn is defined above and whereVj is a positive-valued gamma random variable
whose probability density function ispVj

(v) = 1R+(v) 1
Γ(aj)

vaj−1 × e−v, in which

aj = n+1
2δ2 + 1−j

2 . It should be noted that the probability density function of each
diagonal element[L]jj of the random matrix[L] depends on the rankj of the element.
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3.5.3. Ensemble SG+ε of random matrices
Let L2

n be the set of all the second-order random variables, defined on probability
space(Θ, T , P ), with values inRn, equipped with the inner product≪ X,Y ≫=
E{< X ,Y >} and with the associated norm|||X||| =≪ X,Y ≫1/2.

Let 0 ≤ ε ≪ 1 be a positive number as small as one wants. The ensemble SG+
ε is

defined as the ensemble of all the random matrices which are written as

[G] =
1

1 + ε
{[G0] + ε [In]} , (17)

in which [G0] is a random matrix which belongs to ensemble SG+
0 .

Let [G] be in SG+ε with ε ≥ 0 fixed as small as one wants (possibly,ε can be equal to
zero and in such a case, SG+

ε = SG+
0 and then,[G] = [G0]). It can easily be seen

that
E{[G]} = [In] . (18)

Letb(X,Y) be the bilinear form onL2
n×L2

n such thatb(X,Y) =≪ [G]X ,Y ≫. For
all X in L2

n, we have
b(X,X) ≥ cε|||X|||2 (19)

in which cε = ε/(1 + ε). The proof can easily be obtained. We haveb(X,X) =
1/(1 + ε) ≪ [G0]X ,X ≫ +ε/(1 + ε)|||X|||2 ≥ cε|||X|||2, because, for all[G0] in
SG+

0 , and for allX in L2
n, we have≪ [G0]X ,X ≫ ≥ 0.

Finally, for all ε ≥ 0, it can be proven that

E
{
‖[G]−1‖2F

}
< +∞ . (20)

3.6. Propagation of uncertainties or what are the methods to solve the stochastic dy-
namical equations

Concerning the methods and formulations to analyze the propagation of uncertain-
ties in the computational model, the choice of a specific method depends on the de-
sired accuracy on the model output and on the nature of the expected probabilistic
information. These last two decades, a growing interest has been devoted to spec-
tral stochastic methods, which provide an explicit representation of the random model
output as a function of the basic random parameters modeling the input uncertain-
ties [63, 64, 97, 98, 99]. An approximation of the random model output is sought
on suitable functional approximation bases. There are two distinct classes of tech-
niques for the definition and computation of this approximation. The first class is
composed by direct simulation methods [100, 74, 101, 102, 103, 104]. These meth-
ods are often called non-intrusive since they offer the advantage of only requiring the
availability of classical deterministic codes. The second class of techniques rely on
Galerkin-type projections of weak solutions of models involving differential or partial
differential equations [? 106, 107, 68, 108, 109, 103, 110, 111, 112]. However, for
applications with high complexity, alternative solution techniques must be provided
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in order to drastically reduce computational requirements. Recently, some alterna-
tive methods, based on the construction of optimal separated representations of the
solution, have been proposed. They consist in representing the solution on optimal re-
duced bases of deterministic functions and stochastic functions (scalar-valued random
variables). Several strategies have been proposed for the extraction of reduced bases
from approximate Karhunen-Loeve expansions (or classical spectral decompositions)
of the solution [113, 103]. Another method, called Generalized Spectral Decomposi-
tion method, has been recently proposed for the construction of such representations
without knowinga priori the solution nor an approximation of it [69, 114, 70]. A major
advantage of these algorithms is that they allow a separation of deterministic problems
for the computation of deterministic functions and stochastic algebraic equations for
the computation of stochastic functions. In that sense, they can be considered as partly
non-intrusive techniques for computing Galerkin-type projections. However, it does
not circumvent the curse of dimensionality associated with the dramatic increase in
the dimension of stochastic approximation spaces when dealing with high stochastic
dimension and high approximation resolution along each stochastic dimension. Re-
cently, multidimensional extensions of separated representations techniques have been
proposed [115, 116]. These methods exploit the tensor product structure of the solution
function space, resulting from the product structure of the probability space defined by
input random parameters.
Finally, the direct Monte Carlo numerical simulation method (see for instance [117, 87,
88] is a very effective and efficient method because this method (1) is non-intrusive,
(2) is adapted to massively parallel computation without any software developments
and (3) is such that its convergence can be controlled during the computation and (4)
the speed of convergence is independent of the dimension. The speed of convergence
of the Monte Carlo method can be improved using advanced Monte Carlo simulation
procedures [118, 119, 120, 121], subset simulation technics [122], important sampling
for high dimension problems [123], local domain Monte Carlo Simulation [124].

