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Abstract. We describe the Wadge hierarchy of the ω-languages recog-
nized by deterministic Petri nets. This is an extension of the celebrated
Wagner hierarchy which turned out to be the Wadge hierarchy of the ω-
regular languages. Petri nets are an improvement of automata. They may
be defined as partially blind multi-counter automata. We show that the

whole hierarchy has height ωω2

, and give a description of the restrictions
of this hierarchy to some fixed number of partially blind counters.

1 Introduction

The languages of infinite words, also called ω-languages, accepted by finite au-
tomata were first studied by Büchi to prove the decidability of the monadic
second order theory of one successor over the integers. Since then regular ω-
languages have been much studied and many applications have been found for
specification and verification of non-terminating systems, see [44, 43, 30] for many
results and references. The acceptance of infinite words by other finite machines,
like pushdown automata, multicounter automata, Petri nets, Turing machines,
have also been considered, see [43, 9, 4, 20].

Since the set Σω of infinite words over a finite alphabet Σ is naturally
equipped with the Cantor topology, a way to study the complexity of languages
of infinite words accepted by finite machines is to study their topological com-
plexity and firstly to locate them with regard to the Borel and the projective
hierarchies, and next to the Wadge hierarchy which is a great refinement of the
Borel hierarchy. This work was analysed in [41, 42, 44, 40, 9, 26, 43, 38, 36].

It is well known that every ω-language accepted by a deterministic Büchi
automaton is a Π0

2-set, and that an ω-language accepted by a non-deterministic
Büchi (or Muller) automaton is a ∆0

3-set. The Borel hierarchy of regular ω-
languages is then determined. Moreover Landweber proved that one can effec-
tively determine the Borel complexity of a regular ω-language accepted by a
given Muller or Büchi automaton, see [25, 44, 43, 30]. The Wadge hierarchy ob-
tained on ω-regular languages is called the Wagner hierarchy. It was completely
described by Klaus Wagner [47]; its length is the ordinal ωω. Wagner gave an
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automaton-like characterization of this hierarchy, based on the notions of chain
and superchain, together with an algorithm to compute the Wadge (Wagner)
degree of any given ω-regular language. Later, Wilke and Yoo proved that the
Wadge degree of an ω-regular language may be computed in polynomial time
[48]. This hierarchy was thouroughly studied by Carton and Perrin in [2, 3], and
by Victor Selivanov in [32, 33, 37].

Since there are various classes of finite machines recognizing ω-languages,
each of them yields a countable sub-hierarchy of the Wadge hierarchy. Since the
1980’s it has been an endeavor to describe these sub-hierarchies. It started with
the work of Klaus Wagner on the ω-regular languages – although Wagner was
unaware at the time of the connections between the Wadge hierarchy and his
own work. The Wadge hierarchy of deterministic context-free ω-languages was
determined, together with its length: ω(ω2) [8, 7]. The problem whether this hier-
archy is decidable remains open. The Wadge hierarchy induced by the subclass
of deterministic one blind counter automata was determined in an effective way
[11], and other partial decidability results have been obtained [12]. It was then
proved that the Wadge hierarchy of context-free ω-languages is the same as the
one of effective analytic sets 3, [15, 20]. Intriguingly, the only Wadge class for
which one can decide whether a given context-free ω-language belongs to it or
not, is the rudimentary {∅} [12–14]. In particular, one cannot decide whether
a non-deterministic pushdown automaton is universal or not. This latter deci-
sion problem is actually Π1

2 -complete, hence located at the second level of the
analytical hierarchy and “highly undecidable”, [18]. Moreover the second au-
thor has shown that the topological complexity of a context-free ω-language
may depend on the models of set theory, [17]. And some similar results hold
for ω-languages accepted by 2-tape Büchi automata, [16, 17]. The Wadge hierar-
chy of ω-languages of deterministic Turing machines was determined by Victor
Selivanov, [34, 35].

Among the many accepting devices that are more powerful than the finite
automata to recognize ω-languages, are the Petri nets which are used for the
description of distributed systems. A Petri net is a directed bipartite graph, in
which the nodes represent transitions and places, and any distribution of tokens
over the places defines a configuration of the net. Petri nets are an improve-
ment of automata, because they may be defined as partially blind multicounter
automata [21]. Petri nets have been extensively examined, particularly in con-
currency theory (see for instance [10] [31]). The infinite behavior of Petri nets
was first studied by Valk [45], and of deterministic Petri nets, by Carstensen [1].

In this paper, we first consider deterministic blind multicounter automata
(corresponding to deterministic Petri nets) and the ω-languages that they accept
when they are equipped with a Muller acceptance condition. This forms the class
of deterministic Petri net ω-languages denoted L3

ωdt in [1].

We describe the Wadge hierarchy of the ω-languages recognized by deter-
ministic Petri nets. This is an extension of the celebrated Wagner hierarchy of

3 The effective analytic sets (denoted Σ1
1) is the class of all the ω-languages recognized

by (non-deterministic) Turing machines.
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the ω-regular languages. We show that the whole hierarchy has height ωω2

, and
give a description of the restrictions of this hierarchy to some fixed number of
partially blind counters.

2 Recalls on ω-languages, automata and Petri nets

We assume the reader to be familiar with the theories of formal languages and ω-
regular languages (see [22, 44, 30]). We recall some of the definitions and results
involving the ω-regular languages.

Through along the paper, we assume Σ to be any finite set, called the al-
phabet. A finite word (string) over Σ is any sequence of the form u = a1 . . . ak,
where k ∈ N and ai ∈ Σ holds for each i ≤ k. Notice that when k = 0, u is
the empty word denoted by ε. We denote by |u| the length of the word u (here
|u| = k). We write u(i) = ai and u[i] = u(1) . . . u(i) for i ≤ k and u[0] = ε. The
set of all finite words over Σ is denoted Σ∗.

An infinite word over Σ is some sequence of the form x = a1a2 . . . an . . . where
ai ∈ Σ holds for all non-zero integer i. These infinite words are called ω-words
for their length corresponds to ω: the first infinite ordinal. An infinite word x
over Σ can be viewed as a mapping x : N −→ Σ, so we write x = x(1)x(2) . . .
and x[n] = x(1)x(2) . . . x(n) for its prefix of length n4. We write Σω for the set
of all ω-words over the alphabet Σ, so that an ω-language over the alphabet Σ
is nothing but a subset of Σω.

As usual, the concatenation of two finite words u and v is denoted uv. It
naturally extends to the concatenation of a finite word u and an ω-word x to
give the ω-words y = ux defined by: y(k) = u(k) if k ≤ |u| , and y(k) = x(k−|u|)
if k > |u|. Given any finite word u, and any finite or infinite word x, u is a prefix
of x (denoted u ⊑ x) if u(i) = x(i) holds for every non-zero integer i ≤ |u|.

For V ⊆ Σ∗, V ω = {σ = u1 . . . un . . . ∈ Σω | ui ∈ V,∀i ≥ 1}

Definition 1. A finite state machine (FSM) is a quadruple M = (Q,Σ, δ, q0),
where Q is a finite set of states, Σ is a finite input alphabet, q0 ∈ Q is the initial
state and δ is a mapping from Q × Σ into 2Q . It is deterministic (DFSM) if
δ : Q × Σ −→ Q.

Given an infinite word x, the infinite sequence of states ρ = q1q2q3 . . . is called
an (infinite) run of M on x starting in state p, if both q1 = p and qi+1 ∈ δ(qi, ai)
(∀i ≥ 1) hold. In case p is the initial state of M (p = q0), then ρ is simply called
an infinite run of M on x.

