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Stochastic modeling of uncertainties in computational structural dynamics -Recent theoretical advances

Introduction

This paper is devoted to a short overview on stochastic modeling of uncertainties and on related topics, including recent theoretical advances. Many references are given in order to give an idea of the large number of works published in this field. However, this area is too vast to being exhaustive. We have then limited the references to those adapted to the guideline of the synthesis proposed in this paper. In Section 3, an overview on stochastic modeling of uncertainties is presented, introducing the types of uncertainties, the variability of real systems, the types of probabilistic approaches and the representations for the stochastic models of uncertainties. The construction of the prior stochastic models using the maximum entropy principle is recalled. The different problems related to the propagation of uncertainties and the methods to solve the stochastic dynamical equations are briefly presented. The fundamental problem relative to the identification of the prior and the posterior stochastic models is developed. All these tools allow the robust updating of the computational models and the robust design with uncertain computational models to be performed. Sections 4 and 5 deal with recent theoretical advances concerning the parametric and the nonparametric probabilistic approaches of uncertainties in computational structural dynamics for the construction of the prior stochastic models of both the uncertainties on the computational model parameters and on the modeling uncertainties. Finally, Section 6 is devoted to the construction of the posterior stochastic model of uncertainties using the Bayesian method when experimental data are available.

Comments concerning notation used

In this paper, the following notations are used: (1) A lower case letter is a real deterministic variable (e.g. x).

(2) A boldface lower case letter is a real deterministic vector (e.g. x =(x 1 ,...,x N ).

(3) An upper case letter is a real random variable (e.g. X). (4) A boldface upper case letter is a real random vector (e.g. X =(X 1 ,...,X N )).

(5) An upper case letter between brackets is a real deterministic matrix (e.g. [A ]). (6) A boldface upper case letter between brackets is a real random matrix (e.g. [A]). (7) Any deterministic quantities above (e.g. x, x, [A ]) with an underline (e.g. x, x, [A ]) means that these deterministic quantities are related to the mean model (or to the nominal model).

Short overview on stochastic modeling of uncertainties and on related topics

Uncertainties and variability

The designed system is used to manufacture the real system and to construct the nominal computational model (also called the mean computational model or sometimes, the mean model) using a mathematical-mechanical modeling process for which the main objective is the prediction of the responses of the real system in its environment. The real system, submitted to a given environment, can exhibit a variability in its responses due to fluctuations in the manufacturing process and due to small variations of the configuration around a nominal configuration associated with the designed system. The mean computational model which results from a mathematical-mechanical modeling process of the design system, has parameters which can be uncertain. In this case, there are uncertainties on the computational model parameters. In an other hand, the modeling process induces some modeling errors defined as the modeling uncertainties. It is important to take into account both the uncertainties on the computational model parameters and the modeling uncertainties to improve the predictions of computational models in order to use such a computational model to carry out robust optimization, robust design and robust updating with respect to uncertainties. Today, it is well understood that, as soon as the probability theory can be used, then the probabilistic approach of uncertainties is certainly the most powerful, efficient and effective tool for modeling and for solving direct and inverse problem. The developments presented in this paper are limited to the probabilistic approaches.

Types of approach for stochastic modeling of uncertainties

The parametric probabilistic approach consists in modeling the uncertain parameters of the computational model by random variables and then in constructing the stochastic model of these random variables using the available information. Such an approach is very well adapted and very efficient to take into account the uncertainties on the computational model parameters as soon as the probability theory can be used. Many works have been published in this field and a state-of-the-art can be found, for instance, in [START_REF] Deodatis | 5th International Conference on computational stochastic mechanics[END_REF][START_REF] Ghanem | A probability construction of model validation[END_REF][START_REF] Langley | Unified approach to probabilistic and possibilistic analysis of uncertain systems[END_REF][START_REF] Mace | Uncertainty in structural dynamics[END_REF][START_REF] Schuëller | Computational methods in stochastic mechanics and reliability analysis[END_REF][START_REF] Schuëller | Uncertainties in structural mechanics and analysiscomputational methods[END_REF][START_REF] Schuëller | Developments in stochastic structural mechanics[END_REF][START_REF] Schuëller | On the treatment of uncertainties in structural mechanics and analysis[END_REF][START_REF] Schuëller | Computational methods in optimization considering uncertainties -An overview[END_REF][START_REF] Schuëller | Uncertain linear systems in dynamics: Retrospective and recent developments by stochastic approaches[END_REF][START_REF] Schuëller | Uncertainty analysis of complex structural systems[END_REF]. Nevertheless, the parametric probabilistic approach does not allow the modeling uncertainties to be taken into account (see for instance [START_REF] Beck | Updating models and their uncertainties. I: Bayesian statistical framework[END_REF][START_REF] Soize | A nonparametric model of random uncertainties on reduced matrix model in structural dynamics[END_REF]).

Concerning modeling uncertainties induced by modeling errors, it is today well understood that the prior and posterior stochastic models of the uncertain parameters of the computational model are not sufficient and do not have the capability to take into account modeling uncertainties in the context of computational mechanics (see for instance [START_REF] Beck | Updating models and their uncertainties. I: Bayesian statistical framework[END_REF][START_REF] Soize | A nonparametric model of random uncertainties on reduced matrix model in structural dynamics[END_REF][START_REF] Soize | Maximum entropy approach for modeling random uncertainties in transient elastodynamics[END_REF][START_REF] Soize | Random matrix theory for modeling uncertainties in computational mechanics[END_REF]). Two main methods can be used to take into account modeling uncertainties (modeling errors). (i) The first one consists in introducing a stochastic model of the output-predictionerror, considered as a noise, which is the difference between the real system output and the computational model output [START_REF] Beck | Updating models and their uncertainties. I: Bayesian statistical framework[END_REF]. In this approach, the modeling errors and the measurements errors are simultaneously taken into account and cannot really be separately identified. Note that if no experimental data are available, such a method cannot be used because, generally, there are no information for constructing the stochastic model of such a noise. Such an approach is simple and efficient but requires experimental data. It should be noted that a lot of experimental data are required in high dimension. However, with such an approach, the posterior stochastic model of the uncertain parameters of the computational model strongly depends on the stochastic model of the noise which is added to the model output and which is often unknown. In addition, for many problems, it can be necessary to take into account the modeling errors at the operators level of the mean computational model (for instance, to take into account the modeling errors on the mass and stiffness operators in order to analyze the generalized eigenvalue problem related to a dynamical system, or, if the design parameters of the computational model are not fixed but run through an admissible set of values in the context of the robust design optimization). (ii) The second one is based on the nonparametric probabilistic approach of modeling uncertainties (modeling errors) which has been proposed in [START_REF] Soize | A nonparametric model of random uncertainties on reduced matrix model in structural dynamics[END_REF] as an alternative method to the output-prediction-error method in order to take into account modeling errors at the operators level and not at the model output level by the introduction of an additive noise. It should be noted that such an approach allows a prior stochastic model of modeling uncertainties to be constructed even if no experimental data are available. The nonparametric probabilistic approach is based on the use of a reduced-order model and the random matrix theory. It consists in directly constructing the stochastic modeling of the operators of the mean computational model. The random matrix theory [START_REF] Mehta | Random Matrices, Revised and Enlarged Second Edition[END_REF] (see also [START_REF] Langley | The analysis of random built-up engineering systems[END_REF][START_REF] Soize | Random matrices in structural acoustics[END_REF][START_REF] Wright | New Directions in Linear Acoustics: Random Matrix Theory, Quantum Chaos and Complexity[END_REF] for such a theory in the context of linear acoustics) is used to construct the prior probability distribution of the random matrices modeling the uncertain operators of the mean computational model. This prior probability distribution is constructed by using the Maximum Entropy Principle [START_REF] Jaynes | Information theory and statistical mechanics[END_REF] (from Information Theory [START_REF] Shannon | A mathematical theory of communication[END_REF]) for which the constraints are defined by the available information [START_REF] Soize | A nonparametric model of random uncertainties on reduced matrix model in structural dynamics[END_REF][START_REF] Soize | Maximum entropy approach for modeling random uncertainties in transient elastodynamics[END_REF][START_REF] Soize | Random matrix theory and non-parametric model of random uncertainties[END_REF][START_REF] Soize | Random matrix theory for modeling uncertainties in computational mechanics[END_REF]. Since the paper [START_REF] Soize | A nonparametric model of random uncertainties on reduced matrix model in structural dynamics[END_REF], many works have been published in order to validate the nonparametric probabilistic approach of model uncertainties with experimental results (see for instance [START_REF] Chebli | Experimental validation of a nonparametric probabilistic model of non homogeneous uncertainties for dynamical systems[END_REF][START_REF] Chen | Probabilistic approach for model and data uncertainties and its experimental identification in structural dynamics: Case of composite sandwich panels[END_REF][START_REF] Duchereau | Transient dynamics in structures with nonhomogeneous uncertainties induced by complex joints[END_REF][START_REF] Durand | Structural-acoustic modeling of automotive vehicles in presence of uncertainties and experimental identification and validation[END_REF][START_REF] Fernandez | Fuzzy structure theory modeling of sound-insulation layers in complex vibroacoustic uncertain sytems -Theory and experimental validation[END_REF][START_REF] Fernandez | Sound-insulation layer modelling in car computational vibroacoustics in the medium-frequency range[END_REF][START_REF] Soize | Random matrix theory for modeling uncertainties in computational mechanics[END_REF][START_REF] Soize | Probabilistic model identification of uncertainties in computational models for dynamical systems and experimental validation[END_REF]), to extend the applicability of the theory to other areas [START_REF] Capiez-Lernout | Nonparametric modeling of random uncertainties for dynamic response of mistuned bladed disks[END_REF][START_REF] Capiez-Lernout | Blade manufacturing tolerances definition for a mistuned industrial bladed disk[END_REF][START_REF] Capiez-Lernout | Robust design optimization in computational mechanics[END_REF][START_REF] Capiez-Lernout | Design optimization with an uncertain vibroacoustic model[END_REF][START_REF] Capiez-Lernout | Robust updating of uncertain damping models in structural dynamics for low-and medium-frequency ranges[END_REF][START_REF] Cottereau | Construction of a probabilistic model for impedance matrices[END_REF][START_REF] Cottereau | Probabilistic impedance of foundation: impact of the seismic design on uncertain soils[END_REF][START_REF] Desceliers | Non-parametric -parametric model for random uncertainties in nonlinear structural dynamics -Application to earthquake engineering[END_REF][START_REF] Kassem | Energy density field approach for low-and medium-frequency vibroacoustic analysis of complex structures using a stochastic computational model[END_REF][START_REF] Soize | Uncertain dynamical systems in the medium-frequency range[END_REF][START_REF] Soize | Random uncertainties model in dynamic substructuring using a nonparametric probabilistic model[END_REF][START_REF] Soize | Construction of probability distributions in high dimension using the maximum entropy principle. Applications to stochastic processes, random fields and random matrices[END_REF], to extend the theory to new ensembles of positive-definite random matrices yielding a more flexible description of the dispersion levels [START_REF] Mignolet | Nonparametric stochastic modeling of linear systems with prescribed variance of several natural frequencies[END_REF], to apply the theory for the analysis of complex dynamical systems in the medium-frequency range, including vibroacoustic systems, [START_REF] Arnst | A nonparametric probabilistic model for ground-borne vibrations in buildings[END_REF][START_REF] Capiez-Lernout | Data and model uncertainties in complex aerospace engineering systems[END_REF][START_REF] Chebli | Experimental validation of a nonparametric probabilistic model of non homogeneous uncertainties for dynamical systems[END_REF][START_REF] Desceliers | Determination of the random anisotropic elasticity layer using transient wave propagation in a fluid-solid multilayer: Model and experiments[END_REF][START_REF] Duchereau | Transient dynamics in structures with nonhomogeneous uncertainties induced by complex joints[END_REF][START_REF] Durand | Structural-acoustic modeling of automotive vehicles in presence of uncertainties and experimental identification and validation[END_REF][START_REF] Fernandez | Fuzzy structure theory modeling of sound-insulation layers in complex vibroacoustic uncertain sytems -Theory and experimental validation[END_REF][START_REF] Fernandez | Sound-insulation layer modelling in car computational vibroacoustics in the medium-frequency range[END_REF][START_REF] Ghanem | Reduced models for the medium-frequency dynamics of stochastic systems[END_REF][START_REF] Kassem | Structural partitioning of complex structures in the medium-frequency range. An application to an automotive vehicle[END_REF][START_REF] Pellissetti | Reliability analysis of a satellite structure with a parametric and a non-parametric probabilistic model[END_REF][START_REF] Soize | Uncertain dynamical systems in the medium-frequency range[END_REF], to analyze nonlinear dynamical systems (i) for local nonlinear elements [START_REF] Batou | Identification of stochastic loads applied to a non-linear dynamical system using an uncertain computational model and experimental responses[END_REF][START_REF] Batou | Experimental identification of turbulent fluid forces applied to fuel assemblies using an uncertain model and fretting-wear estimation[END_REF][START_REF] Desceliers | Non-parametric -parametric model for random uncertainties in nonlinear structural dynamics -Application to earthquake engineering[END_REF][START_REF] Ritto | Nonlinear dynamics of a drill-string with uncertainty model of the bit-rock interaction[END_REF][START_REF] Ritto | Robust optimization of the rate of penetration of a drill-string using a stochastic nonlinear dynamical model[END_REF][START_REF] Sampaio | On measures of non-linearity effects for uncertain dynamical systems -Application to a vibro-impact system[END_REF][START_REF] Sampaio | Remarks on the efficiency of POD for model reduction in nonlinear dynamics of continuous elastic systems[END_REF] and (ii) for distributed nonlinear elements or nonlinear geometrical effects [START_REF] Mignolet | Stochastic reduced order models for uncertain nonlinear dynamical systems[END_REF].

