
HAL Id: hal-00743371
https://hal.science/hal-00743371v1

Submitted on 18 Oct 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Reaching optimally over the workspace: a machine
learning approach

Didier Marin, Olivier Sigaud

To cite this version:
Didier Marin, Olivier Sigaud. Reaching optimally over the workspace: a machine learning approach.
The Fourth IEEE RAS/EMBS International Conference on Biomedical Robotics and Biomechatronics,
Jun 2012, Roma, Italy. pp.1128-1133, �10.1109/BioRob.2012.6290743�. �hal-00743371�

https://hal.science/hal-00743371v1
https://hal.archives-ouvertes.fr

Reaching optimally over the workspace:

a machine learning approach

Didier Marin and Olivier Sigaud

Abstract—Recent theories of Human Motor Control explain
our outstanding coordination capabilities by calling upon
an Optimal Control (OC) framework. But OC methods are
generally too expensive to be applied on-line and in real-
time as would be required to perform everyday movements.
An alternative method consists in obtaining a pre-computed
feedback policy that performs optimally while being executed
reactively. One way to get such a pre-computed policy consists
in tuning a parametrized reactive controller so that it converges
to optimal behavior.

In this paper, we demonstrate a method to obtain such a
reactive controller that (i) adapts the time of movement based
on a compromise between the amount of reward and the effort
required to get it, (ii) provides an efficient trajectory from
any point to any point in the workspace, (iii) learns from
demonstrations of optimal trajectories, (iv) is improving its
performance over accumulated experience.

I. INTRODUCTION

Optimal Control (OC) is a useful framework for mod-

eling Human Motor Control (HMC) properties [20], [19],

[3]. Recently, [13] proposed a model of human reaching

movement based on the assumption that HMC is governed

by an optimal feedback policy computed at each visited state

given a cost function that involves a trade-off between mus-

cular effort and goal-related reward. However, OC methods

such as theirs are too expensive to be applied on-line and

in real-time as would be required for modeling everyday

movements.

Such motor control problems have attracted a lot of

attention in the Reinforcement Learning (RL) community

these last years (see [12] for an overview). While the RL

framework is similar to OC, its methods are designed to

improve a parametric feedback controller, called a policy, all

along the lifetime of the system through interactions with

its environment. Such methods also comes with the benefits

of adaptation and can be implemented by using incremental,

stochastic optimization methods. From the point of view of

RL, motor control problems are part of a broader class of

problems which involve continuous state and action spaces

and have been addressed in several ways.

A first approach stems from the adaptation of discrete RL

techniques to continuous state and action spaces. The core of

this approach has been based on Actor-Critic architectures,

Didier Marin (PhD candidate in Robotics) and Olivier Sigaud (Professor
in Computer Science) are with:
Université Pierre et Marie Curie
Institut des Systèmes Intelligents et de Robotique - CNRS UMR 7222
Pyramide Tour 55 - Boı̂te Courrier 173
4 Place Jussieu, 75252 Paris CEDEX 5, France
Contact: firstname.name@isir.upmc.fr

where an approximation of the expected performance of

the policy is updated in parallel with the policy itself.

Among these methods, Natural Actor-Critic (NAC) and its

episodic variant eNAC [11] have been successfully applied

to complex robotics problems [12]. However, these methods

have been shown to be very difficult to tune [5] and unstable

without adequate features.

Given these difficulties, the attention has shifted towards

direct Policy Search methods (e.g. [7], [8], [6], [1]), which

do not rely on an explicit representation of the expected

performance. Instead, they optimize the parameters of a

policy using a Stochastic Optimization approach, evaluating

the performance through Monte-Carlo sampling. Within

this category, probability-weighted averaging methods such

as the Cross-Entropy Methods (CEMs) [14], CMA-ES [4]

and PI2 [1] are particularly robust, because they do not

assume that the objective function is differentiable or even

continuous and optimize a population of solutions rather

than one (such as in gradient descent). CMA-ES can be seen

as a variant of the CEM where the updates are “smoothed”

over iterations (see [5] for a comparison with NAC). The

more recent PI2 algorithm is very similar to CEM, though

it derives from very different first principles [18]. However,

it generates an open-loop control rather than a closed-loop

one. One can optimize the location of the target state [17],

but then the capability to reach a previous target is forgotten.