By In(ρ), we denote the set of states that appear infinitely often in ρ:

In(ρ) = {q ∈ Q | ∀m ∃n > m qn = q}.

Equipped with an acceptance condition F , a finite state machine becomes a fi-
nite state automaton M = (Q,Σ, δ, q0, F ). It is a Büchi automaton (BA) when

4 note that the enumeration x = x(1)x(2) . . . does not start at 0 so that we recover
the empty word as x[0].
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F ⊆ Q, and a Muller automaton (MA) when F ⊆ 2Q. A Büchi automaton (re-
spectively a Muller automaton) accepts x if for some infinite run of M on x,
In(ρ) ∩ F is not empty (respectively In(ρ) ∈ F holds). The ω-language accepted
by an automaton is the set of all the infinite words it accepts.

The classical result of R. Mc Naughton [29] establishes that the following
automata recognize the exact same ω-languages:

(a) deterministic Muller automata (DMA),
(b) non deterministic Büchi automata (NDBA), and
(c) non deterministic Muller automata (NDMA).

These ω-languages have also a characterization by means of the ”ω-Kleene
closure”.

Definition 2. Given any family L of ω-languages over the alphabet Σ, the ω-
Kleene closure of L, is:

ω − KC(L) = {
⋃

1≤i≤n

Ui.V
ω
i | Ui, Vi ∈ L}.

We denote by REG the class of all the (finitary) regular languages.

Theorem 1. If L is an ω-language, the following are equivalent:

(a) L belongs to ω − KC(REG),
(b) L is accepted by some DMA,
(c) L is accepted by some MA,
(d) L is accepted by some BA.

An ω-language that satisfies any of the above conditions is called an ω-regular
language (or regular ω-language). We denote by REGω the class of all ω-regular
languages.

We now consider partially blind multicounter automata.
A partially blind multicounter automaton is a finite automaton equipped

with a finite number (k) of partially blind counters. The content of any such
counter is a non-negative integer. A counter is said to be partially blind when the
multicounter automaton cannot test whether the content of the counter is zero.
This means that if a transition of the machine is enabled when the content of a
counter is zero then the same transition is also enabled when the content of the
same counter is a non-zero integer. In order to get a partially blind multicounter
automaton – simply called a blind multicounter automaton – which accepts the
same language as a given Petri net, one can distinguish between the places of a
Petri net by dividing them into the bounded ones (the number of tokens in such
a place at any time is uniformly bounded) and the unbounded ones. Then each
unbounded place may be seen as a blind counter, and the tokens in the bounded
places determine the state of the blind multicounter automaton. The transitions
of the Petri net may then be seen as the finite control of the blind multicounter
automaton and the labels of these transitions are then the input symbols.
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Contrary to what happens with non-deterministic Petri nets, allowing ε-
transitions does not increase the expressive power of deterministic Petri nets
which read ω-words [1]. For this reason, we restrict ourselves to the sole real
time – i.e., ε-transition free – blind multicounter automata. Also, without loss
of generality we may assume that every transition, for every counter, either
increases or decreases its content by 1 or leave it untouched.

Definition 3. Let k be any non-zero integer. A (real time) deterministic k-
blind-counter machine (k-BCM) is a 4-tuple

M = (Q,Σ, δ, q0)

where Q is a finite set of states, Σ is a finite input alphabet, q0 ∈ Q is the initial
state, and the transition relation δ is a partial mapping from Q × Σ × {0, 1}k

into Q × {0, 1,−1}k.

If the machine M is in state q, and for each i, ci ∈ N is the content of the
counter Ci, then the configuration (or global state) of M is the (k + 1)-tuple
(q, c1, . . . , ck).

Given any a ∈ Σ, any q, q′ ∈ Q, and any (c1, . . . , ck) ∈ Nk. If both δ(q, a, i1, . . . , ik) =
(q′, j1, . . . , jk), and jl ∈ E = {l ∈ {1, . . . , k} | cl = 0} ⇒ jl ∈ {0, 1} hold, then
we write:

a : (q, c1, . . . , ck) 7→M (q′, c1 + j1, . . . , ck + jk)

We write 7→⋆
M (or even 7→⋆) for the transitive and reflexive closure of 7→M.

Thus we see that the transition relation must verify: if δ(q, a, i1, . . . , ik) =
(q′, j1, . . . , jk), and im = 0 holds for some m ∈ {1, . . . , k}, then we must have
jm = 0 or jm = 1 (but jm = −1 is prohibited).

Moreover the k counters of M are blind, i.e., if δ(q, a, i1, . . . , ik) = (q′, j1, . . . , jk)
holds, and im = 0 for m ∈ E ⊆ {1, . . . , k}, then δ(q, a, i′1, . . . , i

′
k) = (q′, j1, . . . , jk)

holds also whenever im = i′m for m /∈ E, and i′m = 0 or i′m = 1 for m ∈ E.

Let u = a1a2 . . . an be any finite word over Σ. A sequence of configurations
ρ = (qi, c

i
1, . . . c

i
k)1≤i≤n+1 is called a run of M on u, starting in configuration

(p, c1, . . . , ck) if and only if

◦ (q1, c
1
1, . . . c

1
k) = (p, c1, . . . , ck), and

◦ ai : (qi, c
i
1, . . . c

i
k) 7→M (qi+1, c

i+1
1 , . . . ci+1

k ) (for all 1 ≤ i ≤ n).

Let x = a1a2 . . . an . . . be an ω-word over Σ. An ω-sequence of configurations
ρ = (qi, c

i
1, . . . c

i
k)i≥1 is called a complete run of M on x, starting in configuration

(p, c1, . . . , ck) if and only if

◦ (q1, c
1
1, . . . c

1
k) = (p, c1, . . . , ck), and
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◦ ai : (qi, c
i
1, . . . c

i
k) 7→M (qi+1, c

i+1
1 , . . . ci+1

k ) (for all 1 ≤ i).

A complete run ρ of M on x , starting in configuration (q0, 0, . . . , 0), is simply
called “a run of M on x”. We write In(ρ) for the set of all the states visited
infinitely often during the complete run ρ.

Definition 4. A Büchi (resp. Muller) deterministic k-blind-counter automaton
is some k-BCM M′ = (Q,Σ, δ, q0), equipped with an acceptance condition F :

M = (Q,Σ, δ, q0, F ).

It is a Büchi (resp. Muller 5) k-blind-counter automaton when F ⊆ Q (resp.
F ⊆ 2Q), and it accepts x if the infinite run of M′ on x verifies In(ρ) ∩ F 6= ∅
(respectively In(ρ) ∈ F ).

We write L(M) for the ω-language accepted by M. We also write BC(k) for the
class of ω-languages accepted by Muller deterministic k-blind-counter automata.

3 Borel and Wadge hierarchies

We assume the reader to be familiar with basic notions of topology that may be
found in [26, 24], and of ordinals (in particular the operations of multiplication
and exponentiation) that may be found in [39].

For any given finite alphabet X – that contains at least two letters – we
consider Xω as the topological space equipped with the Cantor topology 6. The
open sets of Xω are those of the form WXω, for some W ⊆ X∗. The closed sets
are the complements of the open sets. The class that contains both the open
sets and the closed sets, and is closed under countable union and intersection is
the class of Borel sets. It is nicely set up in a hierarchy but counting how many
times these latter operations are needed.