3.7. Identification of the prior and posterior stochastic models of uncertainties

The identification of the parameters of the stochastic model of uncertainties (paramet-
ric and nonparametric probabilistic approach) is of the class of the statistical inverse
problems (see for instance [62]).

3.7.1. Identification of the stochastic model of random variables in the context of the
parametric probabilistic approach of uncertainties on the computational model
parameters

Let us assume that experimental data are available for observations related to the ran-
dom computational model output. The experimental identification of the parameters of
the prior probability distribution of the random variable modeling uncertainties of the
computational model parameters can be performed, either in minimizing a distance be-
tween the experimental observations and the random model observations (least-square
method for instance), or in using the maximum likelihood method (see for instance
[57],[58]). Such an approach is described in Sections 4.5 and 5.3, and many applica-
tions can be found in the literature. In the domain of structural dynamics, vibrations
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and vibroacoustics, we refer, for instance, the reader to [125] for the stochastic system
identification for operational modal analysis, [77] for the stochastic inversion in acous-
tic scattering, [126] for the stochastic modeling of a nonlinear dynamical system used
for producing voice and [127] for the computational model for long-range non-linear
propagation over urban cities. With such an identification, we then obtained an optimal
prior probability distribution. The Bayesian method then allows a posterior probability
distribution to be constructed from the optimal prior probability distribution and the
experimental data. Many works have been published in the literature (see for instance
textbooks on the Bayesian method such as [59, 60, 61, 62] and papers devoted to the
use of the Bayesian method in the context of uncertain mechanical and dynamical sys-
tems such as [12, 128, 129, 130, 131, 132, 133]. We will use such a Bayesian approach
in Sections 4.6 and 6.

3.7.2. Identification of the stochastic model of random matrices in the context of the
nonparametric probabilistic approach of both the uncertainties on the compu-
tational model parameters and modeling uncertainties

General developments concerning the experimental identification of the parameters of
the prior probability distribution of random matrices used for modeling uncertainties
in computational mechanics can be found in [15]. Many works have been published
in this field, such as [79] in micromechanics, [78] for the identification and prediction
of stochastic dynamical systems in a polynomial chaos basis, [23] for the experimental
identification of the nonparametric stochastic model of uncertainties in structural dy-
namics [134, 24, 29], in structural acoustics for the low- and medium-frequency ranges
[26, 28], in nonlinear structural dynamics [49, 50]. The identification of the gener-
alized probabilistic approach of uncertainties can be found in [56] and also below in
Sections 5.3 and 6.

4. Parametric probabilistic approach of uncertainties in computational structural
dynamics

4.1. Introduction of the mean computational model in computational structural dy-
namics

The developments are presented for computational models in structural dynamics. The
dynamical system is a damped fixed structure around a static equilibrium configuration
considered as a natural state without prestresses and subjected to an external load.
For given nominal values of the parameters of the dynamical system, the basic finite
element model is called themean computational model. In addition, it is assumed that
a set of model parameters has been identified as uncertain model parameters. These
model parameters are the components of a vectorx = (x1, . . . , xnp

) belonging to an
admissible setCpar which is a subset ofRnp . The dynamical equation of the mean
computational model is then written as

[M (x)] ÿ(t) + [D(x)] ẏ(t) + [K(x)]y(t) + fNL(y(t), ẏ(t); x) = f(t; x) , (21)

in whichy(t) is the unknown time response vector of them degrees of freedom (DOF)
(displacements and/or rotations);ẏ(t) andÿ(t) are the velocity and acceleration vectors
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respectively;f(t; x) is the known external load vector of them inputs (forces and/or
moments);[M (x)], [D(x)] and [K(x)] are the mass, damping and stiffness matrices
of the mean computational model, which belong to the setM +

m(R) of all the positive-
definite symmetric(m×m) real matrices;(y, z) �→ fNL(y, z; x) is the nonlinear map-
ping modeling local nonlinear forces.

4.2. Introduction of the reduced mean computational model

In the context of the parametric probabilistic approach of model-parameter uncertain-
ties, the parameterx is modeled by a random variableX. The mean value ofX will
be the nominal valuex = (x1, . . . , xnp

) of the uncertain model parameterx and the
support of its probability distribution onRnp is Cpar.

For allx fixed inCpar ∈ Rnp , let{φ1(x), . . . ,φm(x)} be an algebraic basis ofRm con-
structed, for instance, either with the elastic modes of the linearized system or of the
underlying linear system, or with the POD (Proper Orthogonal Decomposition) modes
of the nonlinear system). Below, it is assumed that the elastic modes of the underlying
linear system are used. In such a framework, there are two main possibilities to con-
struct the reduced mean computational model.

