Laetitia Chapel
email: laetitia.chapel@univ-ubs.fr

Guillaume Deffuant
email: guillaume.deffuant@clermont.cemagref.fr

SVM approximation of value function contours in target hitting problems

Keywords: Viability theory, capture basin, optimal control, Support Vector Machines

In a problem of target hitting, the capture basin at cost c is the set of states that can reach the target with a cost lower or equal than c, without breaking the viability constraints. The boundary of a c-capture basin is the c-contour of the problem value function. In this paper, we propose a new algorithm that solves target hitting problems, by iteratively approximating capture basins at successive costs. We show that, by a simple change of variables, minimising a cost may be reduced to the problem of time minimisation, and hence a recursive backward procedure can be set. Two variants of the algorithm are derived, one providing an approximation from inside (the approximation is included in the actual capture basin) and one providing a outer approximation, which allows one to assess the approximation error. We use a machine learning algorithm (as a particular case, we consider Support Vector Machines) trained on points of a grid with boolean labels, and we state the conditions on the machine learning procedure that guarantee the convergence of the approximations towards the actual capture basin when the resolution of the grid decreases to 0. Moreover, we define a control procedure which uses the set of capture basin approximations to drive a point into the target. When using the inner approximation, the procedure guarantees to hit the target, and when the resolution of the grid tends to 0, the controller tends to the optimal one (minimizing the cost to hit the target). We illustrate the method on two simple examples, Zermelo and car on the hill problems.

Introduction

We consider a dynamical system, described by the evolution of its state variable x ∈ R n :

x(t) ∈ F (x(t)) = {ϕ(x(t), u(t)) | u(t) ∈ U} ,

where x(t) is the state at time t, F is a set-valued map and U the set of admissible control. We assume that there is a positive cost (x(t), u(t)) for taking control u in state x at time t. We focus on the problem of defining the control function that drives the dynamical system inside a given target compact set C ⊂ K without going out from a given set K (called the viability constraint set), and that minimises the cost functional inf u∈U +∞ 0 (x(τ), u(τ)) • dτ.

(

) 2
This problem, often called the reachability problem, can be addressed by optimal control methods, solving Hamilton-Jacobi-Bellman (HJB) or Isaacs (HJI) equations. Several numerical techniques are available; for example, [START_REF] Mitchell | A time-dependent Hamilton-Jacobi formulation for reachable sets for continuous dynamic games[END_REF] propose an algorithm that computes an approximation for the backward reachable set of a system using a time dependent HJI partial differential equation, [START_REF] Lygeros | On reachability and minimum cost optimal control[END_REF] builds the value function of the problem which can be then used to choose the best action at each step when the cost function represents the time.

Reachability problem can also be addressed in the viability theory framework [START_REF] Aubin | Viability theory[END_REF].

