
HAL Id: hal-00743565
https://hal.science/hal-00743565

Preprint submitted on 29 Jul 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Public Domain

Strengthening Topological Conditions for Relabeling
Algorithms in Evolving Graphs

Florent Marchand de Kerchove, Frédéric Guinand

To cite this version:
Florent Marchand de Kerchove, Frédéric Guinand. Strengthening Topological Conditions for Relabel-
ing Algorithms in Evolving Graphs. 2012. �hal-00743565�

https://hal.science/hal-00743565
https://hal.archives-ouvertes.fr

Strengthening Topological Conditions for Relabeling Algorithms in
Evolving Graphs

Florent Marchand de Kerchove – fmdkdd@gmail.com

Normandy Universtiy ULH LITIS, France

and

Frédéric Guinand – frederic.guinand@univ-lehavre.fr

Normandy University ULH LITIS, France

We use the framework of relabeling algorithms over evolving graphs
by Casteigts, Chaumette and Ferreira in 2012 to ground our contribu-
tions to the domain of distributed algorithms, which are twofold: (1) we
provide a sufficient condition for the decentralized counting algorithm
proposed by Casteigts in its PhD dissertation, (2) we define a tightness
criterion for sufficient and necessary conditions.

Categories and Subject Descriptors:

Additional Key Words and Phrases: Relabeling algorithms, evolving
graphs, counting

1. CONTEXT

1.1 Dynamic graphs

Graphs are powerful mathematical structures, suited to numer-
ous theoretical and real-world applications. However, for all
their usefulness in a static context, graphs are not sufficient
when it comes to modeling dynamic relationships between ob-
jects. Dynamic graphs arose from a need to include time into
graph-based models.

Straightforwardly, a dynamic graph can be decomposed as a
discrete sequence of static graphs. Each static graph is a snap-
shot of the dynamic graph at a given time. These static graphs
can then be studied by all the mathematical tools already at our
disposal. This is precisely the view adopted by Ferreira and his
“evolving graph” model [2004].

Born in the context of mobile ad-hoc networks, the formalism
of evolving graphs is a mathematical tool to analyze a sequence
of static graphs captured from the same dynamic network. It in-
troduces new concepts required by the incorporation of time,
like the one of a path over time, called a journey. Our contribu-
tion is deeply rooted in this formalism, and as a matter of fact
we will make use of the definitions presented in this seminal
article.

1.2 Related work

The interest in the study of distributed algorithms resulted in a
large number of models to characterize distributed algorithms,
and the communication networks they are usually executed on.
These models are seldom compatible in their assumptions on
synchronizations protocols and mobility models for example. As a
consequence, algorithms that are elaborated for distinct, specific
models are not easily comparable to each other. This diversity
called for higher-order theoretical frameworks, where the intrin-
sic properties of distributed algorithms can be analyzed without
getting dragged into implementation details.

We focus on the model introduced by Casteigts [2007], where
graph relabeling systems [1999] are coupled with evolving
graphs [2004]. Although superficially it may appear similar to
the rather popular approach of population protocols introduced
by Angluin et al. [2006], the assumptions and implications are
radically different. For one, here the interactions between nodes
are finite; no assumptions on the recurrence of these interactions
are made. That is why the analytical approach required to study
algorithms under this model is necessarily different to that of
population protocols. Thus, even though algorithms expressed
here may have already appeared in the context of population
protocols, their analysis must not be confused.

This framework was later extended by Casteigts et al. [2009;
2012]. While these works are fairly recent, they have already
been applied to the spanning tree maintenance problem by
Pigné et al. [2010] and to the mutual exclusion problem by Flo-
riano et al. [2011].

The next section is devoted to the definitions and results from
Casteigts et al. [2012] required by our contributions, which are
presented in the third section.

2. PRELIMINARIES

Our contributions build upon the work established by Casteigts
et al. [2012]. Therefore, the concepts of local computation,
graph relabelings and evolving graphs are required to fully un-
derstand the results of next section.