(1) The first one consists in solving the generalized eigenvalue problem associated with
the mean mass and stiffness matrices forx fixed to its nominal valuex. We then obtain
the elastic modes of the nominal mean computational model which are independent of
x and which depend only onx which is fixed. In this case, whenx runs throughC par,
matrices[M (x)] and[K(x)] have to be projected on the subspace spanned by the elastic
modes of the nominal mean computational model. For very large computational model
(m can be several tens of millions) such an operation is not easy to perform with usual
commercial softwares which often are black boxes.
(2) The second one consists in solving the generalized eigenvalue problem associated
with the mean mass and stiffness matrices for each requiredx belonging toC par. In
this case, the elastic modes of the mean computational model depend onx. In the con-
text of the parametric probabilistic approach of model-parameter uncertainties, we then
have to solve a random generalized eigenvalue problem and such an approach is better
adapted to usual commercial softwares and allows a fast convergence to be obtained
with respect to the reduced order dimension. In addition, some algorithms have been
developed in this context for random eigenvalue problems of large systems [135, 136].
In order to limit the developments, we will focus the presentation using this second ap-
proach. The extension to the first approach is straightforward from a theoretical point
of view (see for instance [13]). Finally, it should be noted that the random generalized
eigenvalue problem can also be considered in a polynomial chaos decomposition for
which an efficient approach has been proposed [137]. Such an ingredient can be added
without difficulty in the developments presented below but would induce additional
difficulties in the understanding which could mask the ideas of the method proposed.

For each value ofx given inCpar, the generalized eigenvalue problem associated with
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the mean mass and stiffness matrices is written as

[K(x)]ϕ(x) = λ(x) [M (x)]ϕ(x) , (22)

for which the eigenvalues0 < λ1(x) ≤ λ2(x) ≤ . . . ≤ λm(x) and the associated
elastic modes{ϕ1(x),ϕ2(x), . . .} are such that

< [M (x)]ϕα(x) ,ϕβ(x)>= µα(x) δαβ , (23)

< [K(x)]ϕα(x) ,ϕβ(x)>= µα(x)ωα(x)2 δαβ , (24)

in whichωα(x) =
√
λα(x) is the eigenfrequency of elastic modeϕα(x) whose nor-

malization is defined by the generalized massµα(x) and where<u , v>=
∑

j ujvj is
the Euclidean inner product of the vectorsu andv. For each value ofx given inC par,
the reduced mean computational model of the dynamical system is obtained in con-
structing the projection of the mean computational model on the subspaceH n of Rm

spanned by{ϕ1(x), . . . ,ϕn(x)} with n ≪ m. Let [φ(x)] be the(m × n) real matrix
whose columns are vectors{ϕ1(x), . . . ,ϕn(x)}. The generalized forcef(t; x) is an
Rn-vector such thatf(t; x) = [φ(x)]T f(t; x). For all x in Cpar, the generalized mass,
damping and stiffness matrices[M(x)], [D(x)] and[K(x)] belong to the setM +

n (R) of
all the positive-definite symmetric(n× n) real matrices, and are defined by

[M(x)]αβ = µα(x) δαβ , [D(x)]αβ =< [D(x)]ϕβ(x) ,ϕα(x)> , (25)

[K(x)]αβ = µα(x)ωα(x)2 δαβ , (26)

in which, generally,[D(x)] is a full matrix. Consequently, for allx in C par and for all
fixed t, the reduced mean computational model of the dynamical system is written as
the projectionyn(t) of y(t) onHn which yields

yn(t) = [φ(x)] q(t) ,

(27)

[M(x)] q̈(t) + [D(x)] q̇(t) + [K(x)] q(t) + FNL(q(t), q̇(t); x) = f(t; x) ,

in whichFNL(q(t), q̇(t); x) = [φ(x)]T fNL([φ(x)] q(t), [φ(x)] q̇(t); x) and whereq(t) ∈
Rn is the vector of the generalized coordinates. In the particular case for which
fNL = 0, the corresponding equation, in the frequency domain, is written as

−ω2[M(x)] q(ω) + iω[D(x)] q(ω) + [K(x)] q(ω) = f(ω; x) . (28)

in whichq(ω) =
∫
R e−iωtq(t) dt andf(ω; x) =

∫
R e−iωtf(t; x)dt

Below, we will denote byn0 the value ofn for which the responseyn is converged to
y, with a given accuracy, for all values ofx in Cpar.