To apply viability theory to target hitting problems when the cost to minimise is the time elapsed to reach the target, one must add an auxiliary dimension to the system, representing the time. The approach computes an approximation of the envelopes of all t-capture basins, the sets of points for which there exists a control function that allows the system to reach the target in a time less than t. [START_REF] Frankowska | Optimal trajectories associated with a solution of the contingent hamilton-jacobi equation[END_REF] shows that the boundary of this set is the value function in the dynamical programming perspective. Hence, solving this extended viability problem also provides the minimal time for a state x to reach the target C while always staying in K (minimal time function ϑ K C (x) [START_REF] Cardaliaguet | Set-Valued Numerical Analysis for Optimal control and Differential Games[END_REF]). This function can then be used to define controllers that drive the system into the target. The same approach can be used for cost minimisation; in that case, the extra-dimension represents the cost-to-go to the target [START_REF] Cardaliaguet | Optimal times for constrained nonlinear control problems without local optimality[END_REF]. Several numerical algorithms [START_REF] Saint-Pierre | Approximation of the viability kernel[END_REF][START_REF] Cardaliaguet | Set-Valued Numerical Analysis for Optimal control and Differential Games[END_REF] provide an over-approximation of capture basins. [START_REF] Bayen | Guaranteed overapproximations of unsafe sets for continuous and hybrid systems: Solving the hamilton-jacobi equation using viability techniques[END_REF] implement an algorithm proposed by [START_REF] Saint-Pierre | Approche ensembliste des systèmes dynamiques, regards qualitatifs et quantitatifs[END_REF] that computes a discrete under-approximation of continuous minimal time functions (and thus an overapproximation of capture basins), without adding an additional dimension. [START_REF] Lhommeau | Inner and outer approximation of capture basin using interval analysis[END_REF] present an algorithm, based on interval analysis, that provides an inner and outer approximation of the capture basin. In general, capture basin and minimal time function approximation algorithms face the curse of dimensionality, which limits their use to problems of low dimension (in the state and control space). This paper proposes a new method to solve target hitting problems, inspired by our work on viability kernel approximation [START_REF] Deffuant | Approximating viability kernels with support vector machines[END_REF], that minimise the cost to reach the target. The principle is to approximate iteratively the capture basins at successive costs c. To compute cost c-capture basin approximation, we use a discrete grid of points covering set K, and label +1 the points for which there exists a control leading the point into the c -δc-capture basin approximation, and -1 otherwise. Then, we use a machine learning method to compute a continuous boundary between +1 and -1 points of the grid. We state the conditions the learning method should fulfil (they are similar to the one established to approximate viability kernels [START_REF] Deffuant | Approximating viability kernels with support vector machines[END_REF]) in order to prove the convergence toward the actual capture basins. We consider two variants of the algorithm: one provides an approximation that converges from outside, and the other from inside. Although no convergence rate is provided, the comparison of the two approximations gives an assessment of the approximation error for a given problem. Moreover, we define a controller that guarantees to reach the target when derived from the inner approximation. We consider Support Vector Machines (SVMs [START_REF] Vapnik | The nature of statistical learning theory[END_REF][START_REF] Scholkopf | Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond[END_REF]) as a relevant machine learning technique in this context. Indeed, SVMs provide parsimonious approximations of capture basins, that allow the definition of compact controllers. Moreover, they make possible to use optimisation techniques to find the controls, hence problems with control spaces in more dimensions become tractable. We can also more easily compute the control on several cost steps, which improves the quality of the solution for a given resolution of the grid. We illustrate our approach with some experiments on two simple examples. Finally, we draw some perspectives.

Problem definition

We consider a controlled dynamical system in discrete time (Euler approximation), described by the evolution of its state variable x ∈ K ⊂ R n . We aim at defining the set of controls to apply to the system starting from point x in order to reach the target C ⊂ K :

     x(t + dt) = x(t) + ϕ (x(t), u(t)) • dt, if x(t) / ∈ C x(t + dt) = x(t), if x(t) ∈ C u(t) ∈ U, (3)
where ϕ is a continuous and derivable function of x and u. The control u must be chosen at each time step in the set U of admissible controls. The problem also includes a cost functional (x(t), u(t)) > 0 that associates a cost to a trajectory.

The capture basin of the system is the set of states for which there exists at least one series of controls such that the system reaches the target in finite time, without leaving K. Let G (x, (u 1 , .., u n)) be the point reached when applying successively during n time steps the controls (u 1 , .., u n), starting from point x. Let the minimal time function (or hitting time function) be the function that associates to a state x ∈ K the minimum time to reach C:

ϑ K C (x) = inf {n|∃(u 1 , .., u n) ∈ U n such that G (x, (u 1 , .., u n)) ∈ C and for 1 ≤ j ≤ n, G (x, (u 1 , .., u j)) ∈ K} . (4
)
and the minimal cost function over the time period t = 0, ϑ K C (x) be the function that associates to x the minimal cost to reach C:

K C (x) = min u∈U ϑ K C (x) 0 (x(t), u(t)) • dt. (5)
This is the value function obtained when solving HJB equations in a dynamic programming approach. It takes values in

R + ∪+∞, specifically ϑ K C (x) = K C (x) = 0 if x ∈ C and ϑ K C (x) = K C (x) = +∞ if no trajectory included in K can reach C.
The capture basin of C viable in K is then defined as:

Capt(K, C) = x ∈ K|ϑ K C (x) < +∞ , (6)
and we can also define the capture basin in finite time n:

Capt(K, C, dt, n) = x ∈ K|ϑ K C (x) ≤ n . (7)
or in finite cost:

Capt(K, C, dc, n) = x ∈ K| K C (x) ≤ n . (8)
with dc the cost step.