This defines the Borel Hierarchy: Σ0
1 is the class of open sets , and Π0

1 is the
class of closed sets. For any non-zero integer n, Σ0

n+1 is the class of countable
unions of sets inside Π0

n, while Π0
n+1 is the class of countable intersections of

sets inside Σ0
n. More generally, for any non-zero countable ordinal α, Σ0

α is the
class of countable unions of sets in ∪γ<αΠ0

γ , and Π0
α is the class of countable

unions of sets in ∪γ<αΣ0
γ .

We state a few basic results about the Borel classes, whose proofs may be
found in [28, 23].

Proposition 1. (a) Σ0
α ∪Π0

α ( Σ0
α+1 ∩Π0

α+1, holds for each countable ordinal
α ≥ 1.

(b) ∪γ<αΣ0
γ = ∪γ<αΠ0

γ ( Σ0
α ∩ Π0

α, holds for each countable limit ordinal α.

5 The Muller acceptance condition was denoted 3-acceptance in [25, 1], and (inf, =)
in [43].

6 The product topology of the discrete topology on X.
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(c) A set W ⊆ Xω belongs to the class Σ0
α iff Xω r W belongs to Π0

α.

(d) Σ0
α r Π0

α 6= ∅ and Π0
α r Σ0

α 6= ∅ holds for every countable ordinal α ≥ 1.

The Borel rank of a subset A of Xω is the least ordinal α ≥ 1 such that A
belongs to Σ0

α ∪ Π0
α.

By ways of continuous pre-image, the Borel hierarchy turns into the very
refined Wadge Hierarchy:

Definition 5 (≤w,≡w, <w). We let X, Y be two finite alphabets, and A ⊆
Xω, B ⊆ Y ω, A is said Wadge reducible to B (denoted A ≤W B) if and only if
there exists some continuous function f : Xω −→ Y ω that satisfies

∀x ∈ X (x ∈ A ⇔ f(x) ∈ B).

We write A ≡w B when both A ≤w B and B ≤w A hold, and A <w B when
both A ≤w B and B 6≤w A hold.

A set A ⊆ Xω is called self dual if A ≡W A∁ is verified. It is called non-self
dual otherwise 7.

It is easy to verify that the relation ≤w is both reflexive and transitive, and
that ≡W is an equivalence relation. Now a topological class is a class that is closed
under continuous pre-images. Given any set A, the class of all its continuous
pre-images forms a topological class Γ called a Wadge class, and A is said to be
Γ-complete since it both belongs to Γ, and (Wadge) reduces every element in it.
It follows that two sets are complete for the same topological class if and only if
they are Wadge equivalent. We write [A]W for the Wadge class generated by A.
So, formally

[A]W = {B ⊆ Xω | B ≤w A}.

From Proposition 1, we derive that Σ0
α (resp. Π0

α) is a Wadge class and any
set in Σ0

α r Π0
α (resp. Π0

α r Σ0
α) is Σ0

α-complete (resp. Π0
α-complete). Both

Σ0
n-complete and Π0

n-complete sets (any 0 < n < ω) are examined in [41].

The Wadge reducibility is intricately related to game theory for continuous
functions may be regarded as strategies for a player in a two-player game of
perfect information and infinite length:

Definition 6. Given any mapping f : Xω −→ Y ω, the game G(f) is the two-
player game where players take turn picking letters in X for I and Y for II,
player I starting the game, and player II being allowed in addition to pass her
turn, while player I is not.

After ω-many moves, player I and player II have respectively constructed
x ∈ Xω and y ∈ Y ∗ ∪Y ω. Player II wins the game if y = f(x), otherwise player
I wins.

7 Non-self dual sets are precisely those that verify A 6≤w A∁ .
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I

II

:

:

x0 x2

x3

x4

x5x1

x2n

x2n+1

x2n+2

x2n+3

So, in the game G(f), a strategy for player I is a mapping σ : (Y ∪{s})⋆ −→ X,
where s is a new letter not in Y that stands for II ’s moves when she passes her
turn 8. A strategy for player II is a mapping f : X+ −→ Y ∪ {s}. A strategy is
called winning if it ensures a win whatever the opponent does.

This game was designed to characterize the continuous functions.

Theorem 2 (Wadge). Let f : Xω −→ Y ω, the following are equivalent:

f is continuous ⇐⇒ II has a winning strategy in G(f).

Proof. This is an easy exercise (see [28, 23]).

Definition 7. For A ⊆ Xω and B ⊆ Y ω, the Wadge game W (A,B) is the
same game as G(f), except for the winning condition: II wins if and only if both
y ∈ Y ω and (x ∈ A ⇐⇒ y ∈ B) hold.

One sees immediately that a winning strategy for II in W (A,B) yields a
continuous mapping f : Xω −→ Y ω that guaranties that A ≤w B holds, whereas
any continuous function f that witnesses the reduction relation A ≤w B gives
rise to some winning strategy for II in G(f) which is also winning for II in
W (A,B).

Theorem 3 (Wadge). For A ⊆ Xω and B ⊆ Y ω,

A ≤w B ⇐⇒ II has a winning strategy in W (A,B) .

In 1975, Martin proved a statement called Borel determinacy [27, 23] whose
consequence is that for all Wadge game W (A,B), either player I or II has a
winning strategy as long as both A and B are Borel.

An immediate consequence is the following lemma.

Lemma 1 (Wadge). For X any finite set, and A,B ⊆ Xω both Borel,

A 6≤w B and B 6≤w A =⇒ A ≡w B∁.

Proof. By determinacy, from A 6≤w B, it follows that I has a w.s. in W (A,B)

which gives a w.s. for II in W
(

B∁, A
)

which shows that B∁ ≤w A. By the same

argument, from B 6≤w A, one derives A ≤w B∁.

Another immediate consequence of determinacy is Wadge’s Lemma.

8 ”s” stands for ”skips”.
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Lemma 2 (Wadge). For X any finite set,

there are no three ≤w-incomparable Borel sets.

Proof. Assume A,B,C ⊆ Xω are all Borel ≤w-incomparable sets. By Lemma 1,
both A ≡w B∁ and C ≡w B∁ hold, which leads to A ≡w C.

We recall that a set S is well ordered by the binary relation < on S if and only
if < is a linear order on S such that there is no strictly infinite <-decreasing
sequence of elements from S.

Theorem 4 (Martin-Monk). For X any finite set, there is no sequence (Ai)i∈ω

of Borel subsets of Xω such that

A0 >w A1 >w A2 >w . . . An >w An+1 >w . . .

Proof. See [23, 46].

It follows that up to complementation and ≡W , the class of Borel subsets of
Xω, is well-ordered by <w. Therefore, there is a unique ordinal |WH| isomorphic
to this well-ordering, together with a mapping d0

W from the Borel subsets of Xω

onto |WH|, such that for all Borel subsets A,B:

◦ d0
W A < d0

W B ⇔ A <w B, and

◦ d0
W A = d0

W B ⇔ (A ≡w B or A ≡w B∁).

This well-ordering restricted to the Borel sets of finite ranks 9 has length the
first ordinal that is a fixpoint of the operation α −→ ω1

α [46, 6], where ω1 is the
first uncountable ordinal.

In order to study the Wadge hierarchy of the class BC(k) of ω-languages
accepted by Muller deterministic k-blind-counter automata, we concentrate on
the non-self dual sets as in [6], and slightly modify the definition of the Wadge
degree:

Definition 8. For A ⊆ Xω, such that A >w ∅, we set

◦ dw(∅) = dw(∅∁) = 1,

◦ dw(A) = sup{dw(B) + 1 | B non-self dual and B <W A}.

