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SUMMARY

This paper is devoted to the computational nonlinear stochastic homogenization of a hyperelastic
heterogeneous microstructure using a non-concurrent multiscale approach. The geometry of the
microstructure is random. The non-concurrent multiscale approach for micro-macro nonlinear mechanics
is extended to the stochastic case. Since the non-concurrent multiscale approach is based on the use of a
tensorial decomposition, which is then submitted to the curse of dimensionality, we perform an analysis
with respect to the stochastic dimension. The technique uses a database describing the strain energy
density function (potential) in both the macroscopic Cauchy Green strain space and the geometrical random
parameters domain. Each value of the potential is numerically computed by means of the finit element
method on an elementary cell whose geometry is given by the random parameters and the corresponding
macroscopic strains being prescribed as boundary conditions. An interpolation scheme is finall introduced
to obtain a continuous explicit form of the potential, which, by derivation, allows to evaluate the macroscopic
stress and elastic tangent tensors during the macroscopic structural computations. Two numerical examples
are presented©
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1. INTRODUCTION

When a structure is made of a highly heterogeneous material at the microscopic level, classical
numerical methods used for structural analysis lead to prohibitive memory and computational costs
and can hardly be used for standard engineering studies. Homogenization methods represent an
effective alternative for determining the macroscopic behavior of such materials. However, the
case of nonlinear heterogeneous materials leads us to a set of additional difficultie regarding the
linear case: for instance, the general form of the constitutive law is not known and the principle of
superposition does not hold which prevents using any analytical homogenization scheme introduced
for the case of small elastic strains. To overcome these difficulties two classes of methods have
been developed and used during the last two decades. The firs one consists in extending classical
analytical homogenization approaches by derivation of estimate and exact solutions of some classes
of hyperelastic composites [1, 2, 3] or by introducing a second-order homogenization method to
determine the effective constitutive laws of nonlinear composites (see [4, 5], for instance). The
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second family of methods consists in using numerical multiscale simulations which can be an
effective alternative approach when one seeks, for instance, to deal with complex microstructure.
Then, concurrent multiscale methods were developed and aim at solving simultaneously the
nonlinear problems at both scales (see for instance [6, 7, 8, 9, 10, 11, 12, 13]). The macroscopic
problem provides the strain states in all integration points and gives the boundary conditions used
to solve each microscopic problem. This kind of techniques allows taking into account different
types of nonlinearities but may leads to significan computational costs. Alternatively, the non-
concurrent multiscale methods aim at decoupling the numerical simulations at both scales. They
consist in identifying parameters characterizing the macroscopic constitutive law from experimental
or numerical test [14] or using a database formed of microscopic calculations to build a numerical
constitutive law without any assumption on the constitutive equations [15, 16, 17, 18, 19]. In this
work, we focus on the methodology proposed in [17, 18, 19].
On the other hand, it may also be necessary to take into account the different sources of

uncertainty at the microscopic level if one seeks to obtain a reliable model of the macroscopic
behavior of the material. Thus, the general area of stochastic multiscale modeling of complex
random heterogeneous microstructures has recently attracted a continuously growing attention in
the scientifi community. A simple way to solve this kind of problem consists in coupling numerical
simulations of random microstructures (based on experimental identificatio or some geometrical
characteristics such that the volume fraction or others parameters such that the spatial and size
distributions [20, 21]) with classical finit element computations. Then, one can perform a statistical
study of average quantities of interest characterizing the macroscopic behavior of the material
(e.g. stress random fields) Recently, more sophisticated methods based on the Maximum Entropy
principle have been developed in the case of linear elasticity. The so-called nonparametric approach
for uncertainties aims at building prior probability distributions of effective stress tensors with no
explicit representation of the random parameters characterizing the microstructure [22, 23, 24, 25].
Parametric approaches have also been used to characterize the macroscopic behavior. In [26, 27, 28],
the authors have used spectral stochastic methods (e.g. polynomial chaos approximation) to solve
the stochastic boundary value problem involved by the random microstructure. Monte-Carlo
simulations may naturally be employed to perform a statistical study on the effective properties
of the material (see for instance [29] and [30] where the Monte-Carlo approach is coupled with a
X-FEM methodology avoiding the remeshing difficulties)
The fundamental objective of the paper is to test a novel non-concurrent approach for solving a

nonlinear stochastic homogenization problem. In this context, to the knowledge of the authors, the
present paper is the first one devoted to this challenging issue. A choice concerning the mechanical
nonlinearities of the microstructure must be made. There are two main types of mechanical
nonlinearities: large deformations and displacements with linear constitutive equations (type I) and,
small or large deformations with nonlinear constitutive equations (type II). As it the firs research in
this fiel from the authors, we decide to adopt nonlinearities of type I which facilitate the definitio
of the potential which is a crucial point of the proposed approach. Further works will be devoted
to the extension of the method for different kinds of nonlinearities such as plasticity. On the other
hand, the proposed method should, in the future, be applied to a practical example in the fiel of
biomechanics such as the study of living tissues which follow a hyperelastic constitutive behavior.
We here focus on fibe reinforced polymer composites, involving a condition of impenetrability
between the inclusions, and on the geometrical uncertainties on the microstructure. The firs step
of the method lies on the construction of a probabilistic model of the random microstructure. This
issue has already been assessed by different authors in various ways. In [31, 32], the formalism
of random sets is used to generate random heterogeneous microstructures while in [20, 33, 34]
the same objective is done based on a Poisson random fiel model. We also propose to build a
random generator of the microstructure which depends on a high number of random variables. We
then use a classical statistical reduction through a Karhunen-Loeve expansion [35] which allows
controlling the probabilistic model with a few number of reduced random variables. Numerous
algorithms given in the literature may replaced the one develop in this work. However, the algorithm
proposed in Section 3 allows introducing and controlling the correlation structure given to the
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geometrical parameters which makes effective the statistical reduction. Then, based on an particular
nonlinear homogenization scheme, we propose to extend the method of the Numerical Explicit
Potentials (NEXP method) [17, 18, 19] to the stochastic framework. In the deterministic case, this
approach is based on the numerical determination of the macroscopic strain energy density function
(potential) according to the macroscopic strain state. Through a separated variables representation
and an appropriate interpolation scheme, this approach allows obtaining an explicit form of the
potential, which, by derivation, yields the stress and elastic tangent tensors which fully characterize
the macroscopic constitutive law. In the stochastic framework, the aim is the same but the potential
is not only related to the macroscopic strain state but also to the reduced random variables describing
the random geometry of the microstructure. Then, the strain energy density function is depending
on a set of parameters. This so-called parameters space is discretized into a sufficien number of
points corresponding both to a particular macroscopic strain state and a particular geometry of the
microstructure which involve a nonlinear boundary value problem numerically solved by a classical
finit element method. In order to obtain an explicit form of the potential available for any points
belonging to the parameters space, a separated variables representation associated to an appropriate
interpolation scheme is adapted from [18, 19]. Thus, the macroscopic structural computations can
be easily and efficientl performed using the explicit form of the potential to determine the random
macroscopic constitutive law.
Moreover, the probabilistic characterization of such a complex microstructure may require a

high number of random variables. Thus, the question of the high dimensionality is also pointed
out. We will then focus on the extension of this kind of numerical deterministic solvers to the
stochastic framework when one seeks to use a high number of random variables to characterize the
probabilistic model.
The paper is organized as follows. Section 2 deals with the homogenization of nonlinear

heterogeneous materials at finit strains in a deterministic framework where both, microscale and
macroscale problems are detailed. Section 3 presents the probabilistic model leading to a stochastic
representation of the microstructure based on a parametric framework. We then detail, in Section
4, the proposed approach, called the method of Stochastic Numerical Explicit Potentials, which
allows determining the constitutive law at the upper scale according to the random parameters
characterizing the geometry of the microstructure. Numerical examples are finall provided in
Section 5 in order to point the advantages and drawbacks of the proposed method. Some concluding
remarks are finall drawn in the last section.