To solve a target hitting problem in the viability perspective, one must consider the following extended dynamical system (x(t), y(t)) when x(t) / ∈ C:

x(t + dt) = x(t) + ϕ (x(t), u(t)) • dt y(t + dt) = y(t) -(x(t), u(t)) • dt. (9)
and (x(t + dt) = x(t), y(t + dt) = y(t)) when x(t) ∈ C. [START_REF] Cardaliaguet | Set-Valued Numerical Analysis for Optimal control and Differential Games[END_REF] prove that approximating minimal time function comes down to a viability kernel approximation problem of this extended dynamical problem, with (x(t), u(t) = 1 and [START_REF] Cardaliaguet | Optimal times for constrained nonlinear control problems without local optimality[END_REF] extend the results to any cost function (x(t), u(t)) > 0. In a viability problem, one must find the rule of controls for keeping a system indefinitely within a constraint set. [START_REF] Bayen | Guaranteed overapproximations of unsafe sets for continuous and hybrid systems: Solving the hamilton-jacobi equation using viability techniques[END_REF][START_REF] Saint-Pierre | Approche ensembliste des systèmes dynamiques, regards qualitatifs et quantitatifs[END_REF] give examples of such an application of viability approach to solve a target hitting problem.

[6] proposed an algorithm, based on [START_REF] Saint-Pierre | Approximation of the viability kernel[END_REF], that uses a machine learning procedure to approximate viability kernels. The main advantage of this algorithm is that it provides continuous approximations that enable to find the controls with standard optimization techniques, and then to tackle problems with control in large dimensional space. The aim of this paper is to adapt [START_REF] Deffuant | Approximating viability kernels with support vector machines[END_REF] to compute directly an approximation of the capture basin limits, without adding the auxiliary dimension, and then to use these approximations to define the sequence of controls.

Machine learning approximation of value function contours and optimal control

For simplicity, we denote Capt(K, C, dc, n • dc) = Capt n . In all the following, continuous sets are denoted by rounded letters and discrete sets in capital letters.

Let's denote dc the cost variation for one state and control at time step dt:

dc = (x(t), u(t)) • dt (10)
and we consider function G:

G(x, u) = x + ϕ * (x, u) • dc if x / ∈ C x if x ∈ C (11)
where

ϕ * (x, u) = ϕ(x, u) (x, u) . (12
)
By a change of variables, minimising a cost may be reduced to the problem of time minimisation ((x, u) = 1), except that we consider here the cost step dc instead of time step dt.

We suppose that G is µ-Lipschitz with respect to x:

∀(x, y) ∈ K 2 , ∀u ∈ U, |G(x, u) -G(y, u)| < µ|x -y|. (13
)
We define a grid K h as a discrete subset of K, such that:

∀x ∈ K, ∃x h ∈ K h such that |x -x h | ≤ h. (14)
Moreover, we define an algebraic distance d a (x, ∂E) of a point x to the boundary ∂E of a continuous closed set E, as the distance to the boundary when x is located inside E, and this distance negated when x is located outside E:

if x ∈ E, d a (x, ∂E) = d(x, ∂E), (15
) if x / ∈ E, d a (x, ∂E) = -d(x, ∂E). (16
)

Capture basin approximation algorithms

In this section, we describe two variants of an algorithm that provides an approximation C n h of the capture basin at cost n • dc, one variant approximates the capture basins from outside and the other one from inside. At each step n of the algorithm, we first build a discrete approximation C n h ⊂ K h of the capture basin Capt n , and then we use a learning procedure L (for instance Support Vector Machines, as shown below) to generalise this discrete set into a continuous one

C n h : C n h = L(C n h) (17)
To simplify the writing, we first define:

C n h = {x h ∈ K h s.t. x h / ∈ C n h } , (18)
C n h = {x ∈ K s.t. x / ∈ C n h } . (19
)
The two variants differ on the conditions for defining the discrete set C n+1 h from C n h , and on the conditions the learning procedure L must fulfil. For both variant, we construct an increasing sequence of approximations at cost n • dc, by adding the points of the grid for which there exists at least one control that drives the system not too far away (in an algebraic sense -negative distance in the outer case and positive distance in the inner one) from the boundary of the previous approximation. They also both require conditions on the learning procedure, in order to guarantee the convergence toward the actual capture basin when the step of the grid h decreases to 0. In the inner approximation case, the condition is stricter on set C n h and more relaxed on set C n h , while the outer case requires converse conditions. We now describe in more details both variants and conditions.