Concerning the coupling of the parametric probabilistic approach of the uncertainties on the computational model parameters with the nonparametric probabilistic approach of modeling uncertainties (modeling errors), a methodology has recently been proposed in computational mechanics [START_REF] Soize | Generalized probabilistic approach of uncertainties in computational dynamics using random matrices and polynomial chaos decompositions[END_REF]. This generalized probabilistic approach of uncertainties in computational dynamics uses the random matrix theory. The proposed approach allows the prior stochastic model of each type of uncertainties (uncertainties on the computational model parameters and modeling uncertainties) to be separately constructed and identified. The modeling errors are not taken into account with the usual output-prediction-error method but with the nonparametric probabilistic approach.

Types of representation for the stochastic modeling of uncertainties

A fundamental question is the construction of the prior stochastic model of uncertainties on the computational model parameters and also the prior stochastic model of modeling uncertainties. Such a prior stochastic model can then be used to study the propagation of uncertainties through the mechanical system which is analyzed. If experimental data are available for the mechanical system, then they can be used [START_REF] Deodatis | 5th International Conference on computational stochastic mechanics[END_REF] to identify the parameters of the prior stochastic model [START_REF] Soize | Probabilistic model identification of uncertainties in computational models for dynamical systems and experimental validation[END_REF] using, for instance, the maximum likelihood method [START_REF] Serfling | Approximation Theorems of Mathematical Statistics[END_REF][START_REF] Spall | Introduction to Stochastic Search and Optimization[END_REF] or [START_REF] Ghanem | A probability construction of model validation[END_REF] to construct a posterior stochastic model [START_REF] Beck | Updating models and their uncertainties. I: Bayesian statistical framework[END_REF] using, for instance, the Bayesian method (see for instance [START_REF] Bernardo | Bayesian Theory[END_REF][START_REF] Carlin | Bayesian Methods for Data Analysis[END_REF][START_REF] Congdon | Bayesian Statistical Modelling[END_REF][START_REF] Kaipio | Statistical ans Computational Inverse Problems[END_REF][START_REF] Spall | Introduction to Stochastic Search and Optimization[END_REF]).

Two main methods are available to construct the prior stochastic model of a random vector θ → X(θ)=( X 1 (θ),...,X N (θ)) defined on a probability space (Θ, T , P), with values in R N and whose probability distribution on R N is denoted by P X (dx) (this random vector can be the approximation in finite dimension of a stochastic process or a random field). It should be noted the two following methods can also be used for random matrices, random fields, etc. We introduce the space L 2 N of all the secondorder random variables such that

E{ X 2 } = R N x 2 P X (dx) < +∞ , (1) 
in which E is the mathematical expectation, where x =( x 1 ,...,x N ) and x 2 = x 2 1 + ...+ x 2 N is the square of the Euclidean norm of vector x.

(i)-The first method is a direct approach which consists in directly constructing the probability distribution P X (dx) on R N in using, for instance, the maximum entropy principle (see Section 3.4).

(ii)-The second one is an indirect approach which consists in introducing a representation X = h(Ξ) for which X is the transformation by a deterministic nonlinear (measurable) mapping h (which has to be constructed) of a R np -valued random vari- able Ξ =( Ξ 1 ,...,Ξ np ) whose probability distribution P Ξ (dξ) is given and then is known. Then P X is the transformation of P Ξ by mapping h. Two main types of methods can be used.

(ii.1) -The first one corresponds to the spectral methods such as the Polynomial Chaos representations (see [START_REF] Ghanem | Stochastic Finite Elements: A spectral Approach[END_REF][START_REF] Le Maître | Spectral Methods for Uncertainty Quantification with Applications to Computational Fluid Dynamics[END_REF] and also [START_REF] Arnst | Probabilistic equivalence and stochastic model reduction in multiscale analysis[END_REF][START_REF] Das | Asymptotic sampling distribution for polynomial chaos representation of data : A maximum-entropy and fisher information approach[END_REF][START_REF] Ghanem | Numerical solution of spectral stochastic finite element systems[END_REF][START_REF] Le Maître | Multi-resolution analysis of Wiener-type uncertainty propagation schemes[END_REF][START_REF] Nouy | A generalized spectral decomposition technique to solve a class of linear stochastic partial differential equations[END_REF][START_REF] Nouy | Generalized spectral decomposition method for stochastic non linear problems[END_REF][START_REF] Soize | Physical systems with random uncertainties : Chaos representation with arbitrary probability measure[END_REF][START_REF] Soize | Reduced chaos decomposition with random coefficients of vector-valued random variables and random fields[END_REF][START_REF] Wiener | The Homogeneous Chaos[END_REF]) which can be applied in infinite dimension for stochastic processes and random fields, which allow the effective construction of mapping h to be carried out and which allow any random variable X in L 2 N , to be written as

X =Σ +∞ j1=0 ...Σ +∞ jn p =0 a j1,...,jn p ψ j1 (Ξ 1 ) × ...× ψ jn p (Ξ np ) , (2) 
in which ψ j k are given real polynomials related to the probability distribution of Ξ and where a j1,...,jn p are deterministic coefficients in R N . Introducing the multi-index α =(j 1 ,...,j np ) and the multi-dimensional polynomials ψ α (Ξ)=ψ j1 (Ξ 1 ) × ...× ψ jn p (Ξ np ) of random vector Ξ, the previous polynomial chaos decomposition can be rewritten as

X =Σ α a α ψ α (Ξ) . (3) 
The multi-dimensional polynomials ψ α (Ξ) are orthogonal and normalized,

E{ψ α (Ξ) ψ β (Ξ)} = R np ψ α (ξ) ψ β (ξ) P Ξ (dξ)=δ αβ , (4) 
in which δ αα =1and δ αβ =0 . The coefficients a α = a j1,...,jn p are vectors in R N which completely define mapping g and which are given by

a α = E{X ψ α (Ξ)} . (5) 
The construction of h then consists in identifying the vector-valued coefficients a α .I f Ξ is a normalized Gaussian random vector, then the polynomials are the normalized Hermite polynomials. Today, many applications of such an approach have been carried out for direct and inverse problems. We refer the reader to [START_REF] Arnst | Probabilistic equivalence and stochastic model reduction in multiscale analysis[END_REF][START_REF] Berveiller | Stochastic finite element: a non-intrusive approach by regression[END_REF][START_REF] Desceliers | Maximum likelihood estimation of stochastic chaos representations from experimental data[END_REF][START_REF] Desceliers | Identification of chaos representations of elastic properties of random media using experimental vibration tests[END_REF][START_REF] Faverjon | Stochastic inversion in acoustic scattering[END_REF][START_REF] Ghanem | Identification and prediction of stochastic dynamical systems in a polynomial chaos basis[END_REF][START_REF] Guilleminot | Theoretical framework and experimental procedure for modelling volume fraction stochastic fluctuations in fiber reinforced composites[END_REF][START_REF] Guilleminot | Mesoscale probabilistic models for the elasticity tensor of fiber reinforced composites: experimental identification and numerical aspects[END_REF][START_REF] Le Maître | Multi-resolutionanalysis scheme for uncertainty quantification in chemical systems[END_REF] and in particular, to Section 3.7 for a short overview concerning the identification and inverse stochastic problems related to the parametric and nonparametric probabilistic approaches of uncertainties.

