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Combining random generators by group operation.

Introduction

Empirical studies indicate that combining two or more simple generators, by means of the operations such as +, -, * , ⊕ (exclusive or) improves the statistical properties of the composite. References [START_REF] Bray | One-line random number generators and their use in combination[END_REF][START_REF] Knuth | The Art of Computer Programming[END_REF][START_REF] Maclarin | Uniform random number generators[END_REF][START_REF] Westlake | A uniform random number generator based on the combination of two congruential generators[END_REF] seem to be the first, which deal with combining generators. Brown and Salomon [START_REF] Brown | On combining pseuedorandom number generators[END_REF] provided a theoretical support for such combinations. They gave an elaborate proof that x + y mod m was at least as uniform as x or y mod m, which was based on the techniques of majorization. Marshall and Olkin [START_REF] Marshall | Inequalities: Theory of Majorization and its Application[END_REF] made the result more general in the elegant book on inequalities and majorization. Combined generators have more advantages than simple ones: they passed more practical tests (see [START_REF] Ecuyer | Combined generators with components from different families[END_REF][START_REF] Maclarin | Uniform random number generators[END_REF][START_REF] Marsaglia | A current view of random number generators[END_REF][START_REF] Westlake | A uniform random number generator based on the combination of two congruential generators[END_REF]) and generally their periods increase (see [START_REF] Côté | Implementing a random number package with splitting facilities[END_REF][START_REF] Compagner | On the use of reducible polynomials as random number generators[END_REF][START_REF] Ecuyer | Uniform random number generation[END_REF][START_REF]Combined multiple recursive generators[END_REF][START_REF]Maximally equidistributed combined tausworthe generators[END_REF]).

From theoretical point of view random generators are random variables with values in finite groups. The case of independent variables taking values in compact topological groups was considered by many authors (see [START_REF] Bhattacharya | Speed of convergence of the n-fold convolution of a probability measure on a compact group[END_REF][START_REF] Egorov | On a sequence of random variables with values in a compact commutative groups[END_REF][START_REF] Grenander | Probabilities on algebraic structures[END_REF][START_REF] Ito | On the probability distribution on a compact group[END_REF][START_REF] Kloss | Limit distribution for sums of independent variables with values in bicompact group[END_REF][START_REF]Probability distributions on bicompact topological groups[END_REF][START_REF] Ullrich | A limit theorem for random variables in compact topological groups[END_REF]). In the article we give similar results for independent random variables with values in any finite groups (in particular in Z 2 = {0, 1}) using only elementary methods. Moreover we give an effective estimation of the speed of convergence to the uniform generator. The estimations are important in applications, because they help to find better and better generators.

To describe the results more precisely we take Ω a probabilistic space, G = {g 1 , . . . , g n } a finite group and X : Ω -→ G a random variable. If G = Z 2 we may treat X as a bit generator. X is called uniform if the probability of taking value g i by X is the same for i = 1, . . . , n i.e. In practise it is difficult to obtain the uniform generator. In the article we give an effective method of finding random generator closer and closer to uniform.

In case G = Z 2 , which we consider separetely (because we obtain in this case a stronger result), we prove the following. Let X i , i = 1, 2, . . . , be a sequence of arbitrary independent bit generators and Pr{X i = 0} = p i , Pr{X i = 1} = 1 -p i . If p i 's are not "close enough" to 0 and 1 then the sum distribution modulo 2 of X i 's i.e. the distribution of X 1 + ... + X i mod 2 tends toward uniform (Thms. 2.1, 2.6 and Cors. 2.3, 2.7) in a controlled rate. So, in practise if we have a sequence of "not uniform" generators then by taking their sum modulo 2 in sufficiently large quantity we can obtain more and more uniform bit generators. Observe that taking the sum X 1 + ... + X i mod 2 is equivalent to the operation "XOR" i.e. exclusive or.

In the general case, i.e. for an arbitrary finite group G (in particular for Z n = {0, 1, . . . , n -1} with summing mod n, n = 1, 2, . . . or Z p \ {0} with multiplying mod p for prime p) we obtain a similar result in a slightly weaker form (Thm. 3.1 and Cors. 3.2, 3.4).