2. DETERMINISTIC HOMOGENIZATION OF NONLINEAR HETEROGENEOUS
MATERIALS

2.1. Nonlinear homogenization scheme

We consider a microstructure, schematically represented on figur 1, which occupies a domain
Ω ⊂ Rd where d denotes the spatial dimension (d ∈ {1, 2, 3}). The boundary of the domain Ω is
denoted by ∂Ω and the position of the material points are identifie by the vectorX in the reference
configuratio and by vector x in the deformed configuration These vectors are related through:

x = X + u, (1)

where u is the displacement vector of a material point.We introduce the deformation gradient tensor
F at pointX define by

F =
∂x

∂X
= 1+∇X(u), (2)

where 1 is the second-order identity tensor and ∇X(·) is the gradient operator according to the
reference configuration The microstructure is associated with a multiphased heterogeneous material
composed of Np hyperelastic phases definin the Np domains Ω(r) with r ∈ {1, ..., Np} and such
that Ω =

⋃Np

r=1Ω
(r). The constitutive equation of each phase can then be characterized by strain

energy density functions (i.e. elastic potentials) ψ(r) according to the right-hand Cauchy-Green

©
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Figure 1. Model problem: microscopic and macroscopic structures

strain tensor C = F TF such that the local strain energy density function ψ of Ω may be written as

ψ(X ,C) =

Np∑
r=1

I
(r)(X)ψ(r)(C), (3)

where I(r) is the characteristic function of domain Ω(r) which is equal to 1 if X ∈ Ω(r) and 0
otherwise. The local constitutive law is given, in the Lagrangian description, by

S = 2
∂ψ

∂C
(X,C), (4)

where S denotes the second Piola-Kirchhoff stress tensor. Several models are available for the
hyperelastic constitutive law: we only here consider a compressible Neo-Hookean model described
by the following potential

ψ(C) =
1

2
λ{log(J)}2 − μ log(J) +

1

2
μ(tr(C)− 3), (5)

where J = det(F ) is the volumetric change and where λ = Eν
(1+ν)(1−2ν) and μ = E

2(1+ν) withE and
ν respectively the Young modulus and the Poisson ratio. We also introduce the fourth-order tangent
elastic tensor L define by

L = 4
∂2ψ(X ,C)

∂C2 . (6)

We assume that the elementary cell is associated with a structure at a larger scale which can be a
mesoscopic or a macroscopic scale depending on the separation between the considered scales. This
issue will be discussed in Section 3. Thus, we defin the kinematic quantities as follows:

F = 〈F 〉, (7)

C = F
T
F �= 〈C〉, (8)

where symbol< · > denotes the spatial averaging over Ω. The upper scale stress tensors are define
according to

P = 〈P 〉, (9)

S = F
−1

P �= 〈S〉, (10)

where P denotes the firs Piola-Kirchhoff macroscopic stress tensor. Using equations (7) to (10), it
can be shown that

S = 2
∂ψ(C)

∂C
, (11)
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where the effective strain energy density function ψ is define by

ψ(C) = inf
C∈K(C)

〈ψ(X ,C)〉. (12)

In equation (12), the set K(C) gathers all kinematically admissible strain tensors according to C.
Thus, for a given strain state C, the corresponding value of ψ(C) is determined by taking the
spatial average of local strain energy density functions ψ(X,C), where C(X) is the strain fiel
at equilibrium. In a same manner, we can show that the tangent elastic tensor L can be expressed
according to ψ such that

L = 4
∂2ψ(C)

∂C
2 . (13)

Proofs yielding equations (11) and (13) which fully allow characterizing the upper scale constitutive
law can be found in [19].

2.2. Involved mechanical problems at different scales

At the microscopic scale the stress must verify the local equilibrium condition:

∇X · (FS) = 0 on Ω, (14)

where ∇X · (·) is the gradient operator according to the reference configuration Boundary
conditions must be associated with equation (14) to obtain a unique solution. Several choices
are possible: kinematically uniform, statically uniform or periodic boundary conditions. However,
since the microstructure is characterized by random geometrical parameters, the implementation
of periodic boundary conditions involves numerical difficultie since the finit element mesh is
not regular on the boundary. This issue can be encountered using an X-FEM solver with adapted
enrichment strategies such as the one proposed in [36] allowing multiple level-sets (i.e interfaces)
cutting the same finit element. We therefore use linear boundary conditions expressed in case of
finit strains:

u(X) = (F − 1)X on ∂Ω . (15)

At the upper scale, the equilibrium equation must be verified

∇X · (FS) = 0 on Ω , (16)

with the following boundary conditions

u(X) = û(X) on ∂Ωu , PN̂ = F̂ on ∂ΩF , (17)

where Ω, u, X, ∂Ωu, ∂ΩF , û(X), F̂ and N̂ are, respectively, the macroscopic domain,
the macroscopic displacements, the macroscopic coordinates in the reference configuration the
boundary of macroscopic Dirichlet conditions, the boundary of macroscopic Neumann boundary
conditions, the applied displacements, external force and the outward unit normal vector to the
boundary ∂Ω of Ω. Both nonlinear problems define by equations (14) and (16) are classically
linearized and solved with the Finite Element Method.

3. PROBABILISTIC MODELING

This section deals with the construction of the probabilistic model of the microstructure
characterizing a fibe reinforced polymer composite. We firs introduce the chosen parametrization
of the geometry. We then detail the probabilistic model consisting in a random generator combined
with a classical statistical reduction through a principal component analysis.
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(a) 2D longitudinal section view. (b) 2D transversal section view.

Figure 2. 2D longitudinal and transversal section views of fibe reinforced polymer composites.

