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       Abstract 

In this article, we exploit the Bayesian inference and prediction for an M/G/1 queuing 

system with optional second re-service. In this model, a service unit attends customers arriving 

following a Poisson process and demanding service according to a general distribution and 

some of customers need to re-service with probability "p" after taking the service. First, we 

introduce a mixture of truncated Normal distributions on interval ( ),0−∞  to approximate the 

service and re-service time densities of our queuing system. Then, given observations of the 

system, we propose a Bayesian procedure based on birth-death MCMC methodology to 

estimate some performance measures. Finally, we apply the theories in practice by providing a 

numerical example based on real data which have been obtained from a hospital.  

MSC: 62F15, 60K25 

Keywords: M/G/1 queue; Optional service; Truncated Normal mixture; Birth-

death MCMC.  

 

1. Introduction 

       The identification of a suitable queuing model to fitting the characteristics and description of 

the situation in hand is the first step that a queuing practitioner takes when analyzing a real life 

queuing problem. The following step usually aims at determination of performance measures. 

For instance, traffic intensity, mean system size, etc. These measures consequently are expressed 

as some function of parameters in the queuing system. Performance measures determination 

requires estimating of such parameters. Insufficient knowledge on numerical values of 

parameters presents a formidable hurdle to interpretation. How are such estimates obtained? 

Answering this question via the Bayesian approach constitutes the subject matter of this paper.  

       The model we have chosen to analyze is an M/G/1 queuing system with optional second 

service. While we are aware that some work in this direction has already been carried out, a few 

drawbacks have drawn our attention. Circumventing these drawbacks and suggesting improved 

methods was our main consideration. We have performed Bayesian inference to estimate the 

parameters of this queuing model. Bayesian inference is well suited for analyzing queues 

because we can evaluate posterior and predictive distributions for system performance measures 

taking different sources of uncertainties into account.  
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 The majority of statistical papers on queuing systems are in the frequentist framework, with 

a renewed interest in Bayesian methods: M/M/1 queues are discussed by Armero and Bayarri 

(1994a,b), M/G/1 queues by Rios et al. (1998), M/G/1 queues using a phase-type approximation 

by Ausin et al. (2004), GI/G/1 queues by Ausin et al. (2007b) and GI/M/c queues by Ausin and 

Wiper (2007a). But in far applied queuing models, some customers might need to be re-serviced. 

For example, in a production line, some items might fail and require repair. In a hospital, some 

patients, after treatment, need extra services such as surgery. In these kinds of problems, we must 

re-service some items. 

This paper constitutes Bayesian perspective for M/G/1 queuing systems with optional 

second service in which some customers must be re-serviced with probability p. Although, this 

queuing model has been studied by Salehi-Rad and Mengersen (2002) and Salehi-Rad et al. 

(2004) from classical queuing theory aspect; they have considered three alternatives for re-

servicing in this queuing model and obtained the probability generating function (p.g.f.) of the 

steady-state system size at the moment of departure of the customer in the main queue, the mean 

busy period and the probability of the idle period. We will practically apply the Bayesian 

approach for one of these disciplines. Also, for this discipline we obtain the mean system size of 

the model in both queues via the p.g.f. of the system size. 

        The main contribution of this paper is that we will introduce a semi-parametric model for 

the service and re-service distributions based on a mixture of truncated Normal distributions on 

interval ( ),0−∞  that it will provide an alternative Bayesian approach for approximating the 

general distribution of service and re-service based on former papers.  

      There has been much previous work on Bayesian density estimation using mixture models. 

See, for example, Diebort and Robert (1994) MCMC methodology, Robert (1996), have been 

developed for Bayesian analyses of mixture models. Recently, for variable dimension problems, 

often arising through model selection, Green (1995) and Richardson and Green (1997) 

introduced the reversible jump (RJ-MCMC) methods to analyze Normal mixtures. This type of 

algorithm was used by Rios et al. (1998) for Exponential mixtures, Wiper et al. (2001) for 

mixtures of Gamma distributions and Ausin et al. (2004) for mixture of Erlang distributions. 

More recently, in the context of mixtures of distributions, Stephens (2000a) rekindled interest in 

the use of continuous time birth-death methodology (BD-MCMC) for variable dimension 

problems.  This type of methodology was used by Ausin and Wiper (2007a) for mixtures of 

Erlang distributions. See Cappe et al. (2003) for more details about RJ-MCMC and BD-MCMC 

for mixture models. Mixture models allow a conveniently flexible family of distributions for 

estimating or approximating distributions which standard parametric family do not model 

appropriately, and provide a parametric alternative to non-parametric methods of density 

estimation. 

This paper is organized as follow. In section 2, we describe an M/G/1 queuing system with 

optional second service where we consider a semi-parametric approximation to the general 

distribution based on a mixture of truncated Normal distributions on interval ( ),0−∞ . Also, we 

describe some results derived by Salehi-Rad and Mengersen (2002) and Salehi-Rad et al. (2004) 

which allow us to estimate the mean number of customers in the system, mean busy period and 
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probability of the idle period for our model. 

In section 3, we define prior distributions and propose a birth-death MCMC technique to 

obtain a sample from the joint posterior distribution of the system parameters and the predictive 

service and re-service time distributions.  