Outer approximation The algorithm recursively constructs discrete sets C n-1 h ⊆ C n h ⊆ C h and their continuous generalisation C n h as follows:

Algorithm 1 Outer capture basin approximation algorithm

n ← 0 C 0 h ← C ∩ K h C 0 h ← C repeat n ← n + 1 C n h ← C n-1 h x h ∈ C n-1 h such that ∃u ∈ U , da(G(x h , u), ∂C n-1 h) ≥ -µh C n h ← L(C n h) until C n h = C n-1 h return C i h 0≤i≤n
Proposition 1. If the learning procedure L respects the following conditions:

∀x ∈ C n h , ∃x h ∈ C n h such that |x -x h | ≤ h (20) ∃λ ≥ 1 such that ∀h, ∀x ∈ C n h , ∃x h ∈ C n h such that |x -x h | ≤ λh (21)
then the convergence of the approximation from outside defined on algorithm 1 is guaranteed:

∀n, Capt n ⊂ C n h , (22)
C n h → Capt n when h → 0. (23
)
Proof. The proof involves two parts. Part I. First, let us prove by induction that ∀h > 0,

Capt n ⊂ C n h . By definition, Capt 0 = C = C 0 h . Suppose that at step n, Capt n ⊂ C n h . Consider x ∈ Capt n+1 . Let us recall that G(x, u) = x + ϕ(x, u) * • dc when x / ∈ C. Defining B h (x, d) the set of points of K h such that |x -x h | ≤ d,
we can easily show that condition (21) can be rewritten as:

B h (x, h) ⊂ C n h ⇒ x ∈ C n h . (24)
By definition, we know that there exists u ∈ U such that G(x, u) ∈ Capt n , which implies that for all

x h ∈ B h (x, h), d (G(x h , u), Capt n) ≤ µh, because G is µ-Lipschitz. Moreover, for all x h ∈ B h (x, h), d(G(x h , u), C n h) ≤ µh, because, by hypothesis, Capt n ⊂ C n h . Thus x h ∈ C n+1 h . Therefore, x ∈ C n+1 h
(because of condition (24)). We can thus conclude Capt n+1 ⊂ C n+1 h .

Part II. Now, we prove by induction that for any n, C n h → Capt n when h → 0. Suppose now that for a given value n, C n h → Capt n when h → 0. Because Capt n ⊂ C n h , we have:

∀x ∈ K | x / ∈ Capt n , ∃h > 0 | x / ∈ C n h . (25)
Now, consider x ∈ K such that x / ∈ Capt n+1 . This implies that for all u ∈ U such that d (G(x, u), Capt n) > 0. One can choose h > 0 and h such that for all u ∈ U, d (G(x, u), Capt n) > h + µλh. Condition (20) can be rewritten as:

B h (x, λh) ⊂ C n h ⇒ x ∈ C n h . (26)
In this case, for all

x h ∈ B h (x, λh), all u ∈ U, d (G(x h , u), Capt n) > h , because G is µ-Lipschitz.
Since C n h → Capt n when h → 0, there exists h, such that, for all x h ∈ B h (x, λh), and all u ∈ U, G(x h , u) ∈ C n h , hence x h ∈ C n h . Hence, there exists h such that x / ∈ C n h (because of condition 24). Therefore C n+1 h → Capt n+1 when h → 0.

Conclusion. Capt n ⊂ C n

h and C n h → Capt n then C n h is an outer approximation of the capture basin at cost n • dc, which tends to the actual capture basin when the resolution of the grid h tends to 0.

Inner approximation We consider the following algorithm:

Algorithm 2 Inner capture basin approximation algorithm

n ← 0 C 0 h ← C ∩ K h C 0 h ← C repeat n ← n + 1 C n h = C n-1 h x h ∈ C n-1 h such that ∃u ∈ U, da(G(x h , u), ∂C n h) ≥ µh C n h ← L(C n h) until C n h = C n-1 h return C i h 0≤i≤n
Proposition 2. If the learning procedure L respects the following conditions:

∀x ∈ C n h , ∃x h ∈ C n h such that |x -x h | ≤ h (27) ∃λ ≥ 1 such that ∀h, ∀x ∈ C n h , ∃x h ∈ C n h such that |x -x h | ≤ λh (28)
and that the dynamics are such that:

∀x ∈ K with d a (x, ∂Capt n) > 0, ∃u ∈ U such that d a G(x, u), ∂Capt n-1 > 0 (29) then the convergence of the approximation from inside defined on algorithm 2 is guaranteed:

∀n, C n h ⊂ Capt n , (30) C n h → Capt n when h → 0. (31
)
Proof. Convergence proof of the algorithm from inside requires an additional condition on the dynamics (eq. (29)): a point x of the interior of capture basin at cost n • dc, should be such that there exists y ∈ G(x) belonging to the interior of capture basin at cost (n -1) • dc (and not on ∂Capt n-1).