(ii.2) -The second one consists in introducing a prior algebraic representation X = h(Ξ, s) in which s is a vector parameter with small dimension (which must be identified), where Ξ is a vector-valued random variable with a given probability distribution P Ξ and where h is a given nonlinear mapping. For instance, tensor-valued random fields representations constructed with such an approach can be found in [START_REF] Guilleminot | A stochastic model for elasticity tensors with uncertain material symmetries[END_REF][START_REF] Soize | Non Gaussian positive-definite matrix-valued random fields for elliptic stochastic partial differential operators[END_REF][START_REF] Soize | Tensor-valued random fields for meso-scale stochastic model of anisotropic elastic microstructure and probabilistic analysis of representative volume element size[END_REF].

In theory, method (ii.1) allows any random vector X in L 2 N to be represented by a Polynomial Chaos expansion. In practice, the representation can require a very large number of coefficients to get convergence yielding very difficult problems in high dimension for the identification problem and then requires adapted methodologies and adapted methods [START_REF] Soize | Computational aspects for constructing realizations of polynomial chaos in high dimension[END_REF][START_REF] Soize | Identification of high-dimension polynomial chaos expansions with random coefficients for non-Gaussian tensor-valued random fields using partial and limited experimental data[END_REF]. In general, method (ii.2) does not allow any random vector X in L 2

N to be represented but allows a family of representations to be constructed in a subspace of L 2 N when s runs through all the admissible space of s (but, in counter part, the identification of s is effective and efficient).

Construction of the stochastic models using the maximum entropy principle under

the constraints defined by the available information The measure of uncertainties using the entropy has been introduced by Shannon [START_REF] Shannon | A mathematical theory of communication[END_REF] in the framework of Information Theory. The maximum entropy principle (that is to say the maximization of the level of uncertainties) has been introduced by Jaynes [START_REF] Jaynes | Information theory and statistical mechanics[END_REF] to construct the prior stochastic model of a random variable under the constraints defined by the available information. This principle appears as a major tool to construct the prior stochastic model (1) of the uncertain parameters of the computational model using the parametric probabilistic approach, (2) of both the uncertainties on the computational model parameters and modeling uncertainties, using the nonparametric probabilistic approach and (3) of the generalized approach of uncertainties corresponding to a full coupling of the parametric and nonparametric probabilistic approaches. Let x =( x 1 ,...,x N ) be a real vector and let X =( X 1 ,...,X N ) be a second-order random variable with values in R N whose probability distribution P X is defined by a probability density function x → p X (x) on R N with respect to dx = dx 1 ...dx N and which verifies the normalization condition R N p X (x) dx =1 . In fact, it is assumed that X is with values in any bounded or unbounded part X of R N and consequently, the support of p X is X . The available information defines a constraint equation on R µ written as E{g(X)} = f in which E is the mathematical expectation, f is a given vector in R µ and where x → g(x) is a given function from R N into R µ . Let C be the set of all the probability density functions x → p X (x) defined on R N , with values in R + , with support X , verifying the normalization condition and the constraint equation E{g(X)} = f. The maximum entropy principle consists in finding p X in C which maximizes the entropy (that is to say which maximizes the uncertainties),

p X =argmax p∈C S(p) ,S (p)=- R N p(x) log(p(x)) dx (6) 
in which S(p) is the entropy of the probability density function p. Introducing the Lagrange multiplier λ ∈L µ ⊂ R µ (associated with the constraint) where L µ is the subset of R µ of all the admissible values for λ, it can easily be seen that the solution of the optimization problem can be written as

p X (x)=c 0 1 X (x)e x p ( -< λ, g(x) >) , ∀x ∈ R N (7) 
in which < x , y >= x 1 y 1 +...+x µ y µ and where 1 X is the indicatrix function of set X .

The normalization constant c 0 and the Lagrange multiplier λ are calculated in solving a nonlinear vectorial algebraic equation deduced from the normalization condition and from the constraint equation. This algebraic equation can be solved using appropriated algorithms. Then, it is necessary to construct a generator of independent realizations of random variable X whose probability density function is that which has been built. In small dimension (N is a few units), there is no difficulty. In high dimension (N hundreds or thousands), there are two major difficulties. The first one is related to the calculation of an integral in high dimension of the type c 0 X g(x)e x p ( -< λ, g(x) >) dx. Such a calculation is necessary to implement the algorithm for computing c 0 and λ. The second one is the construction of the generator once c 0 et λ have been calculated. These two aspects can be solved using the Markov Chain Monte Carlo methods (MCMC) (see for instance [START_REF] Kaipio | Statistical ans Computational Inverse Problems[END_REF][START_REF] Mackeown | Stochastic Simulation in Physics[END_REF][START_REF] Rubinstein | Simulation and the Monte Carlo Method[END_REF][START_REF] Spall | Introduction to Stochastic Search and Optimization[END_REF]). The transition kernel of the homogeneous (stationary) Markov chain of the MCMC method can be constructed using the Metropolis-Hastings algorithm [START_REF] Casella | Explaining the gibbs sampler[END_REF][START_REF] Hastings | Monte Carlo sampling methods using Markov chains and their applications[END_REF][START_REF] Metropolis | The Monte Carlo method[END_REF][START_REF] Metropolis | Equations of state calculations by fast computing machines[END_REF] or the Gibbs algorithm [START_REF] Geman | Stochastic relaxation, Gibbs distribution and the Bayesian distribution of images[END_REF] which is a slightly different algorithm for which the kernel is directly derived from the transition probability density function and for which the Gibbs realizations are always accepted. These two algorithms construct the transition kernel for which the invariant measure is P X . In general, these algorithms are effective but can not be when there are regions of attraction that do not correspond to the invariant measure. These situations can not be easily detected and are time consuming. Recently, an approach [START_REF] Soize | Construction of probability distributions in high dimension using the maximum entropy principle. Applications to stochastic processes, random fields and random matrices[END_REF] of the class of the Gibbs method has been proposed to avoid these difficulties and is based on the introduction of an Itô stochastic differential equation whose unique invariant measure is P X and is the explicit solution of a Fokker-Planck equation [START_REF] Soize | The Fokker-Planck Equation for Stochastic Dynamical Systems and its Explicit Steady State Solutions[END_REF]. The algorithm is then obtained by the discretization of the Itô equation.

Random Matrix Theory

The random matrix theory were introduced and developed in mathematical statistics by Wishart and others in the 1930s and was intensively studied by physicists and mathematicians in the context of nuclear physics. These works began with Wigner in the 1950s and received an important effort in the 1960s by Wigner, Dyson, Mehta and others. In 1965, Poter published a volume of important papers in this field, followed, in 1967 by the first edition of the Mehta book whose second edition [START_REF] Mehta | Random Matrices, Revised and Enlarged Second Edition[END_REF] published in 1991 is an excellent synthesis of the random matrix theory. We refer the reader to [START_REF] Wright | New Directions in Linear Acoustics: Random Matrix Theory, Quantum Chaos and Complexity[END_REF] and [START_REF] Soize | Random matrices in structural acoustics[END_REF] for an introduction to random matrix theory presented in the context of Mechanics. Concerning multivariate statistical analysis and statistics of random matrices, the reader will find additional developments in [START_REF] Fougeaud | [END_REF] and [START_REF] Anderson | Introduction to Multivariate Statistical Analysis[END_REF].

Why the Gaussian orthogonal ensemble cannot be used if positiveness property is required

The Gaussian Orthogonal Ensemble (GOE), for which the mean value is the unity matrix [I n ] (see [START_REF] Soize | Random matrix theory and non-parametric model of random uncertainties[END_REF]), is the set of random matrices [G GOE ]) which can be written as

[G GOE ]=[I n ]+[B GOE ] in which [B GOE ]
belongs to the GOE (see [START_REF] Mehta | Random Matrices, Revised and Enlarged Second Edition[END_REF]), for which the mean value is the zero matrix [0], and consequently, would be a second-order centered

random matrix with values in M S n (R) such that E{[B GOE ]} =[0]and E{ [B GOE ] 2 F } <
+∞, and for which the probability density function, with respect to

d[B]=2 n(n-1)/4 Π 1≤i≤j≤n d[B] ij , is written as p [B GOE ] ([B]) = C n × exp - (n+1) 4δ 2 tr{[B] 2 } . (8) 
The constant C n of normalization can easily be calculated and δ is the coefficient of variation of the random matrix

[G GOE ] which is such that δ 2 = n -1 E{ [G GOE ] - [I n ] 2 F } because [I n ] 2 F = n. The real-valued random variables {[B GOE
] jk ,j ≤ k} are statistically independent, second order, centered and Gaussian. It can be seen that

[G GOE ] is with values in M S n (R) but is not positive definite. In addition, E{ [G GOE ] -1 2 } =+∞ . (9) 
Consequently, [G GOE ] is not acceptable if positiveness property and integrability of the inverse are required.

Ensemble SG + 0 of random matrices

The GOE cannot be used when positiveness property and integrability of the inverse are required. Consequently, we need new ensembles of random matrices which will be used to develop the nonparametric probabilistic approach of uncertainties in computational solid and fluid mechanics and which differ from the GOE and from the other known ensembles of the random matrix theory.