3.1. Geometrical description of the microstructure

This work is focussed on heterogeneous materials for which the geometrical parameters
characterizing the microstructure are random. In particular, we are interested in composites made of
polymer matrix and reinforced by non penetrating long fibers Manufacturing process of these kind
of material involves uncertainties, related to the position of the fibers mainly due to the “fountain
effect” of the injector. Moreover, since the 2D-cross section views, used for the microstructure
mechanical modeling and for the mechanical numerical analysis, are coming from experimental
data, they may involve error on the orientation of the fibers It thus leads us to another source of
uncertainties. Figure 2 illustrates typical section views of this kind of material and clearly shows a
correlation between the position and shape of the different fiber which characterize the probabilistic
model. The geometrical modeling of the fiber is depicted on figur 3. The microstructural problem
illustrated on this figur is different from the one presented on figur 2 since the mean-line of
each fibe is parallel to e3. Moreover, in the following, we only use a 2-D model under plane strain
assumption, this is why the problem treated in this paper corresponds to a microstructure composing
of fiber depicted on figur 3. Therefore, one fibe is represented by an ellipse parametrized by
5 constants: the horizontal and vertical positions X and Y of its center, an aspect ratio α, the
length of its semi-major axis a and its orientation angle γ according to vector e3. Introducing the
semi-minor axis b, the aspect ratio α is define by α = b/a with α ∈ [0, 1]. Using this geometrical
parametrization, the probabilistic model is detailed in the following section.

3.2. Stochastic modeling of the microstructure

We firs introduce the numbers of fiber composing the microstructure denoted by Nf which yields
a number N = 5Nf of geometrical parameters. However, if we generate exactly N parameters
representing Nf fibers there is a high probability that several fiber intersect each other and thus
do not verify the condition of impenetrability of the fibers detailed in Section 3.2.3 and which is
equivalent to a rejection process. We then need to generate a greater number n� Nf of “possible”
geometrical parameters used in the rejection process. We here adopt a parametric approach to deal
with the uncertainties. Let bem = 5n. The geometry is modeled by a Rm- valued random variable,
define on a probability space (Ξ,BΞ, Pξ), whose support of the probability law Pξ is Ξ which is
a subset of Rm. Considering the geometrical parametrization introduced in Section 3.1, the random

©



COMPUTATIONAL NONLINEAR STOCHASTIC HOMOGENIZATION 7
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Figure 3. Geometrical description of a fibe

“possible” geometrical parameters is represented by the second-order random vector ξ define by

ξ = (X,Y,α, a,γ)

= (X1, ..., Xn, Y1, ..., Yn, α1, ..., αn, a1, ..., an, γ1, ..., γn) . (18)

The direct construction of Pξ is not a trivial task. We thus propose to construct a random generator
associated with a statistical reduction method. Consequently, we construct Pξ using an indirect
approach. The main steps of the development of this stochastic model via the construction of the
random generator is given below.

1. Constructing a stochastic model of random vector ξ and generate a set of independent
realizations {ξ(k)}νk=1 of ξ, according to the parameters detailed in Section 3.2.1.

2. Performing a statistical reduction of random vector ξ using a principal component analysis
yielding a new random vector ζ = (ζ1, ..., ζM ) with M 	 m and constructing the ν
independent realizations (see Section 3.2.2).

3. Selecting the μ independent realizations {ζ (k)}μk=1, with μ � ν, which verify the condition
of impenetrability. These realizations completely characterize the stochastic model of the
microstructure (see Section 3.2.3).

3.2.1. Stochastic model of ξ and random generator The aim is to generate the independent
realizations {ξ(k)}νk=1 using the order statistics to impose the desired properties for the stochastic
model. The random vectors X, Y, α, a and γ, yielding ξ, are characterized by the independent
realizations {X(k)}νk=1, {Y(k)}νk=1, {α(k)}νk=1, {a(k)}νk=1 and {γ(k)}νk=1. Since the realizations of
each random vector X, Y, α, a and γ, will be generated through the same procedure, we present
the methodology for random vector X. To generate the realizations {X(k)}νk=1 with the desired
properties, we introduce the order statistics. We then denote byXord = (Xord

1 , . . . , Xord
n ) the random

vector such that Xord,(k)
1 < X

ord,(k)
2 < . . . < X

ord,(k)
n for each realization k in {1, ..., ν}. Let E{·}

be the mathematical expectation. In the construction proposed, the second-order quantities of the
second-order random vector Xord are controlled by the input parameters of the model, define as
follows.

1. The mean vector μXord = E{Xord} whose components μXord
1
, ..., μXord

n
are assumed to be equal

to μord = μXord
1

= . . . = μXord
n
.

2. The vector δXord = (δXord
1
, . . . , δXord

n
) where δXord

i
is the coefficien of variation of random

variable Xord
i , is assumed to be such that δord = δXord

1
= . . . = δXord

n
.

3. The spatial correlation is controlled by the positive real number ρ.
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Let [CXord ] be the covariance matrix of random vectorXord define by

[CXord ] = E{(Xord − μXord)(Xord − μXord)T }. (19)

By construction of the stochastic model, the coefficient [CXord ]i� = E{(Xord
i − μord)(Xord

� − μord)}
are written as

[CXord ]ii = 1

[CXord ]i� = (δord)2(μord)2 exp

( |i− �|
ρ n

)
if i �= � .

(20)

We now introduce a random vector U = (U1, . . . , Un) in which U1, . . . , Un are n independent
uniform random variables on [0 1]. Let {U(k)}νk=1 be ν independent realizations ofU.

For each realization k in {1, ..., ν}, we proceed as follows.
1. The components U (k)

1 , . . . , U
(k)
n of vector U(k) are ordered according to the Euclidean

distance |U (k)
1 − U

(k)
i | for i in {2, ..., n}. The resulting non-Gaussian random vector is denoted

byV(k).
2. We compute the vector X̃(k) = μXord + [L]

T
V(k) in which the matrix [L] is the upper

triangular matrix coming from the Cholesky factorization [CXord ] = [L]T [L].
3. The targeted vectorX(k) is then obtained by ordering the vector X̃(k). One should notice that,

sinceV(k) is a non-Gaussian random vector, the Cholesky factorization implies thatX(k) is a
non-Gaussian random vector.

By applying the above procedure to the ν realizations, we finall obtained {Xord,(k)}νk=1. The
same methodology, with different or identical input parameters, is used to generate the independent
realizations of the others random vectorsY, α, a and γ, and finall , to obtain the random vector ξ.

In practice, since dimension m of random vector ξ is high, it is not possible to directly use ξ
in a parametric probabilistic approach. This difficult is circumvented in introducing a statistical
reduction using a principal component analysis [35] of random vector ξ.

