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Abstract. In a problem of target hitting, the capture basin at cost ¢
is the set of states that can reach the target with a cost lower or equal
than ¢, without breaking the viability constraints. The boundary of a
c-capture basin is the c-contour of the problem value function. In this
paper, we propose a new algorithm that solves target hitting problems,
by iteratively approximating capture basins at successive costs. We show
that, by a simple change of variables, minimising a cost may be reduced
to the problem of time minimisation, and hence a recursive backward
procedure can be set. Two variants of the algorithm are derived, one
providing an approximation from inside (the approximation is included
in the actual capture basin) and one providing a outer approximation,
which allows one to assess the approximation error. We use a machine
learning algorithm (as a particular case, we consider Support Vector Ma-
chines) trained on points of a grid with boolean labels, and we state the
conditions on the machine learning procedure that guarantee the con-
vergence of the approximations towards the actual capture basin when
the resolution of the grid decreases to 0. Moreover, we define a control
procedure which uses the set of capture basin approximations to drive
a point into the target. When using the inner approximation, the pro-
cedure guarantees to hit the target, and when the resolution of the grid
tends to 0, the controller tends to the optimal one (minimizing the cost
to hit the target). We illustrate the method on two simple examples,
Zermelo and car on the hill problems.

Keywords: Viability theory, capture basin, optimal control, Support
Vector Machines.

1 Introduction

We consider a dynamical system, described by the evolution of its state variable
zeR™

2(t)" € F(z(t)) = {p(z(t), u®)) | u(t) €U}, (1)

where z(t) is the state at time ¢, F' is a set-valued map and U the set of ad-
missible control. We assume that there is a positive cost £(z(t), u(t)) for taking
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control u in state x at time t.

We focus on the problem of defining the control function that drives the dy-
namical system inside a given target compact set C C K without going out from
a given set K (called the viability constraint set), and that minimises the cost

functional
+oo

inf L(z(7),u(r)) - dr. (2)

uel Jqg
This problem, often called the reachability problem, can be addressed by opti-
mal control methods, solving Hamilton-Jacobi-Bellman (HJB) or Isaacs (HJI)
equations. Several numerical techniques are available; for example, [11] propose
an algorithm that computes an approximation for the backward reachable set of
a system using a time dependent HJI partial differential equation, [9] builds the
value function of the problem which can be then used to choose the best action
at each step when the cost function represents the time.
Reachability problem can also be addressed in the viability theory framework [1].
To apply viability theory to target hitting problems when the cost to minimise
is the time elapsed to reach the target, one must add an auxiliary dimension to
the system, representing the time. The approach computes an approximation of
the envelopes of all t-capture basins, the sets of points for which there exists a
control function that allows the system to reach the target in a time less than
t. [7] shows that the boundary of this set is the value function in the dynamical
programming perspective. Hence, solving this extended viability problem also
provides the minimal time for a state = to reach the target C while always stay-
ing in K (minimal time function ¥ (x) [4]). This function can then be used to
define controllers that drive the system into the target. The same approach can
be used for cost minimisation; in that case, the extra-dimension represents the
cost-to-go to the target [3].
Several numerical algorithms [13,4] provide an over-approximation of capture
basins. [2] implement an algorithm proposed by [14] that computes a discrete
under-approximation of continuous minimal time functions (and thus an over-
approximation of capture basins), without adding an additional dimension. [8]
present an algorithm, based on interval analysis, that provides an inner and outer
approximation of the capture basin. In general, capture basin and minimal time
function approximation algorithms face the curse of dimensionality, which limits
their use to problems of low dimension (in the state and control space).
This paper proposes a new method to solve target hitting problems, inspired by
our work on viability kernel approximation [6], that minimise the cost to reach
the target. The principle is to approximate iteratively the capture basins at suc-
cessive costs c. To compute cost c-capture basin approximation, we use a discrete
grid of points covering set IC, and label +1 the points for which there exists a
control leading the point into the ¢ — dc-capture basin approximation, and -1
otherwise. Then, we use a machine learning method to compute a continuous
boundary between +1 and -1 points of the grid. We state the conditions the
learning method should fulfil (they are similar to the one established to approx-
imate viability kernels [6]) in order to prove the convergence toward the actual
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capture basins.