4.3. Methodology of the parametric probabilistic approach of model-parameter uncer-
tainties

The methodology of the parametric probabilistic approach of model-parameter uncer-
tainties consists in modeling the uncertain model parameterx (whose nominal value is
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x) by a random variableX defined on a probability space(Θ, T ,P), with values inR np .
Consequently, the generalized matrices in Eq. (27) become random matrices[M(X)],
[D(X)] and[K(X)] and, for all fixedt, the generalized external forcef(t; x) becomes a
random vectorf(t;X). The mean values of these random matrices are denoted by[M ],
[D] and[K]. We then have

E{[M(X)]} = [M ] , E{[D(X)]} = [D] , E{[K(X)]} = [K] , (29)

in whichE is the mathematical expectation. It should be noted that the mean matrices
[M ], [D] and [K] are different from the matrices[M(x)], [D(x)] and [K(x)] of the
mean (nominal) computational model. The parametric probabilistic approach of un-
certainties then consists in replacing the mean computational model by the following
stochastic reduced computational model,

Y(t) = [φ(X)]Q(t) , (30)

[M(X)] Q̈(t) + [D(X)] Q̇(t)+ [K(X)]Q(t) +FNL(Q(t), Q̇(t);X) = f(t;X) , (31)

in which for all fixedt, Y(t) is anRm-valued random vector andQ(t) is anRn-valued
random vector. As soon as the stochastic model of random vectorX is constructed,
the stochastic computational model defined by Eqs. (30) and (31) can be solved using
the methods presented in Section 3.6, in particular the direct Monte Carlo method,
taking into account thatnp can be very large and that we have to solve a reduced-order
stochastic computational model.

4.4. Construction of the prior stochastic model of model-parameter uncertainties

The unknown probability distribution ofX is assumed to be defined by a probability
density functionx �→ pX(x) fromRnp intoR+ = [0 ,+∞[. Under the assumption that
no experimental data are available to constructpX, the prior model can be constructed
using the maximum entropy principle (see Section 3.4). For such a construction, the
available information has to be defined. Sincex belongs toCpar, the support ofpX must
beCpar and the normalization condition must be verified. We then have,

supppX = Cpar ⊂ Rnp ,

∫

Rnp

pX(x)dx =

∫

Cpar
pX(x)dx = 1 . (32)

Since the nominal value ofx is x ∈ Cpar, an additional available information consists
in writing that the mean valueE{X} of X is equal tox which yields the following
constraint equation, ∫

Rnp

x pX(x)dx = x . (33)

In general, an additional available information can be deduced from the analysis of the
mathematical properties of the solution of the stochastic computational model under
construction. The random solutionQ of the stochastic computational model defined by
Eq. (31) must be a second-order vector-valued stochastic process (because the dynami-
cal system is stable) which means that, for allt, we must haveE{‖Q(t)‖2} < +∞. In
order that such a property be verified, it is necessary to introduce a constraint which can
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always be written as the equationE{g(X)} = γ onRµX , in whichγ = (γ1, . . . , γµX
)

is a given vector inRµX with µX ≥ 1 and wherex �→ g(x) = (g1(x), . . . , gµX
(x)) is a

given mapping fromRnp intoRµX . Consequently, the additional available information
defines the following constraint equation,

∫

Rnp

g(x) pX(x)dx = γ . (34)

Let C be the set of all the probability density functionspX defined onRnp with values
inR+ such that Eqs. (32) to (34) hold. The prior modelpX ∈ C can then be constructed
using the maximum entropy principle (see Section 3.4). Since Eq. (34) is a vectorial
equation of dimensionµX , the solutionpX of the maximum entropy principle depends
on the freeRµX -valued parameterγ. However, parameterγ has generally no physical
meaning and it is better to expressγ in terms of anRµX -valued parameterδX which
corresponds to a well defined statistical quantity for random variableX. In general,δ X

does not run throughRµX but must belong to an admissible setCX which is a subset
of RµX . Consequently,pX depends onx andδX and is rewritten as

x �→ pX(x; x, δX) with (x, δX) ∈ Cpar× CX ⊂ Rnp × RµX . (35)

4.5. Estimation of the parameters of the prior stochastic model of the uncertain model
parameter

The value ofn is fixed to the valuen0 for which, for all values ofx in Cpar, the response
yn is converged toywith a given accuracy. The prior stochastic modelpX(x; x, δX) of
random variableX relative to the model-parameter uncertainties, depends on parame-
tersx andδX belonging to admissible setsCpar andCX . If no experimental data are
available, thenx is fixed to the nominal value andδX must be considered as a param-
eter to perform a sensitivity analysis of the stochastic solution. Such a prior stochastic
model of model-parameter uncertainties then allows the robustness of the solution to
be analyzed in function of the level of model-parameter uncertainties controlled byδ X .