3.2.2. Statistical reduction Let μξ be the mean value of ξ, estimated by μξ 
 1
ν

∑ν
k=1 ξ

(k). Let us

denote by ξ̃
(k)

= ξ(k) − μξ the centered realizations. The covariance matrix of random vector ξ is
then estimated by

[Cξ] 
 1

(ν − 1)

ν∑
k=1

ξ̃
(k)

ξ̃
(k)T

. (21)

Let be M ≤ m. Let λ1 ≥ λ2 ≥ . . . ≥ λM and ϕ1,ϕ2, . . . ,ϕM be the M firs largest eigenvalues
and the associated eigenvectors, of symmetric positive matrix [C ξ], such that [Cξ] ϕj = λj ϕj .
Vectors ϕ1, . . . ,ϕM are orthonormal. Using the principal component analysis, the mean-square
approximation of ξ can be written as ξ 
 μξ +

∑M
j=1

√
λjϕjζj for which the second-order random

variables ζ1, . . . , ζM are centered and orthonormal, that is to say, E{ζj} = 0 and E{ζjζj′} = δjj′ .
The integer M is assumed to be sufficientl large to reach the mean-square convergence which is
controlled by √

1−
∑M

j=1 λj

tr [Cξ]
= εMKL < εKL , (22)

in which εKL is the tolerance parameter. The random variable ζj is given by ζj = 1√
λj

ϕT
j (ξ − μξ)

and we introduce the random vector ζ = (ζ1, . . . , ζM ). From these equations, it can be deduced the 
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representation of the realizations ξ(k) of ξ which are such that, for all k = 1, . . . ν,

ξ(k) 
 μξ +

M∑
j=1

√
λjϕjζ

(k)
j , (23)

and the realization ζ (k)j of ζj is given by

ζ
(k)
j =

1√
λj

ϕT
j (ξ

(k) − μξ) . (24)

Introducing the vector ζ(k) = (ζ
(k)
1 , . . . , ζ

(k)
M ), we deduce that {ζ(k)}νk=1 are the independent

realizations of random vector ζ which represents the geometrical parameters of the fiber composing
the microstructure.

3.2.3. Condition of impenetrability The fina step for obtaining the geometry of the microstructure
consists in a selection of the realizations verifying the condition of impenetrability of the fiber
which are characterized by domains Ω(r) with r = 1, . . . , Nf . The condition of impenetrability is
written as

Nf⋂
r=1

Ω(r) = ∅ . (25)

We will say that the condition of impenetrability is satisfie for a particular realization ζ (k), if there
exists a set of domains {Ω(r)}Nf

r=1 that verifie equation (25). Each realization of the set {ζ(k)}νk=1 of
realizations is tested. If the condition of impenetrability is satisfied the realization is kept, otherwise
it is rejected. With this procedure of rejection, we obtain the new set {ζ (k)}μk=1 with μ � ν. In
practice, the condition of impenetrability is verifie through a numerical procedure based on a
discretization of the elementary cell define on domain Ω into a regular grid of points {x i}NΩ

i=1

whereNΩ is taken sufficientl high to ensure that, at least, one point xi is contained in each domain
Ω(r). The algorithm used to create the geometry of the microstructure acts as a rejection/acceptation
algorithm: the possible fiber are tested one after another (a fibe is rejected or accepted if it does
not intersect any existing fiber and stops when the desired number of fiber Nf is reached.

3.2.4. Study of the probabilistic model Among the various input parameters of the stochastic model,
detailed in section 3.2.1, the correlation parameter ρ plays a major role in the efficien y of the
reduction define by equation (23). Figure 4 illustrates the convergence of error εMKL with respect to
the numberM of eigenvalues for several values of ρ equal to 0.1, 0.3, 0.5, 0.7 and 0.9 while others
input parameters are fi ed to m = 2500, ν = 5000, μord = 0.5 and δord = 0.5. We can observe a
fast decrease of error εMKL according toM for any value of ρ. As expected, the fastest convergence
is reached for the highest value of ρ but the reduction is also effective for the lower values of ρ.
However, even for the case ρ = 0.9, we can notice that, at least, 9 eigenvalues are required to reach
an error inferior to 0.1. Figure 5 displays the graph of the probability density functions for several
random variables ζj according to different values of the spatial correlation parameter ρ. We can
observe that, even though the supports of the probability density functions of random variables ζj
are essentially the same, the shape of the probability density function is different from a variable
to another. The same remark can be pointed out when the spatial correlation parameter varies. It
can even be seen, for particular values of ρ, a multimodal probability density function for particular
random variable ζj (see for instance ζ4 with ρ = 0.5).
As a fina illustration of the stochastic model, figur 6 displays some realizations of the random

geometry of the microstructure for different values of input parameters.

3.2.5. Remark on the resulting random fiel In the fina part of this section, we study the properties
of the random fiel generated by the proposed stochastic model. In the fiel of homogenization,
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Figure 5. probability density functions of random variables ζj according to spatial correlation parameter ρ.

a crucial information comes from the separation of the scales. If the spatial correlation lengths
of the mechanical field in the microstructure are small enough with respect of the dimension
of the structure, then the scales can be separated and then a stochastic homogenization can be
performed. In such a case, the statistical fluctuation at the macroscale are negligible and the
effective mechanical properties are deterministic. In the other case, the scales are not separable and
the effective properties are random. It is then important to calculate the spatial correlation lengths
of the random fiel L(X) at the microscale. Thus, we propose to focus on the random fiel L(X)
indexed by Rd through two quantities. The firs one is the spatial mean μ‖L(X)‖F

of L(X) define
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(a) (b)

(c) (d)

(e) (f)

Figure 6. Various geometries of the random microstructure corresponding to different values of input
parameters.

by μ‖L(X)‖F
= E{‖L(X)‖F } where ‖ · ‖F denotes the Frobenius norm. The second one is the
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(a) Mean function X �→ μ‖L(X)‖F .
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(b) Correlation function η �→ rL(X + η,X) for
X = (0.5, 0.5).

Figure 7. Mean and correlation function of random fiel L(X).

correlation function rL(X + η,X) of L(X) define by

rL(X + η,X) =
tr{E{(L(X + η)− E{L(X + η)}) (L(X)− E{L(X))})T }}√
E{‖L(X + η)− E{L(X + η)}‖2F }E{‖L(X)− E{L(X)}‖2F}

. (26)

Figures 7(a) and 7(b) display the graphs of function X �→ μ‖L(X)‖F
and η �→ rL(X + η,X). If

the two scales are separated then L(X) is a mean-square homogeneous second-order random fiel
which involves that μ‖L(X)‖F

and rL(X + η,X) are independent of X. However, figure 7(a)
and 7(b) clearly show that L(X) cannot be considered as a homogeneous random fiel on the
elementary cell. Using equation (26) and using an exponential function to fi the correlation length
L, we have estimated that LREV = 7. That is to say that the REV associated to this specifi problem
should be approximatively 7 times longer than the length of the elementary unit cell used in the
manuscript where the geometrical characteristics of the fiber remain the same. Only the number
Nf should be increased to Nf = 72 · 80 = 3920. Thus, we will see in the numerical example 5.1
that the macroscopic mechanical field have significan stochastic fluctuations

4. METHOD OF STOCHASTIC NUMERICAL EXPLICIT POTENTIALS (S-NEXP)

4.1. Summary of the method

The aim of the S-NEXP method is to numerically determine the strain density energy function
ψ(C) for a finit set of macroscopic boundary conditions depending on tensor C (see equation
(15)) and the different realizations of the random geometries of the microstructure define by the
realizations {ζ(k)}μk=1. The resulting values are then interpolated according to C in order to obtain
the components of tensors S and L required to solve the macroscopic problem (16). The main steps
of the approach are define as follows.