In section 4, we estimate the traffic intensity and the probability of holding the equilibrium 

condition stable. Also, we describe how we can estimate some performance measures by using 

the data generated from the birth-death MCMC algorithm.  

In section 5, we illustrate our Bayesian methodology with the real data obtained from a 

hospital. Section 6 gives conclusions and possible extensions.  

2. The queuing model 

      Throughout, we have considered an M/G/1 queuing model in a steady state, FCFS
1
 discipline 

and independence between interarrival and service times in which some items failed and needs to 

be reserved with probability ‘p’, independent of its service time or other factors (queuing system 

with two queues and one server.) . See Fig. 1. 

 

 

Fig.1. M/G/1 queuing model in which some items failed with probability ‘p’, and required re-service 

 

Moreover, we consider this model under a specific policy. We assume failed items are 

stockpiled in a failed queue (FQ) and re-serviced only after all customers in the main queue 

(MQ) are serviced. After completion of re-service of all items in FQ, the server returns to MQ if 

there are any customers waiting in MQ; otherwise, the server is idle. This queuing system was 

introduced by Salehi-Rad and Mengersen (2002) and Salehi-Rad et al. (2004) and considered 

from classical queuing theory. 

In this model we suppose that a variable T is the interarrival time and has an exponential 

distribution with parameter λ . For service times, we suppose that service (S ) and re-service 

(S% ) times are independent and have general distributions, denoted by 
1
(.)B  and 

2
(.)B  with 

means
1
η , 

2
η  and variances 1δ , 2δ , respectively. For modeling the general time distributions of 

service and re-service, we alternatively introduce a semi-parametric model based on a mixture of 

truncated Normal distributions on interval ( ),0−∞ . Thus, if S is a typical service time, we have 

( ) ( )1 2
1 1 (0, ) 1 11

1

, , 0
k

i i i
i

B s TN s sθ π µ σ∞
=

= < <∞∑
%

 

                                                           

1- First Come First Service 
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where ( )2
1 1 1 11
, , ,kθ π µ σ=

% % %%

, 
1

k  is the number of mixture components, ( )11 12 11 1
, ,..., kπ π π π=

%
 are 

weights and ( )2
1 1(0, )

,i iTN s µ σ
∞

 represents the truncated Normal density function which has been 

truncated on interval ( ),0−∞ , for 
1

1,...,i k= , that is,  

( ) ( ) ( )
2 2

1 1 120, 2
11 1 1

11
, exp ( ) , 0, (1)

22
i i i

ii i i

TN s s sµ σ µ
σµ σ πσ

∞

 = − − > 
 Φ

 

in which ( ).Φ  is cumulative standard Normal distribution. Note that, in this mixture model all of 

the parameters are unknown specially the mixture size, 
1

k .  

In the same way, if S%  is a typical re-service time, we have, 

( ) ( ) ( )2 2
2 2 2 20,2

1

, , 0
k

i i i
i

B s TN s sθ π µ σ∞
=

= < <∞∑% % %

%
 

where ( )2
2 2 2 22
, , ,kθ π µ σ=

% % %%  
and 

( ) ( )2
2 20,

,i iTN s µ σ
∞

%  is the same as defined for S. 

Thus, we have a queuing system with two queues and one server with parameters 

( )1 2, , ,pθ λ θ θ=
% % %

, in which λ  is the parameter of interarrival times distribution and p is the 

probability of the item being failed.          

2.1. The mean system size 

For our queuing model, under the steady state condition, suppose that 
n

X  is the number of 

customers remaining in MQ at the completion of the n th customer's service time in MQ also 
n

Y  

is the number of customers remaining in FQ at the completion of the n th customer's service time 

in MQ. By using the p.g.f of the system size which has been obtained by Salehi-Rad and 

Mengersen (2002) we obtain the mean system size of the model in the next theorem. For a proof 

of this theorem see appendix.  

        Theorem 2.1. Expectation number of customers in MQ and FQ are as below 

2 2 2 2 2
21 1 2 2 1 1 1

1 2 02

1 1 1 1

(2 )
) ( ) ( ) (2)

2(1 ) 2(1 ) 1 (1 )
n

p
i E X p

λ δ ρ λ δ ρ λ δ ρ ρ
ρ ρ π

ρ ρ ρ ρ •

 + + + −
= + + + − − − − 

       

( )
( ) ( )

( )

2 2

1 1 1 1

02

1

2 1 1
) (3)

2 1
n

p
ii E Y

ρ λ δ ρ ρ
π

ρ
•

 − + + − =
−

 

 respectively. Where  

( )
1

2 *

0 1 2 1(1 ) (1 ) 0, ,p G pπ ρ ρ ρ λ
−

•  = − + −   

( ) ( )( )* *

20, , 1 ,G p p pBλ λ= Ψ − +
 

( ) ( )( )*

1 1 ,u uB uλ Ψ = −Ψ   
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and ( )*

1 .B  and ( )*

2 .B  are the LSTs
2
 of the distribution functions of the service and re-service 

times, respectively. 

        Proof. See Appendix. 