All these methods are sensitive to local minima. There-

fore, the optimization process is generally preceded by a

learning from Demonstration (LfD) stage that initializes

the parametric controller close to a reasonably good local

optimum.

In this paper, we evaluate a machine learning approach to

get a reactive parametric controller that behaves like the OC

model proposed in [13], but performs 20000 times faster. In

Section II, we present the OC model of optimally reaching

for reward on which our approach is built. Then we present

our LfD and stochastic optimization methods. In Section IV,

we present the design of the experiments performed to

evaluate the properties of the obtained parametric controller.

In Section V, empirical results demonstrate the viability of

the approach. Finally, Section VI summarizes the results and

presents the perspectives of this work.

II. OPTIMALLY REACHING FOR REWARD

The model proposed in [13] is designed to explain how

the time of movement emerges from a compromise between

the increasing effort required to reach a reward faster and

the decreasing subjective value of getting this reward later

in time. If we consider that the motor system is optimizing

the sum of rewards over time minus the cost incurred for

reaching them, then a time at which this sum is optimal for

a given reward emerges, as illustrated in Fig. 1.

Fig. 1. Optimal movement time. The subjective utility of getting the reward
decreases over time (green line). Reaching cannot be performed under a
certain time (dashed area) and is less and less costly in terms of efforts as
the movement is performed more slowly (red line). However the subjective
reward for reaching the goal decreases with time as we are less interested
in gains that will occur in a distant future than at the present time. The
benefit versus cost criterion, resulting from the sum of the subjective reward
and the (negative) cost reaches a maximum for a certain time. When the
criterion is negative (outside useful interval), the subject should not move.

The cost function J(u) proposed for a control u in [13]

is

J(u) =

∫ ∞

0

e−t/α[ρR(xt)− νL(ut)]dt (1)

where ρ is the weight of the reward term and ν the

weight of the effort term. R(xt) is the immediate reward

function that equals 1 at the target state and is null every-

where else. L(ut) is the movement cost function, we take

L(ut) = ‖ut‖
2 as in many HMC models. The continuous-

time discount factor α account for the “greediness” of the

controller.

The corresponding near optimal deterministic policy is

obtained through a computationally expensive variation cal-

culus method. The feedback controller, resulting from the

coupling of this policy with an optimal state estimator, drives

the plant towards the rewarded state. Given that the policy

does not take the presence of noise in the model into ac-

count, the actions must be computed again at each time step

depending on the new state reached by the plant. Overall,

generating a trajectory with this method is extremely costly.

Hereafter, this controller is called Near-Optimal Planning

System (NOPS). Indeed, the trajectories are not optimal

in the strict sense, given the presence of non-modeled

noise. A crucial feature of this model is that the generated

movements do not depend on time, as opposed to state-

of-the-art OC algorithms such as iLQG [21]. This results in

the possibility to learn stationary policies from the model. In

our framework, such policies are learned from demonstration

with XCSF.

III. MACHINE LEARNING METHODS

A. Learning from Demonstration with XCSF

Learning Classifier Systems (LCSs) is a Machine Learning

family of rule-based systems [15]. The XCS [22] is an

efficient accuracy-based LCS designed to solve classification

problems and sequential decision problems. XCSF [23] is an

evolution of XCS towards function approximation.

As any LCS, XCSF manages a population of rules, called

classifiers. These classifiers contain a condition part and a

prediction part. In XCSF, the condition part defines the re-

gion of validity of a local model whereas the prediction part

contains the local model itself. XCSF is a generic framework

that can use different kinds of prediction models (linear,

quadratic, etc.) and can pave the input space with different

families of regions (Gaussian, hyper-rectangular, etc.). In the

context of this paper, we only consider the case of linear

prediction models and Gaussian regions.

A classifier defines a domain φi(z) and uses a corre-

sponding linear model βi to predict a local output vector yi

relative to an input vector xi. The linear model is updated

using the Recursive Least Squares (RLS) algorithm, the

incremental version of the Least Squares method.

The classifiers in XCSF form a population P that clusters

the condition space into a set of overlapping prediction

models. XCSF uses only a subset of the classifiers to generate

an approximation. Indeed, at each iteration, XCSF generates

a match set M that contains all reliable classifiers in the

population P whose condition space Z matches the input

data z i.e., for which φi(z) is above a threshold φ0.