1. Definin the parameters domain Δ = ΔC ×Δζ , where the domain ΔC is related to the
components of the right Cauchy-Green strain tensor C, and where the domain Δζ is related
to the random geometrical parameters generated from the vector ζ.

2. Discretizing each domain ΔC and Δζ into a finit number of nodes. For each node, the
corresponding values of C are used to prescribe boundary conditions on the elementary cell
and the corresponding values of ζ are used to defin the geometry of the microstructure. For
each node the strain energy density function ψ(C, ζ) is determined numerically by solving
problem (14). The results are stored in a database.

3. Giving the resulting database, a continuous interpolation of the discrete values is realized
by an appropriate interpolation scheme associated with a tensorial representation of

©
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ψ(C, ζ). Then during the macroscopic finit element computations, the effective stress-
strain relationship as well as the tangent matrix can be computed by deriving the continuous
interpolation.

4.2. Preliminaries

In this work, for the sake of simplicity in the equations, we adopt the following notations, similar
to the Voigt ones, to express the components of tensor C. Let {e1, e2, e3} be an orthonormal basis,
then

C = C1e1 ⊗ e1 + C2e2 ⊗ e2 + C3e3 ⊗ e3 +
C4√
2
(e2 ⊗ e3 + e3 ⊗ e2) (27)

+
C5√
2
(e1 ⊗ e3 + e3 ⊗ e1) +

C6√
2
(e1 ⊗ e2 + e2 ⊗ e1), (28)

yielding the following notations

C1 = C11, C2 = C22, C3 = C33, C4 =
√
2 C23, C5 =

√
2 C13, C6 =

√
2 C12. (29)

In a similar manner, the components Sα, with α = 1, 2, ..., 6, of tensor S and Lαβ , with β =
1, 2, ..., 6, of tensor L are such that

Sα = 2
∂ψ

∂Cα

, Lαβ = 4γαβ
∂2ψ

∂Cα∂Cβ

, (30)

where γαβ takes the values 1, 1/
√
2 or 1/2 (see [17] for the details).

4.3. Computational details

In this section, we described the main numerical aspects and references, required to implement the
different steps of the method listed in Section 4.1.

4.3.1. Definitio of domainΔ The global parameters domainΔ is split into two domains such that

Δ = ΔC ×Δζ where
{

ΔC = ΔC1
×ΔC2

× ...×ΔCD

Δζ = Δζ1 ×Δζ2 × ...×ΔζM
. (31)

The firs issue is related to the definitio of domain ΔC and Δζ . Extreme values Δmin
Ci

and Δmax
Ci

of a domain ΔCi
can be arbitrarily chosen. However, this case may involve difficultie during

the macroscopic computations since some strain states may correspond to values of C i which are
outside the domainΔC i

. To avoid this difficult , preliminary macroscopic simulations can be done
with homogeneous behaviors corresponding to each phase of the microstructure. However, there is
still a risk that a strain state falls outside the domainΔC i

. In that case, one may use the extrapolation
technique given in [19] to avoid this problem. Thus, we can determine a priori the range of strains
levels in the structure and fi the values of the extrema Δmin

Ci
and Δmax

Ci
. Extreme valuesΔmin

ζi
and

Δmax
ζi

of a domain Δζi are naturally chosen using the set {ζ (k)i }μk=1. A firs way consists in taking
the extreme values of the variable ζi but this strategy may lead to a large range of variation for ζi
and may require a fin discretization of the domainΔζi only needed for an accurate approximation
of values of ζi corresponding to a low probability. Thus, we propose to defin the extreme values
Δmin

ζi
andΔmax

ζi
on the quantile values (quantiles at 5% and 95% for instance) which allow reducing

the support of the variable ζi.
The second issue arises from the discretization of domains ΔC and Δζ . Several ways are possible
as non-uniform or uniform discretizations. In this work, we use the same discretization as proposed
in [17, 19] yielding a uniform discretization. We choose a rectangular grid leading us to discretize
each domain ΔCi

into a number p of nodes homogeneously distributed. Then, the domain ΔC is
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discretized with pD nodes. Concerning the domainsΔζi related toΔζ , the same type of procedure is
used. Each domain is discretized into a f xed number q of nodes homogeneously distributed. It then
yields a number qM of nodes for domainΔζ . One can notice that a choice of discretization based on
the quantile values is possible and appears to be a more sophisticated way in order to be consistent
with the probabilistic content of the problem. This kind of non-homogeneous discretization has
been investigated by the authors but has led us to poorer results than the homogeneous one mainly
due to the high fluctuation of the solution. Thus the overall parameters domain Δ is discretized
into a number pD × qM of nodes for which nonlinear FEM computations are required to compute
the values of the strain energy density function ψ(C, ζ). The FEM computations are not performed
independently: for one geometrical realization ζ (k), we take as an initial guess for the Newton-
Raphson algorithm,the solution, among the ones previously calculated, which is the “closest” to the
one to be computed. Finally, the different values of ψ(C, ζ) are stored in a hypermatrix W which
represents the database.

4.3.2. Separated variables interpolation approach Since the hypermatrixW is computed, we seek
to obtain a continuous explicit form of the potential ψ according to tensor C and vector ζ. We use
the methodology proposed in [19] and we extend it to the stochastic framework. The two distinct
steps are the following.

1. Computation of a separated variables representation U of W through a Parallel Factor
Decomposition [37].

2. Computation of a continuous interpolation of U using twice continuously differentiable (C 2)
functions so that we can evaluate the components of tensors S and L.

The separated variables representation consists in decomposingW into a tensorial representation U
such that

W ≈ U =

R∑
r=1

D⊗
k1=1

φr
k1

M⊗
k2=1

φr
k2
, (32)

where {φr
k1
, k1 = 1, . . . , D} are real-valued vectors related to the macroscopic strain tensor

component C i, and where {φr
k2
, k2 = 1, . . . ,M} are real-valued vectors related to the geometrical

parameters of the geometry and R is an integer. For a given R, the vectors φr
k1

and φr
k2

can be
constructed by solving the following least square problem,

inf
φr

k1
,φr

k2

∥∥∥∥∥W−
R∑

r=1

D⊗
k1=1

φr
k1

M⊗
k2=1

φr
k2

∥∥∥∥∥
2

F

. (33)

Introducing a tolerance parameter δsep in order to reach the desired accuracy, integer R is increased
until ∥∥∥∥∥W−

R∑
r=1

D⊗
k1=1

φr
k1

M⊗
k2=1

φr
k2

∥∥∥∥∥
F

< δsep. (34)

It should be noted that problem define by equation (33) is nonlinear according to the unknown
vectors φr

k1
and φr

k2
. Thus, we use an iterative procedure to solve the problem with the alternated

least square algorithm [38, 39]. In practice, we use the Matlab R© Tensor Toolbox [40] (parafac.m
function) to numerically solve the problem. From equation (32), the continuous interpolation ψ∗ of
ψ can be obtained as