Every ω-language which is accepted by a deterministic Petri net – more
generally by a deterministic X-automaton in the sense of [9] or by a deterministic
Turing machine – is a boolean combination of Σ0

2
-sets thus its Wadge degree

inside the whole Wadge hierarchy of Borel sets is located below ωω
1 .

Moreover, every non-zero ordinal α < ωω
1 admits a unique Cantor normal

form of base ω1 [39], i.e., it can be written as

α = ω
nj

1 .δj + ω
nj−1

1 .δj−1 + . . . + ωn1

1 .δ1

9 The Borel sets of finite ranks are those in
[

n∈N

Σ
0
n =
[

n∈N

Π
0
n.
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where 0 < j < ω, ω > nj > nj−1 > . . . > n1 ≥ 0, and δj , δj−1, . . . , δ1 are
non-zero countable ordinals.

It is well known, from Wagner’s study, that such an ordinal is the Wadge
degree of an ω-regular language if and only if all the multiplicative coefficients
δj , δj−1, . . . , δ1 are integers.

It is also known that such an ordinal is the Wadge degree of a deterministic
context-free ω-language if and only if these multiplicative coefficients are all
below ωω [7].

We will add to this picture the following results that will exhibit the Wadge
hierarchy of BC(k):

(a) for every non-null ordinal α whose Cantor normal form of base ω1 is

α = ω
nj

1 .δj + ω
nj−1

1 .δj−1 + . . . + ωn1

1 .δ1

where the multiplicative coefficients δj , δj−1, . . . , δ1 are (non-null) ordinals
< ωk+1, for some integer k ≥ 1, there exists some ω-language L ∈ BC(k)
whose Wadge degree is precisely α.

(b) Every non-self dual ω-language in BC(k) has a Wadge degree of the above
form.

In the next section we introduce several operations over sets of ω-words, that
will be useful in the first step of the proof.

4 Operations over sets of ω-words

4.1 The sum

Definition 9. For {X+, X−} a partition in non-empty sets of XB r XA with
XA ⊆ XB, A ⊆ Xω

A, and B ⊆ Xω
B,

B + A = A ∪ X∗
AX+B ∪ X∗

AX−B∁.

A player in charge of B + A in a Wadge game is like a player who would
begin the play in charge of A, and at any moment may also decide to start anew
but being in charge this time of either B or of B∁. (The first letter in XB r XA

that is played decides the choice of B or B∁).

Notice that given any finite alphabets X, Y which contain at least two letters,
and any B ⊆ Xω, there exists B′ ⊆ Y ω such that B ≡w B′. Moreover, if for
some integer k ≥ 0 we have B ∈ BC(k), then B′ can be taken in BC(k). So that
we may write B + A whatever space B is a subset of, simply meaning B′ + A
where B′ is any set that satisfies both B′ ≡w B and B′ ⊆ Xω for some X that
contains the alphabet from which A is taken from, and strictly extends if with
at least two new letters.
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Proposition 2 (Wadge). For non-self dual Borel sets A and B,

dw(B + A) = dw(B) + dw(A).

Notice that this operation is associative since A + (B + C) ≡W (A + B) + C
holds for non-self dual Borel sets A,B, C. Notice also that (B + A)∁ ≡w B + A∁

always holds.
Although the class BC(k) is not closed under complementation, and B + A

was defined as A ∪ X∗
AX+B ∪ X∗

AX−B∁, we may however make use of the
formulation B + A ∈ BC(k) for A,B ∈ BC(k) as long as there exists some
C ∈ BC(k) that verifies C ≡w B∁.

4.2 The countable multiplication

We first need to define the supremum of a countable family of sets:

Definition 10. For any bijection f : N −→ I, any family (Ai)i∈I of non-self
dual Borel subsets of Xω, we fix some letter e ∈ X to define

sup
i∈I

Ai =
⋃

n∈N

(X r {e})neAf(n).

Proposition 3. For (Ai)i∈I any countable family of non-self dual Borel subsets
of Xω such that ∀i ∈ I ∃j ∈ I Ai ≤w Aj, then

(a) supi∈I Ai is a non-self dual Borel subset of Xω, and

(b) dw(supi∈I Ai) = sup{dw(Ai) | i ∈ I}.

Proof. See [6, 7].

By combining the two operations of sum and supremum, we define the mul-
tiplication by a countable ordinal.

Definition 11. For A ⊆ Xω, and 0 < α < ω1, A • α is inductively defined by:
A • 1 = A
A • (ν + 1) = (A • ν) + A
A • β = supδ∈β A • δ when β is a limit ordinal.

By Propositions 2 and 3, this operation verifies the following:

Proposition 4. Let A ⊆ Xω be some non-self dual Borel set, and 0 < α < ω1,

dw(A • α) = dw(A) · α.

For a player in charge of A • α in a Wadge game, everything goes as if (s)he
could switch again and again between being in charge of A or A∁ – starting anew
every time (s)he does so – but restrained from doing so infinitely often by having
to construct a decreasing sequence of ordinals < α on the side every time (s)he
switches.

Notice that the operation A −→ A • α was denoted A −→ A·̂α in [8].
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4.3 The multiplication by ω1

Definition 12. For A ⊆ Xω, and a, b /∈ X two different letters, Y = X∪{a, b},
A • ω1 ⊆ (X ∪ {a, b})ω is defined 10 by

A • ω1 = A ∪ Y ∗aA ∪ Y ∗bA∁.

Inside a Wadge game, a player in charge of A • ω1 may switch indefinitely
between being in charge of A or its complement, deleting what (s)he has already
played each time (s)he switches.

Proposition 5. For any non-self dual Borel A ⊆ Xω,

(a) A • ω1 is non-self dual Borel, and

(b) dw(A • ω1) = dw(A) · ω1.

Proof. See [6].

The following property will be very useful.

Proposition 6. If A ⊆ Xω is regular, then A • ω1 is also regular.

Proof. It follows directly from the definition of A•ω1 and the closure of the class
REGω under finite union, complementation, and left concatenation by finitary
regular languages [8].

4.4 Canonical non-self dual sets

The empty set, considered as an ω-language over a finite alphabet is a Borel set
of Wadge degree 1, i.e., dw(∅) = 1. It is a non-self dual set and its complement
has the same Wadge degree11.

On the basis of the emptyset or its complement, the operations defined above
provide non-self dual Borel sets for every Wadge degree < ωω

1 . For notational
purposes, given any A ⊆ Xω we define A • ωn

1 by induction on n ∈ N:

◦ A • ω0
1 = A,

◦ A • ωn+1
1 = (A • ωn

1 ) • ω1.

Clearly, by Proposition 5, dw(A • ωn
1 ) = dw(A) · ωn

1 holds for every non-self
dual Borel A ⊆ Xω. It follows that the ω-language ∅•ωn

1 is a non-self dual Borel
set whose Wadge degree is precisely ωn

1 .

Every non-null ordinal α < ωω
1 admits a unique Cantor normal form of base

ω1:

10 This operation was denoted A+ in [5], A −→ A.̂∞ in [8], and A −→ A♮ in [7].
11 i.e., dw(∅) = dw(Xω) = 1.
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α = ω
nj

1 · δj + ω
nj−1

1 · δj−1 + . . . + ωn1

1 · δ1.

where ω > j > 0, ω > nj > nj−1 > . . . > n1 ≥ 0, and δj , δj−1, . . . , δ1 are
non-zero countable ordinals [39].