We consider two variants of the algorithm: one provides an approximation that
converges from outside, and the other from inside. Although no convergence rate
is provided, the comparison of the two approximations gives an assessment of
the approximation error for a given problem. Moreover, we define a controller
that guarantees to reach the target when derived from the inner approximation.
We consider Support Vector Machines (SVMs [16, 15]) as a relevant machine
learning technique in this context. Indeed, SVMs provide parsimonious approxi-
mations of capture basins, that allow the definition of compact controllers. More-
over, they make possible to use optimisation techniques to find the controls,
hence problems with control spaces in more dimensions become tractable. We
can also more easily compute the control on several cost steps, which improves
the quality of the solution for a given resolution of the grid.

We illustrate our approach with some experiments on two simple examples. Fi-
nally, we draw some perspectives.

2 Problem definition

We consider a controlled dynamical system in discrete time (Euler approxima-
tion), described by the evolution of its state variable z € K C R™. We aim at
defining the set of controls to apply to the system starting from point x in order
to reach the target C C K :

x(t+dt) = z(t) + ¢ (z(t), u(t)) - dt, if z(t) ¢ C
x(t + dt) = z(t), if x(t) e C (3)
u(t) €U,

where ¢ is a continuous and derivable function of « and u. The control © must
be chosen at each time step in the set U of admissible controls. The problem also
includes a cost functional ¢(z(t), u(t)) > 0 that associates a cost to a trajectory.

The capture basin of the system is the set of states for which there exists at
least one series of controls such that the system reaches the target in finite time,
without leaving K. Let G (z,(u1,..,u,)) be the point reached when applying
successively during n time steps the controls (ug, .., u,), starting from point .
Let the minimal time function (or hitting time function) be the function that
associates to a state z € K the minimum time to reach C:

9% () = inf {n|3(u1, .., un) € U™ such that G (z, (u1,..,u,)) € C
and for 1 < j <n,G(z, (u1,..,u;)) € L}. (4)
and the minimal cost function over the time period t = [0,95 ()] be the function

that associates to x the minimal cost to reach C:

ueUu

95 (z)
@& (z) = min T u - dt.
K(x) / O (t), ut)) - dt (5)
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This is the value function obtained when solving HJB equations in a dynamic
programming approach. It takes values in R* U+oo0, specifically 9% (z) = @k (z) =
0 if # € C and 9% (z) = @wh(z) = +o0o if no trajectory included in K can reach
C. The capture basin of C viable in K is then defined as:

Capt(K,C) = {z € K|9F () < +o0}, (6)
and we can also define the capture basin in finite time n:
Capt(K,C,dt,n) = {z € K95 (x) < n}. (7)
or in finite cost:
Capt(K,C,de,n) = {z € K|wh (z) <n}. (8)

with dc the cost step.
To solve a target hitting problem in the viability perspective, one must con-
sider the following extended dynamical system (x(t),y(t)) when z(t) ¢ C:
x(t+dt) = z(t) + ¢ (x(t),u(t)) - dt
_ 9)
y(t +dt) = y(t) — €(x(t), u(t)) - dt.

and (x(t+dt) = z(t),y(t + dt) = y(t)) when z(t) € C. [4] prove that approxi-
mating minimal time function comes down to a viability kernel approximation
problem of this extended dynamical problem, with ¢(z(¢),u(t) = 1 and [3] ex-
tend the results to any cost function £(z(t),u(t)) > 0. In a viability problem,
one must find the rule of controls for keeping a system indefinitely within a con-
straint set. [2,14] give examples of such an application of viability approach to
solve a target hitting problem.