Recently some authors (see for example [START_REF] Dixon | Generating random elements in finite groups[END_REF][START_REF] Lukács | Generating random elements of abelian groups[END_REF]) have studied a "weak" type of uniformity called the -uniformity. Let Ω be a probabilistic space, G = {g 1 , . . . , g n } be a finite group and X : Ω -→ G be a random variable. We say that X is -uniform if for every i = 1, . . . , n

Pr(X = g i ) - 1 n ≤ n .
In [START_REF] Dixon | Generating random elements in finite groups[END_REF] J.D. Dixon constructed the sequence of random cube to get a 1/4-uniform generator and in [START_REF] Lukács | Generating random elements of abelian groups[END_REF] A. Lukács gave an efficient method, which provably generates -uniform random elements of an abelian group.

Combining random generators mod 2

Let (X i ) i∈N be a sequence of the independent random variables with values in Z 2 , i.e. Proof Without loss of generality we may suppose that b = 1. Set

X i : Ω -→ Z 2 , i = 1, 2, . . . . Let δ i , |δ i | ≤ 1 be real numbers such that Pr{X i = 1} = 1 2 (1 -δ i ), Pr{X i = 0} = 1 2 (1 + δ i ), i = 1,
u i := Pr{ i k=1 X k = 1}, i ∈ N.
Then from independence of the random variables X 1 , . . . , X i+1 we easily get independence of the random variables i k=1 X k and X i+1 and hence

u i+1 = u i Pr{X i+1 = 0} + (1 -u i ) Pr{X i+1 = 1}, i ∈ N. Since Pr{X i = 0} = 1 2 (1 + δ i ), Pr{X i = 1} = 1 2 (1 -δ i ) then putting u i = 1 2 (1 - i ), i ∈ [-1, 1], i ∈ N, we get 1 2 (1 -i+1 ) = 1 2 (1 -i ) 1 2 (1 + δ i+1 ) + 1 2 (1 + i ) 1 2 (1 -δ i+1 ), i ∈ N.
After easy transformations we obtain

i+1 = i δ i+1 , i ∈ N.
Observe that

1 = δ 1 , hence i = i k=1 δ k , i ∈ N. (1) 
From (1) we easily get

|u i -1 2 | = 1 2 i k=1 |δ k |. It finishes the proof.
As a direct consequence of the above theorem we have the following.

Corollary 2.2 For every b ∈ {0, 1} we have

lim i→∞ Pr{X 1 + ... + X i = b} = 1 2 ⇐⇒ ∞ i=1 |δ i | = 0.
Corollary 2.3 Suppose that there exists a positive constant δ ∈ R such that

|δ i | ≤ δ < 1, Pr{X i = 1} = 1 2 (1 -δ i ), i ∈ N. Then for every b ∈ {0, 1} lim i→∞ Pr{X 1 + ... + X i = b} = 1 2 ,
and the distribution of X 1 +...+X i tends to the uniform distribution at a geometric rate i.e.

Pr{X 1 + ... + X i = b} - 1 2 ≤ 1 2 δ i .
Generally it is difficult to check the condition ∞ i=1 |δ i | = 0, so we give the following helpful known proposition.

Proposition 2.4 Let a i ∈ R, i ∈ N. Then the product ∞ i=1 (1 + |a i |) is convergent if and only if the series ∞ i=1 |a i | is convergent. F o r P e e r R e v i e w O n l y Proof It is a direct consequence of inequalities k i=1 |a i | < 1 + k i=1 |a i | < k i=1 (1 + |a i |) ≤ k i=1 e |ai| = e P k i=1 |ai| , k ∈ N.
This implies following proposition.