By mean of the set theoretical sum and countable multiplication we define
the following as in [6, 7]:

Ω(α) = (∅ • ω
nj

1 ) • δj + (∅ • ω
nj−1

1 ) • δj−1 + . . . + (∅ • ωn1

1 ) • δ1.

By Propositions 2, 4, and 5 dw(Ω(α)) = α holds.

5 A hierarchy of BC(k)

From now on, we restrain ourselves to the sole ordinals α < ωω
1 whose Cantor nor-

mal form of base ω1 contains only multiplicative coefficients strictly below ωk+1,
and we construct for every such α some Muller deterministic k-blind-counter au-
tomata Mα and M−

α such that both L(Mα) ≡W Ω(α) and L(M−
α ) ≡W Ω(α)∁

hold.

To start with, notice that for every integer n since ∅ • ωn ∈ REGω is veri-
fied, there exist deterministic Muller automata On = (Qn, Xn, δn, q0

n,Fn), where
Fn ⊆ 2Qn is the collection of designated state sets, such that L(On) = ∅ • ωn.

Proposition 7. For any ω-regular language A, any integer j ≥ 1 there exist
ω-languages B,C ∈ BC(j) such that

B ≡W (A • ωj) and C ≡W (A • ωj)∁.

Proof. Recall that being in charge of A•ωj in a Wadge game is like being able to
swap A and A∁, re-starting each time together with building a strictly decreasing
sequence < ωj on the side. Now any ordinal α < ωj has a unique Cantor normal
form of base ω:

α = ωj−1 · nj−1 + ωj−2 · nj−2 + . . . + ω1 · n1 + ω0 · n0.

where nj−1, nj−2, . . . , n1, n0 are all (possibly null) integers . Then we see that
j-many counters suffice to keep track of the ordinal α: the first counter value is
n0, the second counter value is n1, . . . , the jth counter value is nj−1.

Let then A be an ω-regular language accepted by a deterministic Muller
automaton

We let A,A− be deterministic Muller automata such that L(A)∁ = L(A−).
For any non-zero integer j we describe deterministic k-blind counter automata

Aωj and A−
ωj such that both L(Aωj ) ≡w L(A)•ωj and L(A−

ωj ) ≡w

(

L(A) • ωj
)∁

hold.



14

We first add the following new letters to the alphabet of A (and also A−):

↑0, ↑1, . . . , ↑j−1, ↓0, ↓1, . . . , ↓j−1, a, a−.

We describe Aωj (respectively A−
ωj ) by its behavior while reading an ω-word.

The reader may easily verify that the conditions below may be carried away by
a k-blind counter automaton.

The machine starts reading ”up arrow” letters, i.e., those in {↑0, ↑1, . . . , ↑j−1}
(otherwise it simply rejects). As long as it does so, it increases the content of its
counters – ↑i stands for an increase by 1 of counter i – but if it does so infinitely
often – that is the infinite word x that it reads belongs to {↑0, ↑1, . . . , ↑j−1}

ω –
Aωj rejects while A−

ωj accepts.

Then, after the machine has read the whole prefix of ”up arrow” letters, it
should encounter either the letter a+ or the letter a− (otherwise it rejects). If it
reads a+ (resp. a−) it starts working just like A (resp. A−). This goes on un-
til eventually the machine reads a letter inside {↑0, ↑1, . . . , ↑j−1, ↓0, ↓1, . . . , ↓j−1

, a, a−.} If it is the case, then this letter has to be a ”down arrow” letter of the
form ↓i followed by some (possibly zero) ”up arrow” letters of the form ↑p for
some p < i, followed by either a+ or a− (otherwise A•ωj (resp. A−•ωj) rejects).

When this word is of the form ↓i (↑p)
l
a (resp. ↓i (↑p)

l
a−), it decreases counter

i by one and increases counter p by l, then it behaves like A (resp. A−).

By playing the underlying wadge games, the reader may easily verify that

both L(Aωj ) ≡w L(A) • ωj and L(A−
ωj ) ≡w (L(Aωj ))

∁
hold.

Proposition 8. For any ω-regular language A, any integer k, and any ordinal
ωk ≤ α < ωk+1, there exist ω-languages B,C ∈ BC(k) such that

B ≡W (A • α) and C ≡W (A • α)∁.

Proof.

(a) If 0 < α < ω, then from the very definition of the sum, it is immediate to
see that if A belongs to REGω, then both A • α and its complement belong
to REGω.

(b) If ω ≤ α < ωk+1, we distinguish between two cases:

(i) If α = ωk, this was done in Proposition 7.

(ii) If ωk < α < ωk+1, then we consider the Cantor normal form of base ω
of α:

α = ωmj · nj + ωmj−1 · nj−1 + . . . + ωm0 · n0.

where k = mj > mj−1 > . . . > m0 holds, and nj , nj−1, . . . , n0 are all
non-null integers.

By Proposition 7 and case (a), for each mi (0 ≤ i ≤ j) there are mi-blind
counter automata Aωmi and A−

ωmi such that L(Aωmi ) ≡w L(A) • ωmi
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and L(A−
ωi) ≡w (L(Aωi))

∁
hold 12. Without loss of generality, we may

assume that

◦ for each i ≤ j, Aωmi and A−
ωmi are k-blind counter automata whose

transition function only deals with counters cl for 1 ≤ l ≤ mi leaving
untouched the counters cl for mi < l ≤ k.

◦ The alphabets of the different machines do not overlap. Which means
that for 0 ≤ h < i ≤ j, if Σh, Σi denote the respective alphabets of
Aωmh ,Aωmi (and equivalently of A−

ωmh ,A−
ωmi ), then Σh ∩Σi = ∅

holds.

Moreover we set Σ =
⋃

i≤j Σi, and Ǎωmi (resp. Ǎ−
ωmi ) to be the machine

that works on Σ – rather than Σi – just like A−
ωmh (resp. A−

ωmi ) as
long as it reads letters in Σi, and rejects as soon as it reads a letter in
Σ r Σi.

We consider two new letters t+, t− for transitions from a machine to
another, and we build Aα,A−

α as follows.

(A) Aα starts working like Ǎωm0 (resp. A−
α starts like Ǎ−

ωm0 ) as long as
no letter t+ nor t− is encountered.

(B) If a letter among {t+, t−} is encountered for the nth time for some
n < n0 + . . . + nj , we let i be the integer that verifies

n0 + . . . + ni−1 < n + 1 ≤ n0 + . . . + ni

if n > n0, and i = 0 otherwise. Then right after this letter is read and
until another transition letter (either t+ or t−) is eventually read:
◦ if this letter is t+, Aα (resp. A−

α ) works like Ǎωmi , and

◦ if this letter is t−, Aα (resp. A−
α ) works like Ǎ−

ωmi .

(C) If a letter among {t+, t−} is encountered for the n0 + . . .+nth
j time,

then Aα (resp. A−
α) rejects.

The reader should notice that in case (b)((ii))(B) when a machine hits
a t+ or t− letter, some of its counters may already have a non-zero
content. But this is not a problem since the initial process of Ǎωmi

(Ǎ−
ωmi as well) consists in filling up these same counters plus eventually

some extra ones. From there, it is tedious but straightforward to verify
that both Aα ≡w A • α and A−

α ≡w A • α hold.