[6] proposed an algorithm, based on [13], that uses a machine learning pro-
cedure to approximate viability kernels. The main advantage of this algorithm
is that it provides continuous approximations that enable to find the controls
with standard optimization techniques, and then to tackle problems with con-
trol in large dimensional space. The aim of this paper is to adapt [6] to compute
directly an approximation of the capture basin limits, without adding the auxil-
iary dimension, and then to use these approximations to define the sequence of
controls.

3 Machine learning approximation of value function
contours and optimal control

For simplicity, we denote Capt(K,C, dc,n-dc) = Capt™. In all the following, con-
tinuous sets are denoted by rounded letters and discrete sets in capital letters.
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Let’s denote dc the cost variation for one state and control at time step dt:
de = 0(z(t),u(t)) - dt (10)
and we consider function G:

x + p*(x,u) - de ifeé¢gC
x ifrzeC

G(z,u) = { (11)

where

e(z,u)
Ux,u)’
By a change of variables, minimising a cost may be reduced to the problem of
time minimisation (¢(z,u) = 1), except that we consider here the cost step dc
instead of time step dt.

We suppose that G is p-Lipschitz with respect to x:

o (z,u) = (12)

V(z,y) € K?,Yu € U, |G(z,u) — G(y,u)| < plz —yl. (13)
We define a grid K, as a discrete subset of K, such that:
Vo € K, 3y € Kp, such that | — zp| < h. (14)

Moreover, we define an algebraic distance d,(x, 9€) of a point = to the boundary
O€ of a continuous closed set £, as the distance to the boundary when z is located
inside &, and this distance negated when x is located outside &:

ifx €&,dy(x,08) =d(x,0E), (15)
ifax ¢ & dy(x,08) = —d(z,dE). (16)

3.1 Capture basin approximation algorithms

In this section, we describe two variants of an algorithm that provides an ap-
proximation C};' of the capture basin at cost n - dc, one variant approximates the
capture basins from outside and the other one from inside. At each step n of the
algorithm, we first build a discrete approximation C}' C K}, of the capture basin
Capt™, and then we use a learning procedure L (for instance Support Vector
Machines, as shown below) to generalise this discrete set into a continuous one

Cp

Ci = L(CY) (17)

To simplify the writing, we first define:
CT? ={xp € K st.xp ¢ C'}, (18)
Ch={zekst.z¢Cp}. (19)

The two variants differ on the conditions for defining the discrete set C;LLH
from C}', and on the conditions the learning procedure L must fulfil. For both
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variant, we construct an increasing sequence of approximations at cost n - dc,
by adding the points of the grid for which there exists at least one control that
drives the system not too far away (in an algebraic sense — negative distance
in the outer case and positive distance in the inner one) from the boundary of
the previous approximation. They also both require conditions on the learning
procedure, in order to guarantee the convergence toward the actual capture basin
when the step of the grid i decreases to 0. In the inner approximation case, the
condition is stricter on set C;' and more relaxed on set @, while the outer case
requires converse conditions. We now describe in more details both variants and
conditions.

Outer approximation The algorithm recursively constructs discrete sets C’Z‘l -
C} C C}, and their continuous generalisation C;' as follows:

Algorithm 1 Outer capture basin approximation algorithm

n<+0

02 ~— CNKy

CcY«—¢C

repeat
n+<n+1
cp oty {a:h € C7 7 such that Ju € U, du(G(zn, u), 0CI ) > —uh}
Cr < L(CY)

until Cjp = Cp~!

return {C}L}

0<i<n

Proposition 1. If the learning procedure L respects the following conditions:

Vo € Cit, 3y, € C such that |v — zp| < h (20)
X > 1 such that Yh,Vz € Cp, 3z, € CF such that |z — xp| < Ah (21)

then the convergence of the approzimation from outside defined on algorithm 1
is guaranteed:

vn, Capt™ C Cy}, (22)
Cyy — Capt™ when h — 0. (23)

Proof. The proof involves two parts.