For the sake of clarity and completeness, we reproduce here
the definitions by Casteigts et al. [2012] needed to express our
results.

2.1 Graph relabelings

Graph relabelings [1999] are a formalism where distributed
algorithms are represented as a set of local interaction rules.
These rules are independent from any communication proto-
col. Abstracting the effective communication allows us to specify
and reason about important properties of distributed algorithms,
such as correctness and termination, without limiting these re-
sults to a specific implementation.

As the name implies, a graph relabeling system is first and
foremost a graph with labels on its vertices and edges. These la-
bels are used by the interaction rules of the relabeling algorithm.
An interaction rule is defined as a transition from one pattern
of vertices and edges and their associated labels (preconditions),
to another such pattern (actions). Since graph relabeling sys-
tems were introduced to characterize properties of local com-
putation, interaction rules are local: they involve a limited set
of connected vertices and edges. In this paper, we only consider

ACM Transactions on Graphics, Vol. , No. , Article , Publication date: .

2 • Florent Marchand de Kerchove and Frédéric Guinand

interaction rules between pairs of connected vertices, i.e. neigh-
bors.

We now give a formal definition of graph relabeling systems.
Let G = (VG , EG) be a finite undirected loopless graph, with VG
as the set of nodes in our network, and EG representing the set
of communication links between them. Two vertices u and v are
neighbors if and only if they share a common edge (u, v) in EG .

Let λ : VG∪EG → L∗ be a mapping that associates every vertex
and edge from G with one or several labels from an alphabet L.
The label of a given vertex or edge u, at a given time t is denoted
by λt(u). The pair (G,λ) is the labeled graph, written G.

A complete algorithm is defined by the triplet {L, I , P}, where
I is the set of initial states, and P is a set of relabeling rules. Since
we are interested in distributed algorithms, where every node in
the network will execute the same identical algorithm, the set of
rules P is the same for all vertices.

Algorithm 1 (or A1 for short) is an example of a complete
algorithm expressed in the formalism of graph relabelings. Each
vertex can be in one of two states: I and N , standing for informed
and non-informed respectively. Initially, only the emitter vertex
has the I state. Then, repeated application of the rule diffuses
the information in the network. This is a simple and general
information propagation algorithm.

Algorithm 1: Information propagation

Initial states: I for the emitter, N for every other node

I N I I
r1:

The algorithm works in the following way. Since rules are pat-
terns, each node looks for a match in its neighborhood in order
to follow the rule’s preconditions (the left-hand side of the rule).
When a pair matches, both nodes modify their labels in the way
described by the right-hand side of the rule. Figure 1 gives a
step-by-step example of executing algorithm 1 on a static graph.

I N

N N

r1

I
N

I N

r1

I I

I N

r1

I I

I I

Fig. 1. Example execution of the information propagation relabeling
algorithm on a static graph. Here, all nodes are informed at the end.
Note that this is only one possible execution sequence of the algorithm
for this graph; others appear when matching pairs of nodes are selected
in a different order.

Note that, from a node’s perspective, when two or more neigh-
bor nodes match a rule’s preconditions, only one rule can be ap-
plied at a time. Depending on the order the rules are applied
to these matching pairs, the algorithm may have different out-
comes.

2.2 Evolving graphs

2.2.1 Definition. Evolving graphs were introduced by Fer-
reira [2004] as a model for dynamic networks. In this model,
the evolution of the network topology is simply recorded as a
sequence of static graphs, where each static graph can be seen
as a snapshot of the network at a given time.

Formally, an evolving graph is a triplet (G, SG , ST) = G, where:

—ST is the sequence of dates used to capture the static graphs. T
can be anything meaningful to the network: discrete (T ⊂ N)
and continuous (T⊂ R) time systems are common.

—SG is the sequence of undirected static graphs Gi = (Vi , Ei),
where Gi is a snapshot of the network topology during an
interval [t i , t i+1).

—G is the union of all Gi in SG , called the underlying graph of G.