In XCSF, the output ŷ is given for a (x, z) pair as the sum

of the linear models of each matching classifier i weighted

by its fitness Fi

ŷ (x, z) =
1

F (z)

nM
∑

i=1

Fi (z) ŷi (x) (2)

where F (z) =

nM
∑

i=1

Fi (z) and nM is the number of

classifiers in the match set M . In all other respects, the

mechanisms that drive the evolution of P are directly

inherited from XCS. In sum, XCSF is designed to evolve

maximally accurate approximations of the learned function.

A more complete description of XCSF can be found in [2].

In our architecture, XCSF is used to learn a policy from

demonstration. More precisely, a set of near-optimal state-

action trajectories generated by the NOPS provides super-

vised learning samples, using the state of the plant as the

condition and prediction space input and the action as the

output on which regression is performed. By feeding XCSF

with such samples, we generate an action for any state

within the range of the population of classifiers. Using a

default action adefault for states that are not covered by

the population (that is for which XCSF does not predict

anything), we get a mapping from states to actions i.e.,

a deterministic policy π : S → A. We call it the “XCSF

policy” and note it πθ0
. In a second step, it is improved by

a direct policy search method called Cross-Entropy Policy

Search (CEPS).

B. Improving the parametric controller with CEPS

The XCSF policy πθ0 is parametric since each classifier

has parameters in its condition and prediction parts. To opti-

mize a parametric policy πθ with respect to its performance

J(θ), we developed a direct Policy Search method based on

the CEM.

Fig. 2. Schematic view of the Cross-Entropy method.

The general CEM is given in Alg. 1 and illustrated in

Fig. 2. For computational complexity reasons, our imple-

mentation of CEM only updates the diagonal of the covari-

ance matrix. A CEM can be applied straightforwardly to

optimization of policy parameters θ, which results in the

CEPS method, described in Alg. 2. πθ0
is adapted using CEPS

where J is the cost over trajectories (see 1). Each resulting

policy πθ corresponds to a dot (i.e. a CEPS sample) in Fig. 2.

In practice, θ only contains the weights of each local model

βi.

Algorithm 1 CEM iter

Require: {(θ(i), J(i))}i=0···N : set of N solution-value pairs

ρ: proportion of the best solutions to use for the update

σ2
n: additional noise term

Sort the θ(i) according to J(i)
Compute the set Sρ of the max(1, N × ρ) best solutions

µ← mean(Sρ)
σ2 ← std.dev(Sρ) + σ2

n

return mean µ and std.dev. σ2

IV. EXPERIMENTAL DESIGN

We now illustrate the use of XCSF and CEPS for learning

to control an arm to reach diverse targets with its end-

effector. The plant is a simulated two degrees-of-freedom

planar arm controlled by 6 muscles. The equations of the

model and the specification of the control problem are given

in [9].

A. Arm model set-up

We choose a point P that correspond to q = [0.5, 0.59],
located in the upper-right part of the reachable space (see

Fig. 3), which is used through all experiments either as

starting point or target. Note that we display the plant

Algorithm 2 Cross-Entropy Policy Search (CEPS)

Require: {s∗(j)}j=1···M : set of target states

(µ0,σ
2
0): initial mean and std.dev of the θ distribution

ρ: proportion of the best samples to use for the update

σ2
n: additional noise term

N : number of sample policies to draw

K: number of iterations

for k = 1 · · ·K do

for i = 1 · · ·N do

Draw a sample θ(i) ∼ N (µk,σ
2
k)

for j = 1 · · ·M do

Perform an episode τj for target s∗(j) following

πθ(i)

end for

Compute the global performance of πθ(i)
:

J(i) = 1
M

∑M
j=1

∑|τj |−1
t=0 γtrj,t where rj,t is the

reward at time t for the episode τj
end for

Perform a CEM iteration (Alg.1):

µk+1,σ
2
k+1 = CEM iter({(θ(i), J(i))}i=0···N , ρ, σ2

n)
end for

return optimized θ = µK+1

Fig. 3. The arm workspace. The reachable space is delimited by a spiral-
shaped envelope. The two segments of the arm are represented by two
bold green lines. Point P is represented as a star, S points as green dots,
L points as red crosses and T as blue circles.

in the operational space (x, y) although our state space

representation does only include articular coordinates.

