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Abstract This paper is devoted to the construction of a probabilistic model of uncer-

tain rigid bodies for multibody system dynamics. We first construct a stochastic model

of an uncertain rigid body by replacing the mass, the center of mass and the tensor of

inertia by random variables. The prior probability distributions of the stochastic model

are constructed using the maximum entropy principle under the constraints defined by

the available information. The generators of independent realizations corresponding

to the prior probability distribution of these random quantities are further developed.

Then, several uncertain rigid bodies can be linked to each other in order to calculate

the random response of a multibody dynamical system. An application is proposed to

illustrate the theoretical development.
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h Vector of the parameters describing the domain Di.

k Vector of the Coriolis forces (Nm).

mi Mass of RBi (kg).

mi Nominal value of the mass of RBi (kg).

nb Number of rigid bodies.

nc Number of holonomic constraints.

q Vector of the applied forces and torques (N and Nm).

ri Position vector of Gi (m).

r0,i Initial position of Gi (m).

r0,i Initial position of Gi (m).

rb,i Position vector of the barycenter of the domain Di (m).

si Rotation vector of RBi (rad).

s0,i Initial angular position of RBi (rad).

u Vector of the position and angle of the centers of mass (m and rad).

v0,i Initial velocity of Gi (m/s).

x Position vector in the inertial frame (m).

x′ Position vector in the local frame (m).

C0 Normalisation constant relative to R0,i.

CGi
Normalisation constant relative to [Gi].

CG0,i
Normalisation constant relative to [G0,i].

Di Admissible domain of R0,i.

Gi Center of mass of RBi.

Gi Center of mass of the nominal model of RBi.

Gi Random center of mass of the probabilistic model of RBi.

[Gi] Normalized positive definite bounded (3 × 3) random matrix.

[Gmax
i ] Upper Bound for random matrix [Gi].

[G0,i] Normalized positive definite (3 × 3) random matrix.

[Hi] Second order moment of inertia of RBi (kg m2).

[Ji] Tensor of inertia of RBi (kg m2).

[ eJi] Tensor of inertia of RBi with unit mass (m2).

[J i] Nominal value of the tensor of inertia of RBi (kg m2).

[Ji] Random tensor of inertia of the probabilistic model of RBi (kg m2).

[Jmax
i ] Random upper Bound for random matrix [Ji] (kg m2).

K Random vector of the Coriolis forces (Nm).

[LZi
] Upper triangular matrix relative to the Cholesky factorisation of [Zi] (m).

[M ] Mass matrix (kg).

[M] Random mass matrix (kg).

Mi Random mass of the probabilistic model of RBi (kg).

R0,i Random initial position of Gi (m).

RBi Rigid body i.

U Random vector of the position and angle of the centers of mass (m and rad).

[Zi] Second order moment of inertia of RBi with unit mass (m2).

[Zi] Nominal value of [Zi].

[Zi] Random second order moment of inertia of RBi with unit mass (m2).

[Zmax
i ] Upper Bound for random matrix [Zi] (m2).

δMi
Coeficient of variation for Mi.

λ Real-valued lagrange multiplier relative to [G0,i].

λ Vector of the Lagrange multipliers of the constraints (N).

λl, λu Real-valued lagrange multipliers relative to [Gi].

[µ] Matrix-valued lagrange multiplier relative to [Gi].

[µ0] Matrix-valued lagrange multiplier relative to [G0,i].

λr Lagrange multipliers relative to R0,i (m−1).

ρ Mass density (kg/m3).

ϕ Constraint function.

ωi Angular velocity of RBi (rad/s).

ω0,i Initial angular velocity of RBi (rad/s).

Γ Gamma function.

Ωi Domain of RBi.
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1 Introduction

The study of rigid multibody dynamical systems has interested numerous researchers

during the last three decades. The efficient methods developed during this period are

now implemented in commercial softwares and are commonly used in many application

fields such as automotive vehicles, railway vehicles, launch vehicles and so on.

Probability theory has been intensively used over the last two decades to model un-

certainties in structural dynamics and vibration (see for instance [25]). However, there

are very few published results concerning the modeling of uncertainties in multibody

dynamics, in particular to take into account an uncertain spatial mass distribution

inside a rigid body. These uncertainties in the spatial mass distribution induce uncer-

tainties in the mass, the position of the center of mass and the tensor of inertia. In this

paper, an uncertain rigid body is a rigid body for which its mass, its center of mass

and its tensor of inertia are uncertain. A complete probabilistic model of uncertainties

is proposed for the first time in order to take into account uncertain rigid bodies in

multibody dynamical systems.

In some cases, the mass distribution inside a rigid body is not perfectly known and

must be considered as random (for example, the distribution of passengers inside a

vehicle) and therefore, this unknown mass distribution inside the rigid body induces

uncertainties in the model of this rigid body. In this paper, we propose a new proba-

bilistic modeling for uncertain rigid bodies in the context of the multibody dynamics.

Concerning the modeling of uncertainties in multibody dynamical system, very few pre-

vious studies have been carried out. They aimed at taking into account uncertainties

(1) for parameters such as stiffness of a suspension [13], friction coefficient [24], aero-

dynamic coefficients [3]), (2) for the input loads or imposed displacements such as, for

instance, the profile of a road (see [18] and [20,21,3]). Note that these types of param-

eters describe the joints linking each rigid body to the others and the external sources,

but not rigid bodies themselves. In the field of uncertain rigid bodies, a first work has

been proposed in [15,16], in which the authors take into account uncertain rigid bod-

ies for rotor dynamical systems using the nonparametric probabilistic approach [28,29]

consisting in replacing the mass and gyroscopic matrices by random matrices. It should

be noted that this paper is focused on the construction of the stochastic modeling of

uncertainties for the rigid bodies. It is then assumed that there are no uncertainties for

the model parameters of the mechanical links between the rigid bodies. Nevertheless, if

such uncertainties existed in the mechanical links, the construction of their stochastic

models could be carried out using the usual parametric approach (see for instance [24])

and can be added without difficulties to the present theory. Similarly, it is straightfor-

ward to add uncertainties on external sources. In this paper, a general and complete

stochastic model is constructed for an uncertain rigid body. The mass, the center of

mass and the tensor of inertia which describe the rigid body are modeled by random

variables. The prior probability distributions of the random variables are constructed

using the maximum entropy principle [11] from Information Theory [27]. The generator

of independent realizations corresponding to the prior probability distributions of these

random quantities are developed and presented. Then, several uncertain rigid bodies

can be linked to each other in order to calculate the random response of an uncertain

multibody dynamical system. The stochastic multibody dynamical equations are solved

using the Monte Carlo simulation method. The statistical moments and the confidence

regions of the random responses are estimated using mathematical statistics.
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Section 2 is devoted to the construction of the nominal model for the rigid multi-

body dynamical system by using the classical method. In Section 3, we propose a

general probability model for an unconstrained uncertain rigid body and then, the

uncertain rigid multibody dynamical system is obtained by joining this unconstrained

uncertain rigid body to the other rigid bodies. The last section is devoted to an appli-

cation which illustrates the proposed theory.

2 Nominal model for the rigid multibody dynamical system

In this paper, the usual model of a rigid multibody dynamical system for which all

the mechanical properties are known will be called the nominal model. This section

is devoted to the construction of the nominal model for a rigid multibody dynamical

system. This nominal model is constructed as in [10,22,23] and is summarized below.

2.1 Dynamical equations for a rigid body of the multibody system

Let RBi be the rigid body occupying a bounded domain Ωi with a given geometry.

Let ξ be the generic point of the three dimensional space. Let x = (x1, x2, x3) be the

position vector of point ξ defined in a fixed inertial frame (O , x0,1 , x0,2 , x0,3), such

that x =
−→
Oξ. Let dx be the Lebesgue measure (elementary volume). The rigid body

class is then defined by three quantities.

(1) The first one is the mass mi of RBi which is such that

mi =

Z

Ωi

ρ(x) dx , (1)

where ρ(x) is the mass density. If body RBi is made up of n discrete masses µ1, . . . , µn

located at x1, . . . ,xn in Ωi, then ρ(x) dx =
Pn

j=1 µj δxj (x) in which δxj (x) is such

that for all real-valued continuous functions g(x), we have
R
Ωi

g(x) δxj (x) = g(xj).