Proposition 2.5 Let δ i ∈ [-1, 1], i ∈ N. Then ∞ i=1 |δ i | = 0 ⇐⇒ ∞ i=1 (1 -|δ i |) = +∞ ∨ ∃ i∈N δ i = 0 .
Proof In the beginning observe that if δ i = 0 for some i ∈ N then of course the equivalence is true. So we can assume that δ i = 0 , i ∈ N. We have

∞ i=1 |δ i | = 0 ⇔ ∞ i=1 1 |δ i | = +∞ ⇔ ∞ i=1 1 + 1 -|δ i | |δ i | = +∞ ⇔ ∞ i=1 1 -|δ i | |δ i | = +∞.
The last equivalence follows from Proposition 2.4. So that to finish the proof it is enough to show that

∞ i=1 (1 -|δ i |) = +∞ ⇐⇒ ∞ i=1 1 -|δ i | |δ i | = +∞. Because 0 < |δ i | ≤ 1, we have "⇒" implication. Now suppose that ∞ i=1 (1 - |δ i |)/|δ i | = +∞. Put A := {i : |δ i | ≤ 1/2}. If the set A is finite then (1 -|δ i |)/|δ i | < 2(1 -|δ i |), i ∈ A,
so this inequality is true for all i besides a finite number. Hence 

i := (1/2)(1 -δ i ), i ∈ N, we get δ i = 1 -2p i and 1 -|δ i | = 1 -|1 - 2p i | = 2 min{p i , 1 -p i } So the condition ∞ i=1 (1 -|δ i |) = +∞ is equivalent to ∞ i=1 min{p i , 1 -p i } = +∞.
i = 0} = p i , Pr{X i = 1} = 1 -p i , i ∈ N. Then for every b ∈ {0, 1} lim i→∞ Pr{X 1 + ... + X i = b} = 1 2 ⇐⇒ ∞ i=1 min{p i , 1 -p i } = +∞ ∨ ∃ i∈N p i = 1 2 .
and 

Pr{X 1 + . . . + X i = b} - 1 2 =
i = 0} = p i , Pr{X i = 1} = 1 -p i , i ∈ N. Suppose that there exist constants α, β ∈ R such that 0 < α ≤ p i ≤ β < 1, i ∈ N. Then for every b ∈ {0, 1} lim i→∞ Pr{X 1 + ... + X i = b} = 1 2 ,
and distribution of X 1 + ... + X i tends to uniform distribution at a geometric rate i.e.

Pr{X 1 + ... + X i = b} - 1 2 ≤ 1 2 δ i ,
where δ = max{1 -2α, 2β -1}.

Proof Let i ∈ N. From our assumptions, if p i ≤ 1/2 we get that |1 -2p i | = 1 -2p i ≤ 1 -2α ≤ δ and if p i > 1/2 we get |1 -2p i | = 2p i -1 ≤ 2β -1 ≤ δ. So |δ i | = |1 -2p i | ≤ δ
and by using Corollary 2.3 we get the thesis.

Remark 1

The above result is true for every two-element group because every two-element group is isomorphic to Z 2 .

Remark 2 It is a standard fact of probability theory that if we have arbitrary distributions µ n , n ∈ N on a finite group G we may construct probabilistic space Ω and independent random variables X n : Ω -→ G with distributions µ n . Moreover if we have a finite sequence of independent random variables X 1 , . . . , X k we may always extend it to infinite sequence X 1 , . . . , X k , X k+1 , X k+2 , . . . preserving independence with arbitrary distributions µ k+1 , µ k+2 . . . .

Combining random generator by group operation

Let G = {g 1 , . . . , g n } be a finite n-element group with operation • and let (X i ) i∈N be a sequence of independent random variables with values in G i.e.

X i : Ω -→ G, i = 1, 2, . . . .
Let p ik , 0 ≤ p ik ≤ 1 be real numbers such that p i1 + . . . + p in = 1 and

Pr{X i = g k } = p ik , k = 1, . . . , n, i ∈ N.
Set p i := min{p il : l = 1, . . . , n}, i ∈ N. Then we have the second limit theorem.