We will use the simple notations V and E to denote the sets
of vertices and edges of the underlying graph G. A vertex (resp.
edge) u is in V (resp. E) if and only if it belongs to at least
one static graph in SG . In addition, we will use the notation
G[ta ,tb) when taking a temporal subgraph G′ = (G′, S′G , S′T) of
G = (G, SG , ST), where G′ ⊆ G, S′G = {Gi ∈ SG : t i ∈ [ta, tb)},
and S′T = {t i ∈ ST ∩ [ta, tb)}.

Note that evolving graphs are a post-mortem view of the net-
work; in a given evolving graph, all the nodes that can appear
or disappear belong to V . As such, even if a node can be seen as
“appearing” from another node’s viewpoint, for us it was present
all along.

2.2.2 Basic concepts. First, we consider a presence function
ρ : E×T→ {0,1} that indicates whether a given edge is present
at a given date. For e ∈ E and t ∈ [t i , t i+1), with t i and t i+1
being two consecutive dates in ST, ρ(e, t) = 1 ⇐⇒ e ∈ Ei .

A journey is a path over time between two vertices.
Formally, a journey in G is a sequence of couples J =
{(e1,σ1), (e2,σ2), . . . , (ek,σk)} where {e1, e2, . . . , ek} is a walk in
G, {σ1,σ2, . . . ,σk} is a non-decreasing sequence of dates from
T, and ρ(ei ,σi) = 1 for all i ≤ k. A strict journey only contains
couples (ei ,σi) taken from distinct graphs of the sequence SG .

For any u, v in V , if a journey from u to v exists in G, we write

u v, or u
st
 v in the case of a strict journey. We assume that

u u for all u in V . Note that a journey is not necessarily sym-
metrical, even if edges are undirected, because time intervals
create a new level of direction. The horizon of a node u is the set
{v ∈ V : u v}, thus u is included in its own horizon.

2.3 Relabelings over evolving graphs

Now we combine graph relabelings and evolving graphs to cre-
ate an analysis framework for distributed algorithms on dynamic
networks.

Let G = (G, SG , ST) be an evolving graph. The static graph in
SG that covers the time interval [t i , t i+1) is written Gi; we have
Gi ∈ SG and t i , t i+1 ∈ ST. The labeled graph (Gi ,λti+ε), denoted
G i , represents the state of the network just after the topological
event of date t i , and G i[denotes the labeled graph (Gi−1,λti−ε)
representing the network state just before that event. Thus, G i =
Eventti

(G i[), where Eventti
is the topological event occuring at

time t i and mapping the static graph Gti−1
to Gti

.
Between two consecutive topological events, any number of

relabelings may take place. For a given algorithm A and two
consecutive dates t i , t i+1 ∈ ST, we denote by RA[ti ,ti+1)

one of

ACM Transactions on Graphics, Vol. , No. , Article , Publication date: .

Strengthening Topological Conditions for Relabeling Algorithms in Evolving Graphs • 3

the possible relabeling sequence induced by A on the graph Gi
during the period [t i , t i+1). We have G i+1[= RA[ti ,ti+1)

(G i).
Let us call tk the date of the last static graph in SG . A complete

execution sequence from t0 to tk is then given by an alternated
sequence of relabeling steps and topological events:

X = RA[tk−1,tk)
◦ Eventtk−1

◦ · · · ◦ Eventt1
◦ RA[t0,t1)

(G0)

I
N

N
N

r1

I N

I
N

event

I
N

I
N

r1

I
I

I
N

event

I
I

I
N

r1

I
I

I
I

Fig. 2. Execution of the information propagation relabeling algorithm
on an evolving graph. This time, the execution is a sequence of in-
tertwined relabeling steps and topological events. In future diagrams,
we will combine relabeling steps and topological events for the sake of
brevity; thus we will only show the sequence of labeled graphs.

We already mentioned that the order of execution of the rules
is not deterministic, since it depends on implementation details
concerning the selection of pairs of nodes matching a rule’s pre-
conditions. We denote by χA/G the set of all possible execution
sequences of an algorithm A over an evolving graph G. An exam-
ple execution of a relabeling algorithm over an evolving graph
is given in figure 2.