Note that according to mixture of truncated Normal distributions for service and re-service 

times with some computations, the variance of service and re-service times are given by 

                                             2 2

1

1 , 1,2
jk

ji

j ji ji ji ji

i ji

j
µ

δ π σ
σ=

   
  = − ∆ ∆ + =       

∑                          

in which                

                                                           
( )
( )

ji ji

ji

ji ji

φ µ σ

µ σ
∆ =

Φ
    

that ( ).φ  is a standard Normal density.                                                                

2.2. The mean busy period and probability of idle period of the system 

To obtain the mean busy period for our queuing model, we have  

E[busy period] = E[busy period in MQ] + p E[busy period in FQ] 

The first expressions is equal to ( )1 11η λη−  and the second expression is ( )2 11pη ρ− . Thus 

[ ]
2

1 2

1

E busy period (4)
1

pη η
λη
+

=
−

                                 

Note that, according to mixture of truncated Normal distributions for service and re-service times 

with some computations, we have 

                                        
( )
( )1

, 1, 2
jk

ji ji

j ji ji ji

i ji ji

j
φ µ σ

η π µ σ
µ σ=

  
  = + =

  Φ  
∑                              

For finding the probability of idle period, we have 

( )* 1

2

2

1
= Pr idle period . (5)

1 p

ρ
π

ρ
−

=
+

 

For more details see Salehi-Rad and Mengersen (2002) and Salehi-Rad et al. (2004).  

3. Bayesian inference 

In this section, we develop Bayesian inference techniques for system 

parameters ( )1 2, , , pθ λ θ θ=
% % %

. We consider throughout the simple experiment of observing 
a

n  

interarrival times { }1,..., n
a

t t t=
%

, 
1s

n  service times in MQ, as { }11 12 11 1
, ,..., n

s
s s s s=
%

, 
2s

n  re-service 

                                                           

2- Laplace Stieltjes Transform 
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times in FQ, as { }21 22 22 2
, ,..., n

s
s s s s=
%

 and 
p

n  sample for parameter p, as { }1,..., n
p

x x x=
%

 in which 

1
i

x =  if customer need re-service and 0
i

x =  if customer does not need re-service, for 

1,...,
p

i n= . Given these observations,
1 2

, ,t s s
% % %

, and x
%

, the likelihood function of the queuing 

system under our policy is 

( ) ( ) ( ) ( ) ( )1 2 1 1 2 2, , ,L t s s x L t L s L s L p xθ λ θ θ∝
% %% % % % % % % % %

 

 in which 

( )
1

exp
n

an
a

j
i

L t tλ λ λ
=

 
= − ∑  

 %
, 

( ) ( )11 2
1 1 1 (0, ) 1 1 1

11

,
kn

s

i j i i
ij

L s TN sθ π µ σ∞
==

 
= ∑∏ 

 % %
, 

( ) ( )22 2
2 2 2 (0, ) 2 2 2

11

,
kn

s

i j i i
ij

L s TN sθ π µ σ∞
==

 
= ∑∏ 

 % %
, 

and  

( ) ( )1 .
n xx p iiL p x p p
−∑∑= −

%
 

       Remark 3.1. In this model we assume those interarrival times, service times, re-service 

times and the probability of re-service, are independent.  

3.1. Prior specification and updating 

Here, we assign prior distributions for the parameters of our queuing system. For the arrival 

rate,λ , we assume a gamma distribution, ( )~ ,G a bλ . It is straightforward to show that, 

conditional on arrival data, the posterior distribution of λ  is also a gamma distribution as 

1
, )( an

a ii
G a n b t

=
+ +∑ , see, for example, Armero and Bayarri (1994b). 

        For the parameter p, we assume a Beta distribution, ( )~ ,P Beta ε ζ  . It is easy to show that 

the posterior distribution of p is ( )1 1
,

p pn n

i p ii i
Beta x n xε ζ

= =
+ + −∑ ∑ . 

Since both of 
1
(.)B  and

2
(.)B  are approximated with the mixture of truncated Normal 

distributions on interval ( ),0−∞ , so the Bayesian model for service distribution parameters and 

for re-service distribution parameters are the same.  

 In order to make inference for service distribution parameters, 1θ
%

, as in Diebolt and Robert 

(1994), it is convenient to assume that each observation 
1i

S arose from an unknown component 

1i
Z of the mixture, where 

11 12 1 1
, ,...,

n
s

z z z  are realizations of independent and identically 

distributed discrete random variables 
11 12 1 1

, ,...,
n

s
Z Z Z  with the prior distributions as below 
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( ) ( )1 1 1 1 1 1, , 1,..., ; 1,...,
i j s

P Z j k i n j kπ π= = = =  

Then, the conditional distribution of the service time, 
1i

S , given 
1i

Z , is 

( ) ( ) ( )2
1 1 1 11 0,

~ , 1,...,,i j j si
S Z TN s i nj µ σ

∞
== . 

Now, we can define a joint prior distribution on the mixture parameters of the service time, 

( )2
1 1 1 11
, , ,kθ π µ σ=

% % %%

. We will assume that the joint prior distribution can be factorized as  

( ) ( ) ( ) ( ) ( )2 2

1 1 1 1 1 1 1 1 1 1 1 1 1 1, , , ,f z k f z k f k f k f kπ µ σ π π µ σ∝
% %% % % % %% %

 

see Richardson and Green (1997). We now define proper prior distribution for 2

1 1 1, ,π µ σ
% %%

. 