Theorem 3.1 For every k ∈ {1, 2, . . . , n} Remark 2 Observe, that the converse of the second part of the above theorem isn't true. Indeed, if X i0 has uniform distribution then it is easy to check that all X 1 • . . . • X j , j ≥ i 0 have the uniform distibution independent of distribution of random variable X i , i = i 0 . So we may take X 1 a random variable with the uniform distribution and X 2 , X 3 , . . . arbitrary such that ∞ i=2 p i < ∞. Another counterexample in which no random variables X i has the uniform distribution is: take G = Z 3 with summing modulo 3 and sequence of the independent random variables (X i ) i∈N , such that Pr{X i = 0} = 0, Pr{X i = 1} = Pr{X i = 2} = 1/2, i ∈ N, then of course ∞ i=1 p i = 0 but one can check using Markov chain method that lim i→∞ Pr{X 1 + . . . + X i = k} = 1/3, k = 0, 1, 2 (Compare this remark to the first part of Theorem 2.6).

Pr{X 1 • . . . • X i = g k } - 1 n ≤ n max m=1 p 1m - 1 n i m=2 (1 -p m ), i ∈ N and if ∞ i=1 p i = +∞ then lim i→∞ Pr{X 1 • . . . • X i = g k } = 1 n
Corollary 3.2 For every k ∈ {1, 2, . . . , n}

Pr{X 1 • . . . • X i = g k } - 1 n ≤ 1 - 1 n i m=1 (1 -p m ), i ∈ N. ( 2 
)
Proof It is a direct consequence of Theorem 3.1 and following inequality:

n max i=1 a i - 1 n ≤ 1 - 1 n (1 - n min i=1 a i )
for a i ≥ 0 such, that n i=1 a i = 1. Indeed for n = 1 or n = 2 one can easily check this inequality. Let n > 2. There exist i 0 such that max

n i=1 |a i -1/n| is attained. If a i0 ≤ 1/n, then a i0 - 1 n = 1 n -a i0 ≤ 1 n . (3) 
On the other hand observe that min n i=1 a i ≤ 1/n, so

1 - 1 n (1 - n min i=1 a i ) ≥ 1 - 1 n 2 > 1 n . (4) 
From ( 3) and ( 4) we get our inequality in this case.

If a i0 > 1/n, then 1 - 1 n (1- n min i=1 a i ) ≥ 1 - 1 n (1-(1-a i0 )) = 1 - 1 n a i0 ≥ a i0 - 1 n = a i0 - 1 n
and we get our inequality in this case.

Remark 3 From the results of the paper by Brown and Salomon (see [START_REF] Brown | On combining pseuedorandom number generators[END_REF], Sec. 4) one can deduce similar estimation as in Corollary 3.2, but without the constant factor 1 -1/n. This constant is the best possible in inequality [START_REF] Bray | One-line random number generators and their use in combination[END_REF]. Indeed, if we take G = Z 2 and two independent random variables with distributions Pr{X 1 = 0} = 0, Pr{X 1 = 1} = 1, Pr{X 2 = 0} = 1, Pr{X 2 = 1} = 0, then the inequality in Corollary 3.2 becomes an equality. Hence inequality (2) couldn't be improved. Moreover, one can also obtain similar estimations from the case when G is a compact group (see [START_REF] Bhattacharya | Speed of convergence of the n-fold convolution of a probability measure on a compact group[END_REF]), but without the constant factor 1 -1/n as well. To prove Theorem 3.1 we give a useful lemma.

Lemma 3.3 Let a i , x i ∈ R, a i ≥ 0, i = 1, . . . , n such that n i=1 a i = 1 and n i=1 x i = 0. Then n i=1 a i x i ≤ n max i=1 |x i | 1 - n min i=1 a i .
Proof If x i = 0 for every i, then the inequality is trivial. So we can suppose, that there exist i, j such that x i x j < 0. Hence the sets A := {i = 1, . . . , n : x i > 0}, B := {i = 1, . . . , n : x i < 0} are nonempty. We get further n i=1

a i x i = i∈A a i x i + i∈B a i x i = i∈A a i x i - i∈B a i |x i | ≤ max i∈A a i x i , i∈B a i |x i | .
The last inequality is the consequence of the fact that |a -b| ≤ max{a, b} for a, b ≥ 0. On the other side

i∈A a i x i ≤ n max i=1 |x i | i∈A a i ≤ n max i=1 |x i |(1 - n min i=1 a i ) and i∈B a i |x i | ≤ n max i=1 |x i | i∈B a i ≤ n max i=1 |x i |(1 - n min i=1 a i ).
Reasumming

n i=1 a i x i ≤ n max i=1 |x i | 1 - n min i=1 a i .
It finishes the proof.