For the particular case for which a few experimental data exist,x can be updated and
δX can be estimated with the experimental data. The updating ofx and the estimation
of δX must then be performed with observations of the systems for which experi-
mental data are available. There are several possibilities in the choice of such observa-
tions satisfying these criteria (for instance, the first eigenfrequencies and the associated
structural elastic modes if an experimental modal analysis is available (see for instance
[138]), the frequency response functions on a given frequency band, etc). LetW be the
random vector which is observed. For all(x, δX) ∈ Cpar× CX ⊂ Rnp ×RµX , and for
all w fixed, the probability density function ofW is denoted bypW(w; x, δX). On the
other hand, it is assumed thatνexp independent experimental valueswexp

1 , . . . ,wexp
νexp are

measured. The optimal value(x opt, δ
opt
X ) of (x, δX) can be estimated by maximizing

the logarithm of the likelihood function (maximum likelihood method [57],[58]),

(x opt, δ
opt
X ) = arg max

(x,δX )∈Cpar×CX

{
νexp∑

r=1

log pW(wexp
r ; x, δX)} . (36)
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The quantitiespW(wexp
r ; x, δX) are estimated using the independent realizations ofW

calculated with the stochastic computational model (using the Monte Carlo method)
and the multivariate Gaussian kernel density estimation method (see for instance [139,
140]).

4.6. Posterior probability model of uncertainties using output-prediction-error method
and the bayesian method

Let pprior
X (x) = pX(x; xopt, δ

opt
X ) be the optimal prior probability density function ofX,

constructed with the optimal value(xopt, δ
opt
X ) of (x, δX) which has been determined

in Section 4.5, solving the optimization problem defined by Eq. (36). As we have
explained, the parametric probabilistic approach does not have the capability to take
into account the modeling errors (modeling uncertainties). A possible method to take
into account the modeling errors is to use the output-prediction-error method (with the
difficulties that we have indicated in Section 3.2-(i)). With such an approach the poste-
rior probability density functionppost

X (x) of X can be estimated using the experimental
data associated with observationW introduced in Section 4.5 and the Bayesian method.

In order to apply the Bayesian method [59, 58, 61, 60] to estimate the posterior proba-
bility density functionppost

X (x) of random vectorX, the output-prediction-error method
[141, 12, 62] is used and then, an additive noiseB is added to the observation in order
to simultaneously take into account the modeling errors and the measurements errors
as explained in Section 3.2. The random observed outputW out with values inRmobs,
for which experimental datawexp

1 , . . . ,wexp
νexp are available (see Section 4.5), is then

written as
Wout = W + B , (37)

in which W is the computational model output with values inRmobs. The noiseB
is aRmobs-valued random vector, defined on probability space(Θ, T ,P), which is
assumed to be independent ofX, and consequently, which is independent ofW. It
should be noted that this hypothesis concerning the independence ofW andB could
easily be removed. It is also assumed that the probability density functionp B(b) of
random vectorB, with respect todb, is known. For instance, it is often assumed thatB
is a centered Gaussian random vector for which the covariance matrix[C B] = E{BBT }
is assumed to be invertible. In such a case, we would have

pB(b) = (2π)−mobs/2 (det[CB])
−1/2 exp(−1

2
< [CB]

−1b , b >) . (38)

The posterior probability density functionppost
X (x) is then estimated by

p
post
X (x) = L(x) pprior

x (x) , (39)

in whichx �→ L(x) is the likelihood function defined onRnp , with values inR+, such
that

L(x) =
Π

νexp
r=1 pWout|X(w

exp
r |x)

E{Πνexp
r=1 pWout|X(w

exp
r |Xprior)}

. (40)
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In Eq. (40),pWout|X(w
exp
ℓ |x) is the values, for the experimental data, of the conditional

probability density functionw �→ pWout|X(w|x) of the random observed outputWout

givenX = x in Cpar. Taking into account Eq. (37) and asB andW are assumed to be
independent, it can easily be deduced that

pWout|X(w
exp
r |x) = pB(wexp

r − h(x)) , (41)

in which w = h(x) is the model observation depending on{yn(t), t ∈ J } which
is computed using Eq. (27). It should be noted that the posterior probability density
function strongly depends on the choice of the stochastic model of the output additive
noiseB.

5. Nonparametric probabilistic approach of uncertainties in computational struc-
tural dynamics. The generalized probabilistic approach

The nonparametric probabilistic approach of uncertainties has been introduced in [13,
14, 15] to take into account both the model-parameter uncertainties and the modeling
errors inducing model uncertainties without separating the contribution of each one
of these two types of uncertainties. Recently, in [56], an improvement of the non-
parametric approach of uncertainties, called the generalized probabilistic approach of
uncertainties, has been proposed and allows the prior stochastic model of each type
of uncertainties (model-parameter uncertainties and modeling errors) to be separately
constructed. Below, we summarized this approach which allows modeling errors to be
taken into account.