The objective of this section is then to summarize the construction given in [START_REF] Soize | A nonparametric model of random uncertainties on reduced matrix model in structural dynamics[END_REF][START_REF] Soize | Maximum entropy approach for modeling random uncertainties in transient elastodynamics[END_REF][START_REF] Soize | Random matrix theory and non-parametric model of random uncertainties[END_REF][START_REF] Soize | Random matrix theory for modeling uncertainties in computational mechanics[END_REF] of the ensemble SG + 0 of random matrices [G 0 ] defined on the probability space (Θ, T , P), with values in the set M + n (R) of all the positive definite symmetric (n × n) real matrices and such that

E{[G 0 ]} =[I n ] ,E {log(det[G 0 ])} = C,|C| < +∞ . ( 10 
)
The probability distribution

P [G0] = p [G0] ([G ]) dG is defined by a probability density function [G ] → p [G0] ([G ]) from M + n (R) into R +
with respect to the volume element dG on the set M S n (R) of all the symmetric (n × n) real matrices, which is such that dG =2 n(n-1)/4 Π 1≤j≤k≤n dG jk . This probability density function can then verify the normalization condition,

M + n (R) p [G0] ([G ]) dG =1 . ( 11 
) Let A 2 F = n j=1 n k=1 [A ] 2
jk be the square of the Frobenius norm of symmetric real matrix [A]. Let δ be the positive real number defined by

δ = E{ [G 0 ] -E{[G 0 ]} 2 F } E{[G 0 ]} 2 F 1/2 = 1 n E{ [G 0 ] -[I n ] 2 F } 1/2 , (12) 
which will allow the dispersion of the stochastic model of random matrix [G 0 ] to be controlled. For δ such that 0 <δ<(n+1) 1/2 (n+5) -1/2 , the use of the maximum entropy principle under the constraints defined by the above available information yields the following algebraic expression of the probability density function of random matrix

[G 0 ], p [G0] ([G ]) = 1 M + n (R) ([G ]) × C G 0 × det [G ] (n+1) (1-δ 2 ) 2δ 2 × e -(n+1) 2δ 2 tr[G ] , (13) 
in which

1 M + n (R) ([G ]) is equal to 1 if [G ] ∈ M + n (R) and is equal to zero if [G ] / ∈ M + n (R), where tr[G ] is the trace of matrix [G ],
where det [G ] is the determinant of matrix [G ] and where the positive constant C G 0 is such that

C G 0 =(2π) -n(n-1)/4 n +1 2δ 2 n(n+1)(2δ 2 ) -1 Π n j=1 Γ n+1 2δ 2 + 1-j 2 -1 , (14) 
and where, for all z>0, Γ(z)=

+∞ 0 t z-1 e -t dt. Note that {[G 0 ] jk , 1 ≤ j ≤ k ≤ n} are dependent random variables. Let G =s u p x ≤1 [G ] x be the operator norm of matrix [G ] which is such that [G ] x ≤ G x for all x in R n . Let G F be the Frobenius norm of [G ] which is defined by G 2 F = tr{[G ] T [G ]} = n j=1 n k=1 [G ] 2 jk and which is such that G ≤ G F ≤ √ n G . It is proven [14] that E{ [G 0 ] -1 2 }≤E{ [G 0 ] -1 2 F } < +∞ . (15) 
In general, the above equation does not imply that n → E{ [G 0 ] -1 2 } is a bounded function with respect to n, but, in the present case, we have the following fundamental property,

∀n ≥ 2 ,E { [G 0 ] -1 2 }≤C δ < +∞ , (16) 
in which C δ is a positive finite constant which is independent of n but which depends on δ. The above equation means that

n → E{ [G 0 ] -1 2 } is a bounded function from {n ≥ 2} into R + .
The generator of independent realizations (which is required to solve the random equations with the Monte Carlo method) can easily be constructed using the following algebraic representation. Random matrix [G 0 ] can be written (Cholesky decomposition) as

[G 0 ]=[L] T [L] in which [L]
is an upper triangular (n × n) random matrix such that:

(1) random variables {[L] jj ′ ,j ≤ j ′ } are independent;

(2) for j<j ′ , the real-valued random variable

[L] jj ′ is written as [L] jj ′ = σ n U jj ′ in which σ n = δ(n +1) -1/2
and where U jj ′ is a real-valued Gaussian random variable with zero mean and variance equal to 1;

(3) for j = j ′ , the positive-valued random variable [L] jj is written as [L] jj = σ n 2V j in which σ n is defined above and where V j is a positive-valued gamma random variable whose probability density function is

p Vj (v)=1 R + (v) 1 Γ(aj ) v aj -1 × e -v , in which a j = n+1 2δ 2 + 1-j 2 .
It should be noted that the probability density function of each diagonal element [L] jj of the random matrix [L] depends on the rank j of the element.

Ensemble SG +

ε of random matrices Let L 2 n be the set of all the second-order random variables, defined on probability space (Θ, T ,P), with values in R n , equipped with the inner product ≪ X, Y ≫= E{< X , Y >} and with the associated norm

|||X||| =≪ X, Y ≫ 1/2 .
Let 0 ≤ ε ≪ 1 be a positive number as small as one wants. The ensemble SG + ε is defined as the ensemble of all the random matrices which are written as

[G]= 1 1+ε {[G 0 ]+ε [I n ]} , (17) 
in which [G 0 ] is a random matrix which belongs to ensemble SG + 0 .

Let [G] be in SG + ε with ε ≥ 0 fixed as small as one wants (possibly, ε can be equal to zero and in such a case, SG + ε = SG + 0 and then,

[G]=[ G 0 ]). It can easily be seen that E{[G]} =[I n ] . (18) 
Let b(X, Y) be the bilinear form on

L 2 n ×L 2 n such that b(X, Y)=≪ [G] X , Y ≫.F o r all X in L 2 n ,wehave b(X, X) ≥ c ε |||X||| 2 (19) 
in which c ε = ε/(1 + ε). The proof can easily be obtained. We have b(X, X)=

1/(1 + ε) ≪ [G 0 ] X , X ≫ +ε/(1 + ε)|||X||| 2 ≥ c ε |||X||| 2 , because, for all [G 0 ] in SG + 0 , and for all X in L 2 n ,wehave≪ [G 0 ] X , X ≫≥ 0.
Finally, for all ε ≥ 0, it can be proven that

E [G] -1 2 F < +∞ . ( 20 
)

Propagation of uncertainties or what are the methods to solve the stochastic dynamical equations

Concerning the methods and formulations to analyze the propagation of uncertainties in the computational model, the choice of a specific method depends on the desired accuracy on the model output and on the nature of the expected probabilistic information. These last two decades, a growing interest has been devoted to spectral stochastic methods, which provide an explicit representation of the random model output as a function of the basic random parameters modeling the input uncertainties [START_REF] Ghanem | Stochastic Finite Elements: A spectral Approach[END_REF][START_REF] Le Maître | Spectral Methods for Uncertainty Quantification with Applications to Computational Fluid Dynamics[END_REF][START_REF] Matthies | Stochastic finite elements: Computational approaches to stochastic partial differential equations[END_REF][START_REF] Nouy | Recent developments in spectral stochastic methods for the numerical solution of stochastic partial differential equations[END_REF][START_REF] Xiu | Fast numerical methods for stochastic computations: a review[END_REF]]. An approximation of the random model output is sought on suitable functional approximation bases. There are two distinct classes of techniques for the definition and computation of this approximation. The first class is composed by direct simulation methods [START_REF] Babuška | A stochastic collocation method for elliptic partial differential equations with random input data[END_REF][START_REF] Berveiller | Stochastic finite element: a non-intrusive approach by regression[END_REF][START_REF] Blatman | Sparse polynomial chaos expansions and adaptive stochastic finite elements using a regression approach[END_REF][START_REF] Ma | An efficient Bayesian inference approach to inverse problems based on an adaptive sparse grid collocation method[END_REF][START_REF] Matthies | Galerkin methods for linear and nonlinear elliptic stochastic partial differential equations[END_REF][START_REF] Webster | A sparse grid stochastic collocation method for partial differential equations with random input data[END_REF]. These methods are often called non-intrusive since they offer the advantage of only requiring the availability of classical deterministic codes. The second class of techniques rely on Galerkin-type projections of weak solutions of models involving differential or partial differential equations [? [START_REF] Deb | Solution of stochastic partial differential equations using Galerkin finite element techniques[END_REF][START_REF] Frauenfelder | Finite elements for elliptic problems with stochastic coefficients[END_REF][START_REF] Le Maître | Multi-resolution analysis of Wiener-type uncertainty propagation schemes[END_REF][START_REF] Le Maître | Uncertainty propagation using Wiener-Haar expansions[END_REF][START_REF] Mathelin | Dual based a posteriori estimation for stochastic finite element method[END_REF][START_REF] Matthies | Galerkin methods for linear and nonlinear elliptic stochastic partial differential equations[END_REF][START_REF] Wan | An adaptive multi-element generalized polynomial chaos method for stochastic differential equations[END_REF][START_REF] Wan | Multi-element generalized polynomial chaos for arbitrary probability measures[END_REF][START_REF] Wan | Error control in multielement generalized polynomial chaos method for elliptic problems with random coefficients[END_REF]. However, for applications with high complexity, alternative solution techniques must be provided in order to drastically reduce computational requirements. Recently, some alternative methods, based on the construction of optimal separated representations of the solution, have been proposed. They consist in representing the solution on optimal reduced bases of deterministic functions and stochastic functions (scalar-valued random variables). Several strategies have been proposed for the extraction of reduced bases from approximate Karhunen-Loeve expansions (or classical spectral decompositions) of the solution [START_REF] Doostan | Red-Horse, Stochastic model reductions for chaos representations[END_REF][START_REF] Matthies | Galerkin methods for linear and nonlinear elliptic stochastic partial differential equations[END_REF]. Another method, called Generalized Spectral Decomposition method, has been recently proposed for the construction of such representations without knowing a priori the solution nor an approximation of it [START_REF] Nouy | A generalized spectral decomposition technique to solve a class of linear stochastic partial differential equations[END_REF][START_REF] Nouy | Generalized spectral decomposition method for solving stochastic finite element equations: Invariant subspace problem and dedicated algorithms[END_REF][START_REF] Nouy | Generalized spectral decomposition method for stochastic non linear problems[END_REF]. A major advantage of these algorithms is that they allow a separation of deterministic problems for the computation of deterministic functions and stochastic algebraic equations for the computation of stochastic functions. In that sense, they can be considered as partly non-intrusive techniques for computing Galerkin-type projections. However, it does not circumvent the curse of dimensionality associated with the dramatic increase in the dimension of stochastic approximation spaces when dealing with high stochastic dimension and high approximation resolution along each stochastic dimension. Recently, multidimensional extensions of separated representations techniques have been proposed [START_REF] Doostan | A least-squares approximation of partial differential equations with highdimensional random inputs[END_REF][START_REF] Nouy | Proper Generalized Decomposition and separated representations for the numerical solution of high dimensional stochastic problems[END_REF]. These methods exploit the tensor product structure of the solution function space, resulting from the product structure of the probability space defined by input random parameters. Finally, the direct Monte Carlo numerical simulation method (see for instance [START_REF] Fishman | Monte Carlo: Concepts, algorithms, and applications[END_REF][START_REF] Mackeown | Stochastic Simulation in Physics[END_REF][START_REF] Rubinstein | Simulation and the Monte Carlo Method[END_REF] is a very effective and efficient method because this method (1) is non-intrusive, (2) is adapted to massively parallel computation without any software developments and ( 3) is such that its convergence can be controlled during the computation and (4) the speed of convergence is independent of the dimension. The speed of convergence of the Monte Carlo method can be improved using advanced Monte Carlo simulation procedures [START_REF] Papadrakakis | Robust and efficient methods for stochastic finite element analysis using Monte Carlo simulation[END_REF][START_REF] Papadrakakis | Parallel solution methods for stochastic finite element analysis using Monte Carlo simulation[END_REF][START_REF] Pradlwarter | On advanced Monte Carlo simulation procedures in stochastic structural dynamics[END_REF][START_REF] Schuëller | Efficient Monte Carlo simulation procedures in structural uncertainty and reliability analysis -recent advances[END_REF], subset simulation technics [START_REF] Au | Subset simulation and its application to seismic risk based on dynamic analysis[END_REF], important sampling for high dimension problems [START_REF] Au | Important sampling in high dimensions[END_REF], local domain Monte Carlo Simulation [START_REF] Pradlwarter | Local Domain Monte Carlo Simulation[END_REF].