(2) The second quantity is the position vector ri of the center of mass Gi, defined

in the fixed inertial frame, by

ri =
1

mi

Z

Ωi

x ρ(x) dx . (2)

(3) Let (Gi , x′
i,1 , x′

i,2 , x′
i,3) be the local frame for which the origin is Gi and which

is deduced from the fixed frame (O , x0,1 , x0,2 , x0,3) by the translation
−−→
OGi and a

rotation defined by the three Euler angles αi, βi and γi. The third quantity is the

positive-definite matrix [Ji] of the tensor of inertia in the local frame such that

[Ji]u = −
Z

Ωi

x′ × x′ × u ρ(x′) dx′ , ∀u ∈ R
3 , (3)

in which the vector x′ = (x′
1, x′

2, x′
3) of the components of vector

−→Giξ are given in

(Gi , x′
i,1 , x′

i,2 , x′
i,3). In the above equation, u × v denotes the cross product between
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the vectors u and v. Applying Newton and Euler equations to rigid body RBi, yields,

for all t in the time interval [0, T ], the following differential equations

mir̈i = f e
i + f r

i , (4)

[Ji] ω̇i + ki = lei + lri , (5)

with the initial conditions

ri(0) = r0,i , ṙi(0) = v0,i , (6)

si(0) = s0,i , ωi(0) = ω0,i . (7)

It should be noted that Eq. (4) is written in the fixed inertial frame (O , x0,1 , x0,2 ,

x0,3) while Eq. (5) is written in the local frame (Gi , x′
i,1 , x′

i,2 , x′
i,3). In these equations,

ki(ωi, [Ji]) = ωi×{[Ji] ωi} is the vector of the Coriolis forces, lei and f e
i are the vectors

of the applied torque reduced at Gi and the applied force, where lri and f r
i are the

constraint torque reduced at Gi and the constraint force, where ωi = ṡi is the angular

velocity vector in the local frame with si = (αi, βi, γi) the rotation vector. The vector

r0,i defines the initial position of the center of mass while v0,i defines its initial velocity.

The vector s0,i defines the initial angular position and ω0,i defines the initial angular

velocity.

2.2 Matrix model for the rigid multibody dynamical system

The rigid multibody dynamical system is made up of nb rigid bodies and ideal joints

including rigid joints, joints with given motion (rheonomic constraints) and vanishing

joints (free motion). The interactions between the rigid bodies are realized by these

ideal joints but also by springs, dampers or actuators which produce forces between

the bodies. In this paper, only nc holonomic constraints are considered. Let u be the

vector in R
6nb such that u = (r1, ..., rnb , s1, ..., snb). The nc constraints are given by

nc implicit equations which are globally written as

ϕ(u, t) = 0 . (8)

The function {u(t) ,∈ [0 , T ]} is the solution of the following differential equation

[M ]ü(t) + k(u̇(t)) = q(u(t), u̇(t), t) − [ϕu(u(t), t)]T λ(t) , (9)

with the initial conditions

u(0) = u0 , u̇(0) = v0 , (10)

in which u̇ = du/dt, ü = d2u/dt2, where u0 = (r0,1, ..., r0,nb
, s0,1, ..., s0,nb

), in

which v0 = (v0,1, ..., v0,nb
, ω0,i, ..., ω0,nb

) and where k(u̇) = (0, ..., 0,k1(ṡ1, [J1]), ...,

knb(ṡnb , [Jnb ])) is the R
6nb -vector of the Coriolis forces. The R

6nb -vector q(u, u̇, t) is

such that q(u, u̇, t) = (f e
1 (u, u̇, t), . . . , f e

nb
(u, u̇, t), l e

1 (u, u̇, t), . . . , l e
nb

(u, u̇, t)) consti-

tuted of the applied forces and torques induced by springs, dampers and actuators. The

vector [ϕu(u(t), t)]T λ(t) is relative to the constraint forces where λ(t) is the vector

of the Lagrange multipliers and [ϕu(u(t), t)] is the Jacobian matrix of ϕ(u(t), t) with
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respect to u(t) such that [ϕu(u(t), t)]ij = ∂ϕi(u(t), t)/∂uj(t). The (6nb × 6nb) mass

matrix [M ] is defined by

[M ] =

»
[Mr ] 0

0 [Ms]

–
, (11)

where the (3nb × 3nb) matrices [Mr] and [Ms] are defined by

[Mr] =

2
64

m1[I3] · · · 0
...

. . .
...

0 · · · mnb [I3]

3
75 , [Ms] =

2
64

[J1] · · · 0
...

. . .
...

0 · · · [Jnb ]

3
75 , (12)

in which [I3] is the (3 × 3) identity matrix. To solve Eq. (9) with Eq. (8), a twice

differentiation of the constraint Eq. (8) with respect to t is performed and yields

»
[M ] [ϕu]T

[ϕu] [0]

– »
ü

λ

–
=

»
q − k

− d
dtϕt − [ d

dtϕu] u̇

–
, ∀t ∈ [0, T ], (13)

with the initial conditions

u(0) = u0 , u̇(0) = v0 , (14)

in which ϕt = ∂ϕ/∂t. Equation (13) can be solved using an adapted integration algo-

rithm (see for instance [2]).

3 Stochastic model for a multibody dynamical system with uncertain rigid

bodies

Firstly, a stochastic model for an uncertain rigid body of the multibody dynamical sys-

tem is proposed and secondly, this stochastic model is introduced in the nominal model

to obtain the stochastic model for the multibody dynamical system with uncertain rigid

bodies.

3.1 Stochastic model for an uncertain rigid body of the multibody dynamical system

The mass, the initial position vector of the center of mass Gi and the matrix of the

tensor of inertia of the nominal model of the uncertain rigid body RBi are respec-

tively denoted by mi, r0,i and [Ji]. The probabilistic model of uncertainties for this

rigid body is constructed by replacing these three parameters by the following three

random variables: the random mass Mi, the random initial position vector R0,i of its

random center of mass Gi and the random matrix [Ji] of its random tensor of inertia

with respect to the random local frame (Gi , x′
i,1 , x′

i,2 , x′
i,3). The probability density

functions (PDF) of these three random variables are constructed using the maximum

entropy principle (see [27], [11]), that is to say, in maximizing the uncertainties in the

model under the constraints defined by the available information. Below, the available

informations, devoted to the existence of the second-order moment of the norm of the

inverse of the random quantities, are introduced for that the linearized stochastic dy-

namical system admits a second-order solution (physical solution)[29]. We will assume

that such constraints are sufficient to guaranty the existence of a second-order solution

of the non-linear stochastic dynamical system.
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3.1.1 Construction of the PDF for the random mass

In this subsection, the PDF of the random mass Mi is constructed using the maximum

entropy principle under the constraints defined by the available information. There-

fore, in a first step, this available information is deduced from physical considerations.

Then, in a second step, the PDF of the random mass Mi is obtained as the function

maximizing the entropy (which is a functional of the PDF).

(i) Available information

Let E{.} be the mathematical expectation. For the random mass Mi, the available

information is defined as follows. Since a mass is a positive quantity, Mi is a random

variable which must be with positive values. In addition, the nominal model would be

the model which would be used if no uncertainties were taken into account. Conse-

quently, the nominal model has to be considered as the mean model of the stochastic

model that we are constructing. It should be noted that the mean response of the

stochastic model is not equal to response of the nominal (mean) model. Presently, we

only write that the mean values of the random parameters of the uncertain multibody

dynamical system are equal to the nominal parameters. In this framework and by con-

struction, the mean value of the random mass Mi is then chosen as the value mi of

the nominal model. Finally, as it is proven in [29], the random mass must verify the in-

equality E{M−2
i } < +∞ in order that a second-order solution exists for the stochastic

multibody dynamical system. It is also proven that this constraint can be replaced by

the following one, |E{log Mi}| < +∞. In these conditions, the available information

can be summarized as follows

Mi > 0 , (a)

E{Mi} = mi , (b)

E{log Mi} = CMi
, |CM | < +∞ . (c)

(15)