5.1. Methodology to take into account model uncertainties (modeling errors)

Let (Θ′, T ′,P ′) be another probability space. The probability space(Θ, T ,P) is de-
voted to the stochastic model of model-parameter uncertainties using the parametric
probabilistic approach (see Section 4), while(Θ ′, T ′,P ′) is devoted to the stochas-
tic model of model uncertainties (modeling errors) using the nonparametric proba-
bilistic approach. Therefore, for allx fixed in Cpar, the matrices[M(x)], [D(x)] and
[K(x)] are replaced by independent random matrices[M(x)] = {θ ′ �→ [M(θ′; x)]},
[D(x)] = {θ′ �→ [D(θ′; x)]} and [K(x)] = {θ′ �→ [K(θ′; x)]} on probability space
(Θ′, T ′,P ′) and defined, below, in Section 5.2. The nonparametric probabilistic ap-
proach of uncertainties then consists in replacing in Eq. (31) the dependent random
matrices[M(X)], [D(X)] and [K(X)] by the dependent random matrices[M(X)] =
{(θ, θ′) �→ [M(θ′;X(θ))]}, [D(X)] = {(θ, θ′) �→ [D(θ′;X(θ))]} and[K(X)] = {(θ, θ′) �→
[K(θ′;X(θ))]}, defined onΘ×Θ′. It can easily be deduced that

E{[M(X)]} = [M ] , E{[D(X)]} = [D] , E{[K(X)]} = [K] . (42)

Consequently, the stochastic reduced computational model, defined by Eqs. (30) and
(31), is replaced by the following stochastic reduced computational model,

Y(t) = [φ(X)]Q(t) , (43)

[M(X)] Q̈(t) + [D(X)] Q̇(t) + [K(X)]Q(t) + FNL(Q(t), Q̇(t);X) = f(t;X) , (44)
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in which for all fixed t, Y(t) = {(θ, θ ′) �→ Y(θ, θ′; t)} is anRm-valued random
vector andQ(t) = {(θ, θ′) �→ Q(θ, θ′; t)} is anRn-valued random vector defined
on Θ × Θ′. Let X(θ) be any realization of random variableX for θ in Θ. For all x
in Cpar, let [M(θ′; x)], [D(θ′; x)] and[K(θ′; x)] be any realizations of random matrices
[M(x)], [D(x)], [K(x)] for θ′ in Θ′. The realizationY(θ, θ′; t) of the random variable
Y(t) and the realizationQ(θ, θ ′; t) of the random variableQ(t) verify the deterministic
equations

Y(θ, θ′; t) = [φ(X(θ))]Q(θ, θ′; t) , (45)

[M(θ′;X(θ))] Q̈(θ, θ′; t) + [D(θ′;X(θ))] Q̇(θ, θ′; t)

+[K(θ′;X(θ))]Q(θ, θ′; t) + FNL(Q(θ, θ′; t), Q̇(θ, θ′; t);X(θ))

= f(t;X(θ)) . (46)

5.2. Construction of the prior stochastic model of the random matrices
As explained in [56], the dependent random matrices[M(X)], [D(X)] and[K(X)], in-
troduced in Eq. (44), are written as

[M(X)]=[LM (X)]T [GM ] [LM (X)] ,

[D(X)]=[LD(X)]T [GD] [LD(X)] , (47)

[K(X)]=[LK(X)]T [GK ] [LK(X)] ,

in which, for all x in Cpar, [LM (x)], [LD(x)] and [LK(x)] are the upper triangu-
lar matrices such that[M(x)] = [LM (x)]T [LM (x)], [D(x)] = [LD(x)]T [LD(x)] and
[K(x)] = [LK(x)]T [LK(x)]. In Eq. (47), the random matrices[GM ], [GD] and[GK ]
are random matrices which are defined on probability space(Θ ′, T ′,P ′) with values in
M+

n (R). The joint probability density function of these random matrices[G M ], [GD]
and [GK ] is constructed using the maximum entropy principle under the constraints
defined by the available information. Taking into account the available information
(see [13, 14, 15, 56]), it is proven that these three random matrices are statistically
independent, belong to ensemble SG+

ε defined in Section 3.5.3, and then depend on
free positive real dispersion parametersδM , δD andδK which allow the level of the
statistical fluctuations, that is to say the level of model uncertainties, to be controlled.
Let δG = (δM , δD, δK) be the vector of the dispersion parameters, which belongs to
an admissible setCG ⊂ R3. Consequently, the joint probability density function of the
random matrices[GM ], [GD] and[GK ] is written as

([GM ], [GD], [GK ]) �→ pG([GM ], [GD], [GK ]; δG) = p[GM ]]([GM ]; δM )

× p[GD ]]([GD]; δD) × p[GK ]]([GK ]; δK) , δG ∈ CG ⊂ R3 . (48)

The probability distributions of random matrices[GM ], [GD] and[GK ] and their alge-
braic representations useful for generating independent realizations[G M (θ′)], [GD(θ′)]
and[GK(θ′)] are explicitly defined in Section 3.5.3 using Section 3.5.2. From Eq. (47)
and for(θ, θ′) in Θ×Θ′, it can be deduced that