 First, following Stephens (2000a) we assume a truncated Poisson distribution for the 

mixture size, 
1

k , taking values on 1 to 
1max

k , that is  

( )1 max
, 1,..., (6)

!

k

P k k k k
k

γ= ∝ =                                      

We take 
max

40k =  in order to penalize against over-fitting the data with a large number of 

components.  We also define prior distributions for remaining parameters given that 
1

k , as below 

( )
( ) ( )

11 1 11 1

1 1 10,

2

1 1 1

~ ,...,

~ , 1,...,

~ ( , ) 1,...,

k

i

i

k D

k TN for i k

k IG for i k

π φ φ

µ ξ τ

σ α β

∞ =

=

%

 

where ( )11 1 1
,..., kD φ φ  denotes a Dirichlet distribution with parameters 1 0

r
φ > for 11,...,r k=  with 

density 

( ) ( )
( ) ( )

1

1 1

1

11 1 1

1 1 1

111 1

r

k
k

r

rk

f k
φ

φ φ
π π

φ φ
−

=

Γ + +
=
Γ Γ

∏
L

% L

 

 Typically, we might set 1 1
r
φ = , for all 11,...,r k= , giving a uniform U(0,1) prior for the weights. 

( ) ( )0,
,TN ξ τ∞  denotes a truncated Normal on interval ( ),0−∞ , see formula (1). 

      Finally, ( , )IG α β denotes an inverted gamma distribution with density 

( ) ( ) ( ) ( )12 2

1 1 1 2

1

expi i

i

f k
α αβ β

σ σ
α σ

− +  
= − Γ  

 

      Remark 3.2. Note that, the mean of service time can not be negative so we suppose a 

truncated Normal on interval ( ),0−∞  for prior distribution of
1i
µ .      

Note that our model is invariant to permutation of the labels 11,...,i k= . For identifiability, it is 

important to adopt a unique labeling. Unless stated otherwise, we use that in which the 
1i
µ are 

increasing numerical order; thus the joint prior distribution of the parameters is 
1
!k  times the 

product of the individual truncated  Normal and inverted gamma densities, restricted to the set 
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111 12 1k
µ µ µ< < <L , see Stephens (2000a,2000b).     

    Conditional on 1k  and given the service time data, the full conditional posterior distribution 

of the allocation variables is 

( )2
1 1 11 1 (0, ) 1

, , 1,...,i i ij i
TN sP Z i i kµ σπ 

  ∞ 
= ∝ =L  

here and later we use ‘ L ’to denote conditioning on all other variables.  

Full conditional for the weights 1π
%

remains Dirichlet as 

( )
1 11 11 11 1 1~ ,...,

k k
D n nπ φ φ+ +L

%
 

where { }1 1#
i j

n z i= = . Also, full conditionals for { }1iµ  can be derived as below  

         ( ) ( )

12
:1

1 1
1 11 1
2 2

1 1

1

1 1
, , 0

1 10,
i

j

j j zi

i i
i ii i

i i

s

TN
n n

ξ
σ τ

µ µ
µ σ

τ σ τ σ

=

 + 
 ∝ >

∞Φ  + + 
 

∑
L

     

 

Note that, to preserve the ordering constraint on the { }1iµ , the full conditional is used only to 

generate a proposal and is accepted provided that the ordering is unchanged. 

     The full conditionals for { }2
1iσ   are 

        ( ) ( )22 1
1 1 1

:1 1

1 1
,

2 2
i

i
i j i

j j zi i

n
IG sσ α β µ

µ σ =

 
∝ + + − 
Φ  

∑L  

Now under our posterior distributions we can define a BD-MCMC algorithm which is 

considered in next section. 

3.2. BD-MCMC algorithm 

Here, we propose a birth-death MCMC algorithm for sampling from the full posterior 

distribution of service parameters, i.e. ( )2
1 1 1 11
, , ,kθ π µ σ=

% % %%

, for more details, including details of 

the construction of the BD-MCMC methodology, see Stephens (2000a) and Cappe (2003). The 

DBMCMC approach was introduced by Stephens (2000a) for Normal mixtures which is based 

on a general Markov birth-death process (BD). In this approach, the mixture size, 1k , changes 

such that births and deaths of the mixture components occur in continuous time with the 

stationary distribution of a joint posterior of the mixture parameters.  In order to improve mixing, 

the BD process can be combined with a standard MCMC method where 1k  is kept fixed, as will 

be shown further on. This methodology has been used for an Erlang mixture model to 

approximate the service distribution by Ausin and Wiper (2007a). 

In the BD process, births of mixture components occur at a constant rate which we might set 

equal to the parameter,γ , from the prior distribution of  1k  in (6). A birth increases the number 
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of components by one. The weight of a new component is generated from ( )1
1,Beta k  and the 

remaining parameters are sampled from the prior distributions. The death rate of every mixture 

component is a likelihood ratio of the model with and without this component, given by 

( ) ( ) ( )

( ) ( )

1

1

1

2
1 1 1 1 1 1

12
1 1 1 1 11

1 ,
0,

, 1,...,
,

0,

s

k

i i j r i in
i j

j k
r i r i ii

TN s

j k
TN s

π π µ σ
ω

π µ σ

=
≠

=
=

 −
∞ 

= = 
 ∞ 

∑
∏

∑
 

Thus, death rates are very low if the corresponding component explains a lot of data and 

high if it does not. The total death rate, i.e. 
jj

ω ω=∑ , of the process at any time is the sum of the 

individual death rates. A death decreases the number of mixture components by one. The birth 

and death processes are independent Poisson processes, thus, the time of birth/death event is 

exponentially distributed with mean ( )1 ω γ+  and a birth or death occur with probabilities 

proportional to γ  and ω , respectively. 