2.4 Analysis of distributed algorithms

A distributed algorithm can have multiple outcomes for the
same graph. We usually want the algorithm to be complete: it
should achieve its goal in all cases. For example, the propaga-
tion algorithm (algorithm 1) should inform all nodes in the net-
work. Unfortunately, all networks will not necessarily allow the
algorithm to complete. If the network contains at least two con-
nected components, then only one of them will have all of its
nodes informed, since there is only one informed node initially,
and information is propagated along edges.

Hence, we find a first way of analyzing distributed algo-
rithms: by characterizing graphs on which they are complete,
and graphs on which they can never reach their goal. A condi-
tion on graphs ensuring the completeness of algorithm A will be
called a sufficient condition for A. Conversely, a necessary con-
dition for A defines the class of graphs on which A will always
fail.

Formal definitions of these concepts follow.

2.4.1 Objectives of an algorithm. Given an algorithm A and a
labeled graph G, the state one wishes to reach can be given by a
logic formula P on the labels of vertices (and edges, if appropri-
ate). In the case of the propagation algorithm, such a terminal

state could be that all nodes are informed,

P1(G) = ∀v ∈ V,λ(v) = I

The objective OA is then defined as the fact of verifying the
desired property by the end of the execution, that is, on the final
labeled graph, after the last relabeling step.

OA1
= P1(Gk[)

2.4.2 Necessary conditions. Given an algorithm A, its objec-
tive OA and an evolving graph property CN , the property CN is a
(topology-related) necessary condition for OA if and only if:

∀G,¬CN (G) =⇒ ¬OA

Proving this result comes to prove that

∀G,¬CN (G) =⇒ @X ∈ χA/G|P(Gk[)

In other words, the desired state is not reachable by the end of
the execution (time k), unless the condition is verified.

2.4.3 Sufficient conditions. Symmetrically, an evolving
graph property CS is a (topology-related) sufficient condition for
A if and only if:

∀G, CS(G) =⇒ OA

Proving this result comes to prove that

∀G, CS(G) =⇒ ∀X ∈ χA/G|P(Gk[)

The desired state is always reached by the end of the execution
if the condition holds.

Because we have not made any assumptions on the synchro-
nization between nodes, we have no way of ensuring that a rule
will effectively be applied. Therefore, Casteigts et al. [2012] for-
mulate a progression hypothesis that enables the characteriza-
tion of sufficient conditions.

PROGRESSION HYPOTHESIS 1. In every time interval [t i , t i+1),
with t i in ST, each vertex is able to apply at least one relabeling
rule with each of its neighbors, provided the rule preconditions are
already satisfied at time t i (and still satisfied at the time the rule
is applied).

2.4.4 Analysis of the propagation algorithm. Casteigts et al.
show [2012] that the information propagation algorithm has the
following necessary and sufficient conditions.

CONDITION 1. ∃u ∈ V : ∀v ∈ V, u v.
(There is a node that can reach all the others by a journey.)

CONDITION 2. ∃u ∈ V : ∀v ∈ V, u
st
 v.

(There is a node that can reach all the others by a strict journey.)

3. CONTRIBUTIONS

In this section, we present our core contributions to the analysis
of distributed algorithms on dynamic graphs.

First, we provide a sufficient condition for the decentralized
counting algorithm from Casteigts [2007]. A necessary condi-
tion for this algorithm was formulated in Casteigts et al. [2012],
but a sufficient condition was left open. We then introduce the
concept of tight conditions, to strengthen the guarantees offered
by necessary and sufficient conditions. Finally, we review the
conditions and algorithms introduced so far with respect to this
tightness criterion.

ACM Transactions on Graphics, Vol. , No. , Article , Publication date: .

4 • Florent Marchand de Kerchove and Frédéric Guinand

3.1 Sufficient condition for the decentralized counting
algorithm

3.1.1 Decentralized counting algorithm. This decentralized
counting algorithm was first proposed in Casteigts’ thesis
[2007], along with other variants.