Reaching is successful when the Euclidean distance from

the end-effector to the target, i.e.
√

(x∗ − x)2 + (y∗ − y)2,

is below 0.01m and the absolute end-effector speed, i.e.
√

ẋ2 + ẏ2, is below 0.1m.s−1. These thresholds are large

enough for allowing some exploration without the risk of

“losing track” of the target, which may occur in the learning

context. For NOPS, such thresholds are not necessary since

it is capable of arbitrary precision. The cost function is

parametrized such that the continuous-time formulation used

by NOPS (see (1)) is equivalent to the discrete-time formu-

lation used by CEPS, i.e., J(u) =
∑

t γ
t[ζR(xt)−κL(ut)].

The continuous-time parameters are set to α = 1, ρ = 200

and ν = 40, which discrete-time counterparts are γ =
αe−∆t, ζ = ν∆t and κ = ργ, where ∆t is the time step of

the simulation.

B. Experiments

We perform three experiments. For the first two, we create

two sets of articular positions, a small set S and a large

set L. S contains 50 targets drawn according to a normal

distribution centered on x = −0.059 and y = 0.44 and with

standard deviation 0.12. L set contains 94 targets from a

10× 10 grid over the articular space (NOPS diverged for 6
of them, which were excluded). For the last experiment we

create a set T of 7 positions located near the center of S .

1) Learning a controller to many targets with XCSF:

In the first experiment, the arm always starts from P and

target positions are picked from S and L. First, the NOPS is

used to generate one trajectory for each target in S . Then,

XCSF learns from the trajectories generated by the NOPS for

targets in S , and is tested as a policy on both S and T as

sets of targets. The condition and prediction space contain

states s as defined in Section IV-A. The performance and

the trajectories obtained with πθ0
are compared to those

generated by the NOPS, to see how good πθ0
generalizes to

other targets.

2) Learning a controller from many start states with

XCSF: In the second experiment, the start and target posi-

tions are reversed: the arm starts from positions in S and L
and P is used as a common target. The rest of the protocol is

similar to the first experiment: the NOPS is used to generate

trajectories from points of S to P and XCSF then learns πθ0

from these trajectories. πθ0 is tested using points in both S
and L as start positions. The rest is as above.

3) Effect of goal reward on movement time: In order to

study the effect of the reward on the movement time, we

design a new controller where the weight of the reward

term ν is given as a new dimension of the input space.

In other words, the controller knows from the start how

interesting the current target is and this interest is varied.

We first train the controller from P to targets in T with 6

different values of ν, ranging from 1 to 100, using the same

LfD methodology as in Section IV-B1. Then we focus on

the central target among T (see Fig. 3) and train again the

controller for more ν values using CEPS. Once this controller

is trained, we measure its movement time for each ν value

and compare it to the time obtained with the NOPS.

C. Experimental set-up and Parameters

We use the JavaXCSF [16] implementation of XCSF, and

all algorithms are implemented in Java. Computation times

are measured on an Intel Core 2 Duo E8400 @ 3 GHz

with 4 GB RAM. XCSF is tuned as follows. The number

of iterations is set to 1, 000, 000 and the maximum size of

the population to 500. The input are normalized: the target

and current positions are bounded by the reachable space

and the speed is bounded by [−100,+100] rad.s−1. The

default action adefault is set to a vector of zeros i.e., no

muscular activation. After tuning empirically the parameters,

TABLE I
MEAN AND STANDARD DEVIATION OF THE PERFORMANCE OVER

TARGETS IN EXPERIMENT 1. FOR XCSF AND CEPS, THE

PERFORMANCE OF THE SET USED FOR LEARNING ARE IN BOLD.

start / target P/S P/L
NOPS 28.22± 2.06 27.46± 3.73
XCSF 27.45± 2.35 2.44± 46.03
CEPS 22.96± 11.50 12.76± 22.28

TABLE II
MEAN AND STANDARD DEVIATION OF THE PERFORMANCE OVER START

POSITIONS IN EXPERIMENT 2. FOR XCSF AND CEPS, THE

PERFORMANCE OF THE SET USED FOR LEARNING ARE IN BOLD.

start / target S/P L/P
NOPS 27.68± 2.16 26.37± 5.11
XCSF 27.51± 2.67 3.99± 28.84
CEPS 18.98± 11.84 16.39± 16.36

the learning rate α (named beta in JavaXCSF) is set to

1.0, and compaction is disabled. For both CEPS variants,

the number of iterations K is such that the method runs up

to a time limit of 2 hours. Each iteration consists of the

evaluation of N = 100 policies. The proportion of selected

episodes ρ is set to 0.8, i.e., the N × ρ = 80 best policies

are used for the update. The initial variance σ2 is set to 0.1
and the additional noise σ2

n = 10−3.