Theorem 5. Let α < ωω
1 be any ordinal whose Cantor normal form of base ω1

only has multiplicative coefficients < ωω:

α = ω
nj

1 · δj + ω
nj−1

1 · δj−1 + . . . + ωn0

1 · δ0

where ω > j ≥ 0, ω > nj > nj−1 > . . . > n0 ≥ 0, and ωω > δj , δj−1, . . . , δ0 > 0.

12 The case mi = 0 corresponds to 0-blind counter automata Aω0 = A and A−

ω0 its
dual.
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Let k be the least integer such that ∀i ≤ j δi < ωk+1. Then there exist
ω-languages B,C ∈ BC(k) such that

B ≡w Ω(α) and C ≡w Ω(α)∁.

We recall that Ω(α) is defined by

Ω(α) = (∅ • ω
nj

1 ) • δj + (∅ • ω
nj−1

1 ) • δj−1 + . . . + (∅ • ωn0

1 ) • δ0.

Proof. For every i ≤ j the set ∅•ω
nj

1 is ω-regular, so that for each integer i ≤ j we

have machines Ai and Ai− such that L(Ai) ≡w ∅•ωni

1 and L(Ai−) ≡w (∅•ωni

1 )∁

hold for every i ≤ j. The case j = 0 was already proved in Proposition 8, so that
we may assume that j > 0 holds.

Now we consider also for each i ≤ j, the ”exact” ki-blind-counter automata
Ai

δi
and Ai−

δi
that were designed in the proof of Proposition 8. (Notice that ki

was defined as the least integer such that δi < ωki+1.) We then form for each

i ≤ j, the k-blind-counter automata Âi
δi

and Âi−

δi
that work exactly as Ai

δi
and

Ai−

δi
on the first ki counters, leaving untouched the last k − ki ones .

For simplicity – and without loss of generality – we may assume that both
Σh ∩Σi = ∅ and Σi = Σ−

i hold for every 0 ≤ h < i ≤ j, where Σi, Σ
−
i stand for

the respective alphabets of Âi
δi

, Âi−

δi
.

Then we form, for each i ≤ j, the k-blind-counter automata Ǎi
δi

and Ǎi−

δi

that work on the alphabet Σ =
⋃

i≤j Σi. The machine Ǎi
δi

(resp. Ǎi−

δi
) works

like Âi
δi

(resp. Âi−

δi
) on the alphabet Σi, and both of them reject as soon as they

read a letter not in Σi.

At last we take two new letters t+, t− for transitions from a machine to
another, and we build Aα,A−

α as follows.

(a) As long as neither the letter t+ nor t− is encountered, Aα (resp. A−
α ) works

as Ǎ0
δ0

(resp. Ǎ0−

δ0
).

(b) If a letter among {t+, t−} is encountered for the ith time for some i < j,
then right after this letter is read and until another transition letter t+ or
t− is eventually read:

◦ if this letter is t+, Aα (resp. A−
α ) works like Ǎi

δi
, and

◦ if this letter is t−, Aα (resp. A−
α ) works like Ǎi−

δi
.

(c) If a letter among {t+, t−} is encountered for the jth, then both Aα and A−
α

reject right away.

We leave to the reader to verify the tedious details of

L(Aα) ≡w Ω(α) and L(A−
α ) ≡w Ω(α)∁.
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6 Localisation of BC(k)

This section is dedicated to proving that there is no other Wadge class generated
by some non-self dual ω-language in BC(k) than the ones described in Theorem
5. Prior to this we need a technical result about the Wadge hierarchy together
with a few others on ordinal combinatorics, and notations.

For some A ⊆ Xω and some u ∈ X∗, we write u−1A for the set {x ∈ Xω |
ux ∈ A}, and we say that A is initializable if the second player has a w.s. in the
Wadge game W (A,A) even though she is restricted to positions u ∈ X∗ that
verify u−1A ≡w A.

Lemma 3. For A ⊆ Xω any initializable set, B ⊆ Y ω, and δ, θ any countable
ordinals,

A • (θ + 1) ≤w B ≤w A • δ =⇒ ∃u ∈ Y ∗







u−1B ≡w A • (θ + 1)
or

u−1B ≡w (A • (θ + 1))∁.

Proof. The case θ + 1 = δ is obvious since the empty word works for u. So in
the sequel we assume θ + 1 < δ. The proof goes by induction on δ.

Assume δ is limit there are two different cases.
(a) If B ≡w A • δ, then clearly the set

{d0
W u−1B : u ∈ Y ∗ and u−1B <w B}

is unbounded in d0
W (A • δ) = d0

W (A) · δ. Hence there exists some ordinal
ξ < δ and some v ∈ Y ∗ that both satisfy

A • (θ + 1) ≤w v−1B ≤w (A • ξ) <w A • δ

Then by induction hypothesis one gets some u′ ∈ Y ∗ such that







v−1u′−1B ≡w A • (θ + 1)
or

v−1u′−1B ≡w (A • (θ + 1))∁

Hence u = vu′ works.
(b) If B <w A • δ, then d0

W (B) < d0
W (A • δ) = d0

W (A) · δ. Hence, for some
ξ < δ we have

A • (θ + 1) ≤w B ≤w (A • ξ)

which gives the result using the induction hypothesis on ξ.
Assume δ is successor.

(a) Assume δ = ζ + 2.
(i) Assume (A • (ζ + 1))∁ ≤w B ≤w A • (ζ + 2).

We consider the following combination of Wadge games with 3 play-
ers : I, II and III :
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◦ I is in charge of ((A • ζ) + A∁) – which is Wadge equivalent to
(A • (ζ + 1))∁,

◦ II is in charge of B, and
◦ III is in charge of A • (ζ + 2).

II applies a w.s. that reduces I and III applies a w.s. that reduces
II. This means that if I plays x1, II plays x2 and III plays x3 then
II reduces I if x1 ∈ (A • ζ) + A∁ ⇐⇒ x2 ∈ B; and III reduces II if
x3 ∈ A • (ζ + 2) ⇐⇒ x2 ∈ B.
Assume now that player I remaining in the right tail A∁ (i.e. without
going into (A•ζ) or (A•ζ)∁) applies a winning strategy in the Wadge
game W (A∁, A) against Player III as long as III stays in the tail part
A of A•(ζ +1)+A. Necessarily after a finite number of moves player
III exits the right most A and chooses (A • (ζ + 1))∁ – for the other
choice A • (ζ + 1) would be a losing one. We let v be the position of
player II at that point, so that we obtain:

(A • (ζ + 1))∁ ≤w v−1B ≤w (A • (ζ + 1))∁,

hence
v−1B ≡w (A • (ζ + 1))∁.

If θ + 1 = ζ + 1 we are done. Otherwise we have

(A • (θ + 1))∁ ≤w v−1B∁ ≤w A • (ζ + 1)

By induction hypothesis there exists u extending v such that

u−1B∁ ≡w A • (θ + 1) or u−1B∁ ≡w (A • (θ + 1))∁

which gives

u−1B ≡w A • (θ + 1) or u−1B ≡w (A • (θ + 1))∁.

(ii) Assume B ≤w A • (ζ + 1).
Since ζ + 1 < δ holds, the result relies on the induction hypothesis
for

A • (θ + 1) ≤w B ≤w A • (ζ + 1).