Algorithm 2: Decentralized counting

Initial states: (C , 1) for every node

(C , i) (C , j) (C , i+ j) F
r1:

This is an example of a truly distributed algorithm: all nodes
have the same initial state, and all nodes execute the same al-
gorithm. Each node has two labels: a state indicator (C or F),
and a counter. Initially, a node starts in the “counting” state (C),
with a counter of value 1. The counter indicates the number of
counted nodes so far by its holder, hence they all begin at 1.
When two nodes in the counting state meet and apply rule 1,
one of them transitions to the “counted” state (F), and the other
updates the value of its counter by summing the counters of
both nodes. Ultimately, the goal is to have the last node remain-
ing in the counting state to hold the total number of nodes in the
network as the value of its counter. Figure 3 gives an example
execution sequence.

(C , 1)
(C , 1)

(C , 1)

(C , 1)
r1

(C , 1)
F

(C , 2)

(C , 1)
r1

(C , 3) F

F

(C , 1)

Fig. 3. Example execution of the decentralized counting algorithm. If
we consider this to be the whole execution sequence, then the counting
was not successful: two nodes remain in the counting state. For these
two nodes to apply rule 1 and merge, there must be an edge between
them; this is the intuition behind a sufficient condition for this algo-
rithm.

Casteigts showed [2007] that this algorithm has the following
invariant. Let C (resp. F) be the set of nodes in state “C” (resp.
“F”), and V be the set of all nodes. Then |C |+ |F | = |V | holds
at any time of the computation. It follows that if C = {u} (only
one counting node remains), then u’s counter value is equal to
|V |.

We can express the objective of this algorithm as the property
that only one counting node remains at the end of the computa-
tion. Formally:

P2 = ∃u ∈ V : ∀v ∈ V \ {u}, s(u) = C ∧ s(v) = F
OA2
= P2(Gk[)

Where s(u) is the “state” (here in {C , F}) of the node u. The
necessary condition to this algorithm was then shown to be:

CONDITION 3. ∃v ∈ V : ∀u ∈ V, u v.
(There is a node reachable by all the others.)

3.1.2 Sufficient condition. Let us now prove that condition 4
is a sufficient condition for algorithm 2.

CONDITION 4. The underlying graph G is complete. Precisely:
∀u, v ∈ V , u 6= v =⇒ (u, v) ∈ E.

First, note the following properties of algorithm 2.

LEMMA 1. ∀t i , t j ∈ ST, j ≤ i, ∀u ∈ V , sti
(u) = C =⇒ st j

(u) =
C.
(“C” labels never change until they disappear.)

PROOF. Counters can only disappear from a vertex by applica-
tion of r1. Any counter still present at t i ∈ ST \ {t0} must have
been there from the beginning.

LEMMA 2. ∀t i , t j ∈ ST, j ≥ i, ∀u ∈ V , sti
(u) = F =⇒ st j

(u) =
F.
(“F” labels never change once they appear.)

PROOF. No rule can apply to a vertex with a “F” label, thus its
label can never change once it becomes “F”.

LEMMA 3. Under progression hypothesis 1, ∀t i ∈ ST \ {tk},
∀(u, v) ∈ Ei , sti

(u) = sti
(v) = C =⇒ F ∈ sti+1[

({u, v}).
(If two counters share an edge, at least one of them will disappear.)

PROOF. During the relabeling step R[ti ,ti+1), either r1 is applied
to (u, v), or r1 can not be applied because preconditions on the
labels are not met anymore after an intermediary relabeling. In
the first case, one counter disappears from one vertex of {u, v};
in the second case, one vertex of {u, v} already lost its counter.
In both cases, F ∈ sti+1[

({u, v}).

We can now show that condition 4 (C4) is sufficient for algo-
rithm 2 to fulfill its objective.

PROPOSITION 1. Condition 4 is sufficient on G to guarantee
that algorithm 2 will reach its objective OA2

.