Part I. We begin to show by induction that

C n h ⊂ Capt n . Suppose that C n h ⊂ Capt n and consider x ∈ C n+1 h .

Because of condition (27):

∃x h ∈ C n+1 h such that |x -x h | < h. By definition of C n+1 h : ∃u ∈ U such that d a (G(x h , u), C n h) > µh.

By hypothesis of induction

C n h ⊂ Capt n , hence : d a (G(x h , u), Capt n) > µh. By hypothesis on G, |G(x h , u) -G(x, u)| < µ|x h -x|, hence d a (G(x, u), Capt n) > 0. Therefore x ∈ Capt n+1 . Thus C n+1 h ⊂ Capt n+1 .
Part II. We prove by induction that, when h → 0,

C n h → Capt n . Suppose that C n h → Capt n when h → 0. Because C n h ⊂ Capt n , we have: ∀x ∈ Capt n | d a (x, ∂Capt n) > 0, ∃h > 0 | x ∈ C n h .
We use the rewriting of condition (28):

B h (x, λh) ∩ C n h ⇒ x ∈ C n h . (32
) Consider x ∈ Capt n+1 such that d a (x, ∂Capt n+1) > 0 . One can choose h such that d a (x, ∂Capt n+1) > (µ + λ)h. With such a choice, for each x h ∈ B h (x, λh), d a (x h , ∂Capt n+1) > µh, hence, there exists u ∈ U such that d a (G(x h , u), Capt n)) > 0 (because G is µ-Lipschitz).
By induction hypothesis, there exists h such that d a (G(x h , u), C n h) > µh, hence

x h ∈ C n+1 h
. Taking the smallest value of h this is true for all x h ∈ B h (x, λh). Therefore x ∈ C n+1 h (because of condition (32)). Therefore C n+1 h → Capt n+1 when h → 0.

Conclusion. C n

h ⊂ Capt n and C n h → Capt n then C n h is an inner approximation of the capture basin in finite cost n • dc, which tends to the actual capture basin when the resolution of the grid tends to 0.

Optimal Control

The aim of the optimal controller is to choose a control function that reaches the target in minimal cost, without breaking the viability constraints. The idea is to choose the controls which drive the system to cross C n h boundaries in a descending order.

Algorithm 3 Optimal controller

Require: x(0) ∈ K and / ∈ C Require: n such that x(0) ∈ C n h and / ∈ C n-1 h . for i = 1 to n do compute u(i) * such that G(x(i -1), u(i) *) ∈ C n-i h x(i) = G(x(i -1), u(i) *) end for return {u * (i)} 1≤i≤n
Proposition 3. The procedure described in algorithm 3 converges towards the control policy minimizing the hitting cost, when h and dt tend to 0.

Proof. By construction, if x(i) ∈ C n-i h and x(i) / ∈ C n-i-1 h
, there exists a control value u * (i + 1) such that x(i + 1) = G(x(i), u * (i + 1)) ∈ C n-i-1 h (see proof of the convergence of the inner algorithm, part I.). Therefore, the procedure leads to the target in n + 1 cost steps, i.e. with a cost (n + 1) • dc. Moreover, by definition, the optimum cost for reaching the target from a point x located on the boundary of capture basin Capt n is n • dc. Hence, the optimum cost for reaching the target from point x such that x ∈ Capt n+1 and x / ∈ Capt n , with the dynamics defined by ϕ, is between n • dc and (n + 1) • dc. Then, the fact that C n h converges to Capt n when h tends to 0, ensures that the number of steps needed by the procedure applied to this point x will tend to (n + 1) • dc. When dc tends to 0, the difference with the optimum cost to reach the target, which is smaller than dc, tends to 0.