Identification of the prior and posterior stochastic models of uncertainties

The identification of the parameters of the stochastic model of uncertainties (parametric and nonparametric probabilistic approach) is of the class of the statistical inverse problems (see for instance [START_REF] Kaipio | Statistical ans Computational Inverse Problems[END_REF]).

Identification of the stochastic model of random variables in the context of the

parametric probabilistic approach of uncertainties on the computational model parameters Let us assume that experimental data are available for observations related to the random computational model output. The experimental identification of the parameters of the prior probability distribution of the random variable modeling uncertainties of the computational model parameters can be performed, either in minimizing a distance between the experimental observations and the random model observations (least-square method for instance), or in using the maximum likelihood method (see for instance [START_REF] Serfling | Approximation Theorems of Mathematical Statistics[END_REF], [START_REF] Spall | Introduction to Stochastic Search and Optimization[END_REF]). Such an approach is described in Sections 4.5 and 5.3, and many applications can be found in the literature. In the domain of structural dynamics, vibrations and vibroacoustics, we refer, for instance, the reader to [START_REF] Peters | Stochastic system identification for operational modal analysis: A review[END_REF] for the stochastic system identification for operational modal analysis, [START_REF] Faverjon | Stochastic inversion in acoustic scattering[END_REF] for the stochastic inversion in acoustic scattering, [START_REF] Cataldo | Probabilistic modeling of a nonlinear dynamical system used for producing voice[END_REF] for the stochastic modeling of a nonlinear dynamical system used for producing voice and [START_REF] Leissing | Computational model for longrange non-linear propagation over urban cities[END_REF] for the computational model for long-range non-linear propagation over urban cities. With such an identification, we then obtained an optimal prior probability distribution. The Bayesian method then allows a posterior probability distribution to be constructed from the optimal prior probability distribution and the experimental data. Many works have been published in the literature (see for instance textbooks on the Bayesian method such as [START_REF] Bernardo | Bayesian Theory[END_REF][START_REF] Carlin | Bayesian Methods for Data Analysis[END_REF][START_REF] Congdon | Bayesian Statistical Modelling[END_REF][START_REF] Kaipio | Statistical ans Computational Inverse Problems[END_REF] and papers devoted to the use of the Bayesian method in the context of uncertain mechanical and dynamical systems such as [START_REF] Beck | Updating models and their uncertainties. I: Bayesian statistical framework[END_REF][START_REF] Beck | Bayesian updating of structural models and reliability using Markov chain Monte Carlo simulation[END_REF][START_REF] Beck | Bayesian system identification based on probability logic[END_REF][START_REF] Cheung | Bayesian model updating using hybrid monte carlo simulation with application to structural dynamic models with many uncertain parameters[END_REF][START_REF] Cheung | Calculation of posterior probabilities for bayesian model class assessment and averaging from posterior samples based on dynamic system data[END_REF][START_REF] Ching | Bayesian state and parameter estimation of uncertain dynamical systems[END_REF][START_REF] Katafygiotis | Updating models and their uncertainties. II: Model identifiability[END_REF]. We will use such a Bayesian approach in Sections 4.6 and 6.

Identification of the stochastic model of random matrices in the context of the nonparametric probabilistic approach of both the uncertainties on the computational model parameters and modeling uncertainties

General developments concerning the experimental identification of the parameters of the prior probability distribution of random matrices used for modeling uncertainties in computational mechanics can be found in [START_REF] Soize | Random matrix theory for modeling uncertainties in computational mechanics[END_REF]. Many works have been published in this field, such as [START_REF] Guilleminot | Theoretical framework and experimental procedure for modelling volume fraction stochastic fluctuations in fiber reinforced composites[END_REF] in micromechanics, [START_REF] Ghanem | Identification and prediction of stochastic dynamical systems in a polynomial chaos basis[END_REF] for the identification and prediction of stochastic dynamical systems in a polynomial chaos basis, [START_REF] Chebli | Experimental validation of a nonparametric probabilistic model of non homogeneous uncertainties for dynamical systems[END_REF] for the experimental identification of the nonparametric stochastic model of uncertainties in structural dynamics [START_REF] Arnst | Inversion of probabilistic structural models using measured transfer functions[END_REF][START_REF] Chen | Probabilistic approach for model and data uncertainties and its experimental identification in structural dynamics: Case of composite sandwich panels[END_REF][START_REF] Soize | Probabilistic model identification of uncertainties in computational models for dynamical systems and experimental validation[END_REF], in structural acoustics for the low-and medium-frequency ranges [START_REF] Durand | Structural-acoustic modeling of automotive vehicles in presence of uncertainties and experimental identification and validation[END_REF][START_REF] Fernandez | Sound-insulation layer modelling in car computational vibroacoustics in the medium-frequency range[END_REF], in nonlinear structural dynamics [START_REF] Batou | Identification of stochastic loads applied to a non-linear dynamical system using an uncertain computational model and experimental responses[END_REF][START_REF] Batou | Experimental identification of turbulent fluid forces applied to fuel assemblies using an uncertain model and fretting-wear estimation[END_REF]. The identification of the generalized probabilistic approach of uncertainties can be found in [START_REF] Soize | Generalized probabilistic approach of uncertainties in computational dynamics using random matrices and polynomial chaos decompositions[END_REF] and also below in Sections 5.3 and 6.

Parametric probabilistic approach of uncertainties in computational structural dynamics

Introduction of the mean computational model in computational structural dynamics

The developments are presented for computational models in structural dynamics. The dynamical system is a damped fixed structure around a static equilibrium configuration considered as a natural state without prestresses and subjected to an external load. For given nominal values of the parameters of the dynamical system, the basic finite element model is called the mean computational model. In addition, it is assumed that a set of model parameters has been identified as uncertain model parameters. These model parameters are the components of a vector x =( x 1 ,...,x np ) belonging to an admissible set C par which is a subset of R np . The dynamical equation of the mean computational model is then written as [START_REF] Shannon | A mathematical theory of communication[END_REF] in which y(t) is the unknown time response vector of the m degrees of freedom (DOF) (displacements and/or rotations); ẏ(t) and ÿ(t) are the velocity and acceleration vectors respectively; f(t; x) is the known external load vector of the m inputs (forces and/or moments); [ M (x)], [ D(x)] and [ K(x)] are the mass, damping and stiffness matrices of the mean computational model, which belong to the set M + m (R) of all the positivedefinite symmetric (m×m) real matrices; (y, z) → f NL (y, z; x) is the nonlinear mapping modeling local nonlinear forces.

[ M (x)] ÿ(t)+[D(x)] ẏ(t)+[K(x)] y(t)+f NL (y(t), ẏ(t); x)=f(t; x) ,

Introduction of the reduced mean computational model

In the context of the parametric probabilistic approach of model-parameter uncertainties, the parameter x is modeled by a random variable X. The mean value of X will be the nominal value x =( x 1 ,...,x np ) of the uncertain model parameter x and the support of its probability distribution on R np is C par .

For all x fixed in C par ∈ R np , let {φ 1 (x),...,φ m (x)} be an algebraic basis of R m constructed, for instance, either with the elastic modes of the linearized system or of the underlying linear system, or with the POD (Proper Orthogonal Decomposition) modes of the nonlinear system). Below, it is assumed that the elastic modes of the underlying linear system are used. In such a framework, there are two main possibilities to construct the reduced mean computational model.