ψ ≈ ψ
∗
=

R∑
r=1

D∏
k1=1

φ̃rk1
(Ck1)

M∏
k2=1

φ̃rk2
(ζk2) , (35)

©
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where φ̃rj(ωj) are the interpolated values of φr
j define by

φ̃rj(ωj) =

n∑
k=1

Nk(ωj){φrj}k . (36)

In equation (36),Nk is one-dimensional C2 interpolation function associated with node k, n denotes
the number of nodes supporting the shape functionsNk(ωj) and {φrj}k are the discrete values of φrj .
Thus, the second Piola-Kirchhoff stress can be approximated by

S
∗
i (C1, . . . , CD, ζ1, . . . , ζM ) = 2

R∑
r=1

⎛⎝⎧⎨⎩∏
k1 �=i

φ̃rk1
(Ck1)

∏
k2

φ̃rk2
(ζk2 )

⎫⎬⎭ ∂φ̃ri (Ci)

∂Ci

⎞⎠ , (37)

in which k1 = 1, . . . , D and k2 = 1, . . . ,M . In the same manner, the approximated value L
∗ of

tangent elastic tensor L is given by

L
∗
ij = 4 γij

R∑
r=1

⎛⎝⎧⎨⎩ ∏
k1 �=i,j

φ̃rk1
(Ck1)

∏
k2

φ̃rk2
(ζk2 )

⎫⎬⎭ ∂φ̃ri (Ci)

∂Ci

∂φ̃rj(Cj)

∂Cj

⎞⎠ if i �= j , (38)

L
∗
ii = 4 γii

R∑
r=1

⎛⎝⎧⎨⎩∏
k1 �=i

φ̃rk1
(Ck1)

∏
k2

φ̃rk2
(ζk2 )

⎫⎬⎭ ∂2φ̃ri (Ci)

∂C
2

i

⎞⎠ , (39)

with k1 = 1, . . . , D and k2 = 1, . . . ,M and with

∂φ̃ri (Ci)

∂Ci

=

n∑
k=1

∂Nk(Ci)

∂Ci

{φri }k and ∂2φ̃ri (Ci)

∂C
2

i

=

n∑
k=1

∂2Nk(Ci)

∂C
2

i

{φri }k . (40)

Many choices are possible for the interpolation functionsNk. In this work, we use one-dimensional
C2 cubic spline functions as in [17, 19] for which results of convergence with respect to the
number of discretization points have been studied (see for instance [41]). For a parameters domain
of high dimension, this approach has the advantage to only determine the coefficient of one-
dimensional spline functions and then leads us to solve a small system of equations, which saves
both computational time and memory.

5. NUMERICAL EXAMPLES

Two numerical examples are developed in this section. The firs one aims at demonstrating the
efficien y of the proposed method for the approximation of the macroscopic constitutive behavior
through tensorsS(C, ζ) andL(C, ζ). The numerical potentialψ(C, ζ) obtained in the firs example
is then used in the second example which deals with a macroscopic problem. For both problems,
solutions are compared with reference solutions computed with classical methods.

5.1. Numerical example 1: study of the microscopic problem

5.1.1. Problem definitio The aim of this firs example is to demonstrate the efficien y of the
S-NEXP method and the accuracy of the resulting solution through comparisons with standard
approaches (nonlinear FEM computations andMonte-Carlo simulations). For this purpose, we focus
on the quantities ψ(C1, ..., CD; ζ1, ..., ζM ) and Si(C1, ..., CD; ζ1, ...ζM ) according to macroscopic
strainsC and reduced random variables ζ characterizing the random geometry of the microstructure.
The parameters of the model are the following ones:

1. Random generator parameters: number of random variables m = 6000, spatial correlation
parameter ρ = 0.5, number of realizations ν = 1000, coefficien of variation δord = 0.5 and
number of fiber Nf = 80.
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2. Statistical reduction (23): we have chosen M = 2 eigenvalues in order to facilitate the
understanding for the response surfaces corresponding to ε1KL = 0.8 and ε2KL = 0.7. The
following values of the tolerance parameter are ε3KL = 0.55, ε4KL = 0.38 and ε5KL = 0.15.

3. Discretization of domainΔC : the macroscopic strain domain is chosen such asΔC = ΔC1
×

ΔC2
×ΔC6

= [1 , 1.5]× [1 , 1.5]× [0 , 0.5]. We use p = 5 points for each domain ΔCi
. A

convergence analysis of the deterministic problem only related to the macroscopic strains
can be found in [19].

4. Material parameters: we use a compressible Neo-Hookean model given by the potential
define by equation (5). For the matrix, the Youngmodulus isEm = 103 MPa and the Poisson
ratio is νm = 0.4. For the inclusions, Ef = 105 MPa and νf = 0.3.

In this example, we firs focus on the efficien y of the method according to the number q of
points used for the discretization of parameters domain Δζ . Here, the domain Δζ = Δζ1 ×Δζ2 =
[q15 , q

1
95]× [q25 , q

2
95] = [−1.61 , 1.63]× [−1.7 , 1.55] where qi5 and qi95 are respectively the quantile

values at 5% and 95% for the i-th random variable. We choose to discretize each domain Δζi with
different numbers q = 5, 11 and 21 of points homogeneously distributed.

5.1.2. Influenc of random variable ζ1 In this section, we study the influenc of random variable
ζ1 on the S-NEXP solution and the resulting macroscopic constitutive behavior through the second
Piola-Kirchhoff stress tensor S. Figure 8 illustrates the response surfaces of ψ(C, ζ), according
to ζ1 (and for ζ2 fi ed to zero) and to macroscopic strains such that (C 11, C22, C12) belongs to
[1 , 1.5]× [1 , 1.5]× [0 , 0.5], for the three choices of discretization of Δζ . Figure 8 also displays
a reference solution consisting in a set of direct nonlinear FEM computations for a given grid of
20× 20 points. One can observe a good convergence of the solution towards the reference solution
with respect of number of discretization points q. The solution corresponding to q = 21 is obviously
the one which matches the best the reference solution. Figure 9 presents the response surfaces related
to component S11(C, ζ) of tensor S according to the same parameters as in figur 8. We also notice
a good convergence of the S-NEXP solution according to the number of discretization points q. It
clearly shows that the numerical derivation of the potential ψ(C, ζ) allows a good approximation of
the macroscopic constitutive behavior. Moreover, one should notice that the post-processing of the
S-NEXP solution is very fast thanks to the explicit continuous form of the S-NEXP solution.
In figure 8 and 9, we can observe high variations of the quantities of interest according to

parameter ζ1 which can be naturally related to the stochastic fluctuations However, with a quite
high number of discretization points (q = 11 and 21), the S-NEXP method allows us to accurately
capture irregularities in the solution. For instance, in figur 9, we can notice an abrupt variation of
the solution around the value ζ1 ≈ 0. This is due to a significan change in the geometry as shown
on figur 10 where two realizations of the geometry are displayed. The same variations appear in
the components of the elastic tangent tensor L(C, ζ) as it is shown on figur 11 where the response
surfaces of the component L1111 are displayed for the different S-NEXP solutions and the reference
solution.
We then focus on the probability density functions of the previous quantities of interest for a

particular macroscopic strain state corresponding to {C11 = 1.5;C22 = 1.5;C12 = 0.5}. We use
the μ realizations ζ(k) which verify the condition of impenetrability given in Section 3.2.3. As a
reference solution, we use realizations of the geometry of the microstructure generated with the
reduced-order model corresponding toM = 1 for which we perform nonlinear FEM computations
in order to obtain the reference values of ψ and S11. Figure 12 illustrates these probability density
functions for the different chosen discretizations of parameters domain Δζ and for the reference
solution. As for the response surfaces, we can observe a good convergence of the solution according
to the number of discretization points q.