The following algorithm defines a general Markov berth-death process with the stationary 

distribution ( )11
B s θ

%
, based on Stephens (2000a). Also this algorithm used by Ausin and Wiper 

(2007a) for mixture of Erlang distributions.  

Algorithm 3.1. Starting with initial values ( ) ( ) ( ) ( )0 0 0 02

1 1 1 1, , ,k π µ σ
% %%

, iterate the following steps: 

Birth-death process 

1. Run the birth-death process for a fixed time 0t , 

 1.1. Start from ( ) ( ) ( ) ( )2

1 1 1 1, , ,
n n n n

k π µ σ
% %%

, 

 1.2. Compute the death rates, 

 1.3. Simulate the exponential time to next jump, 

 1.4. Simulate the type of jump (birth or death), 

 1.5. Modify the mixture components and 

 1.6. If the run time is less than 0t  go to 1.2, 

MCMC algorithm conditional on 1k  

2. Generate 
( ) ( ) ( ) ( ) ( )1 1 2

1 1 1 1 1 1 1~ , , , ,
n n n n n

z z s k π µ σ+ +

% % % % %%

, 

3. Generate  
( ) ( ) ( )1 1 1

1 1 1 1 1~ , ,
n n n

s k zπ π+ + +

%% % %
, 

4. for 
( )1
11,...,

n
r k

+= , 

 4.1. Generate 
( )1
1

n

r
µ +

 using a Metropolis step. 
 
 

 4.2. Generate 
( )12

1

n

r
σ +

using Metropolis step. 

5. Set 1n n= +  and go to 1. 

Note that the steps 2 to 3 are standard Gibbs sampling, whereby the model parameters are 

updated conditional on the mixture size, 1k . The only complicated is step 4, where we introduce 

Page 9 of 19

URL: http://mc.manuscriptcentral.com/lssp E-mail:  comstat@univmail.cis.mcmaster.ca

Communications in Statistics - Simulation and Computation

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

10 

 

a Metropolis Hasting method. To do this, for step 4.1 we generate candidate values for 
( )1
1

n

rµ
+

 

from a proposal distribution as below 

( )

12
:1

1 1

2 2

1 1

1

1
, .

1 10,
i

j

j j zi

i i

i i

s

TN
n n

ξ
σ τ

τ σ τ σ

=

 + 
 

∞  + + 
 

∑
 

Also, for step 4.2 we generate candidate values for 
( )12

1

n

rσ
+

 from a proposal distribution as 

below 

( )21
1 1

:

1
, .

2 2
i

i
j i

j j z

n
IG sα β µ

=

 
+ + − 

 
∑   

This algorithm produces a sample from the joint posterior distribution. Given suitable 

regularity conditions, see Tierney (1995), quantities of interest may be consistently estimated by 

sample path averages. Thus, given the MCMC output of size N, we can estimate the mixture size 

of service and re-service distribution, 1k  and 2k . We do only for 1k  and 2k  is the same. So, we 

estimate the marginal posterior distribution by 

( ) ( ){ }1 1 2 1

1
, , , # : (7)

n
P k k t x s s n k k

N
= ≈ =

% % % %
                                      

We can determine the number of phases of service distribution with this probability.  

     We can also perform inference for the predictive density of the service time distribution by 

( ) ( )

( )
( ) ( )( )

( )
1

2

1 1 1 1 1

1 1

1
, (8)

0,

n
kN

n n n

i i i

n i

B s s TN s
N

π µ σ
= =

≈
∞∑∑

%
                                

The estimation of mixture distribution parameters of re-service times, i.e. 

( )2
2 2 2 22
, , ,kθ π µ σ=

% % %%

, is the same as 
1
θ
%

.  

4. Estimation some performance measures via the BD-MCMC output 

Given a sample realization of the MCMC output and a sample from ( )f tλ
%

 and ( )f p x
%

 of 

equal size, we can estimate performance measures. For instance, given sample data, we would 

like to assess whether or not the model is stable. The system is stable if and only if the traffic 

intensity, ρ , is less than one, see e.g. Allen (1990), where for our queuing model 1 2pρ ρ ρ= + , 

see e.g. Salehi-Rad and Mengersen (2002). Thus, the estimation of the probability of having a 

stable system is 

( ) ( ){ }1 2

1
1 , , , # 1 (9)

n
P t x s s

N
ρ ρ< ≈ <

% % % %
 

where 
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( ) ( ) ( ) ( )
( )

( ) ( ) ( )
( )

1 2

1 1 2 2

1 1

(10)

n n
k k

n n n n n n n

i i i i

i i

pρ λ π µ π µ
= =

 
′ ′ = +

 
 
∑ ∑  

Note that 
( )