(1) The first one consists in solving the generalized eigenvalue problem associated with the mean mass and stiffness matrices for x fixed to its nominal value x. We then obtain the elastic modes of the nominal mean computational model which are independent of x and which depend only on x which is fixed. In this case, when x runs through C par , matrices [ M (x)] and [ K(x)] have to be projected on the subspace spanned by the elastic modes of the nominal mean computational model. For very large computational model (m can be several tens of millions) such an operation is not easy to perform with usual commercial softwares which often are black boxes.

(2) The second one consists in solving the generalized eigenvalue problem associated with the mean mass and stiffness matrices for each required x belonging to C par .I n this case, the elastic modes of the mean computational model depend on x. In the context of the parametric probabilistic approach of model-parameter uncertainties, we then have to solve a random generalized eigenvalue problem and such an approach is better adapted to usual commercial softwares and allows a fast convergence to be obtained with respect to the reduced order dimension. In addition, some algorithms have been developed in this context for random eigenvalue problems of large systems [START_REF] Szekely | Computational procedure for a fast calculation of eigenvectors and eigenvalues of structures with random properties[END_REF][START_REF] Pradlwarter | Random eigenvalue problems for large systems[END_REF]. In order to limit the developments, we will focus the presentation using this second approach. The extension to the first approach is straightforward from a theoretical point of view (see for instance [START_REF] Soize | A nonparametric model of random uncertainties on reduced matrix model in structural dynamics[END_REF]). Finally, it should be noted that the random generalized eigenvalue problem can also be considered in a polynomial chaos decomposition for which an efficient approach has been proposed [START_REF] Ghanem | Efficient characterization of the random eigenvalue problem in a polynomial chaos decomposition[END_REF]. Such an ingredient can be added without difficulty in the developments presented below but would induce additional difficulties in the understanding which could mask the ideas of the method proposed.

For each value of x given in C par , the generalized eigenvalue problem associated with the mean mass and stiffness matrices is written as

[ K(x)] ϕ(x)=λ(x)[M (x)] ϕ(x) , (22) 
for which the eigenvalues 0 <λ 1 (x) ≤ λ 2 (x) ≤ ... ≤ λ m (x) and the associated elastic modes {ϕ 1 (x), ϕ 2 (x),...} are such that

< [ M (x)] ϕ α (x) , ϕ β (x) >= µ α (x) δ αβ , (23) 
< [ K(x)] ϕ α (x) , ϕ β (x) >= µ α (x) ω α (x) 2 δ αβ , (24) 
in which ω α (x)= λ α (x) is the eigenfrequency of elastic mode ϕ α (x) whose normalization is defined by the generalized mass µ α (x) and where < u , v >= j u j v j is the Euclidean inner product of the vectors u and v. For each value of x given in C par , the reduced mean computational model of the dynamical system is obtained in constructing the projection of the mean computational model on the subspace H n of R m spanned by {ϕ 1 (x),...,ϕ n (x)} with n ≪ m. Let [ φ(x)] be the (m × n) real matrix whose columns are vectors {ϕ 1 (x),...,ϕ n (x)}. The generalized force f(t; x) is an R n -vector such that f(t; x)=[φ(x)] T f(t; x). For all x in C par , the generalized mass, damping and stiffness matrices [M (x)], [D(x)] and [K(x)] belong to the set M + n (R) of all the positive-definite symmetric (n × n) real matrices, and are defined by

[M (x)] αβ = µ α (x) δ αβ , [D(x)] αβ =< [ D(x)] ϕ β (x) , ϕ α (x) >, (25) 
[K(x)] αβ = µ α (x) ω α (x) 2 δ αβ , (26) 
in which, generally, [D(x)] is a full matrix. Consequently, for all x in C par and for all fixed t, the reduced mean computational model of the dynamical system is written as the projection y n (t) of y(t) on H n which yields

y n (t)=[φ(x)] q(t) , (27) 
[M (x)] q(t)+[D(x)] q(t)+[K(x)] q(t)+F NL (q(t), q(t); x)=f(t; x) , in which F NL (q(t), q(t); x)=[φ(x)] T f NL ([ φ(x)] q(t), [ φ(x)] q(t); x) and where q(t) ∈ R n is the vector of the generalized coordinates. In the particular case for which f NL =0, the corresponding equation, in the frequency domain, is written as

-ω 2 [M (x)] q(ω)+iω[D(x)] q(ω)+[K(x)] q(ω)=f(ω; x) . ( 28 
)
in which q(ω)= R e -iωt q(t) dt and f(ω; x)= R e -iωt f(t; x) dt Below, we will denote by n 0 the value of n for which the response y n is converged to y, with a given accuracy, for all values of x in C par .

Methodology of the parametric probabilistic approach of model-parameter uncertainties

The methodology of the parametric probabilistic approach of model-parameter uncertainties consists in modeling the uncertain model parameter x (whose nominal value is x) by a random variable X defined on a probability space (Θ, T , P), with values in R np .

Consequently, the generalized matrices in Eq. ( 27) become random matrices [M (X)], [D(X)] and [K(X)] and, for all fixed t, the generalized external force f(t; x) becomes a random vector f(t; X). The mean values of these random matrices are denoted by [M ],

[D] and [K]. We then have

E{[M (X)]} =[M ] ,E {[D(X)]} =[D] ,E {[K(X)]} =[K] , (29) 
in which E is the mathematical expectation. It should be noted that the mean matrices

[M ], [D] and [K] are different from the matrices [M (x)], [D(x)
] and [K(x)] of the mean (nominal) computational model. The parametric probabilistic approach of uncertainties then consists in replacing the mean computational model by the following stochastic reduced computational model,

Y(t)=[φ(X)] Q(t) , (30) 
[M (X)] Q(t)+[D(X)] Q(t)+[K(X)] Q(t)+F NL (Q(t), Q(t); X)=f(t; X) , ( 31 
)
in which for all fixed t, Y(t) is an R m -valued random vector and Q(t) is an R n -valued random vector. As soon as the stochastic model of random vector X is constructed, the stochastic computational model defined by Eqs. ( 30) and ( 31) can be solved using the methods presented in Section 3.6, in particular the direct Monte Carlo method, taking into account that n p can be very large and that we have to solve a reduced-order stochastic computational model.

Construction of the prior stochastic model of model-parameter uncertainties

The unknown probability distribution of X is assumed to be defined by a probability density function x → p X (x) from R np into R + =[0, +∞[. Under the assumption that no experimental data are available to construct p X , the prior model can be constructed using the maximum entropy principle (see Section 3.4). For such a construction, the available information has to be defined. Since x belongs to C par , the support of p X must be C par and the normalization condition must be verified. We then have,

supp p X = C par ⊂ R np , R np p X (x) dx = C par p X (x) dx =1 . ( 32 
)
Since the nominal value of x is x ∈C par , an additional available information consists in writing that the mean value E{X} of X is equal to x which yields the following constraint equation,

R np x p X (x) dx = x . ( 33 
)
In general, an additional available information can be deduced from the analysis of the mathematical properties of the solution of the stochastic computational model under construction. The random solution Q of the stochastic computational model defined by Eq. ( 31) must be a second-order vector-valued stochastic process (because the dynamical system is stable) which means that, for all t, we must have E{ Q(t) 2 } < +∞.I n order that such a property be verified, it is necessary to introduce a constraint which can always be written as the equation E{g(X)} = γ on R µX , in which γ =(γ 1 ,...,γ µX ) is a given vector in R µX with µ X ≥ 1 and where x → g(x)=(g 1 (x),...,g µX (x)) is a given mapping from R np into R µX . Consequently, the additional available information defines the following constraint equation,

R np g(x) p X (x) dx = γ . (34) 
Let C be the set of all the probability density functions p X defined on R np with values in R + such that Eqs. ( 32) to [START_REF] Capiez-Lernout | Robust updating of uncertain damping models in structural dynamics for low-and medium-frequency ranges[END_REF] hold. The prior model p X ∈Ccan then be constructed using the maximum entropy principle (see Section 3.4). Since Eq. ( 34) is a vectorial equation of dimension µ X , the solution p X of the maximum entropy principle depends on the free R µX -valued parameter γ. However, parameter γ has generally no physical meaning and it is better to express γ in terms of an R µX -valued parameter δ X which corresponds to a well defined statistical quantity for random variable X. In general, δ X does not run through R µX but must belong to an admissible set C X which is a subset of R µX . Consequently, p X depends on x and δ X and is rewritten as

x → p X (x; x, δ X ) with (x, δ X ) ∈C par ×C X ⊂ R np × R µX . (35) 

Estimation of the parameters of the prior stochastic model of the uncertain model parameter

The value of n is fixed to the value n 0 for which, for all values of x in C par , the response y n is converged to ywith a given accuracy. The prior stochastic model p X (x; x, δ X ) of random variable X relative to the model-parameter uncertainties, depends on parameters x and δ X belonging to admissible sets C par and C X . If no experimental data are available, then x is fixed to the nominal value and δ X must be considered as a parameter to perform a sensitivity analysis of the stochastic solution. Such a prior stochastic model of model-parameter uncertainties then allows the robustness of the solution to be analyzed in function of the level of model-parameter uncertainties controlled by δ X .

For the particular case for which a few experimental data exist, x can be updated and δ X can be estimated with the experimental data. The updating of x and the estimation of δ X must then be performed with observations of the systems for which experimental data are available. There are several possibilities in the choice of such observations satisfying these criteria (for instance, the first eigenfrequencies and the associated structural elastic modes if an experimental modal analysis is available (see for instance [START_REF] Soize | Robust updating of uncertain computational models using experimental modal analysis[END_REF]), the frequency response functions on a given frequency band, etc). Let W be the random vector which is observed. For all (x, δ X ) ∈C par ×C X ⊂ R np × R µX , and for all w fixed, the probability density function of W is denoted by p W (w; x, δ X ). On the other hand, it is assumed that ν exp independent experimental values w exp 1 ,...,w exp νexp are measured. The optimal value (x opt , δ opt X ) of (x, δ X ) can be estimated by maximizing the logarithm of the likelihood function (maximum likelihood method [START_REF] Serfling | Approximation Theorems of Mathematical Statistics[END_REF], [START_REF] Spall | Introduction to Stochastic Search and Optimization[END_REF]),

(x opt , δ opt X ) = arg max (x,δX )∈C par ×CX { νexp r=1 log p W (w exp r ; x, δ X )} . (36) 
The quantities p W (w exp r ; x, δ X ) are estimated using the independent realizations of W calculated with the stochastic computational model (using the Monte Carlo method) and the multivariate Gaussian kernel density estimation method (see for instance [START_REF] Bowman | Applied Smoothing Techniques for Data Analysis[END_REF][START_REF] Terrell | Variable kernel density estimation[END_REF]).