The proof of Theorem 3.1

Let k ∈ {1, . . . , n}. We may suppose that n ≥ 2, because for n = 1 the assertion of the theorem is trivial. First observe that from independence of random variables (X i ) i∈N we easily get independence of the random variables X

1 • . . . • X i and X i+1 , i ∈ N. Hence Pr{X 1 • . . . • X i+1 = g k } = n l=1 Pr{X 1 • . . . • X i = g k • g -1 l ∧ X i+1 = g l } = = n l=1 Pr{X 1 • . . . • X i = g k • g -1 l }p i+1,l . (5) 
Let where r k,l ∈ {1, . . . , n} is such number that g k • g -1 l = g rk,l . Let ij = s ij -1 n , i ∈ N, j ∈ {1, . . . , n}. By hypothesis we have n l=1 p i+1,l = 1, so we can rewrite (6) in the form:

s ij = Pr{X 1 • . . . • X i = g j }, i ∈ N, j ∈ {1, . . . , n} Then we have s i+1,k = n l=1 s i,rk,l p i+1,l , i ∈ N, (6) 
i+1,k = n l=1 i,rk,l p i+1,l , i ∈ N. (7) 
Because n j=1 s ij = 1, i ∈ N, so by definition of ij we have n j=1 ij = 0, i ∈ N. Hence from [START_REF] Egorov | On a sequence of random variables with values in a compact commutative groups[END_REF], using Lemma 3.3, we get

| i+1,k | ≤ n max l=1 | i,rk,l |(1 - n min l=1 p i+1,l ) = n max l=1 | il |(1 - n min l=1 p i+1,l ), i ∈ N. Set i := max n l=1 | il | and remember that p i = min n l=1 p il , i ∈ N. Then we have i+1 ≤ i (1 -p i+1 ), i ∈ N.
Observe, that 1 = max n l=1 |p 1l -1/n| hence by easy induction

i ≤ n max l=1 |p 1l -1/n| i m=2 (1 -p m ), i ∈ N, (8) 
and we get the first part of the assertion. If As a direct consequence of Corollary 3.2 we obtain the following corollary. Corollary 3.4 Let (X i ) i∈N be a sequence of independent random variables such that Pr{X i = g k } = p ik , k = 1, . . . , n, i ∈ N. If there exists α > 0 such that p i ≥ α, i ∈ N, then for every k ∈ {1, 2, . . . , n}

lim i→∞ Pr{X 1 • . . . • X i = g k } = 1 n
and distribution of X 1 • . . . • X i tends to uniform distribution at a geometric rate i.e. 

Pr{X 1 • . . . • X i = g k } - 1 n ≤ 1 - 1 n (1 -α) i , i ∈ 

Pr{X

  

∞

  i=1 (1 -|δ i |) = +∞. If the set A is infinite then 1 -|δ i | ≥ 1/2 for infinite number i, and so ∞ i=1 (1 -|δ i |) = +∞. It finishes the proof. It is easy to check that 1 -|1 -2t| = 2 min{t, 1 -t} for all t ∈ R. Hence if we put p

∞ i=1 p i = +∞ , so ∞ i=1 pi 1 -

 1 pi = +∞, because 0 ≤ p i ≤ 1 n . = +∞. Hence ∞ m=1 (1 -p i ) = 0. So from[START_REF] Grenander | Probabilities on algebraic structures[END_REF] we get lim i→∞ i = 0. It finishes the second part of the theorem in this case.
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  N.The results of the paper have a practical meaning. If we have a sequence of random generators X 1 , X 2 , . . . (binary or in general in values in Z n or in an arbitrary finite group G) satisfying mild conditions, then by combining them via group operation we get the sequence of the random generators Y i = X 1 + X 2 + . . . + X i more and more uniform, when i tends to infinity (see Thm. 2.1, 2.6, 3.1 and Cors. 2.3, 2.7, 3.2, 3.4).
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