5.1.3. Influenc of random variables ζ1 and ζ2 In the previous section, we have noticed that the
solution showed a significan variability according to ζ1. We now focus on the influenc of both
random variables ζ1 and ζ2 on the solution. Figures 13 and 14 illustrate respectively the response
surfaces of ψ and S11 according to ζ1 and ζ2 for the S-NEXP solution (with q = 21) and the
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(a) S-NEXP response surface of ψ for q = 5.
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(b) S-NEXP response surface of ψ for q = 11.
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(c) S-NEXP response surface of ψ for q = 21.
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(d) Reference response surface of ψ.

Figure 8. Response surfaces of ψ according to ζ1 and macroscopic strains such that (C11, C22, C12) belongs
to [1 , 1.5] × [1 , 1.5] × [0 , 0.5] for q = 5, q = 11 and q = 21 and for the reference solution.

reference solution (nonlinear FEM computations). On those two cases the macroscopic strain state
corresponds to C11 = 1.5, C22 = 1.5 and C12 = 0.5. As expected, we can notice significan global
and local variations which disturb the S-NEXP solution. However, the method leads us to acceptable
results with respect to the reference solution. As explained in Section 5.1.2, the global variations are
due to significan changes in the geometry while the local variations are mainly due to the numerical
difficultie involved by problem define by equation (14) associated with boundary conditions
define by equation (15).
Figure 15 illustrates the probability density functions of ψ and component S 22 for the S-NEXP

solution (with q = 11) and the reference solution (based on the reduced-order model corresponding
to M = 2) corresponding to the macroscopic strain state C11 = 1.5 C22 = 1.5 and C12 = 0.5.
We can observe slight differences between the two solutions. Nevertheless, the S-NEXP solution
appears satisfying according to the reference solution.

5.1.4. Accuracy and computational costs of the S-NEXP approximation In this section we present
a convergence analysis in order to estimate the accuracy of the S-NEXP approximation. As we have
no a priori information on the probabilistic content of the macroscopic strains, we suppose that all
components of stress tensors S are independent uniform random variables such as C11 ∼ U(1, 1.5),
C22 ∼ U(1, 1.5) and C12 ∼ U(0, 0.5), in which U(a, b) denotes a uniform random variable on [a , b].
We can thus introduce an error indicator εq define as follows

εq =
‖Jq − Jref‖L2(Ξ,dPΞ)

‖Jref‖L2(Ξ,dPΞ)
, (41)
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(a) S-NEXP response surface of S11 for q = 5.
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(b) S-NEXP response surface of S11 for q = 11.
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(c) S-NEXP response surface of S11 for q = 21.
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Figure 9. Response surfaces of S11 according to ζ1 and macroscopic strains such that (C11, C22, C12)
belongs to [1 , 1.5]× [1 , 1.5]× [0 , 0.5] for q = 5, q = 11 and q = 21 and for the reference solution.
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(a) Mesh of the microstructure corresponding
to ζ(1)1 = −0.32.
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(b) Mesh of the microstructure corresponding
to ζ

(2)
1 = 0.33.

Figure 10. Geometries and meshes of the microstructure for two realizations of ζ1.

with

‖Jref‖L2(Ξ,dPΞ) 
 1

μ

μ∑
k=1

|J (k)
ref |2, (42)
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(a) S-NEXP response surface of L1111 for q = 5.
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(b) S-NEXP response surface of L1111 for q = 11.

1

1.2

1.4

−1

0

1

0

1000

2000

3000

 

C11
ζ1

 

L
1
1
1
1

500

1000

1500

2000

2500

3000

3500

(c) S-NEXP response surface of L1111 for q = 21.
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Figure 11. Response surfaces of L1111 according to ζ1 and macroscopic strains such that (C11, C22, C12)
belongs to [1 , 1.5]× [1 , 1.5]× [0 , 0.5] for q = 5, q = 11 and q = 21 and for the reference solution.
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Figure 12. Probability density functions (Pdf) of ψ(C, ζ) and S11(C, ζ) corresponding to C11 = 1.5,
C22 = 1.5 and C12 = 0.5, for q = 5, q = 11 and q = 21.

where Jq is a quantity of interest corresponding to the post-processing of the S-NEXP solution
related to a particular number q and Jref is the reference quantity of interest. To achieve this
computation, we use the set {ζ(k)}μk=1 and for each ζ(k) we associate a realization of the
macroscopic strain state following the uniform distribution. Figure 16 illustrates the convergence
of the error indicator εq for different quantities of interest (e.g. ψ, S11, S22 and S12) according to
q. Since the number of discretization points p (related to the macroscopic strains domain ΔC ) is
here fi ed, it is not possible to reach a level of error close to zero, which would theoretically be
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(a) S-NEXP response surface of ψ for q = 21.
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Figure 13. Response surfaces of ψ(C, ζ) according to ζ1 and ζ2 for C11 = 1.5, C22 = 1.5 and C12 = 0.5.
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(a) S-NEXP response surface of S11 for q = 21.
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Figure 14. Response surfaces of S11(C, ζ) according to ζ1 and ζ2 for C11 = 1.5, C22 = 1.5 and C12 = 0.5.
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Figure 15. Probability density functions (Pdf) of ψ and S22 for C11 = 1.5 C22 = 1.5 and C12 = 0.5.

reached with the increase of p. However, we can observe a good and fast convergence of εq. Thus,
even for q = 5, we notice a low level of error slightly superior to 10−3 for ψ, S11 and S22, and close
to 7.10−2 for S12. Figure 17 displays the probability density functions, in semi-log10 scale, of the
sets of realizations used in the computation of the error indicator εq for ψ and S11. We can notice a
very good match of the results for any number of discretization points q except for the probability
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Figure 16. Convergence of error indicator εq with respect of number of discretization points q with q = 5, 11
and 21.
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Figure 17. Comparison of the probability density functions (Pdf) of the S-NEXP solutions and the reference
solutions computed for the error analysis.

tails for which only the S-NEXP solution corresponding to q = 21 matches precisely the reference
solution.
We finall focus on the computational costs of the S-NEXP approach. Figure 18 displays the

numberQ = pD × qM of nonlinear FEM computations needed in the S-NEXP method with respect
to number M of random variables ζj . On this figure p = 5, D = 3 and the three lines correspond
to q = 5, q = 11 and q = 21. This figur gives an information about the range of applicability of
the method proposed. We indeed can observe that the number Q of nonlinear FEM computation
becomes very high when M increases. In the case of high dimension (i.e. high values of M ), the
involved computational time would become too important to use this kind of method even with a
very efficien solver for the nonlinear boundary value problems. However, the proposed approach
remains suitable for low or middle dimension. All the computations have been made on a 40-cores
computer and the CPU times for the results given in this example are the following ones:

• M = 1: 15 minutes for q = 5, 30 minutes for q = 11 and 70 minutes for q = 21.
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Figure 18. Number Q of nonlinear FEM computations needed in the S-NEXP method as a function of
numberM of random variables for different number of discretization points q = (1, 11, 21).