1

n

i
µ′  and 

( )
2

n

i
µ′  are the mean service and re-service time, respectively. With some 

algebraic computation they are given by 

( ) ( )
( )

( ) ( )

( ) ( )

( ) ( )
, 1, 2

n n

ji jin n n

ji ji ji n n

ji ji

j
φ µ σ

µ µ σ
µ σ

′ = + =
Φ

 

in which ( ) ( ) ( ) ( )( ){ }2

1 1 1 1
1

, , ,
N

n n n n

n

k π µ σ
=% %%

 , ( ) ( ) ( ) ( )( ){ }2

2 2 2 2
1

, , ,
N

n n n n

n

k π µ σ
=% %%

 are the samples of size N obtained 

from the BD-MCMC algorithm, also 
( ){ }

1

N
n

n
λ

=
 and 

( ){ }
1

N
n

n
p

=
 are the samples of size N generated 

from the posterior distribution of λ  and p, respectively. Furthermore, a consistent estimator of 

the traffic intensity is  

( ) ( )
1 2

1

1
, , ,

N
n

n

E t x s s
N

ρ ρ
=

≈ ∑
%% % %

 

where ( )nρ  is given in (10). Thus, by equilibrium assumption the estimation of the traffic 

intensity is 

( ) ( )

( )
1 2

: 1

1
, , , , 1 (11)

m

m

m

E t x s s
M ρ

ρ ρ ρ
<

< ≈ ∑
% % % %

 

where  
( ){ }# 1
m

M ρ= < . 

    Now, by considering stability and using the MCMC estimations of the system parameters, 

i.e. ( )1 2, , , pθ λ θ θ=
% % %

, 1 2 1, ,ρ ρ δ  and 2δ  can be estimated. Then we can estimate the mean system 

size, formula (2) and (3), mean busy period, formula (4), and the probability of idle period of the 

system, formula (5), as you see in below example. For this, in the next section, we describe an 

example for estimating these performance measures. 

5. Applied example 

In this section, we analyze the data which has been obtained from a hospital. Patients are 

skin patients who arrive with a Poisson process and stay in the MQ. At first, a doctor treats these 

patients in the MQ. Some of them after treating, with probability p, need to have a corrective 

surgery and should go to a waiting room (surgery room). Then, after treating all patients in the 

MQ; the doctor goes to the waiting room for surgery these patients. Interarrival, service (treat) 

and re-service (corrective surgery) times of 165 patients in which 20 of them need re-service 

(corrective surgery) have been recorded from 9:00 AM to 16:00 PM in the period of six days.  

The model for controlling the patients queue is the same model we introduced in section 2. 

In this queuing system, we have used the proposed BD-MCMC method for the service and re-

service data.  
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Figure 2, illustrates the changes in the value of 1
k   and 2k  against iterations. In fact, the 

posterior probabilities for different values of 1
k  are (approximately) ( )1 11 0.191,P k S= ≈

%
 

( )1 12 0.341,P k S= ≈
%

 ( )1 13 0.203,P k S= ≈
%

 ( )1 14 0.182,P k S= ≈
%

 ( )1 15 0.06,P k S= ≈
%

 with 

other values of 1
k  having posterior probabilities less than 0.03. Thus, although there is some 

uncertainty here, having two truncated Normal mixture components appears to have been spotted 

by the method. Also, the posterior probabilities for different values of 2k  are (approximately) 

( )2 21 0.421,P k S= ≈
%

 ( )2 22 0.356,P k S= ≈
%

 ( )2 23 0.145P k S= ≈
%

 with other values of 2k  

having posterior probabilities less than 0.04. Thus, for re-service distribution, having the single 

trancated Normal distribution appears to have been spotted by the method. 

Figure 3, in the left, shows the histogram of 165 service times and in the right shows the 

histogram of 43 re-service times which have obtained from the data and the predictive density of 

them obtained after a run of 10000 iterations. For estimating the general density functions of 

service and re-service times, we have used the mixture of truncated Normal distributions on 

interval ( ),0−∞  with the BD-MCMC algorithm by applying the formula (8).  

 

 

 
 

 
 

Fig. 2. Changes in
1

k against the 10000 iterations for the service time data (top) and the changes in 
2

k for re-

service time data (bottom).  
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Fig. 3. Histogram of service time data and estimated service time density (left) and histogram of re-service 

time data and estimated re-service time density (right). 

Given the observed data ( )1 2, , ,t x s s
%% % %

, we now estimate the probability of having a stable 

system, ( )
n

E X , ( )nE Y , [ ]E busy period  and *π  by using these estimations, see (9), (11), (2), 

(3), (4) and (5) respectively.  

Table 1 

 Estimations of probabilities that system is stable and, mean number of customers in the system, mean busy 

period and probability of idle period.   

 

     

   According to above table, the estimations of ( )1P dataρ < , ( )E dataρ , ( )
n

E X , 

( )nE Y , [ ]E busy period  and *π  have obtained for 
1

2k =  and 
2

1k = . Of course, we should say 

that for 2( 1, 2)
j

k j> = , the computations of  ( )
n

E X and ( )nE Y  are so complicated.  