Posterior probability model of uncertainties using output-prediction-error method and the bayesian method

Let p prior X (x)=p X (x; x opt , δ opt X ) be the optimal prior probability density function of X, constructed with the optimal value (x opt , δ opt X ) of (x, δ X ) which has been determined in Section 4.5, solving the optimization problem defined by Eq. ( 36). As we have explained, the parametric probabilistic approach does not have the capability to take into account the modeling errors (modeling uncertainties). A possible method to take into account the modeling errors is to use the output-prediction-error method (with the difficulties that we have indicated in Section 3. 2-(i)). With such an approach the posterior probability density function p post X (x) of X can be estimated using the experimental data associated with observation W introduced in Section 4.5 and the Bayesian method.

In order to apply the Bayesian method [START_REF] Bernardo | Bayesian Theory[END_REF][START_REF] Spall | Introduction to Stochastic Search and Optimization[END_REF][START_REF] Congdon | Bayesian Statistical Modelling[END_REF][START_REF] Carlin | Bayesian Methods for Data Analysis[END_REF] to estimate the posterior probability density function p post X (x) of random vector X, the output-prediction-error method [START_REF] Walter | Identification of Parametric Models from Experimental Data[END_REF][START_REF] Beck | Updating models and their uncertainties. I: Bayesian statistical framework[END_REF][START_REF] Kaipio | Statistical ans Computational Inverse Problems[END_REF] is used and then, an additive noise B is added to the observation in order to simultaneously take into account the modeling errors and the measurements errors as explained in Section 3.2. The random observed output W out with values in R m obs , for which experimental data w exp 1 ,...,w exp νexp are available (see Section 4.5), is then written as

W out = W + B , (37) 
in which W is the computational model output with values in R m obs . The noise B is a R m obs -valued random vector, defined on probability space (Θ, T , P), which is assumed to be independent of X, and consequently, which is independent of W.I t should be noted that this hypothesis concerning the independence of W and B could easily be removed. It is also assumed that the probability density function p B (b) of random vector B, with respect to db, is known. For instance, it is often assumed that B is a centered Gaussian random vector for which the covariance matrix [C B ]=E{BB T } is assumed to be invertible. In such a case, we would have

p B (b)=(2π) -m obs /2 (det[C B ]) -1/2 exp(- 1 2 < [C B ] -1 b , b >) . (38) 
The posterior probability density function p post X (x) is then estimated by

p post X (x)=L(x) p prior x (x) , (39) 
in which x →L(x) is the likelihood function defined on R np , with values in R + , such that

L(x)= Π νexp r=1 p W out |X (w exp r |x) E{Π νexp r=1 p W out |X (w exp r |X prior )} . ( 40 
)
In Eq. ( 40), p W out |X (w exp ℓ |x) is the values, for the experimental data, of the conditional probability density function w → p W out |X (w|x) of the random observed output W out given X = x in C par . Taking into account Eq. ( 37) and as B and W are assumed to be independent, it can easily be deduced that

p W out |X (w exp r |x)=p B (w exp r -h(x)) , (41) 
in which w = h(x) is the model observation depending on {y n (t),t ∈J }which is computed using Eq. ( 27). It should be noted that the posterior probability density function strongly depends on the choice of the stochastic model of the output additive noise B.

Nonparametric probabilistic approach of uncertainties in computational structural dynamics. The generalized probabilistic approach

The nonparametric probabilistic approach of uncertainties has been introduced in [START_REF] Soize | A nonparametric model of random uncertainties on reduced matrix model in structural dynamics[END_REF][START_REF] Soize | Maximum entropy approach for modeling random uncertainties in transient elastodynamics[END_REF][START_REF] Soize | Random matrix theory for modeling uncertainties in computational mechanics[END_REF] to take into account both the model-parameter uncertainties and the modeling errors inducing model uncertainties without separating the contribution of each one of these two types of uncertainties. Recently, in [START_REF] Soize | Generalized probabilistic approach of uncertainties in computational dynamics using random matrices and polynomial chaos decompositions[END_REF], an improvement of the nonparametric approach of uncertainties, called the generalized probabilistic approach of uncertainties, has been proposed and allows the prior stochastic model of each type of uncertainties (model-parameter uncertainties and modeling errors) to be separately constructed. Below, we summarized this approach which allows modeling errors to be taken into account.

Methodology to take into account model uncertainties (modeling errors)

Let (Θ ′ , T ′ , P ′ ) be another probability space. The probability space (Θ, T , P) is devoted to the stochastic model of model-parameter uncertainties using the parametric probabilistic approach (see Section 4), while (Θ ′ , T ′ , P ′ ) is devoted to the stochastic model of model uncertainties (modeling errors) using the nonparametric probabilistic approach. Therefore, for all x fixed in C par , the matrices [M (x)], [D(x)] and [K(x)] are replaced by independent random matrices

[M(x)] = {θ ′ → [M(θ ′ ; x)]}, [D(x)] = {θ ′ → [D(θ ′ ; x)]} and [K(x)] = {θ ′ → [K(θ ′ ;
x)]} on probability space (Θ ′ , T ′ , P ′ ) and defined, below, in Section 5.2. The nonparametric probabilistic approach of uncertainties then consists in replacing in Eq. ( 31) the dependent random matrices [M (X)], [D(X)] and [K(X)] by the dependent random matrices

[M(X)] = {(θ, θ ′ ) → [M(θ ′ ; X(θ))]}, [D(X)] = {(θ, θ ′ ) → [D(θ ′ ; X(θ))]} and [K(X)] = {(θ, θ ′ ) → [K(θ ′ ; X(θ))]}, defined on Θ × Θ ′ . It can easily be deduced that E{[M(X)]} =[M ] ,E {[D(X)]} =[D] ,E {[K(X)]} =[K] . (42) 
Consequently, the stochastic reduced computational model, defined by Eqs. ( 30) and [START_REF] Capiez-Lernout | Blade manufacturing tolerances definition for a mistuned industrial bladed disk[END_REF], is replaced by the following stochastic reduced computational model,

Y(t)=[φ(X)] Q(t) , (43) 
[M(X)] Q(t)+[D(X)] Q(t)+[K(X)] Q(t)+F NL (Q(t), Q(t); X)=f(t; X) , (44) 
in which for all fixed t, Y(t)={(θ, θ ′ ) → Y(θ, θ ′ ; t)} is an R m -valued random vector and Q(t)={(θ, θ ′ ) → Q(θ, θ ′ ; t)} is an R n -valued random vector defined on Θ × Θ ′ . Let X(θ) be any realization of random variable X for θ in Θ. 

; t)=[φ(X(θ))] Q(θ, θ ′ ; t) , (45) 
[M(θ ′ ; X(θ))] Q(θ, θ ′ ; t)+[D(θ ′ ; X(θ))] Q(θ, θ ′ ; t) +[K(θ ′ ; X(θ))] Q(θ, θ ′ ; t)+F NL (Q(θ, θ ′ ; t), Q(θ, θ ′ ; t); X(θ)) = f(t; X(θ)) . ( 46 
)

Construction of the prior stochastic model of the random matrices

As explained in [START_REF] Soize | Generalized probabilistic approach of uncertainties in computational dynamics using random matrices and polynomial chaos decompositions[END_REF], the dependent random matrices [M(X)], [D(X)] and [K(X)], introduced in Eq. ( 44), are written as

[M(X)] = [L M (X)] T [G M ][L M (X)] , [D(X)] = [L D (X)] T [G D ][L D (X)] , (47) 
[K(X)] = [L K (X)] T [G K ][L K (X)] , in which, for all x in C par , [L M (x)], [L D (x)] and [L K (x)] are the upper triangu- lar matrices such that [M (x)] = [L M (x)] T [L M (x)], [D(x)] = [L D (x)] T [L D (x)] and [K(x)] = [L K (x)] T [L K (x)].
In Eq. ( 47), the random matrices [G M ], [G D ] and [G K ] are random matrices which are defined on probability space (Θ ′ , T ′ , P ′ ) with values in M + n (R). The joint probability density function of these random matrices [G M ], [G D ] and [G K ] is constructed using the maximum entropy principle under the constraints defined by the available information. Taking into account the available information (see [START_REF] Soize | A nonparametric model of random uncertainties on reduced matrix model in structural dynamics[END_REF][START_REF] Soize | Maximum entropy approach for modeling random uncertainties in transient elastodynamics[END_REF][START_REF] Soize | Random matrix theory for modeling uncertainties in computational mechanics[END_REF][START_REF] Soize | Generalized probabilistic approach of uncertainties in computational dynamics using random matrices and polynomial chaos decompositions[END_REF]), it is proven that these three random matrices are statistically independent, belong to ensemble SG + ε defined in Section 3.5.3, and then depend on free positive real dispersion parameters δ M , δ D and δ K which allow the level of the statistical fluctuations, that is to say the level of model uncertainties, to be controlled. Let δ G =( δ M ,δ D ,δ K ) be the vector of the dispersion parameters, which belongs to an admissible set C G ⊂ R 3 . Consequently, the joint probability density function of the random matrices

[G M ], [G D ] and [G K ] is written as ([G M ], [G D ], [G K ]) → p G ([G M ], [G D ], [G K ]; δ G )=p [GM ]] ([G M ]; δ M ) × p [GD ]] ([G D ]; δ D ) × p [GK ]] ([G K ]; δ K ) , δ G ∈C G ⊂ R 3 . (48) 
The probability distributions of random matrices [G M ], [G D ] and [G K ] and their algebraic representations useful for generating independent realizations

[G M (θ ′ )], [G D (θ ′ )]
and [G K (θ ′ )] are explicitly defined in Section 3.5.3 using Section 3.5.2. From Eq. ( 47) and for (θ, θ ′ ) in Θ × Θ ′ , it can be deduced that

[M(θ ′ ; X(θ))] = [L M (X(θ))] T [G M (θ ′ )] [L M (X(θ))] , (49) 
[D(θ ′ ; X(θ))] = [L D (X(θ))] T [G D (θ ′ )] [L D (X(θ))] , (50) 
[K(θ ′ ; X(θ))] = [L K (X(θ))] T [G K (θ ′ )] [L K (X(θ))] . (51) 

Estimation of the parameters of the prior stochastic model of uncertainties

The prior stochastic model of uncertainties then depends on parameters x, δ X and δ G belonging to the admissible sets C par , C X and C G . If no experimental data are available, then x is fixed to the nominal value and δ X and δ G must be considered as parameters to perform a sensitivity analysis of the stochastic solution. Such a prior stochastic model of both model-parameter uncertainties and model uncertainties then allows the robustness of the solution to be analyzed in function of the level of model-parameter uncertainties controlled by δ X and in function of model uncertainties controlled by δ G .