(ii) Maximum entropy principle

The probability density function µ �→ pMi
(µ) of the random variable Mi is constructed

by maximizing the entropy defined by

S(pMi
) = −

Z

R

pMi
(µ) log(pMi

(µ)) dµ , (16)

under the constraints defined by Eq. (15). The solution of this optimization problem is

the PDF of a gamma random variable defined on ]0, +∞[. This PDF depends on two

parameters which are mi and CMi
. Since the parameter CMi

has no physical meaning,

it is eliminated in introducing the coefficient of variation δMi
of the random variable Mi

such that δMi
= σMi

/mi where σMi
is the standard deviation of the random variable

Mi. The following PDF is then obtained,

pMi
(µ; δMi

) = 1l ]0,+∞[ (µ)
1

mi

 
1

δ2
Mi

!δ−2

Mi 1

Γ (δ−2
Mi

)

„
µ

mi

«δ−2

Mi
−1

exp

 
− µ

δ2
Mi

mi

!
,(17)

where Γ (α) =
R+∞

0 tα−1e−t dt is the Gamma function and where 1l ]0,+∞[ (µ) is the

indicator function. The parameter δMi
is such that 0 ≤ δMi

< 1/
√

2. Therefore, the

PDF of the random mass is completely defined by the mean value mi and by the

dispersion parameter δMi
.
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3.1.2 Construction of the PDF for the random position vector R0,i

In this subsection, the PDF of the random initial position vector R0,i of the center of

mass of RBi at initial time t = 0 is constructed. In a first step, this available infor-

mation is deduced from physical considerations. In a second step, the PDF of R0,i is

constructed by maximizing the entropy. In a third step, we develop a generator of inde-

pendent realizations which will be useful for solving the stochastic dynamical equations

using the Monte Carlo simulation method.

(i) Available information

The position vector r0,i (at initial time) of the center of mass Gi of the nominal model

is given. However, the real position is not exactly known and r0,i only corresponds

to a mean position. Consequently, there is an uncertainty about the real position and

this is the reason why this position is modeled by the random vector R0,i. In practice,

the uncertain position vector of the center of mass cannot take any value as explained

hereinafter. Some geometrical and mechanical considerations lead us to introduce an

admissible domain Di of random vector R0,i. Let rb,i be the position vector of the

barycenter of domain Di defined as rb,i = |Di|−1 R
Di

x dx in which |Di| =
R
Di

dx is

the volume of domain Di. In order to simplify the presentation, it is assumed that this

subdomain Di of R
3 is completely defined by a vector-valued parameter h. This means

that as soon as h is fixed, then the geometry of the domain Di is completely defined.

Such a domain is then denoted by Di(h) and below, h is either fixed or is an unknown

deterministic vector-valued parameter which must be identified. In practice, rb,i will

be a part of the components of h. For example, if Di(h) is a ball, then vector-valued

parameter h can be chosen as h = (η, rb,i) depending on the radius η of the ball and

of the center of the ball which represented by the vector rb,i. In addition, the mean

value of the random vector R0,i must be equal to the value r0,i of the nominal model.

Therefore, the available information for the random variable R0,i can be written as

R0,i ∈ Di(h) , (a)

E{R0,i} = r0,i ∈ Di(h) . (b)
(18)

(ii) Maximum entropy principle

The probability density function a �→ p
R0,i

(a) of random variable R0,i is then con-

structed by maximizing the entropy defined by

S(p
R0,i

) = −
Z

R3

p
R0,i

(a) log(p
R0,i

(a)) da , (19)

with the constraints defined by the available information in Eq. (18). The solution of

this optimization problem depends on two parameters which are r0,i and vector-valued

parameter h, and is such that

p
R0,i

(a;h) = 1lDi(h) (a) C0 e−<λr ,a> , (20)

where < a, b >= a1b1 + a2b2 + a3b3 denotes the Euclidean inner product of a with

b. The positive valued parameter C0 and vector λr are the unique solution of the

equations

C0
R
Di(h) e−<λr,a> da = 1 , (a)

C0

R
Di(h) a e−<λr ,a> da = r0,i . (b)

(21)
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The equation (21-a) is relative to the normalization of the PDF and Eq. (21-b) is

relative to the constraint defined by Eq. (18-b). Using Eq. (21-a), the parameter C0

can be eliminated. Therefore, λr is solution of the following equation
Z

Di(h)
a e−<λr,a> da = r0,i

Z

Di(h)
e−<λr,a> da . (22)

In the general case, the PDF of the random variable R0,i is given by Eq. (20) for which

vector λr is the unique solution of Eq. (22) and then, the constant C0 is given solving

Eq. (21-a).

Let us now consider the following particular case. Taking λr = 0 in Eq. (22) yields

rb,i = r0,i which means that the barycenter of the domain Di(h) coincides with the

position vector of the center of mass Gi at initial time t = 0 of the nominal model.

Then using Eqs. (20) and (21-a) yields

p
R0,i

(a;h) =
1

|Di(h)| 1lDi(h) (a) . (23)

Since the solution of Eq. (21) is unique, it can be concluded that, if rb,i = r0,i, then

random variable R0,i is uniform on Di(h).

(iii) Generator of independent realizations

The independent realizations of random variable R0,i must be generated using the

constructed PDF p
R0,i

. There are two cases.

(1) if rb,i = r0,i (case for which λr = 0), then we have to generate independent

realizations of a uniform random variable on the bounded subspace Di(h) of R
3. Let

V be a cube in R
3 such that Di(h) ⊂ V. Let V be the uniform R

3-valued random

variable on V for which the PDF is written as p
V

(v) = |V|−1 1lV (v). So it is very

easy to generate independent realizations of random variable V. If a �→ g(a) is any

(measurable) function, then it can be verified that

E{g(R0,i)} =
|V|

|Di(h)| E

j
g(V)

1lDi(h) (V)

1lV (V)

ff
, (24)

which is a general formula to estimate E{g(R0,i)} using the generator of V.

(2) if rb,i 
= r0,i (case for which λr 
= 0), then we have to generate independent

realizations using the PDF defined by Eqs. (20) and (21). Such a generator can be ob-

tained using the Monte Carlo Markov Chain (MCMC) method (Metropolis-Hastings

algorithm [8] which is summarized in D).

3.1.3 Random matrix [Ji] of the random tensor of inertia.

In this subsection, the random matrix [Ji] of the random tensor of inertia with re-

spect to (Gi , x′
i,1 , x′

i,2 , x′
i,3) is defined and an algebraic representation of this random

matrix is constructed. The mass distribution around the random center of mass Gi

is uncertain and consequently, the tensor of inertia is also uncertain. This is the rea-

son why the matrix [J i] of the tensor of inertia of the nominal model with respect to

(Gi , x′
i,1 , x′

i,2 , x′
i,3) is replaced by a random matrix [Ji] which is constructed by using
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the maximum entropy principle.

In a first step, we derive the fundamental properties for a tensor of inertia in order to

propose a construction of the random matrix [Ji] which must be physically consistent.

This will lead us to introduce the random matrix [Zi] relative to the second-order mo-

ment of inertia of RBi. Then, in a second step, the available information is not directly

constructed for the random matrix [Ji] but is constructed for the random matrix [Zi].

In the third step, the entropy is maximized under the constraints defined by the avail-

able information. In a fourth step, we derive the properties of the random matrix [Ji]

which depends on the random matrix [Zi] and on the random mass Mi. In a last step,

a generator of independent realizations of the random matrix [Ji] is developed.

(i) Construction of the random matrix [Ji]

In order to define the available information for the construction of the probability

model of [Ji], we begin introducing two properties of the matrix [Ji] defined by Eq. (3).

(1) Matrix [Ji] defined by Eq. (3) depends on the mass mi through the mass den-

sity ρ(x). Since mi is uncertain and modeled by the random variable Mi, the random

variables [Ji] and Mi are not independent. Therefore, it is important to normalize mass

density ρ(x) with respect to total mass mi for the construction of the probability model

of the tensor of inertia. We then introduce [ eJi] such that [ eJi] = [Ji]/mi and we have

to construct the probability model [Ji] of [ eJi]. It should be noted that [ eJi] depends on

the normalized distribution of mass ρ(x)/mi, but is independent of the total mass mi

and is independent of the center of mass r0,i because [Ji] is reduced at the center of

mass.