6. Further work and conclusion 

      A Bayesian approach to statistical inference and prediction in the M/G/1 queuing system 

with optional second service under a special policy has been presented. We have developed a 

density estimation method based on mixtures of truncated Normal distributions as a general 

semi-parametric model for a non-negative continuous distribution in order to approximate the 

general distribution of service and re-service times. To make inference on the service and re-

service parameters, we have implemented an MCMC algorithm based on births and deaths of 

mixture components making use of the BD-MCMC technique proposed by Stephens (2000a). 

( 1P dataρ <

 

( )E dataρ  ( )
n

E X  ( )nE Y  [ ]E busy period

 

*π  

0.9541 0.3708 43.7853 46.2315 6.4678 0.1346 
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Some important measures of system, such as the mean system size, mean busy period and 

probability of idle period, has been predicted. We have illustrated this methodology with real 

data.  

We could consider this queuing model with a Bayesian approach under another discipline, 

see Salehi-Rad and Mengersen (2002) and Salehi-Rad et al. (2004), they considered this queuing model 

from view point classical queuing theory under three disciplines. Furthermore, as a referee pointed out, an 

interesting extension for our model could be dependence between the service and re-service times. Also, 

it could be considered the probability of re-service depends of specific factors. It is ongoing. 

Although, in this article, we have used a mixture of truncated Normal distributions to model 

service and re-service times, also, it could considered more standard mixtures based on Skewed 

truncated Normal distribution or Generalized Exponential distribution. Density estimation 

problems for skewed and multimodal contexts seem suitable for our approach. We could also 

consider classes of phase-type distributions; see Ausin et al. (2004).  There is another Bayesian 

approaches that we have not considered here, see Rios et al. (1998), Ausin et al. (2007b), they used 

a mixture of Erlang distributions for Bayesian approaches. For our queuing model, we can also 

use a mixture of Erlang distributions. But using a mixture of truncated Normal distributions has 

some advantages. For example, in our Bayesian approaches, almost, all posterior distributions 

can be obtained. Also, for some special cases maybe a mixture of truncated Normal distributions 

will be more suitable (fitter) than other models. 

APPENDIX: PROOF OF THEOREM 2.1 

To find ( )
n

E X  and ( )
n

E X , we can apply two methods. First method is using a direct 

method to obtain these means and another one is using the probability generating function. We apply 

the second. For this, we use the joint p.g.f. of  ( , )
n n

X Y   that is  

( )
( ) ( ) ( ) ( ) ( ) ( )

( ) ( )

* * *

1

0*

1

1 1 , , 1 0, ,
, (12)

1 1

p pv B u R v G u p u G p
P u v

p pv B u u

λ λ λ
π

λ •

 − + − − + −    =
− + − −  

 

in which  

( ) ( )( )* *

2, , 1 1 , (13)G u p p pB uλ λ= Ψ − + −    

( ) ( )1R v p pν= Ψ − +
 

( ) ( )( )*

1 1 , (14)u uB uλ Ψ = −Ψ   

and ( )*

1 .B  and ( )*

2 .B  are the LSTs of the distribution functions of the service and re-service 

times, respectively. 0π •  is the probability that MQ is empty and is equal to 

( ) ( )
1

2 *

0 1 2 1Pr 0 (1 ) (1 ) 0, , . (15)
n

X p G pπ ρ ρ ρ λ
−

•  = = = − + −   

     For more details, see Salehi-Rad and Mengersen (2002, page 1718). 
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      Based on formula (12) and according to ( ) ( )1 1 1R ψ= =  and some simple computations, the 

marginal p.g.f.’s of 
n

X and 
n

Y in steady state are 

( )
( ) ( ) ( ) ( )

( )

* * *

1

0*

1

1 1 , , 1 0, ,
(16)

1

B u G u p u G p
P u

B u u

λ λ λ
π

λ •

 − − + −    =
− −  

 

( )
( ) ( )

( ) 0

1 1

1

p pv R v
P v

p v
π •

− + −  =
−

 

respectively. 

Now, we only obtain ( )
n

E X   and for ( )
n

E Y  is the same. For finding ( )
n

E X  by the 

marginal p.g.f. of 
n

X , first, we derivative (16) with respect to u and set 1u = . We obtain the 

derivation of (16) by means of a sequence of three following lemmas.  

Lemma 1. If  ( ) ( ) ( )h x f x g x=  and there are the first and second derivations of nominator 

and dominator of ( )h x  in x a=  and ( ) ( ) 0
x a x a

f x g x
= =
= = , we have 

( )
( ) ( ) ( ) ( )

( )( )
2

2

x a x a x a x a

x a

x a

f x g x g x f x
h x

g x

= = = =

=

=

′′ ′ ′′ ′−
′ =

′
 

Lemma 2. According to the (13) and (14) formulas, we have 

( )( )* 2

1
1

) , , (17)
1u

pd
i G u p

du

ρ
λ

ρ=
=
−

 

( )( )
2 2 22

* 2 2 2 1 1
2 2 12 1

1 1 1

) , , 2 (18)
1 1 1u

pd p
ii G u p

du

ρ λ δ ρ
λ λ δ ρ ρ

ρ ρ ρ=

  +
= + + +  − − −  

 