If a few experimental data are available, the methodology presented in Section 4.5 can then be used to update x and to estimate δ X and δ G . As previously, let W be the random vector which is observed and which is deduced from the random solution Y given by Eq. ( 43) with Eq. ( 44). For all (x, δ X , δ G ) ∈C par ×C X ×C G , the probability density function of W is denoted by p W (w; x, δ X , δ G ). The optimal value (x opt , δ opt X , δ opt G ) of (x, δ X , δ G ) can be estimated by maximizing the logarithm of the likelihood function,

(x opt , δ opt X ,,δ opt G ) = arg max (x,δX ,,δG)∈C par ×CX ×CG { νexp r=1 log p W (w exp r ; x, δ X , δ G } . (52) 
Similarly to Section 4.5, the quantities p W (w exp r ; x, δ X , δ G ) are estimated using the independent realizations of W calculated with the stochastic computational model defined by Eqs. ( 43) and (44) (using the Monte Carlo method) and the multivariate Gaussian kernel density estimation method.

Posterior stochastic model of uncertainties using the Bayesian method

Let p prior

X (x)=p X (x; x opt , δ opt X ) and p G ([G M ], [G D ], [G K ]; δ opt G )
be the optimal prior probability density functions of random vector X and random matrices [G M ], [G D ], [G K ], constructed with the optimal value (x opt , δ opt X , δ opt G ) of (x, δ X , δ G ) which has been calculated in Section 5.3 solving the optimization problem defined by Eq. ( 52). The objective of this section is the following. For this given optimal prior probability model

p G ([G M ], [G D ], [G K ]; δ opt G )
of model uncertainties induced by modeling errors, the posterior probability density function p post X (x) of model-parameter uncertainties is estimated using the experimental data associated with observation W and using the stochastic computational model, the optimal prior probability density function p prior X (x) and the Bayesian method.

Posterior probability density function of the model-parameter uncertainties

Let w exp 1 ,...,w exp νexp be the ν exp independent experimental data corresponding to observation W, introduced in Section 4.5 and used in Section 5.3. The Bayesian method (see for instance [START_REF] Beck | Updating models and their uncertainties. I: Bayesian statistical framework[END_REF][START_REF] Bernardo | Bayesian Theory[END_REF][START_REF] Carlin | Bayesian Methods for Data Analysis[END_REF][START_REF] Congdon | Bayesian Statistical Modelling[END_REF][START_REF] Serfling | Approximation Theorems of Mathematical Statistics[END_REF][START_REF] Spall | Introduction to Stochastic Search and Optimization[END_REF][START_REF] Tan | Bayesian Missing Data Problems, EM, Data Augmentation and Noniterative Computation[END_REF][START_REF] Walter | Identification of Parametric Models from Experimental Data[END_REF]) allows the posterior probability density function p post X (x) to be calculated by

p post X (x)=L(x) p prior x (x) , (53) 
in which x →L(x) is the likelihood function defined on R np , with values in R + , such that

L(x)= Π νexp r=1 p W|X (w exp r |x) E{Π νexp r=1 p W|X (w exp r |X prior )} . (54) 
In Eq. ( 54), p W|X (w exp ℓ |x) is the value, for the experimental data, of the conditional probability density function w → p W|X (w|x) of the random observation W given X = x in C par . Equation [START_REF] Sampaio | Remarks on the efficiency of POD for model reduction in nonlinear dynamics of continuous elastic systems[END_REF] shows that the likelihood function L must verify the following equation,

E{L(X prior )} = R np L(x) p prior X (x) dx =1 . ( 55 
)
For a high dimension uncertain model parameter, the usual Bayesian method presented above can be not efficient for partial experimental data. In such a case a novel approach derived from Baye's approach has been proposed in [START_REF] Soize | A computational inverse method for identification of non-Gaussian random fields using the Bayesian approach in very high dimension[END_REF].

Posterior probability density functions of the responses

Let U =(V, W) be the random response vector in which W is experimentally observed and where V is not experimentally observed. Random response vector U is constructed from the random solution Y of Eqs. ( 43) and [START_REF] Capiez-Lernout | Data and model uncertainties in complex aerospace engineering systems[END_REF]. The probability density function u → p U post (u) of the posterior random response vector U post is then given by

p U post (u)= R np p U|X (u|x) p post X (x) dx , (56) 
in which the conditional probability density function p U|X (u|x) of U,g i v e nX = x, is constructed using the stochastic computational model defined in Sections 5. 

in which u k → p U k |X (u k |x) is the conditional probability density function of the real valued random variable U k given X = x and which is constructed using the computational model defined in Sections 5.1 and 5.2.

Computational aspects

We use the notation introduced in Sections 5.1 and 5.2 concerning the realizations. Let X prior (θ 1 ),...,X prior (θ ν ) be ν independent realizations of X prior whose probability density function is x → p prior X (x).F o rν sufficiently large, the right-hand side of Eq. ( 57) can be estimated by

p U post k (u k ) ≃ 1 ν ν ℓ=1 L(X prior (θ ℓ )) p U k |X (u k |X prior (θ ℓ )) . (58) 
Let

([G M (θ ′ 1 )], [G D (θ ′ 1 )], [G K (θ ′ 1 )]),...,[G M (θ ′ ν ′ )], [G D (θ ′ ν ′ )], [G K (θ ′ ν ′ )]) be ν ′ in- dependent realizations of ([G M ], [G D ], [G K ]) whose probability density function is ([G M ], [G D ], [G K ]) → p G ([G M ], [G D ], [G K ]; δ opt G ).
For fixed θ ℓ , the computational model defined in Sections 5.1 and 5.2 is used to calculate the ν ′ independent realizations U(θ ′ 1 |x),...,U(θ ′ ν ′ |x) for x = X prior (θ ℓ ). We can then deduce W(θ ′ 1 |X prior (θ ℓ )), ..., W(θ ′ ν ′ |X prior (θ ℓ )) and, for all fixed k, we can deduce U k (θ ′ 1 |X prior (θ ℓ )),..., U k (θ ′ ν ′ |X prior (θ ℓ )).

(1) Using the independent realizations W(θ ′ 1 |X prior (θ ℓ )),...,W(θ ′ ν ′ |X prior (θ ℓ )) and using the multivariate Gaussian kernel density estimation method, for r =1,...,ν exp , we can estimate p W|X (w exp r |X prior (θ ℓ )) and then, for ℓ =1 ,...,ν, we can deduce L(X prior (θ ℓ )) using Eq. ( 54).

(2) For all fixed k, p U k |X (u k |X prior (θ ℓ )) is estimated using the independent realizations U k (θ ′ 1 |X prior (θ ℓ )),...,U k (θ ′ ν ′ |X prior (θ ℓ )) and using the kernel estimation method. From Eq. ( 58), it can then be deduced p U post k (u k ).

Conclusion

We have presented a brief survey concerning the state-of-the-art and the recent advances in the field of stochastic modeling of uncertainties in computational structural dynamics, their propagation and their quantification when experimental data are available or not. Many interesting and important works have been published and are in progress concerning the methodologies which allow the propagation of uncertainties to be analyzed. Nevertheless, an excellent stochastic solver will compute a bad stochastic solution if the stochastic model of the input (the uncertainties) is bad. In particular, if no experimental data are available, the quality of the random responses directly depends on the quality of the prior stochastic model of uncertainties. For the complex dynamical systems, the major source of uncertainties is due to modeling errors and is not due to model-parameter uncertainties. This is the reason why the overview presented in this paper is mainly focussed on the methodologies and tools, such as the maximum entropy principle, useful to construct the prior stochastic models of uncertainties and in particular, the prior stochastic model of modeling errors using the nonparametric probabilistic approach. This latter approach requires the use of adapted ensembles of random matrices and has been proposed as an alternative method to the outputprediction-error method in order to take into account modeling errors at the operators level and not at the model output level by the introduction of an additive noise. We have then detailed the methodologies for the construction of the prior stochastic model of model-parameter uncertainties (using the parametric probabilistic approach) and the prior stochastic model of modeling errors (using the nonparametric probabilistic approach) in computational structural dynamics. In addition, when experimental data are available for some observations of the dynamical system, we have presented methodologies to perform the identification of the stochastic model of uncertainties, that is to say, the uncertainties quantification. When a few experimental data are available for some observations of the dynamical system, these experimental data can be used to identify, with the maximum likelihood method, an optimal prior stochastic model of uncertainties. If a large experimental data basis is available the posterior stochastic model of system-parameter uncertainties, in presence of modeling errors in the computational model, can be estimated with the bayesian method.

  For all x in C par , let [M(θ ′ ; x)], [D(θ ′ ; x)] and [K(θ ′ ; x)] be any realizations of random matrices [M(x)], [D(x)], [K(x)] for θ ′ in Θ ′ . The realization Y(θ, θ ′ ; t) of the random variable Y(t) and the realization Q(θ, θ ′ ; t) of the random variable Q(t) verify the deterministic equations Y(θ, θ ′
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