Part I. First, let us prove by induction that Yh > 0, Capt™ C C}'.

By definition, Capt® = C = C}). Suppose that at step n, Capt™ C C}'. Consider
x € Capt™*. Let us recall that G(z,u) = z + ¢(z,u)* - de when z ¢ C.
Defining By, (z,d) the set of points of K} such that |z — x| < d, we can easily
show that condition (21) can be rewritten as:

Bh(z,h) C CI' =z € CI. (24)
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By definition, we know that there exists u € U such that G(z,u) € Capt™,
which implies that for all x, € By(z,h), d (G(xp,u), Capt™) < ph, because G is
pu-Lipschitz.

Moreover, for all z;, € By(z, h), d(G(zp,u),C}r) < ph, because, by hypothesis,
Capt™ C CJ'. Thus x5, € Ot Therefore, x € Cj'*! (because of condition (24)).
We can thus conclude Capt™t! C C}TZH.

Part II. Now, we prove by induction that for any n, C; — Capt™ when h — 0.
Suppose now that for a given value n, C;; — Capt™ when h — 0.
Because Capt™ C C}!, we have:

Vee K|z ¢ Capt™,3h >0 | x ¢ Cj,. (25)

Now, consider z € K such that = ¢ Capt™**.

This implies that for all v € U such that d (G(z,u), Capt™) > 0. One can choose
R’ > 0 and h such that for all u € U, d (G(x,u), Capt™) > h' + ph.

Condition (20) can be rewritten as:

Bp(z,Ah) C C} = x € CJl. (26)

In this case, for all x;, € By(x, Ah), all w € U, d (G(xzp,u), Capt™) > h', because
G is p-Lipschitz.

Since ) — Capt™ when h — 0, there exists h, such that, for all x5, € By (x, Ah),
and all u € U, G(zp,u) € CF, hence z;, € CJ'. Hence, there exists h such that
x ¢ Cj' (because of condition 24).

Therefore C;'*' — Capt™*! when h — 0.

Conclusion. Capt™ C C;! and C;} — Capt™ then C;! is an outer approxima-

tion of the capture basin at cost n - de, which tends to the actual capture basin
when the resolution of the grid A tends to 0. a

Inner approximation We consider the following algorithm:

Algorithm 2 Inner capture basin approximation algorithm

n<+0

02 —~CNKy

C)«¢C

repeat
n<n+1
op =or 'y {mh € C7 " such that Ju € U, do(G(zn,u), IC}) > uh}
Cr < L(Cy)

until Cf = C; "

return {Cj,

}Ogign
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Proposition 2. If the learning procedure L respects the following conditions:

Vx € Cy},xy, € C} such that |x — x| < h (27)
3\ > 1 such that Yh,Nz € C}',3zy, € CJ such that |z — zp| < Ah (28)

and that the dynamics are such that:

Vz € K with d, (z,0Capt™) > 0,3u € U such that d, (G(z,u),dCapt" ") >0

(29)
then the convergence of the approximation from inside defined on algorithm 2 is
guaranteed:

vn,C; C Capt™, (30)
Cy — Capt™ when h — 0. (31)

Proof. Convergence proof of the algorithm from inside requires an additional
condition on the dynamics (eq. (29)): a point = of the interior of capture basin
at cost n - de, should be such that there exists y € G(x) belonging to the interior
of capture basin at cost (n — 1) - dc (and not on dCapt™~1).

Part I. We begin to show by induction that C;' C Capt™.

Suppose that C;) C Capt™ and consider x € CLLH.

Because of condition (27):

Jup, € C;T such that |z — x| < h.
By definition of C,’;“:
Ju € U such that d, (G(zp,u),Cp) > ph.