V. RESULTS

In this section, we first study whether the policy learned

with XCSF is similar to the one obtained with the NOPS for

the same targets, how well XCSF generalizes over different

targets and starting points, and whether CEPS is able to

improve the performance of the learned policy. Then we

evaluate the ability of XCSF and CEPS to reproduce the

characteristic movement time depending on the value of the

goal reward-related parameter ν.

A. Performance of XCSF policy

The average running time to get one trajectory from the

NOPS is ∼ 10 minutes. From πθ0
, it is ∼ 30 milliseconds.

1) Single start position to multiple targets: Fig. 4(a)

shows the performance of the NOPS using P as the start

position and as a function of the target position, obtained

by interpolating the performance of the NOPS trajectories

for target positions in L. Fig. 4(b) shows the performance

of one representative πθ0 , which is very close to the NOPS

performance for targets located near the learning set S . One

can see that the relative performance decreases with the

distance to the learning set.

Fig. 4(c) shows the performance of πθ after applying

CEPS to optimize its parameters. One can see that the

performance is globally improved over the whole reachable

space. In particular, the region around (x = −0.3, y = 0),
where the performance of πθ0

was very poor, is improved a

lot. The results in Table I confirm quantitatively this visual

feeling.

Fig. 4. The first column represents the absolute performance for fixed start position P and given the target position when using (a) the NOPS and (b)
πθ0

, and (c) relative performance of πθ optimized by CEPS, with respect to πθ0
. The second column correspond to the second experiment, where the

target position is always P and the performance is a function of the start position. These plot are obtained by interpolating the performances for a large
grid of target (first line) or start (second line) positions. The set S is represented by white circles, and P by a star. Performance is computed according
to (1).

2) Multiple start positions to single target: Fig. 4(d)

shows the performance of the NOPS using P as the target

position and as a function of the start position, obtained

by interpolating the performance of the NOPS trajectories

for start positions in L. Fig. 4(e) shows the performance

of one representative πθ0
, which is very close to the NOPS

performance when the trajectory starts close to the learning

set S . One can see that the generalization performance is

much more regular in this experiment than in the previous

(Fig. 4(b)). Fig. 4(f) shows the performance of πθ after

optimization of θ by CEPS. Once again, the performance

is globally improved over the whole reachable space. The

bottom-left and bottom-right regions, which were the worst

regions in Fig. 4(e), are improved significantly. From this

visual feeling and the results in Table II, it seems fairly

easier to learn how to reach a single target from multiple

start positions.

B. Effect of reward on time

Fig. 5 shows the movement time as a function of the goal-

related parameter ν, following the experimental procedure

described in Section IV-B3. XCSF is trained using NOPS

trajectories for each point of T as the target and for ν being

either 1,20,40,60,80 or 100. It is then tested for the central

point of T with intermediate ν values 1, 10, 20, · · · , 90, 100.

One can see that πθ0
qualitatively reproduces the general

Fig. 5. Movement time as a function of the goal reward ν for the central
target of T for the NOPS (green line) and for an πθ0

(red dots and
blue crosses). The red dots represents the ν values used for learning by
demonstration and the blue crosses the additional values used to evaluate
generalization.

results obtained with the NOPS. Furthermore, πθ0
is able to

generalize well for other values of ν, as demonstrated by

the good interpolation of movement times for intermediate

values. However, further improvement with CEPS did not

seem to bring the movement time closer to those of the

NOPS. Further experiments will be necessary to investigate

this problem.

VI. CONCLUSION

In this paper, we have proposed a method to learn and

optimize a parametric controller that can store and generate

in real-time near-optimal trajectories to a set of targets and

reward values in the workspace of the system. As opposed to

OC methods, our method does not need constant replanning,

which makes our controller about 20000 times faster than

the method presented in [13]. Moreover, the controller

representation based on XCSF gives good generalization

capabilities which makes the learning process easier. We

have shown that using a stochastic optimization algorithm

could improve the policy over the accumulated experience of

the agent, particularly in the areas where the performance

resulting from LfD is far from optimal. Our CEPS algo-

rithm benefits from the robustness of probability-weighted

averaging methods and can adapt the controller to changes

in the environment, such as the presence of a force field.