PROOF. (By contradiction). Assume OA2
is not satisfied: for

some execution sequence X ∈ χA2/G
, there are at least two fi-

nal counters in Gk. Let u and v be two nodes with such coun-
ters: u, v ∈ V , u 6= v, stk

(u) = stk
(v) = C . Since G is complete

(by condition 4), (u, v) ∈ Ei , for some t i ∈ ST. By lemma 1,
sti
(u) = sti

(v) = C . Then, by lemma 3, either sti+1[
(u) = F

or sti+1[
(v) = F , and in both cases we have F ∈ stk

({u, v}) by
lemma 2, leading to a contradiction. Hence, C4 =⇒ OA2

.

3.2 Tight necessary and sufficient conditions

A necessary condition might be broader than required. We know
that any graph not satisfying this condition will never fulfill the
algorithm’s objective, but it gives us no additional clue about
graphs satisfying the condition. Indeed, for any graph satisfying
the condition, some may never fulfill the objective, some may
fulfill it in some cases, and some may fulfill it in all cases; we
can not know without a stronger definition.

Besides, it is not difficult to find trivial necessary conditions
that are overly broad. For any relabeling algorithm, any condi-
tion which encompass all graphs is a necessary condition. Take
the condition that the graph should have nodes: |V | > 0. Then,
let S be the set of graphs not satisfying this condition; trivially,
S = ;. It follows that any graph in S will never fulfill the objec-
tive, since S is empty, hence (|V | > 0) is a necessary condition.

ACM Transactions on Graphics, Vol. , No. , Article , Publication date: .

Strengthening Topological Conditions for Relabeling Algorithms in Evolving Graphs • 5

It is trivial in the sense that it does not enlarge the set of graphs
for which the algorithm will fail.

When finding necessary conditions, we preferably want them
to be as tight as possible. A necessary condition should partition
the set of dynamic graphs into two subsets: the set of all graphs
for which the algorithm will systematically fail, and the set of
all graphs for which the algorithm will succeed at least once. To
this end, we define tight necessary conditions that generates such
partitioning.

DEFINITION 1. Let A be an algorithm, OA be its objective, and
CN be a necessary condition. CN is a tight necessary condition if
and only if

∀G, CN (G) =⇒∃X ∈ χA/G|P(Gk)

In other words, if CN holds for an evolving graph G, then at least
one execution sequence of A over G will reach the desired state.

Symmetrically, we define tight sufficient conditions.

DEFINITION 2. Let A be an algorithm, OA be its objective, and
CS be a sufficient condition. CS is a tight sufficient condition if and
only if

∀G,¬CS(G) =⇒∃X ∈ χA/G|¬P(Gk)

In other words, if CS does not hold for a graph G, then at least one
execution sequence of A over G will fail to reach the desired state.

Note that a condition that is both necessary and sufficient is
also a tight necessary and tight sufficient condition.

3.2.1 Tightening known conditions. We now show that con-
dition 4 is a tight sufficient condition for algorithm 2. We have
two ways to do so:

—Show that an evolving graph lacking completeness of its un-
derlying graph will fail to fulfill its objective in at least one
outcome.

—Show that all graphs for which all outcomes succeed in fulfill-
ing the objective have a complete underlying graph.

The following proof uses the former path.

PROOF. Let G = (G, SG , ST) be an evolving graph. By hypothe-
sis, G is not complete; i.e. there are two distinct nodes u, v ∈ V
such that (u, v) /∈ E. Since u and v are never neighbors, they can
not apply rule r1. If u and v are the only two counting nodes
left, then it follows that ¬P(Gk), thus the objective OA2

can not
be fulfilled and condition 4 is tight. We are left with exposing a
relabeling sequence which leaves u and v with two C labels.

When applying r1, any of the two nodes can keep the C la-
bel, creating two possible outcomes. Every time r1 is applied to
u (resp. v) with another node, we choose the outcome where
u (resp. v) keeps the C label. Ultimately, there are at least two
nodes in the counting state at time tk: u and v. There may be
more, but in all cases the algorithm fails to fulfill the objec-
tive.