By hypothesis of induction C}' C Capt™, hence : d, (G(zp, u), Capt™) > ph. By
hypothesis on G, |G(zp, u) —G(x,u)| < p|zn, — x|, hence d, (G(z,u), Capt™) > 0.
Therefore z € Capt™*!. Thus C;*' € Capt™t.

Part II. We prove by induction that, when h — 0, C;) — Capt™ .
Suppose that C;' — Capt™ when h — 0.
Because C;} C Capt™, we have:

Vo € Capt™ | do(x,0Capt™) > 0,3h >0 | z € C}.
We use the rewriting of condition (28):
Bp(x,\h) N Cp =z € Cy. (32)

Consider x € Capt™*! such that d,(z,dCapt™™!) > 0 . One can choose h such
that d,(z,0Capt™™') > (u + A)h. With such a choice, for each x), € By, (z, Ah),
do(zp, 0Capt™™1) > ph, hence, there exists u € U such that d, (G(zp,u), Capt™)) >
0 (because G is u-Lipschitz).

By induction hypothesis, there exists h such that d, (G(zp,u),C}') > ph, hence
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z, € CML. Taking the smallest value of h this is true for all z;, € By,(z, Ah).
Therefore z € Cj! (because of condition (32)).
Therefore C;'"*' — Capt™*! when h — 0.

Conclusion. C;} C Capt™ and C;! — Capt™ then C;' is an inner approxima-
tion of the capture basin in finite cost n - de, which tends to the actual capture
basin when the resolution of the grid tends to O. O

3.2 Optimal Control

The aim of the optimal controller is to choose a control function that reaches
the target in minimal cost, without breaking the viability constraints. The idea
is to choose the controls which drive the system to cross C;' boundaries in a
descending order.

Algorithm 3 Optimal controller
Require: z(0) € K and ¢ C
Require: n such that z(0) € Cj and ¢ C;'~ .
for:=1ton do
compute u(i)* such that G(z(i — 1), u(i)*) € C;}~*
z(1) = G(z(i — 1), u(z)*)
end for
return {u"(i)},;,

Proposition 3. The procedure described in algorithm 3 converges towards the
control policy minimizing the hitting cost, when h and dt tend to 0.

Proof. By construction, if z(i) € C;'~* and x(i) ¢ Cjr~*~!, there exists a control
value u*(i+ 1) such that x(i + 1) = G(x(i),u* (i + 1)) € C;' "~ (see proof of the
convergence of the inner algorithm, part I.). Therefore, the procedure leads to
the target in n+ 1 cost steps, i.e. with a cost (n+1)-dec. Moreover, by definition,
the optimum cost for reaching the target from a point x located on the boundary
of capture basin Capt™ is n - dc. Hence, the optimum cost for reaching the target
from point z such that z € Capt™*! and x ¢ Capt™, with the dynamics defined
by ¢, is between n-dc and (n+1) - de. Then, the fact that Cj' converges to Capt™
when h tends to 0, ensures that the number of steps needed by the procedure
applied to this point « will tend to (n+1)-dc. When dc tends to 0, the difference
with the optimum cost to reach the target, which is smaller than dc, tends to
0. ad
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4 Experiments

4.1 SVM as a learning procedure

We use Support Vector Machines [16,15] as the learning procedure L to define
capture basin approximations C;; = L(C}'). At each iteration, we construct a
learning set: let S} be a set of couples (xp,yp), where x), € Kj, and y, = +1
if z;, € C}} and —1 otherwise. Running a SVM on learning sets S}’ provides a
separating function f;' between points of different labels and hence, allows us to
define a continuous approximation C;’ of Cj' as follows:

Cr = {x € K such that f;'(z) > 0}. (33)

Points x of the boundary dC}' are those such that f;'(x) = 0. The fulfilment of the
conditions guaranteeing convergence is discussed in [6] and the same arguments
hold in both variants of the algorithm.