(b) Assume δ = ζ + 1, ζ limit:
If B ≤w A • ζ holds the result follows from the induction hypothesis.
Thus we assume that the following holds:

(A • ζ)∁ ≤w B ≤w (A • ζ) + A

Now consider the following combination of Wadge games with 3 players
where:
◦ I is in charge of (A • θ) + A + A + A∁ (this is Wadge equivalent to

(A • (θ + 3))∁),
◦ II is in charge of B, and
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◦ III is in charge of A • ζ + A.
II applies a w.s. that reduces I and III applies a w.s. that reduces II.
Player I applies a winning strategy in the Wadge game W (A∁, A) against
Player III as long as Player III remains in the tail part A of (A• ζ)+A.
Necessarily after a finite number of moves player III exits the first A
and chooses (A • ζ)∁ or (A • ζ).
Now notice that since A is non-self dual, the set {w ∈ X∗ | w−1A ≡w A}
is a tree – it is closed under prefixes – that contains an infinite branch.
We let x be such an infinite branch.
◦ If x ∈ A, then player I chooses to go into (A • θ + A + A)∁ if III

chooses (A • ζ)∁ and into (A • θ + A + A) if III chooses (A • ζ).

◦ If x /∈ A, then player I chooses to go into (A • θ + A + A) if III
chooses (A • ζ)∁ and into (A • θ + A + A)∁ if III chooses (A • ζ).

Then I plays along x, so that III is forced to choose A•γ for some γ < ζ
(by definition A • ζ = supγ<ζ A • γ). After III makes that choice, II is
in a position v that satisfies

A • (θ + 2)∁ ≤w v−1B ≤w A • γ or A • (θ + 2) ≤w v−1B ≤w A • γ.

Therefore we obtain

A • (θ + 1) ≤w v−1B ≤w A • γ

which gives the result by induction hypothesis since γ < δ holds.

Lemma 4. We let B ⊆ Y ω, A ⊆ Xω be any initializable set, and δ, θ be any
countable ordinals. We consider any set of the form

C = A • ωn
1 • νn + . . . + A • ωn−1

1 • νn−1 + . . . + A • ω1 • ν1

for any non-zero integer n, and countable coefficients νn, νn−1, . . . , ν1 with at
least one of them being non-null.

C+A•(θ+1) ≤w B ≤w C+A•δ =⇒ ∃u ∈ Y ∗







u−1B ≡w C + A • (θ + 1)
or

u−1B ≡w (C + A • (θ + 1))∁.

Proof. The proof is very similar to the one of Lemma 3, so we leave it to the
reader.

We recall that for any set of ordinals O, its order type – denoted ot(O) –
is the unique ordinal that is isomorphic to O ordered by membership (which is
nothing but the usual ordering on ordinals).

Definition 13. The function H : ωω × ωω −→ On is defined by

H(α, β) = ωk · (lk + mk) + ωk−1 · (lk−1 + mk−1) + . . . + ω0 · (l0 + m0).
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Where (a variation of the) the Cantor normal form of base ω of α (resp. β) is

α = ωk · lk + ωk−1 · lk−1 + . . . + ω0 · l0

β = ωk · mk + ωk−1 · mk−1 + . . . + ω0 · m0

with lk,mk, lk−1,mk−1, . . . , l0,m0 ∈ N. (Some of these integers may be null 13.)

Lemma 5. Let H : ωω × ωω −→ On, 0 < α′, α, β′β < ωω with α′ ≤ α, β′ ≤ β
but either α′ < α or β′ < β, then

H(α′, β′) < H(α, β).

Proof. This is tedious but straightforward, and left to the reader.

We make use of the mapping H to prove the following combinatorial result.

Lemma 6. Let α, β, γ be non-null ordinals with α, β < ωω, and f : γ −→ {0, 1}.

If both α = ot(f−1[0]) and β = ot(f−1[1]) hold, then γ ≤ H(α, β).

Proof. The proof goes by induction on (max{α, β},min{α, β}) ordered by lexi-
cographic ordering.

(a) If α = β = 1, then the result is immediate.

(b) We assume α ≥ β, and we let (α, β) be the <lex-least pair such that there
exists some ordinal γ together with f : γ −→ {0, 1} that verify
◦ α = ot(f−1[0]),
◦ β = ot(f−1[1]), and
◦ γ > H(α, β).

We consider the order types of the following two sets of ordinals:
(i) α′ = ot({θ < H(α, β) | f(θ) = 0}), and

(ii) β′ = ot({θ < H(α, β) | f(θ) = 1}),

together with f ′ the restriction of f to H(α, β). Necessarily either α′ < α or
β′ < β holds. Therefore we have

(max{α′, β′},min{α′, β′}) <lex (max{α, β},min{α, β}).

Hence we get the ordinal γ′ = H(α, β), together with the mapping f ′ :
H(α, β) −→ {0, 1} such that α′ = ot({θ < γ′ | f ′(θ) = 0}) and β′ = ot({θ <
γ′ | f ′(θ) = 1}). But by Lemma 5, we obtain γ′ = H(α, β) > H(α′, β′) which
contradicts the induction hypothesis.

Corollary 1. Let k, n be non-null integers, γ be any ordinal, 0 ≤ α0, . . . , αk <
ωn, and f : γ −→ {0, . . . , k}.

If ∀i ≤ k αi = ot(f−1[i]) holds, then γ < ωn.

13 In particular, lk, lk−1, . . . mk, mk−1, . . . might be null, but since α, β > 0 holds, at
least one of the li’s, and one of the mi’s are different from zero.
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Proof. This is immediate from Lemma 6.

Lemma 7. Let k be some non-null integer, (Nk,.) be a well-ordering such that

(a0, . . . , ak−1) . (b0, . . . , bk−1) =⇒











∀i < k ai ≤ bi

or

∃i, j < k ai < bi and aj > bj

holds for every k-tuples (a0, . . . , ak−1), (b0, . . . , bk−1) ∈ Nk. Then, the order type
of (Nk,.) is at most ωk.

Proof. The proof goes by induction on k ≥ 1.

(a) The initial case k = 1 is immediate since (N1,.) is nothing but the usual
ordering on integers.

(b) We assume the result holds for k ≥ 1, and we show that it holds for k + 1.

Claim. For any integer n, the order type of the following set (ordered by .)

An = {(a0, a1, . . . , ak) ∈ Nk+1 | (a0, a1, . . . , ak) < (n, n, . . . , n)}

is strictly below ω(k+1).

Proof. Notice that if (a0, a1, . . . , ak) < (n, n, . . . , n) holds then ai < n must
hold for some i ≤ k + 1.
For each i ≤ k + 1 and each j < n we consider

A(i,j) = {(a0, a1, . . . , ak) ∈ Nk+1 | ai = j},

and α(i,j) = ot(A(i,j)) its order type (ordered by .). Notice that for

(a0, . . . , ai−1, j, ai+1, . . . , ak) . (b0, . . . , bi−1, j, bi+1, . . . , bk)

=⇒










∀l ∈ {0, . . . , i − 1, i + 1, . . . , k} al ≤ bl

or

∃l,m ∈ {0, . . . , i − 1, i + 1, . . . , k} al < bl and am > bm

Therefore by induction hypothesis, α(i,j) < ωk+1 holds for all i ≤ k + 1 and

j < n. It follows from Corollary 1 that ot(An) < ωk+1 holds.

On the other hand for every integer n ≥ 0 it holds that (n, n, . . . , n) <
(n + 1, n + 1, . . . , n + 1). Moreover if n = max{a0, a1, . . . , ak} + 1 then
(a0, a1, . . . , ak) < (n, n, . . . , n). Therefore the sequence of ordinals (ot(An))n≥1

is cofinal in ot(Nk+1) and thus the order type of (Nk+1,.) is at most ωk+1.