It can also be shown that all necessary and sufficient condi-
tions given for the algorithms in Casteigts et al. [2012] are tight.

This is expected, because mathematical proofs have a tendency
to follow Occam’s razor; the smallest set of hypotheses needed
by the proof is kept. Nonetheless, tight conditions ensure we
narrowed down the right property required by the algorithm to
fail (or succeed).
Conclusion

Throughout this article, we built upon the foundations provided
by Casteigts et al. [2012] in the domain of distributed algo-
rithms over dynamic graphs.

We showed that a complete underlying graph was sufficient
for the decentralized counting algorithm to succeed. Then, we
defined a tightness criterion to ensure the generality of neces-
sary and sufficient conditions, and we proceeded to demonstrate
the tightness of the sufficient condition we gave for the decen-
tralized counting algorithm.

By partitioning the set of evolving graphs, this tightness cri-
terion allows us to characterize maximal conditions: those that
can not be improved. In turn, since tight conditions give the
classes of graphs for which the algorithm will succeed (for a suf-
ficient condition), or fail (for a necessary condition), they can
be used to characterize the difficulty of an algorithm: a smaller
class of graphs on which success is guaranteed indicates a more
difficult algorithm.

Furthermore, we believe this concept of tight conditions can
be applied to other analytical models of distributed computing,
where its benefits would be of a great value.

REFERENCES

ANGLUIN, D., ASPNES, J., DIAMADI, Z., FISCHER, M., AND PERALTA, R. 2006.
Computation in networks of passively mobile finite-state sensors. Dis-
tributed Computing 18, 235–253.

CASTEIGTS, A. 2007. Contribution à l’algorithmique distribuée dans les
réseaux mobiles ad hoc - Calculs locaux et réétiquetages de graphes
dynamiques. Ph.D. thesis.

CASTEIGTS, A., CHAUMETTE, S., AND FERREIRA, A. 2009. Characterizing
topological assumptions of distributed algorithms in dynamic net-
works. In Proc. of 16th Intl. Conference on Structural Information and
Communication Complexity. Lecture Notes in Computer Science, vol.
5869. Springer-Verlag, 126–140.

CASTEIGTS, A., CHAUMETTE, S., AND FERREIRA, A. 2012. Distributed com-
puting in dynamic networks: Towards a framework for automated
analysis of algorithms. CoRR.

FERREIRA, A. 2004. Building a reference combinatorial model for
MANETs. Network, IEEE 18, 5, 24–29.

FLORIANO, P., GOLDMAN, A., AND ARANTES, L. 2011. Formalization of the
necessary and sufficient connectivity conditions to the distributed mu-
tual exclusion problem in dynamic networks. In 10th IEEE Interna-
tional Symposium on Network Computing and Applications. 203–210.

LITOVSKY, I., MÉTIVIER, Y., AND SOPENA, É. 1999. Graph relabelling systems
and distributed algorithms. Vol. 3. Chapter 1, 1–56.

PIGNÉ, Y., CASTEIGTS, A., GUINAND, F., AND CHAUMETTE, S. 2010. Construc-
tion et maintien d’une forêt couvrante dans un réseau dynamique. In
12e Rencontres francophones sur les aspects algorithmiques de télécom-
munications.

ACM Transactions on Graphics, Vol. , No. , Article , Publication date: .

	Context
	Dynamic graphs
	Related work

	Preliminaries
	Graph relabelings
	Evolving graphs
	Definition
	Basic concepts

	Relabelings over evolving graphs
	Analysis of distributed algorithms
	Objectives of an algorithm
	Necessary conditions
	Sufficient conditions
	Analysis of the propagation algorithm

	Contributions
	Sufficient condition for the decentralized counting algorithm
	Decentralized counting algorithm
	Sufficient condition

	Tight necessary and sufficient conditions
	Tightening known conditions