(2) Matrix [Ji] of the tensor of inertia is positive definite but verifies a stronger

property which implies the positive definiteness and that we construct below. For all

u in R
3, the vector [Ji]u defined by Eq. (3) can be rewritten as

[Ji]u =

Z

Ωi

< x′,x′ > u ρ(x′) dx′ −
Z

Ωi

< x′, u > x′ ρ(x′) dx′ .

We then have

[Ji]jk =

Z

Ωi

x′
ℓx

′
ℓ δjk ρ(x′) dx′ −

Z

Ωi

x′
jx

′
k ρ(x′) dx′ ,

in which δjk is the Kronecker symbol and where the convention for summations over

repeated Latin indices is used. Therefore, the trace of [Ji] is such that tr([Ji]) =

2
R
Ωi

x′
ℓx

′
ℓ ρ(x′) dx′. We then have

[Ji] =
tr([Ji])

2
[I3] − [Hi] , (25)

where [Hi] is the positive definite matrix of the second order tensor of inertia defined

by

[Hi](u) =

Z

Ωi

< x′,u > x′ ρ(x′) dx′ , ∀u ∈ R
3 . (26)

Taking the trace of Eq. (25) yields tr([Ji]) = 2tr([Hi]) and substituting this equation

into Eq. (25) yields

[Ji] = tr([Hi]) [I3] − [Hi] . (27)
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It can easily be shown that for dimension n greater than 1

[A] ∈ M
+
n (R) ⇒ {tr([A])[I3] − [A]} ∈ M

+
n (R) . (28)

The converse is false. Then applying this property to the matrix [A] = [Hi] in Eq. (27)

yields [Ji] is positive definite. Therefore, the property [Hi] is positive definite implies

[Ji] is positive definite. From Eq. (25), it can be deduced that [Hi] = tr([Ji]) [I3]/2−[Ji].

Consequently, the property tr([Ji]) [I3]/2 − [Ji] is positive definite implies [Ji] is pos-

itive definite (that is a consequence). Note that this property is stronger than the

property [Ji] is positive definite because, [Ji] is positive definite does not imply that

tr([Ji]) [I3]/2 − [Ji] is positive definite. Conversely, it is proven in Appendix A, that

each positive definite matrix [Ji] constructed using Eq. (27), where [Hi] is a given posi-

tive definite matrix, can be interpreted as the matrix of a tensor of inertia of a physical

rigid body for which the mass is mi. For summarizing, the available information con-

cerning matrix [Ji] is then tr([Ji]) [I3]/2 − [Ji] is positive definite (that implies [Ji] is

positive definite).

(3) Finally, developments (1) and (2) above lead us to introduce the positive-definite

matrix [Zi] independent of mi such that

[Zi] =
1

mi

j
tr([Ji])

2
[I3] − [Ji]

ff
, (29)

which yields [Ji] = tr([Ji]) [I3]/2 − mi [Zi]. Taking the trace of this equation yields

tr([Ji]) = 2mi tr([Zi]). Substituting this equation into the previous one allows [Ji] to

be calculated as a function of [Zi],

[Ji] = mi{tr([Zi]) [I3] − [Zi]} . (30)

The probabilistic modeling [Ji] of [Ji] consists in introducing the random matrix [Zi]

and in using Eq. (30) in which mi is replaced by the random variable Mi and where

[Zi] is replaced by [Zi]. We then obtain

[Zi] =
1

Mi

j
tr([Ji])

2
[I3] − [Ji]

ff
, (31)

[Ji] = Mi{tr([Zi]) [I3] − [Zi]} . (32)

(ii) Available information concerning the random matrix [Zi]

We then have to define the available information relative to the random matrix [Zi] in

order to construct its probability distribution using the maximum entropy principle.

We have proven that the deterministic matrix [Zi] is positive definite. Consequently,

its stochastic model [Zi] must be a random matrix with values in M
+
3 (R). We will say

that a matrix [A] is less that a matrix [B], that is to say that [A] < [B], if [B] − [A]

is a positive definite matrix. Since the bounded domain Ωi is fixed, the deterministic

matrix [Zi] is less than the matrix [Zmax
i ] defined by

[Zmax
i ]jk = max(x′

j
2
) δjk , (33)

in which max(x′
j
2
) is the maximum value of x′

j
2

in the domain Ωi. Finally, the con-

straints relative to the support of the probability distribution of the random matrix
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[Zi] are [Zi] ∈ M
+
3 (R) and [Zmax

i ]− [Zi] ∈ M
+
3 (R). Let us introduce the nominal value

[Zi] of deterministic matrix [Zi] such that

[Zi] =
1

mi

j
tr([Ji])

2
[I3] − [J i]

ff
. (34)

By construction, the mean value of the random matrix [Zi] is equal to [Zi]. We also

introduce the inequality |E{log(det[Zi])}| < +∞ which will be useful to obtain a

second-order stochastic solution of the nonlinear dynamical system and the inequal-

ity |E{log(det([Zmax
i ] − [Zi]))}| < +∞ which allows the upper bound [Zmax

i ] to be

reached with a zero probability. Consequently, the available information for [Zi] can

be summarized as follows,

[Zi] ∈ M
+
3 (R) , (a)

{[Zmax
i ] − [Zi]} ∈ M

+
3 (R) , (b)

E{[Zi]} = [Zi] , (c)

E{log(det[Zi])} = Cl
i , |Cl

i | < +∞ . (d)

E{log(det([Zmax
i ] − [Zi]))} = Cu

i , |Cu
i | < +∞ . (e)

(35)

For more convenience, the random matrix [Zi] is normalized as follow. Matrix [Zi]

being positive definite, its Cholesky decomposition yields

[Zi] = [LZi
]T [LZi

] , (36)

in which [LZi
] is an upper triangular matrix in the set M3(R) of all the (3 × 3) real

matrices. Then, the random matrix [Zi] can be rewritten as

[Zi] = [LZi
]T [Gi] [LZi

] , (37)

in which the matrix [Gi] is a random matrix for which the available information is

[Gi] ∈ M
+
3 (R) , (a)

{[Gmax
i ] − [Gi]} ∈ M

+
3 (R) , (b)

E{[Gi]} = [I3] , (c)

E{log(det[Gi])} = Cl
i
′

, |Cl
i
′| < +∞ , (d)

E{log(det([Gmax
i ] − [Gi]))} = Cu

i
′ , |Cu

i
′| < +∞ , (e)

(38)

in which Cl
i
′
= Cl

i−log(det[Zi]), Cu
i
′ = Cu

i −log(det[Zi]) and where the matrix [Gmax
i ]

is an upper bound for the random matrix [Gi] and is defined by

[Gmax
i ] = ([LZi

]T )−1 [Zmax
i ] [LZi

]−1 . (39)

The maximum entropy principle is applied to the random matrix [Gi], and the random

matrix [Zi] is constructed using Eq. (37).

(iii) Maximum entropy principle

The probability distribution of the random matrix [Gi] is constructed using the maxi-

mum entropy principle under the constraints defined by the available information given
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by Eq. (38). If only constraints defined by Eqs. (38-a),(38-c) and (38-d) are taken into

account we obtain the ensemble of normalized positive-definite symmetric random real

matrices introduced in [28] and [29]. This ensemble was originally introduced to take

into account both the system-parameter uncertainties and the model uncertainties in-

duced by modeling errors in structural dynamics, yielding the so-called nonparametric

probabilistic approach of uncertainties (see [28], [29], [30] for which experimental valida-

tions can be found, for instance, in [1], [4], [6] and [7]). Let [G0,i] be the random matrix

constructed with the constraints defined by Eqs. (38-a),(38-c) and (38-d). Then, the

probability density function p[G0,i]([G ]) of the random matrix [G0,i] with respect to

the volume element edG = 23/2 Π1≤j≤k≤3 dGjk on the set M
S
3 (R) of all the symmetric

(3 × 3) real matrices is written as

p[G0,i]([G ]) = 1l
M

+

3 (R)([G ]) × CG0,i
×
`
det [G ]

´−λ × e− tr([µ0][G]) , (40)

in which the positive valued parameter CG0,i
is a normalization constant, the real

parameter λ < 1 is a Lagrange multiplier relative to the constraint defined by Eq. (38-d)

and the positive definite matrix [µ0] is a Lagrange multiplier relative to the constraint

defined by Eq. (38-c). If constraints defined Eqs. (38-b) and (38-e) are also taken into

account, the probability density function p[Gi]([G ]) with respect to the volume element

edG of random matrix [Gi] is then written as

p[Gi]([G ]) = 1l
M

+

3 (R)([G ]) × 1l
M

+

3 (R)([G
max
i ] − [G ]) × CGi

×
`
det [G ]

´−λl ×
`
det ([Gmax

i ] − [G ])
´−λu × e− tr([µ][G]) ,

(41)

in which the positive valued parameter CGi
is a normalization constant, the real pa-

rameters λl < 1 and λu < 1 are Lagrange multipliers relative to the constraints defined

by Eqs. (38-d) and (38-e) and the symmetric real matrix [µ] is a Lagrange multiplier

relative to the constraint defined by Eq. (38-c). This probability density function is

a particular case the Kummer-Beta matrix variate distribution (see [17], [5], [9]) for

which the lower bound is a zero matrix. It should be noted that we have not taken into

account a non zero lower bound for the random matrix [Zi]. Indeed, the construction

of such a non zero lower bound (which should be reached with a zero probability) is

very difficult because there is no available information from the design.