Lemma 8. We let k be any non-null integer, B ∈ BC(k), A ⊆ Xω be any
initializable set, and δ any countable ordinal.

B ≤w A • δ =⇒ B ≤w A • α dor some α < ωk+1.
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Notice that an immediate consequence is that B ≡w A • δ holds only for
ordinals δ < ωk+1.

Proof. First notice that for every B ⊆ Xω, and every u ∈ X∗, if B ∈ BC(k)
holds, then u−1B ∈ BC(k) holds too.

Towards a contradiction, we assume that A • α <w B ≤w A • δ holds for
all α < ωk+1. We let B be a k-blind counter automaton that recognizes B.
By Lemma 3, for each successor ordinal α < ωk+1 there exists some uα ∈ X∗

such that u−1
α B ≡w A • α or u−1

α B ≡w (A • α)∁. For each such uα, we form
(qα, cα,0, cα,1, . . . , cα,k−1) where qα denotes the control state that B is in after
having read uα, and cα,i the height of its counter number i (any i < k).

Now there exists necessarily some control state q such that

the order type of the set S = {α < ωk+1 | α successor and qα = q} is ωk+1.

Now, by Lemma 7 there exist α, α′ ∈ S such that α′ < α holds together with
cα,i ≤ c′α,i holds for all i < k. (Without loss of generality, we may even assume
that ω ≤ α′ < α holds.) Let us denote Bα the k-blind counter automaton B that
starts in state (qα′ , cα′,0, cα′,1, . . . , cα′,k−1), and Bα the one that starts in state
(qα, cα,0, cα,1, . . . , cα,k−1). Notice that since cα,i ≤ c′α,i holds for all i < k, Bα′

performs exactly the same as Bα except when the latter crashes for it tries to
decrease a counter that is already empty. But it is then not difficult to see that
given the above assumption – that ω ≤ α′ < α holds – u−1

α B ≤w u−1
α′ B holds

which leads to either A • α ≤w A • α′ or (A • α)∁ ≤w A • α′. In both cases, it
contradicts α′ < α.

Notice that the set ∅•ωn
1 is initializable, so we have in particular the following

result.

Lemma 9. For k, n any integers, A any non-self dual ω-language in BC(k),
and any non-zero countable ordinal α,

A or A∁ ≡w (∅ • ωn
1 ) • α =⇒ α < ωk+1.

In a similar way, we can now state the following lemma.

Lemma 10. We let k be any non-null integer, B ∈ BC(k), A ⊆ Xω be any
initializable set, δ be any countable ordinal, and C be any set of the form

C = A • ωn
1 • νn + . . . + A • ωn−1

1 • νn−1 + . . . + A • ω1 • ν1

for any non-zero integer n, and countable multiplicative coefficients νn, νn−1, . . . , ν1

with at least one of them being non-null.

B ≤w C + A • δ =⇒ B ≤w C + A • α dor some α < ωk+1.

Proof. The proof is very similar to the one of Lemma 8, so we leave it to the
reader.
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Theorem 6. Let k be any non-null integer, B ⊆ Xω be non-self dual. If B ∈
BC(k), then either B or B∁ is Wadge equivalent to some

Ω(α) = (∅ • ω
nj

1 ) • δj + (∅ • ω
nj−1

1 ) • δj−1 + . . . + (∅ • ωn0

1 ) • δ0.

where j ∈ N, nj > nj−1 > . . . > n0 and ωk+1 > δj , δj−1, . . . , δ0 > 0.

Proof. This is an almost immediate consequence of Lemmas 8 and 10.

This settles the case of the non-self dual ω-languages in BC(k). For the
self-dual ones, it is enough to notice the easy following:

(a) Given any A ⊆ Xω, if A ∈ BC(k) is self dual, then there exists two non-self
dual sets B,C ⊆ Xω such that both B and C belong to BC(k), B ≡w C∁,
and A ≡w X0B ∪ X1C, where {X0, X1} is any partition of X in two non-
empty sets.

(b) If A ⊆ Xω and B ⊆ Xω are non-self dual, verify A ≡w B∁, and both belong
to BC(k), then, given any partition of X in two non-empty sets {X0, X1},
X0A ∪ X1B is self-dual, and also belongs to BC(k).

As a consequence, we obtain the following general result if we come back to
the original definition of the Wadge degree of a set (denoted d◦) – from which
we slightly departed from to define dW – namely:

Definition 14. For A ⊆ Xω, we set

d◦(A) = sup{d◦(B) + 1 | B <W A}.

(Notice that this definition implies d◦(∅) = d◦(∅∁) = 0.)

Theorem 7. For any A ⊆ Xω, there exists an ω-language B ⊆ Xω recognized
by some deterministic Petri net, such that A ≡w B if and only if d◦A is of the
form

α = ωn
1 · δn + . . . + ω0

1 · δ0.

for some n ∈ N, and ωω > δn, . . . , δ0 ≥ 0.

From where we immediately obtain the following:

Corollary 2. The height of the Wadge hierarchy of ω-language recognized de-
terministic Petri net is (ωω)

ω
= ωω2

.

7 Conclusions

We provided a description of the extension of the Wagner hierarchy from au-
tomata to deterministic Petri Nets with Muller acceptance conditions. Of course
the results would be rigorously the same if we replace Muller acceptance condi-
tions with parity acceptance conditions. But with Büchi acceptance conditions
instead, it becomes even simpler since the ω-languages are no more boolean com-
binations of Σ0

2-sets, but Π0
2-sets. So, the whole hierarchy comes down to the

following:
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Corollary 3. For any A ⊆ Xω, there exists an ω-language B ⊆ Xω recognized
by some deterministic Petri net with Büchi acceptance conditions, such that
A ≡w B if and only if either

◦ d◦A = ω1, and A is Π0
2-complete, or

◦ d◦A < ωω.

Deciding the degree of a given ω-language in BC(k), for k ≥ 2, recognized
by some deterministic Petri net – either with Büchi or Muller acceptance con-
ditions, remains an open question. Notice that for k = 1 this decision problem
has been shown to be decidable in [11].

Another rather interesting open direction of research is to go from deter-
ministic to non-deterministic Petri nets. It is clear that this step forward brings
new Wadge classes – for instance there exist ω-languages recognized by non-
deterministic Petri nets with Büchi acceptance conditions that are Σ0

3-complete,
hence not ∆0

3, [19] – but the description of this whole hierarchy still requires
more investigations.
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(Mägdesprung, 1986).

43. L. Staiger. ω-languages. In Handbook of formal languages, Vol. 3, pages 339–387.
Springer, Berlin, 1997.

44. W. Thomas. Automata on infinite objects. In J. van Leeuwen, editor, Handbook

of Theoretical Computer Science, volume B, Formal models and semantics, pages
135–191. Elsevier, 1990.

45. R. Valk. Infinite behaviour of Petri nets. Theoretical computer science, 25(3):311–
341, 1983.

46. W. Wadge. Reducibility and determinateness in the Baire space. PhD thesis,
University of California, Berkeley, 1983.

47. K. Wagner. On ω-regular sets. Information and Control, 43(2):123–177, 1979.
48. T. Wilke and H. Yoo. Computing the Wadge degree, the Lifschitz degree, and

the Rabin index of a regular language of infinite words in polynomial time. In
P. Mosses, M. Nielsen, and M. Schwartzbach, editors, TAPSOFT 95, volume 915
of Lect. Notes in Comp. Sci., pages 288–302. Springer Verlag, Berlin, Heidelberg,
New York, 1995.