• M = 2: 7 hours for q = 11 and 1 day for q = 21.

5.2. Numerical example 2: a two scales structural problem

5.2.1. Problem definitio In this example, we propose to study the efficien y of the S-NEXP
method with a two scales structural problem depicted in figur 19(a). We consider a structure
made of a heterogeneous hyperelastic material where the geometry of the microstructure is random.
The microscopic problem corresponds to the one studied in Section 5.1 with the parameters of
the probabilistic content given in Section 5.1.1. To characterize the strain energy density function
representing the macroscopic constitutive behavior of the material, we use the S-NEXP solutions
with the different discretizations (e.g. q = 5, q = 11 and q = 21). At the macroscopic level, the
dimensions of the structure are L = 1 m, H = 1 m and e = 0.2 m and displacements Δu = 5%
are imposed on a part Γu of the structural domain. For the macroscopic space approximation, we
use a mesh composed of 372 3-nodes triangular finit elements depicted on figur 19(b). To test
the efficien y of the method, we build reference solutions with a multilevel Finite Element Method,
denoted FE2 in the following (see [7, 9]), with the same macroscopic mesh used for the S-NEXP
calculations.

5.2.2. Accuracy of the S-NEXP solution We propose to show the efficien y of the S-NEXP method
with post-processing of the macroscopic solution. During the macroscopic computation, each
integration point in the macroscale discretization must be associated with a microstructure. Two
cases are considered.

1. Case (i): the same geometry of the microstructure corresponding to the statistical mean of the
stochastic model of the geometry of the microstructure, is used for each integration point.

2. Case (ii): the random geometry of the microstructure constructed with the realizations
{ζ(k)}μk=1 is used for each integration point.

Case (ii) takes into account the stochastic fluctuation which are significan as shown in Section 5.1.
It is worth noticing that the post-processing of the S-NEXP solution is very fast thanks to the explicit
continuous form of the potential (less than one minute with a laptop computer for this example)
while a complete FE2 computation takes more than one hour with a computer cluster with 40 cores.
Figure 20 displays the von Mises stresses for the macroscopic computations corresponding to the
three S-NEXP solution (numerical potential computed with q = 5, q = 11 and q = 21) and the FE2

reference solution for case (i). We can observe a good agreement of the results even for a small
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Figure 19. Geometry and boundary conditions for the two scales structural problem (a); Finite element mesh
associated with the microstructure (b).

number q of discretization points. In the same manner, figur 21 displays the von Mises stresses
for case (ii). We can also notice a good convergence of the S-NEXP solution towards the reference
solution even if the macroscopic solution is not smooth according to the von Mises stress field
However, we can observe that the convergence is slower than the one corresponding to case (i): this
is due to the important variations of the potential which are bad approximated with a low number q
of discretization points has shown on figur 9. Thus, a good macroscopic solution required to use a
number q of discretization points which is high enough to capture these irregularities. Finally, figur
22 shows the typical convergence of the macroscopic Newton-Raphson algorithm for both cases.
We can observe that behavior of the macroscopic computations are the same for the two cases and
thus that the second-order convergence is still reached even for case (ii).

6. CONCLUSIONS

To the knowledge of the authors, the present paper is the firs one devoted to the challenging
issues concerning the computational nonlinear stochastic homogenization using a non-concurrent
multiscale approach for hyperelastic heterogeneous microstructures analysis. The non-concurrent
multiscale approach for micro-macro nonlinear mechanics has been validated for the deterministic
case in the literature. In this work, we have extended and validated this approach to the stochastic
case for hyperelastic heterogeneous microstructures. Since the non-concurrent multiscale approach
is based on the use of a tensorial decomposition, which is then submitted to the curse of
dimensionality, we have performed an analysis with respect to the stochastic dimension. In order
to show the capability of this multiscale approach in the stochastic framework, a prior stochastic
model of the microstructure has been introduced, which allows the efficien y to be analyzed with
respect to the stochastic dimension. Clearly, such a prior stochastic model could be replaced by
any other model which would have the same capabilities. In this work, we have considered a
fibe reinforced polymer composites for which the geometry of the microstructure is random. The
firs point of the proposed method has consisted in building a stochastic model of the random
geometry for the microstructure. A major difficult is related to the impenetrability condition
between the fiber and the stochastic dimension induced by the number of fibers The second
point is devoted to the extension of the method of numerical explicit potentials to the stochastic
framework. The macroscopic constitutive behavior of the material is define by a continuous explicit
form of the macroscopic strain energy density function (potential) according to the macroscopic
strain state and the random geometrical parameters. A separated variables representation associated
with an interpolation scheme has allowed obtaining the continuous explicit form of the effective
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(b) VM stresses for q = 11.
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(c) VM stresses for q = 21.
 

 

10

20

30

40

50

60

70

80

90

100

(d) VM stresses for the FE2 reference solution.

Figure 20. Comparison of the von Mises stress field for case (i); mean geometry of the microstructure
applied to each integration point.

potential which, by derivation, has allowed determining the components of the stress and the
tangent elastic tensors required for the macroscopic computations. Two numerical examples have
been presented to validate the proposed approach. However, in the development of the proposed
approach, several difficultie have arisen and must be pointed out. First, as the strain energy density
function holds irregularities with respect of the geometrical parameters, an important number of
discretization points must be employed to capture these local gradients. Thus, the use of a uniform
discretization for the parameters domain does not appear as the best choice since unnecessary points
are introduced. A non-uniform discretization strategy based, for instance, on the volume fraction
will be investigated in a forthcoming paper. Moreover, as the main computational cost comes from
the construction of the database, an optimal discretization strategy would allow reducing these costs.
Finally, we pointed out that those high computational times prevent from using the approach with an
important number of reduced random variables characterizing the geometry of the microstructure.
This limitation is classical in the context of parametric stochastic methods when one increases the
stochastic dimension. Further works dedicated to circumvent this drawback will be investigated in
forthcoming papers.
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Figure 21. Comparison of the von Mises stress field for case (ii): particular realization of the geometry of
the microstructure applied to each integration point.
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