Parameters CGi
, λl, λu and matrix [µ] are the unique solution of the equations

E{1l
M

S
3
(R)([Gi])} = 1 ,

E{[Gi]} = [I3] ,

E{log(det[Gi])} = Cl
i
′

,

E{log(det([Gmax
i ] − [Gi]))} = Cu

i
′ .

(42)

In Eq. (42), the mathematical expectation corresponds to an integration (over a subset

of dimension 6) which cannot explicitly be done and which can be evaluated using

an adapted numerical method. These integrals could be estimated with the Monte

Carlo simulation method which would require a generator of independent realizations

corresponding to the PDF defined by Eq. (41). Unfortunately, such a generator cannot

directly be constructed. Note that a Monte Carlo Markov Chain (MCMC) simulation

method could be used, such as the Metropolis-Hastings algorithm [8] or the algorithm

recently proposed in [31] and based on the Itô stochastic differential calculus. Taking

into account the algebraic expression of the PDF defined by Eq. (41), a more efficient
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algorithm can be used. It consists in estimating the integrals defined in Eq. (42) by

the Monte Carlo simulation method with the PDF defined by Eq. (40) and relative to

random matrix [Gi,0] for which a generator of independent realizations is known [28]

(for readability of the paper, this generator is detailed in Appendix B). Let u �→ g(u)

be any vector-valued function defined in M
S
3 (R). Then, using Eqs. (40) and (41), it can

be deduced that

E{g([Gi]} =
CGi

CG0,i
E{g([Gi,0] 1l

M
+

3
(R)([G

max
i ] − [Gi,0])

×
`
det ([Gmax

i ] − [Gi,0])
´−λu} .

(43)

Then Eq. (43) allows integrals of Eq. (42) to be estimated using independent realiza-

tions of [Gi,0] and the Monte Carlo simulation method.

For fixed values of λl and λu, parameters CGi
and [µ] can be estimated using

Eq. (42). In Eq. (42), since the parameters Cl
i
′
and Cu

i
′ have no real physical meaning,

the parameters λl and λu are kept as parameters which then allows the ”shape” of the

PDF to be controlled. If experimental data are available for the responses of the dy-

namical system, then the two parameters λl and λu can be identified solving an inverse

problem. If experimental data are not available, these two parameters allow a sensi-

tivity analysis of the solution to be carried out with respect to the level of uncertainties.

(iv) Properties for the random matrix [Ji]

In Appendix C, it is proven that using Eq. (32) and the available information defined

by Eq. (35), the following important properties for the random matrix [Ji] can be

deduced,

{1
2 tr([Ji]) [I3] − [Ji]} ∈ M

+
3 (R) , (a)

{[Jmax
i ] − [Ji]} ∈ M

+
3 (R) , (b)

E{[Ji]} = [J i] , (c)

λl < −2 ⇒ E{‖[Ji]
−1‖2} < +∞ , (d)

(44)

in which the random matrix [Jmax
i ], which represents a random upper bound for the

random matrix [Ji], is defined by

[Jmax
i ] = Mi{tr([Zmax

i ]) [I3] − [Zmax
i ]} . (45)

It should be noted that Eq. (44-a) implies that each realization of the random matrix

[Ji] corresponds to the matrix of a tensor of inertia of a physical rigid body. In addi-

tion, this equation implies that the random matrix [Ji] is positive definite. Eq. (44-b)

provides a random upper bound for the random matrix [Ji]. Eq. (44-c) corresponds

to a construction for which the mean value of the random matrix [Ji] is equal to the

nominal value [J i]. Finally, Eq. (44-d) is necessary for that the random solution of the

nonlinear dynamical system be a second-order stochastic process.

(v) Generator of independent realizations for the random matrix [Ji]

The generator described above is used to identify parameters CGi
, λl, λu and [µ].

The integrals defined in Eq. (42) are then estimated using the Monte Carlo simulation

method with the PDF defined by Eq. (40) relative to random matrix [G0,i]. Such a

method is very efficient. However, this method is not adapted to calculate the ran-

dom responses statistics of the multibody dynamical system with random rigid bodies
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because the randomness of the responses is also due to the randomness of the the

mass and of the center of mass and consequently, the convergence is very slow. For

this reason, we introduce a second generator of independent realizations of the random

matrix [Gi] based on the Monte Carlo Markov Chain (MCMC) (Metropolis-Hastings

algorithm [8] which is summarized in Appendix D) with the PDF defined by Eq. (41).

Then, independent realizations of the random matrix [Zi] are obtained using Eq. (37).

Finally, independent realizations of the random matrix [Ji] are obtained using Eq. (32)

and independent realizations of the random mass Mi.

3.2 Stochastic matrix model for a multibody dynamical system with uncertain rigid

bodies and its random response

In order to limit the developments, it is assumed that only one of the nb rigid bodies

denoted by RBi of the rigid multibody system is uncertain. The extension to several

uncertain rigid bodies is straightforward. Let the 6 nb random coordinates be repre-

sented by the R
6 nb -valued stochastic process U = (R1, ..., Rnb ,S1, ..., Snb) indexed by

[0, T ] and let the nc random Lagrange multipliers be represented by the R
nc -valued

stochastic process Λ indexed by [0, T ]. The deterministic Eq. (13) becomes the follow-

ing stochastic equation

"
[M]

ˆ
ϕ

u

˜T
ˆ
ϕ

u

˜
[0]

# »
Ü

Λ

–
=

"
q − K

− d
dtϕt −

h
d
dtϕu

i
U̇

#
, ∀t ∈ [0, T ] , (46)

U(0) = U0 , U̇(0) = v0 , (47)

in which the vector U0 = (r0,1, . . . ,R0,i, . . . , r0,nb
, s0,1, . . . , s0,nb

) is random due to

the random vector R0,i. For all given real vector u̇, the vector K(u̇) defined by

K(u̇) = (0, . . . ,0,k1(ω1, [J1]) . . . ,ki(ωi, [Ji]), . . . , knb(ωnb , [Jnb ])) (48)

is random due to the random matrix [Ji]. For all given real vectors u and u̇, the vector

q(u, u̇, t) is defined, as previously, by

q(u, u̇, t)=(fe
1 (u, u̇, t),. . ., f e

nb
(u, u̇, t), le1(u, u̇, t),. . ., lenb

(u, u̇, t)) . (49)

The random mass matrix [M] is defined by

[M] =

»
[Mr] 0

0 [Ms]

–
, (50)

in which the (3nb × 3nb) random matrices [Mr] and [M]s are defined by

[Mr] =

2
66664

m1[I3] · · · 0
. . .

... Mi[I3]
...

. . .
0 · · · mnb [I3]

3
77775

, [Ms] =

2
66664

[J1] · · · 0
. . .

... [Ji]
...

. . .
0 · · · [Jnb ]

3
77775

. (51)

Random Eqs. (46) and (47) are solved using the Monte Carlo simulation method [19].