[M(θ′;X(θ))] = [LM (X(θ))]T [GM (θ′)] [LM (X(θ))] , (49)

[D(θ′;X(θ))] = [LD(X(θ))]T [GD(θ′)] [LD(X(θ))] , (50)

[K(θ′;X(θ))] = [LK(X(θ))]T [GK(θ′)] [LK(X(θ))] . (51)
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5.3. Estimation of the parameters of the prior stochastic model of uncertainties

The prior stochastic model of uncertainties then depends on parametersx, δX andδG

belonging to the admissible setsCpar, CX andCG. If no experimental data are available,
thenx is fixed to the nominal value andδX andδG must be considered as parameters
to perform a sensitivity analysis of the stochastic solution. Such a prior stochastic
model of both model-parameter uncertainties and model uncertainties then allows the
robustness of the solution to be analyzed in function of the level of model-parameter
uncertainties controlled byδX and in function of model uncertainties controlled byδG.

If a few experimental data are available, the methodology presented in Section 4.5 can
then be used to updatex and to estimateδX andδG. As previously, letW be the random
vector which is observed and which is deduced from the random solutionY given by
Eq. (43) with Eq. (44). For all(x, δX , δG) ∈ Cpar× CX × CG, the probability density

function ofW is denoted bypW(w; x, δX , δG). The optimal value(x opt, δ
opt
X , δ

opt
G ) of

(x, δX , δG) can be estimated by maximizing the logarithm of the likelihood function,

(x opt, δ
opt
X , , δ

opt
G ) = arg max

(x,δX ,,δG)∈Cpar×CX×CG

{
νexp∑

r=1

log pW(wexp
r ; x, δX , δG} .

(52)
Similarly to Section 4.5, the quantitiespW(wexp

r ; x, δX , δG) are estimated using the
independent realizations ofW calculated with the stochastic computational model de-
fined by Eqs. (43) and (44) (using the Monte Carlo method) and the multivariate Gaus-
sian kernel density estimation method.

6. Posterior stochastic model of uncertainties using the Bayesian method

Let pprior
X (x) = pX(x; xopt, δ

opt
X ) andpG([GM ], [GD], [GK ]; δ

opt
G ) be the optimal prior

probability density functions of random vectorX and random matrices[G M ], [GD],
[GK ], constructed with the optimal value(xopt, δ

opt
X , δ

opt
G ) of (x, δX , δG) which has

been calculated in Section 5.3 solving the optimization problem defined by Eq. (52).
The objective of this section is the following. For this given optimal prior probability
modelpG([GM ], [GD], [GK ]; δ

opt
G ) of model uncertainties induced by modeling errors,

the posterior probability density functionppost
X (x) of model-parameter uncertainties

is estimated using the experimental data associated with observationW and using the
stochastic computational model, the optimal prior probability density functionp

prior
X (x)

and the Bayesian method.

6.1. Posterior probability density function of the model-parameter uncertainties

Let wexp
1 , . . . ,wexp

νexp be theνexp independent experimental data corresponding to obser-
vationW, introduced in Section 4.5 and used in Section 5.3. The Bayesian method (see
for instance [12, 59, 60, 61, 57, 58, 142, 141]) allows the posterior probability density
functionppost

X (x) to be calculated by

p
post
X (x) = L(x) pprior

x (x) , (53)

20



in whichx �→ L(x) is the likelihood function defined onRnp , with values inR+, such
that

L(x) = Π
νexp
r=1 pW|X(w

exp
r |x)

E{Πνexp
r=1 pW|X(w

exp
r |Xprior)}

. (54)

In Eq. (54),pW|X(w
exp
ℓ |x) is the value, for the experimental data, of the conditional

probability density functionw �→ pW|X(w|x) of the random observationW givenX =
x in Cpar. Equation (54) shows that the likelihood functionL must verify the following
equation,

E{L(Xprior)} =

∫

Rnp

L(x) pprior
X (x)dx = 1 . (55)

For a high dimension uncertain model parameter, the usual Bayesian method presented
above can be not efficient for partial experimental data. In such a case a novel approach
derived from Baye’s approach has been proposed in [143].