In the following examples, we use libSVM [5] to train the SVMs. As we did
in [6], we use the SVM function as a proxy for the distance to the boundary, in
order to simplify the computations.

4.2 Zermelo Problem

The state (x(t),y(t)) of the system represents the position of a boat in a river.
There are two controls: the thrust u and the direction 6 of the boat. The system
in discrete time defined by a time interval dt can be written as follows:

y(t+dt) = y(t) + (usin0) - dt, (34)

{x(t +dt) = z(t) + (1 — 0.1y(t)? + ucosb) - dt

where u € [0;0.44] and € € [0;27]. The boat must remain in a given interval
K = [-6;2] x [-2;2], and reach a round island C = B(0;0.44) in minimal time.
We suppose that the boat must reach the island before time T' = 7.
For this simple system, it is possible to derive analytically the capture basin,
hence we can compare the approximations given by the two algorithms with the
actual capture basin. Figure 1 compares some results obtained with the outer
and inner approximation. In any cases, the quality of the approximation can
be assessed by comparing both approximations: by construction, the contour
of the actual capture basin is surrounded by inner and outer approximations.
A example of a optimal trajectory defined with the optimal controller is also
presented: with the inner approximation, the trajectory will enable the boat to
reach the target, while it is not guaranteed in the outer case.

4.3 Mountain car

*¥**¥* DO STHG LIKE ADDING A COST FOR THE CONSUMP-
TION OF THE CAR ****
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Position y
Position y

-2

Position x Position x

Fig. 1. Approximation from inside (left) and from outside (right) for Zermelo problem.
The horizontal axis represents the position z and the vertical one position y. K is the
rectangle. The capture basin is represented in blue. The black thick line limits the
boundary of the actual capture basin. The level lines represent approximation of the
contours of the capture basins for successive time steps. The grid contains 41 points
by dimension. The optimisation is made on 4 time steps, with dt = 0.05. Each figure
presents an example of trajectory (in green) using the SVM optimal controller.

We consider the well-known car on the hill problem. The state is two-dimensional
(position and velocity) and the system can be controlled with a continuous one-
dimensional control (thrust). For a description of the dynamics and the state
space constraints, one can refers to [12]. The aim of the car on the hill system is
to keep the car inside a given set of constraints, and to reach a target (the top of
the hill) as fast as possible. The interesting characteristics of the problem is that
the car has limited power, the acceleration can not overcome the gravitational
force and hence the car may have to first go away from the solution before
reverse up the hill. Figure 2 shows the approximation of the contours of the
value function using outer and inner variants of the algorithm, with an example
of optimal trajectories.

5 DISCUSSION

We proposed an algorithm that approximates capture basins and contours of
value function, using a classification procedure, in two variants (inner and outer).
The inner approximation can be used to define a optimal controller that guaran-
tees to find a series of controls that allows the system to reach the target. SVMs
appear as a particularly relevant classification procedure for this approach, be-
cause they provide parsimonious representations of the capture basins and en-
able to use optimization techniques to compute the controls. This latter point
is particularly important to deal with high dimensional control space. The par-
simonious property may allow to define compact and fast controller, even for
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= CarOnTheHill: x - dim 1 andy — dim 2 dt: 0.035.... [ |[E][X]

-

Velocity

Position

Fig. 2. Inner (left) and outer (right) approximation for the car on the hill problem.
The grid contains 51 points by dimension. The optimisation is made on 2 time steps.
An example of an optimal trajectory is depicted in green.

high dimensional state space. However, although we generally manage to find
parameters in which the result respect the conditions of convergence, this is not
guaranteed. Therefore, considering other learning algorithms that would be even
more appropriate seems a relevant research direction.

For now, the method proposed here can only be used to solve problems with
deterministic dynamics. A second direction of research is to investigate the be-
haviour of the optimal controller when there is some uncertainty on the state or
the control.
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