The level of dispersion of the random response is controlled by the dispersion parameter
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δMi
of the random mass, the geometric parameter h of the random initial position of

the center of mass and the parameters λl and λu of the random inertia tensor. If

experimental responses were available, then these four parameters could be identified

using adapted mathematical statistics such as the maximum likelihood method [26] (see

for instance [32], [1]). If no experimental responses are available, then these parameters

can be used to analyse the sensitivity of the random solution with respect to the level

of uncertainties, that is to say, to analyse the robustness of the model predictions with

respect to uncertainties.

4 Application

In this section, we present a numerical application which validates the methodology

presented in this paper.

4.1 Description of the nominal model

The rigid multibody model is made up of five rigid bodies and six joints which are

described in the fixed frame (O, x0,1, x0,2, x0,3) (see Fig. 1). The plan defined by

(O, x0,1, x0,2) is identified below as the ”ground”. The gravity forces in the x0,3-

direction are taken into account.

u1 u2

G5

Rb1

Rb3

Rb4

Rb2

Rb5

x0,1

x0,2

x0,3

Fig. 1 Rigid multibody system.

(i) Rigid bodies

In the initial configuration, the rigid bodies Rb1, Rb2, Rb3 and Rb4 are cylinders for

which the axes follow the x0,3-direction and for which the radius is 0.02 m, the length is

0.2 m and the mass density is 5013 kg/m3. The initial position of the center of mass for

rigid bodies Rb1, Rb2, Rb3 and Rb4 are respectively (2.5, 0, 0), (−2.5, 0, 0), (2.5, 0, 0.3)

and (−2.5, 0, 0.3). In the initial configuration, the rigid body Rb5 is supposed to be

symmetric with respect to the planes (G5, x0,1, x0,2) and (G5, x0,1, x0,3) in which G5 is

the center of mass of Rb5 for which the initial position is r0,5 = (0.6, 0.0, 0.5). The mass
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of Rb5 is m5 = 3000 kg. The tensor of inertia of Rb5 in the frame (G5, x0,1, x0,2, x0,3)

is

J5 =

2
4

1200 0 0

0 5000 0

0 0 6000

3
5 . (52)

(ii) Joints

− The joint Ground -Rb1 is made up of a prismatic joint following x0,3-direction. The

displacement following x0,3-direction (see Fig. 1), denoted by u1(t), is imposed. The

joint Ground -Rb2 is a prismatic joint following x0,3-direction. The displacement follow-

ing x0,3-direction (see Fig. 1), denoted by u2(t), is imposed. The displacement following

x0,1-direction is unconstrained. Imposed displacements u1(t) and u2(t) are plotted in

Fig. 2 and Fig. 3 for t in [0, 0.03] s.

− The joints Rb1-Rb3 and Rb2-Rb4 are constituted of 6D spring-dampers. For the

three displacements and the three rotations, the matrix of the spring- and damper-

constitutive equations is diagonal. The displacement stiffness is 1.0× 109 N/m for the

three directions. The rotation stiffness is 1.6×108 Nm/rad for the three directions. The

displacement and the rotation dampings are 2.4 × 106 Ns/m and 1.3 × 106 Nm/rad,

respectively, in the three directions. In each spring, the initial prestress due to the

weight of the rigid body Rb5 is (0, 0,−14715 N).

− Finally, the joints Rb3-Rb5 and Rb4-Rb5 are x0,2-direction revolute joints localized

at points (2.5, 0, 0.5) and (−2.5, 0, 0.5), respectively.

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Time (s) 1e−2
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)
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Fig. 2 Imposed displacement u1(t) .
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Fig. 3 Imposed displacement u2(t).

4.2 Response of the nominal model

The initial velocities and angular velocities are zero. The transient response is calcu-

lated using the implicit multistep integration scheme presented in [2] (implemented

in the software MBDyn which has been used for the simulations) with a time step

∆t = 1.0 × 10−5 s. The observation point Pobs belongs to Rb5 and is initially located

at position (−2.0,−1.0, 0.5). The displacements and rotations (Euler angles in the se-

quence (1, 2, 3)) of point Pobs are plotted in Figs. 4-9 for t in [0, 0.1] s. We can remark

that the motion occurs in the plane (Pobs, x0,1, x0,3) because of the symmetries of the

problem. These symmetries will be broken when introducing uncertainties in the tensor

of inertia and initial position of the center of mass for rigid body Rb5. Below, we are

only interested in the transient acceleration of point Pobs for t in [0, 0.03] s (for the

which the permanent response is not reached yet).
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Fig. 4 Transient response of point Pobs: x0,1-displacement.
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Fig. 5 Transient response of point Pobs: x0,2-displacement.
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Fig. 6 Transient response of point Pobs: x0,3-displacement.
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Fig. 7 Transient response of point Pobs: x0,1-rotation.
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Fig. 8 Transient response of point Pobs: x0,2-rotation.
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Fig. 9 Transient response of point Pobs: x0,3-rotation.

4.3 Random response of the stochastic model

Rigid body Rb5a is considered as uncertain and is therefore modeled by a random rigid

body. As explained in Section 3, the elements of inertia of the uncertain rigid body

Rb5 are replaced by random quantities. The fluctuation of the response is controlled

by four parameters δM5
, h, λl and λu. A sensitivity analysis is carried out with respect

to these four parameters. The statistics for the transient responses are estimated using

the Monte Carlo simulation method with 500 independent realizations. This number

of realizations has been determined in order to get a good mean-square convergence of

the stochastic responses.

(i) Case 1: M5 is random, R0,5 is deterministic and [J5] is deterministic.

We choose δM5
= 0.5. The probability density function of random mass Mi is plotted

in Fig. 10. The confidence region, with a probability level Pc = 0.90, of the random

acceleration of point Pobs is plotted in Figs. 11-16. It can be noted that all non-zero

accelerations are sensitive to the mass uncertainties. It can also be viewed that all an-

gular accelerations are sensitive to the mass uncertainties. Indeed, the tensor of inertia

depends on the random mass M5 through Eq. (32).
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Fig. 10 Probability density function of random mass M5.
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Fig. 11 Random transient acceleration of point Pobs, Case 1: confidence region (upper and
lower thin solid lines), mean response (thick solid line) and response of the nominal model
(dashed line); x0,1-acceleration.
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Fig. 12 Random transient acceleration of point Pobs, Case 1: confidence region (upper and
lower envelopes), mean response and response of the nominal model are superimposed; x0,2-
acceleration.
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Fig. 13 Random transient acceleration of point Pobs, Case 1: confidence region (upper and
lower thin solid lines), mean response (thick solid line) and response of the nominal model
(dashed line); x0,3-acceleration.
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Fig. 14 Random transient acceleration of point Pobs, Case 1: confidence region (upper and
lower envelopes), mean response and response of the nominal model are superimposed; angular
acceleration in x0,1-direction.
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Fig. 15 Random transient acceleration of point Pobs, Case 1: confidence region (upper and
lower thin solid lines), mean response (thick solid line) and response of the nominal model
(dashed line); angular acceleration in x0,2-direction.
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Fig. 16 Random transient acceleration of point Pobs, Case 1: confidence region (upper and
lower envelopes), mean response and response of the nominal model are superimposed; angular
acceleration in x0,3-direction.

(ii) Case 2: Mi is deterministic, R0,5 is deterministic and [J5] is random.