6.2. Posterior probability density functions of the responses

Let U = (V,W) be the random response vector in whichW is experimentally observed
and whereV is not experimentally observed. Random response vectorU is constructed
from the random solutionY of Eqs. (43) and (44). The probability density function
u �→ pUpost(u) of the posterior random response vectorUpost is then given by

pUpost(u) =
∫

Rnp

pU|X(u|x) ppost
X (x)dx , (56)

in which the conditional probability density functionpU|X(u|x) of U, givenX = x,
is constructed using the stochastic computational model defined in Sections 5.1 and
5.2. From Eqs. (53) and (56), it can be deduced that the posterior probability density
functionpUpost can be written aspUpost(u) = E{L(Xprior) pU|X(u|Xprior)}. Let Upost

k

be any component of random vectorUpost. The probability density functionuk �→
p
U

post
k

(uk) onR of the posterior random variableU post
k is then given by

p
U

post
k

(uk) = E{L(Xprior) pUk|X(uk|Xprior)} , (57)

in whichuk �→ pUk|X(uk|x) is the conditional probability density function of the real
valued random variableUk givenX = x and which is constructed using the computa-
tional model defined in Sections 5.1 and 5.2.

6.3. Computational aspects

We use the notation introduced in Sections 5.1 and 5.2 concerning the realizations.
Let Xprior(θ1), . . . ,Xprior(θν) beν independent realizations ofXprior whose probabil-

ity density function isx �→ p
prior
X (x). For ν sufficiently large, the right-hand side of

Eq. (57) can be estimated by

p
U

post
k

(uk) ≃
1

ν

ν∑

ℓ=1

L(Xprior(θℓ)) pUk|X(uk|Xprior(θℓ)) . (58)
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Let ([GM (θ′1)], [GD(θ′1)], [GK(θ′1)]), . . . , [GM (θ′ν ′)], [GD(θ′ν ′)], [GK(θ′ν ′)]) beν ′ in-
dependent realizations of([GM ], [GD], [GK ]) whose probability density function is
([GM ], [GD], [GK ]) �→ pG([GM ], [GD], [GK ]; δ

opt
G ). For fixedθℓ, the computational

model defined in Sections 5.1 and 5.2 is used to calculate theν ′ independent realiza-
tionsU(θ′1|x), . . . ,U(θ′ν ′ |x) for x = Xprior(θℓ). We can then deduceW(θ ′1|Xprior(θℓ)),

. . . , W(θ′ν ′ |Xprior(θℓ)) and, for all fixedk, we can deduceUk(θ
′
1|Xprior(θℓ)), . . . ,

Uk(θ
′
ν ′ |Xprior(θℓ)).

(1) Using the independent realizationsW(θ ′
1|Xprior(θℓ)), . . . ,W(θ′ν ′ |Xprior(θℓ)) and

using the multivariate Gaussian kernel density estimation method, forr = 1, . . . , ν exp,
we can estimatepW|X(w

exp
r |Xprior(θℓ)) and then, forℓ = 1, . . . , ν, we can deduce

L(Xprior(θℓ)) using Eq. (54).

(2) For all fixedk, pUk|X(uk|Xprior(θℓ)) is estimated using the independent realizations

Uk(θ
′
1|Xprior(θℓ)), . . . , Uk(θ

′
ν ′ |Xprior(θℓ)) and using the kernel estimation method. From

Eq. (58), it can then be deducedp
U

post
k

(uk).

7. Conclusion

We have presented a brief survey concerning the state-of-the-art and the recent ad-
vances in the field of stochastic modeling of uncertainties in computational structural
dynamics, their propagation and their quantification when experimental data are avail-
able or not. Many interesting and important works have been published and are in
progress concerning the methodologies which allow the propagation of uncertainties to
be analyzed. Nevertheless, an excellent stochastic solver will compute a bad stochastic
solution if the stochastic model of the input (the uncertainties) is bad. In particular, if no
experimental data are available, the quality of the random responses directly depends
on the quality of the prior stochastic model of uncertainties. For the complex dynami-
cal systems, the major source of uncertainties is due to modeling errors and is not due
to model-parameter uncertainties. This is the reason why the overview presented in
this paper is mainly focussed on the methodologies and tools, such as the maximum
entropy principle, useful to construct the prior stochastic models of uncertainties and
in particular, the prior stochastic model of modeling errors using the nonparametric
probabilistic approach. This latter approach requires the use of adapted ensembles
of random matrices and has been proposed as an alternative method to the output-
prediction-error method in order to take into account modeling errors at the operators
level and not at the model output level by the introduction of an additive noise. We
have then detailed the methodologies for the construction of the prior stochastic model
of model-parameter uncertainties (using the parametric probabilistic approach) and the
prior stochastic model of modeling errors (using the nonparametric probabilistic ap-
proach) in computational structural dynamics. In addition, when experimental data are
available for some observations of the dynamical system, we have presented method-
ologies to perform the identification of the stochastic model of uncertainties, that is
to say, the uncertainties quantification. When a few experimental data are available
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for some observations of the dynamical system, these experimental data can be used
to identify, with the maximum likelihood method, an optimal prior stochastic model
of uncertainties. If a large experimental data basis is available the posterior stochastic
model of system-parameter uncertainties, in presence of modeling errors in the com-
putational model, can be estimated with the bayesian method.
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