Proof. By using (13) and (14), we have 

( ) ( )( ) ( )( )* * * *

2 1
, , 1 1 1 , ,G u p p pB u B G u pλ λ λ λ = − + − −      

now, the derivative of ( )*
, ,G u p λ  with respect to u in given by  

( )( ) ( )( ) ( )( )

( )( ) ( )( ) ( )( ) ( )
*

* * * *

2 1

1 , ,* *

2 1
0

, , 1 1 , ,

1 1 , ,
G u p s

d d
G u p p B u B G u p

du du

d
p pB u G u p se dB s

du

λ λ

λ λ λ λ

λ λ λ
∞ − −

 = − −    

+ − + −   ∫
  

by setting 1u =  and some simple computations, we have 

( )( ) ( )( )* *

2 1
, , , ,

d d
G u p p G u p

du du
λ ρ ρ λ= +  

by solving this equation, the relation (i) is yield. Also, for proving (ii), we obtain 
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( )( ) ( )( ) ( )( )

( )( ) ( )( ) ( )( ) ( )

( )( ) ( )( ) ( )( ) ( )

( )( ) ( )( ) ( )

*

*

*

2 2
* * * *

2 12 2

1 , ,* *

2 1
0

2
1 , ,* *

2 12 0

2
1 , ,* 2 2

1
0

, , 1 1 , ,

2 1 , ,

1 1 , ,

, ,

G u p s

G u p s

G u p s

d d
G u p p B u B G u p

du du

d d
p B u G u p se dB s

du du

d
p pB u G u p se dB s

du

d
G u p s e dB s

du

λ λ

λ λ

λ λ

λ λ λ λ

λ λ λ

λ λ λ

λ λ

∞ − −

∞ − −

∞ − −

 = − −    

+ −  


+ − + −   



 +  
  

∫

∫

∫

 

now, by setting 1u = , we have 

( )( ) ( )

( )( ) ( )

2
* 2 2 2

2 2 2 12

1

2
2

* 2 22

1 1 12

1

, , 2
1

, ,
1

pd
G u p p p

du

pd
G u p

du

ρ
λ λ δ ρ ρ ρ

ρ

ρ
ρ λ λ δ ρ

ρ

 
= + +  

− 

 
+ + + 

− 

 

by solving this equation, we can obtain (ii). 

Lemma 3. Under our queuing model conditions, we have 

( ) ( ) ( ) ( )( ) ( ) ( )1* * *

1
1

0

1
) 1 1 , , 1 0, , 19

u

d
i B u G u p u G p

du

ρ
λ λ λ

π=
•

−
 − − + − = −      

( ) ( ) ( ) ( )( )
( ) ( ) ( )

2
* * *

12 1

2

1 1 1 1 12 2 2

2 2 2

0 1 1

) 1 1 , , 1 0, ,

2 1 2
20

1 1

u

d
ii B u G u p u G p

du

p
p

λ λ λ

ρ ρ λ δ ρ ρ
λ δ ρ ρ

π ρ ρ

=

•

 − − + −    

  − + −
= − − + +  

− −   

 

( )( ) ( ) ( )*

1 1
1

) 1 1 21
u

d
iii B u u

du
λ ρ

=
− − = − −    

( )( ) ( )
2

* 2 2

1 1 12 1
) 1 22

u

d
iv B u u

du
λ λ δ ρ

=
− − = +    

       Proof. For (i) we have   

( ) ( ) ( ) ( )( )

( )( ) ( ) ( ) ( )

( ) ( )( ) ( )

* * *

1

* * *

1

* * *

1

1 1 , , 1 0, ,

1 1 , , 1 0, ,

1 , , 0, ,

d
B u G u p u G p

du

d
B u G u p u G p

du

d
B u G u p G p

du

λ λ λ

λ λ λ

λ λ λ

 − − + −    

 = − − + −    

 + − − −     

 

by setting  1u =  and using (17), we obtain 

( ) ( ) ( ) ( )( ) ( )* * * *2

1
1

1

1 1 , , 1 0, , 0, ,
1u

pd
B u G u p u G p G p

du

ρ
λ λ λ λ

ρ=

 
 − − + − = − +       − 

 

now, with some computations and using (15), we can obtain (i).  

Also, for proving (ii), from (i), we have 
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( ) ( ) ( ) ( )( )

( )( ) ( ) ( ) ( )

( )( ) ( )( ) ( )

( ) ( )( )

2
* * *

12

2
* * *

12

* * *

1

2
* *

1 2

1 1 , , 1 0, ,

1 1 , , 1 0, ,

2 1 , , 0, ,

1 , ,

d
B u G u p u G p

du

d
B u G u p u G p

du

d d
B u G u p G p

du du

d
B u G u p

du

λ λ λ

λ λ λ

λ λ λ

λ λ

 − − + −    

 = − − + −    

 + − − −     

 
+ − −    

 

 

 

by setting 1u = , and using equations in Lemma 2, our proof is completed. The proofs of (iii) and 

(iv) are similar. 

        Now, for obtaining ( )
n

E X  by marginal p.g.f. of 
n

X , note that, the numerator and 

denominator of the marginal p.g.f., for 1u = , are zero. So, we can use Lemma 1 to obtain 

( )
n

E X . For this, by using Lemma 2 and Lemma 3 we can easily obtain ( )
n

E X  and for ( )
n

E Y  

is the same. 
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