We choose λl = −5 and λu = −5 for random matrix [J5]. The upper bound for random

matrix [Z5] is defined by [Zmax
5 ] = [[9.61, 0, 0], [0, 1.0, 0.0625], [0, 0, 4.98]]. Parameters

CG5
and [µ] are identified using the methodology explained in Section 3.1.3. We then

have CG5
= 0.67 and [µ] = [[5.78, 0.059,−0.046], [0.059, 3.34, 0.086], [−0.046, 0.086,−0.5]]

is a symmetric non positive matrix. The probability density function of the trace of

random matrix [G5] is plotted in Fig. 17. The corresponding dispersion parameter

δG5
= ( 1

3 E{‖[G5] − [I3]‖2})1/2 of random matrix [G5] is equal to 0.45. The confi-

dence region, with a probability level Pc = 0.90, of the random acceleration of point

Pobs is plotted in Figs. 18-23. We can remark, as it was expected, that all the angular

accelerations are sensitive to uncertainties on the tensor of inertia.
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Fig. 17 Probability density function of the trace of random matrix [G5].
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Fig. 18 Random transient acceleration of point Pobs, Case 2: confidence region (upper and
lower envelopes), mean response and response of the nominal model are superimposed; x0,1-
acceleration.
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Fig. 19 Random transient acceleration of point Pobs, Case 2: confidence region (upper and
lower thin solid lines), mean response (thick solid line) and response of the nominal model
(dashed line); x0,2-acceleration.
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Fig. 20 Random transient acceleration of point Pobs, Case 2: confidence region (upper and
lower envelopes), mean response and response of the nominal model are superimposed; x0,3-
acceleration.
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Fig. 21 Random transient acceleration of point Pobs, Case 2: confidence region (upper and
lower thin solid lines), mean response (thick solid line) and response of the nominal model
(dashed line); angular acceleration in x0,1-direction.
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Fig. 22 Random transient acceleration of point Pobs, Case 2: confidence region (upper and
lower envelopes), mean response and response of the nominal model are superimposed; angular
acceleration in x0,2-direction.
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Fig. 23 Random transient acceleration of point Pobs, Case 2: confidence region (upper and
lower thin solid lines), mean response (thick solid line) and response of the nominal model
(dashed line); angular acceleration in x0,3-direction.

(iii) Case 3: M5 is deterministic, R0,5 is random and [J5] is deterministic.

The domain of R0,5 is supposed to be a parallelepiped which is centered at point

(0, 0, 0.55) for which its edges are parallel to the directions x0,1, x0,2 and x0,3 and

for which the lengths following these three directions are respectively 0.5, 0.2 and

0.02. The mean value of random vector R0,5 does not correspond to vector (0, 0, 0.55).

Therefore the PDF of R0,5 is not uniform and depends on the parameters C0 and

λr which have to be identified solving Eq. (21). We then obtain the values C0 = 472

and λr = (−2.13, 0.77,−7.7). Independent realizations of R0,5 are constructed using

the Metropolis-Hastings algorithm. Figures 24-26 shows a sampling made up of 500

realizations of the random initial center of mass. We can remark that R0,5 is quasi-
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uniform because the center of the domain of the random initial center of mass R0,5 is

near from the mean value r0,5.
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Fig. 24 500 realizations of the random initial center of mass: x0,1-x0,2 view.
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Fig. 25 500 realizations of the random initial center of mass: x0,1-x0,3 view.
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Fig. 26 500 realizations of the random initial center of mass: x0,2-x0,3 view.
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The confidence region, with a probability level Pc = 0.90, of the random accelera-

tion of point Pobs is plotted in Figs. 27-32. We can remark that all accelerations and

all angular accelerations are sensitive to uncertainties on initial center of mass of Rb5.

The angular accelerations are very sensitive to these uncertainties.
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Fig. 27 Random transient acceleration of point Pobs, Case 3: confidence region (upper and
lower envelopes), mean response and response of the nominal model are superimposed; x0,1-
acceleration.
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Fig. 28 Random transient acceleration of point Pobs, Case 3: confidence region (upper and
lower thin solid lines), mean response (thick solid line) and response of the nominal model
(dashed line); x0,2-acceleration.
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Fig. 29 Random transient acceleration of point Pobs, Case 3: confidence region (upper and
lower envelopes), mean response and response of the nominal model are superimposed; x0,3-
acceleration.
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Fig. 30 Random transient acceleration of point Pobs, Case 3: confidence region (upper and
lower thin solid lines), mean response (thick solid line) and response of the nominal model
(dashed line); angular acceleration in x0,1-direction.

0 0.005 0.01 0.015 0.02 0.025 0.03
−10

−5

0

5

10

15

20

time (s)

an
gu

la
r 

ac
c.

 (
ra

d/
s2 )

Fig. 31 Random transient acceleration of point Pobs, Case 3: confidence region (upper and
lower envelopes), mean response and response of the nominal model are superimposed; angular
acceleration in x0,2-direction.
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Fig. 32 Random transient acceleration of point Pobs, Case 3: confidence region (upper and
lower thin solid lines), mean response (thick solid line) and response of the nominal model
(dashed line); angular acceleration in x0,3-direction.

(iv) Case 4: M5, R0,5 and [J5] are random.

The values of the parameters of the PDF are those fixed in the three previous cases.

The confidence region, with a probability level Pc = 0.90, of the random acceleration

of point Pobs is plotted in Figs. 33-38. It can be viewed that (1) the randomness on

the accelerations is mainly due to the randomness of mass M5, (2) the randomness on

the angular accelerations is mainly due to the randomness of the initial position R0,5

of the center of mass and the random tensor of inertia [J5].
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Fig. 33 Random transient acceleration of point Pobs, Case 4: confidence region (upper and
lower thin solid lines), mean response (thick solid line) and response of the nominal model
(dashed line); x0,1-acceleration.
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Fig. 34 Random transient acceleration of point Pobs, Case 4: confidence region (upper and
lower thin solid lines), mean response (thick solid line) and response of the nominal model
(dashed line); x0,2-acceleration.
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Fig. 35 Random transient acceleration of point Pobs, Case 4: confidence region (upper and
lower thin solid lines), mean response (thick solid line) and response of the nominal model
(dashed line); x0,3-acceleration.
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Fig. 36 Random transient acceleration of point Pobs, Case 4: confidence region (upper and
lower thin solid lines), mean response (thick solid line) and response of the nominal model
(dashed line); angular acceleration in x0,1-direction.
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Fig. 37 Random transient acceleration of point Pobs, Case 4: confidence region (upper and
lower thin solid lines), mean response (thick solid line) and response of the nominal model
(dashed line); angular acceleration in x0,2-direction.
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Fig. 38 Random transient acceleration of point Pobs, Case 4: confidence region (upper and
lower thin solid lines), mean response (thick solid line) and response of the nominal model
(dashed line); angular acceleration in x0,3-direction.

5 Conclusion

We have presented a complete and general probabilistic modeling of uncertain rigid

bodies taking into account all the geometrical, mechanical and mathematical properties

allowing an uncertain rigid body to be defined in the context of multibody dynamics.

This probabilistic model of uncertainties is used to construct the stochastic equations

of multibody dynamical systems with uncertain rigid bodies. The random dynamical

responses can then be calculated. In the proposed probabilistic model, the mass, the

center of mass and the tensor of inertia are modeled by random variables for which

the prior probability density functions are constructed using the maximum entropy

principle under the constraints defined by all the available mathematical, mechanical

and design properties. Several uncertain rigid bodies can be joined to each other in

order to obtain the stochastic dynamical model of the uncertain multibody dynamical

system. The theory proposed has been illustrated analyzing a simple example. The

results obtained clearly show the role played by uncertainties and the sensitivity of

the responses due to uncertainties on (1) the mass (2) the center of mass and (3) the
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tensor of inertia. Such a prior stochastic model allows the robustness of the responses

to be analyzed with respect to uncertainties. If experimental data were available on

the responses, then the parameters which control the level of uncertainties could be

estimated by solving an inverse stochastic problem.

Appendix A: Proof of the existence of a physical rigid body corresponding

to a given positive definite matrix [H ].

Let [H] be a given positive-definite (3 × 3) real matrix. Let [J ] be the (3 × 3) real positive
definite matrix defined by [J ] = −[H] + tr([H])[I3]. We then have [H] = −[J ] + (tr([J ])/2)[I3].
Since [J ] is positive definite, there exists a matrix [P ] such that [A] = [P ]T [J ][P ] is a positive-

definite diagonal matrix. Let [ eA] be the positive-definite matrix defined by [ eA] = [P ]T [H][P ] =

−[A] + (tr([A])/2)[I3], we then have [A] = −[ eA] + tr([ eA])[I3]. Let y = [P ]x be the position
vector defined in a frame (0, Y1, Y2, Y3) for which the axes are defined by the columns of matrix
[P ].