Experiments

SVM as a learning procedure

We use Support Vector Machines [START_REF] Vapnik | The nature of statistical learning theory[END_REF][START_REF] Scholkopf | Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond[END_REF] as the learning procedure L to define capture basin approximations C n h = L(C n h). At each iteration, we construct a learning set: let S n h be a set of couples (x h , y h), where x h ∈ K h and y h = +1 if x h ∈ C n h and -1 otherwise. Running a SVM on learning sets S n h provides a separating function f n h between points of different labels and hence, allows us to define a continuous approximation C n h of C n h as follows:

C n h = {x ∈ K such that f n h (x) ≥ 0} . (33
)
Points x of the boundary ∂C n h are those such that f n h (x) = 0. The fulfilment of the conditions guaranteeing convergence is discussed in [START_REF] Deffuant | Approximating viability kernels with support vector machines[END_REF] and the same arguments hold in both variants of the algorithm.

In the following examples, we use libSVM [START_REF] Chang | Libsvm: a library for support vector machines[END_REF] to train the SVMs. As we did in [START_REF] Deffuant | Approximating viability kernels with support vector machines[END_REF], we use the SVM function as a proxy for the distance to the boundary, in order to simplify the computations.

Zermelo Problem

The state (x(t), y(t)) of the system represents the position of a boat in a river. There are two controls: the thrust u and the direction θ of the boat. The system in discrete time defined by a time interval dt can be written as follows:

x(t + dt) = x(t) + (1 -0.1y(t) 2 + u cos θ) • dt y(t + dt) = y(t) + (u sin θ) • dt, (34)
where u ∈ [0; 0.44] and θ ∈ [0; 2π]. The boat must remain in a given interval K = [-6; 2] × [-2; 2], and reach a round island C = B(0; 0.44) in minimal time.

We suppose that the boat must reach the island before time T = 7. For this simple system, it is possible to derive analytically the capture basin, hence we can compare the approximations given by the two algorithms with the actual capture basin. Figure 1 compares some results obtained with the outer and inner approximation. In any cases, the quality of the approximation can be assessed by comparing both approximations: by construction, the contour of the actual capture basin is surrounded by inner and outer approximations.

A example of a optimal trajectory defined with the optimal controller is also presented: with the inner approximation, the trajectory will enable the boat to reach the target, while it is not guaranteed in the outer case. We consider the well-known car on the hill problem. The state is two-dimensional (position and velocity) and the system can be controlled with a continuous onedimensional control (thrust). For a description of the dynamics and the state space constraints, one can refers to [START_REF] Moore | The parti-game algorithm for variable resolution reinforcement learning in multidimensional state-spaces[END_REF]. The aim of the car on the hill system is to keep the car inside a given set of constraints, and to reach a target (the top of the hill) as fast as possible. The interesting characteristics of the problem is that the car has limited power, the acceleration can not overcome the gravitational force and hence the car may have to first go away from the solution before reverse up the hill. Figure 2 shows the approximation of the contours of the value function using outer and inner variants of the algorithm, with an example of optimal trajectories.

DISCUSSION

We proposed an algorithm that approximates capture basins and contours of value function, using a classification procedure, in two variants (inner and outer).

The inner approximation can be used to define a optimal controller that guarantees to find a series of controls that allows the system to reach the target. SVMs appear as a particularly relevant classification procedure for this approach, because they provide parsimonious representations of the capture basins and enable to use optimization techniques to compute the controls. This latter point is particularly important to deal with high dimensional control space. The parsimonious property may allow to define compact and fast controller, even for high dimensional state space. However, although we generally manage to find parameters in which the result respect the conditions of convergence, this is not guaranteed. Therefore, considering other learning algorithms that would be even more appropriate seems a relevant research direction. For now, the method proposed here can only be used to solve problems with deterministic dynamics. A second direction of research is to investigate the behaviour of the optimal controller when there is some uncertainty on the state or the control.

4. 3 Fig. 1 .

 31 Fig. 1. Approximation from inside (left) and from outside (right) for Zermelo problem. The horizontal axis represents the position x and the vertical one position y. K is the rectangle. The capture basin is represented in blue. The black thick line limits the boundary of the actual capture basin. The level lines represent approximation of the contours of the capture basins for successive time steps. The grid contains 41 points by dimension. The optimisation is made on 4 time steps, with dt = 0.05. Each figure presents an example of trajectory (in green) using the SVM optimal controller.

Fig. 2 .

 2 Fig. 2. Inner (left) and outer (right) approximation for the car on the hill problem.The grid contains 51 points by dimension. The optimisation is made on 2 time steps. An example of an optimal trajectory is depicted in green.