We are looking for a rigid body for which the matrix of its tensor of inertia expressed in the
frame (0, Y1, Y2, Y3) is equal to [A], for which the center of mass is point (0, 0, 0) and for which
the mass is mi. To perform such a construction, we introduce a rigid body RBi made up of 6
material points with equal masses mi/6. The masses are assumed to be localized in the axes.
The positions of the 6 masses with respect to frame (0, Y1, Y2, Y3) are (ℓ1, 0, 0), (−ℓ1, 0, 0),
(0, ℓ2, 0), (0,−ℓ2, 0), (0, 0, ℓ3)and (0, 0,−ℓ3) where the lengths ℓ1, ℓ2 and ℓ3 are unknown. It
can easily be deduced that the centrum of mass is (0, 0, 0) and the total mass is mi. Then, the
matrix [Ai] of the tensor of inertia of rigid body RBi expressed in frame (0, Y1, Y2, Y3) is such
that

[Ai] =
mi

6

2
4

2ℓ22 + 2ℓ23 0 0
0 2ℓ23 + 2ℓ21 0
0 0 2ℓ21 + 2ℓ22,

3
5 . (53)

Then, matrix [A] is equal to [Ai] if we have

ℓ21 = 3 (A22 + A33 − A11)/(2mi) ,

ℓ22 = 3 (A33 + A11 − A22)/(2mi) ,

ℓ23 = 3 (A11 + A22 − A33)/(2mi) .

(54)

Therefore, Eq. (54) has a solution if the components of matrix [A] verify the inequalities

A22 + A33 − A11 > 0 ,

A33 + A11 − A22 > 0 ,

A11 + A22 − A33 > 0 .

(55)

Since, the diagonal matrix [ eA] is positive definite, the conditions defined by Eq. (55) are verified
and then Eq. (54) can be solved. Finally, matrix [J ] = [P ][A][P ]T can be interpreted as the
matrix of the inertial tensor of rigid body RBi for which the center of mass is (0, 0, 0) and for
which the mass is mi. Consequently, rigid body RBi exists.

Appendix B: Generator of independent realizations for normalized sym-

metric positive-definite random matrices.

In this appendix, we recall the formulation [29] for the generator of independent realizations of
normalized symmetric positive-definite random matrix [G0,i] for which the PDF is defined by
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Eq. (40). The statistical fluctuations of [G0,i] is controlled by the dispersion parameter δ
G0,i

which is defined by

δ
G0,i

=
n1

3
E{‖[G0,i] − [I3]‖}

2
F

o1/2

=

j
2

2 + λ

ff1/2

, (56)

and which must be chosen such that 0 < δ
G0,i

<
p

1/2. The probability density function

p[G0,i]
([G ]) of random matrix [G0,i] is rewritten as

p[G0,i]
([G ]) = 1l

M
+

3
(R)

([G ]) × CG0,i
×

`
det [G ]

´2(δ−2

G0,i
−1)

× e
−2δ−2

G0,i
tr[G ]

, (57)

in which the positive constant CG0,i
is such that

CG0,i
=(2π)−3/2

“
2δ−2

G0,i

”6δ−2

G0,i

8
<
:Π3

j=1Γ
` 2

δ2
G0,i

+
1−j

2

´
9
=
;

−1

, (58)

where Γ (z) is the gamma function defined for z > 0 by Γ (z) =
R +∞
0 tz−1 e−t dt. Note that

Eq. (57) shows that {[G0,i]jk, 1 ≤ j ≤ k ≤ 3} are dependent random variables. The random

matrix [G0,i] is written as [G0,i] = [Li]
T [Li], in which [Li] is an upper triangular random

matrix with values in M3(R) such that:
(1) the random variables {[Li]jj′ , j ≤ j′} are independent;
(2) for j < j′, real-valued random variables [Li]jj′ can be written as [Li]jj′ = σmUjj′ in which
σm = δ

G0,i
/2 and where Ujj′ is a real-valued Gaussian random variable with zero mean and

variance equal to 1;
(3) for j = j′, positive-valued random variables [Li]jj can be written as [Li]jj = σm

p
2Vj

in which Vj is a positive-valued gamma random variable whose probability density function
pVj

(v) with respect to dv is written as

pVj
(v) = 1l

R+ (v)
1

Γ ( 2
δ2

G0,i

+ 1−j
2

)
v
2δ−2

G0,i
−(1+j)/2

e−v , (59)

in which δ
G0,i

is the dispersion parameter defined by Eq. (56).

Appendix C: Properties of random matrix [Ji] induced by the available

information related to random matrix [Zi].

In this appendix, we prove that the available information defined by Eq. (35) yields the prop-
erties defined by Eq. (44).

(1) From Eqs. (31), (15-a) and (35-a), it can be deduced that random matrix {tr([Ji]) [I3]/2−
[Ji]} is positive definite.

(2) From Eqs. (35-b) and (28), it can be deduced that random matrix (tr([Zmax
i ]) [I3] −

[Zmax
i ])− (tr([Zi]) [I3]− [Zi]) is positive definite. Then, using Eqs. (15-a),(32) and (45) it can

be deduced Eq. (44-b)

(3) Since the random variable Mi and [Zi] are independent, and taking into account
Eqs. (15-b) and (35-c), taking the mathematical expectation of Eq. (32), it can be deduced
that E{[Ji]} = mi {tr(Zi) [I3] − [Zi]}. Finally, substituting Eq. (34) in the previous equation
yields Eq. (44-c).

(4) Firstly, from Eqs. (36) and (37), it can be deduced that

E{‖[Zi]
−1‖

2
F } ≤ CL,i E{‖[Gi]

−1‖
2
F } , (60)
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where CL,i = ‖[LZi
]−1‖

2

F
× ‖[LZi

]−T ‖
2

F
. In the PDF defined by Eq. (40), if λ is chosen such

that λ < −2, then it can be proven [29] that E{‖[G0,i]
−1‖

2
F } < +∞. Since for λ = λl and

[µ] = [µ0], the PDF defined by Eqs. (40)-(41) have the same behaviour in the neighborhood

of the zero matrix, it can be deduced that E{‖[Gi]−1‖
2
F } < +∞ and then, from Eq. (60),

E{‖[Zi]−1‖
2
F } < +∞ . (61)

Secondly, it can be shown that if a symmetric real matrix [A] is positive definite with

dimension larger than 2, then ‖(tr([A])[I3] − [A])−1‖
2
F < ‖[A]−1‖

2
F . Therefore, Eq. (61) yields

E{‖(tr(Zi) [I3] − [Zi])
−1‖

2
F } < +∞ . (62)

Thirdly, since the random variable Mi and [Zi] are independent and from Eq. (32), it

can be deduced that E{‖[Ji]−1‖
2
F } = E{M−2

i }E{‖(tr(Zi) [I3] − [Zi])−1‖
2
F }. Then, using

subsection 3.1.1-(i) and Eq. (62), the previous equation yields E{‖[Ji]
−1‖

2
F } < +∞. Finally,

the inequality E{‖[Ji]
−1‖

2
} ≤ E{‖[Ji]

−1‖
2
F } yields Eq. (44-d).

Appendix D: Metropolis-Hastings algorithm.

Independent realizations of random vector R0,i and random matrix [Gi] are obtained using
Metropolis-Hasting algorithm . For the readability of the paper, we summarize this algorithm
[8]. Let X be a R

d-valued random variable for which the PDF is denoted by pX(x). Let

qX|Xk
(x,xk) denote a transition kernel. Let x(0) and x(k) denote respectively the initial and

the kth realization of random vector X. Then, the (k + 1)th realization x(k+1) of random
vector X is generated by the following steps:

(1) Generate a realization ex of the random vector eX with the PDF x �→ qX|Xk
(x, x(k)).

(2) Compute α(x(k), ex) = min{ 1 , pX(ex) qX|Xk
(x(k), ex) / pX(x(k)) qX|Xk

(ex, x(k))}.
(3) Generate a realization z of a real-valued random variable Z which is uniform on [0 , 1].

(4) Test: If z < α(x(k), ex), then x(k+1) = ex, else, return to step (1).

A popular choice for the transition kernel is qX|Xk
(x, xk) = g(x − xk), where g is a mul-

tivariate distribution verifying g(y) = g(−y) for all y in R
d and thus, α(x(k), ex) can be

rewritten as

α(x(k), ex) = min{1,
pX(ex)

pX(x(k))
} .

Then, eX is a random vector which can be written as eX = x(k) + W in which W is the
centered random variable for which its PDF is g. In this case, the algorithm is referred as
the Random Walk Metropolis-Hastings algorithm. The distribution g, is generally chosen as a
centered multivariate Gaussian or as a centered uniform distribution.
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