From a neurosciences perspective, our parametric controller

approach might be seen as a computational model of how

the Central Nervous System might store the capability to

reach optimally and in real-time from any state and to any

target.

However, from our empirical results, one can see that

the obtained performance after a limited stochastic opti-

mization period is still not close enough to that of the

OC method. In particular, generalization and performance

improvement are still limited with respect to the reward

value. To overcome these limitations, we may consider a life-

long learning approach, where the system is optimizing its

controller parameters throughout his life-time, yielding the

slow convergence to a better optimum. Another possibility

consists in using more sophisticated alternatives to the CEM

on which CEPS is based, such as CMA-ES or PI2.

Finally, we cannot perform further LfD after optimiz-

ing the policy using CEPS. We intend to include in our

framework some active learning capabilities that would

allow the system to choose the trajectories from which its

policy improvement would be the greatest, but also to chose

between LfD and CEPS based on its current performance and

on the computational cost of both learning methods.

We envision applying our approach to an assistance robot.

We are designing a robot that will help motor-impaired

patients to transfer from a seated position to a standing

position using a bio-mechanical criterion based on efforts

and stability. With the methods presented here, we will adapt

in real-time the controller of the robot on-line to specific

patients [10]. On the long term, we would like to apply these

techniques to the whole body control of humanoid robots

like iCub, so that they perform more human-like movements.

ACKNOWLEDGMENTS

This work was supported by the Ambient Assisted Living

Joint Programme of the European Union and the National

Innovation Office (DOMEO-AAL-2008-1-159), more at

http://www.aal-domeo.eu.

REFERENCES

[1] J. Buchli, F. Stulp, E. Theodorou, and S. Schaal. Learning variable
impedance control. The International Journal of Robotics Research,
30(7):820, 2011.

[2] M. V. Butz and O. Herbort. Context-dependent predictions and
cognitive arm control with XCSF. In Proceedings of the 10th annual

conference on Genetic and evolutionary computation, pages 1357–
1364. ACM New York, NY, USA, 2008.

[3] E. Guigon, P. Baraduc, and M. Desmurget. Optimality, stochasticity
and variability in motor behavior. Journal of Computational Neuro-

science, 24(1):57–68, 2008.
[4] N. Hansen, S. Muller, and P. Koumoutsakos. Reducing the time

complexity of the derandomized evolution strategy with covariance
matrix adaptation (CMA-ES). Evolutionary Computation, 11(1):1–18,
2003.

[5] V. Heidrich-Meisner and C. Igel. Similarities and differences between
policy gradient methods and evolution strategies. In Proceedings of

the 16th ESANN, 2008.
[6] S. Ivaldi, M. Fumagalli, F. Nori, M. Baglietto, G. Metta, and

G. Sandini. Approximate optimal control for reaching and trajectory
planning in a humanoid robot. In Intelligent Robots and Systems

(IROS), 2010 IEEE/RSJ International Conference on, pages 1290–
1296. IEEE, 2010.

[7] J. Kober and J. Peters. Policy search for motor primitives in robotics.
NIPS, pages 1–8, 2008.

[8] P. Kormushev, S. Calinon, and D. G. Caldwell. Robot Motor Skill
Coordination with EM-based Reinforcement Learning. In Proc. IROS,
2010.

[9] D. Marin, J. Decock, L. Rigoux, and O. Sigaud. Learning cost-
efficient control policies with xcsf: generalization capabilities and
further improvement. In Proceedings of the 13th annual Conference

on Genetic and Evolutionary Computation, pages 1235–1242. ACM,
2011.

[10] V. Pasqui, L. Saint-Bauzel, and O. Sigaud. Characterization of a least
effort user-centered trajectory for sit-to-stand assistance user-centered
trajectory for sit-to-stand assistance. In Proceedings IUTAM. IUTAM,
june 2010.

[11] J. Peters and S. Schaal. Natural actor-critic. Neurocomputing, Nov.,
2007.

[12] J. Peters and S. Schaal. Reinforcement learning of motor skills
with policy gradients. Neural networks : the official journal of the

International Neural Network Society, 21(4):682–97, 2008.
[13] L. Rigoux, O. Sigaud, A. Terekhov, and E. Guigon. Movement

duration as an emergent property of reward directed motor control.
In Proceedings of the Annual Symposium Advances in Computational

Motor Control, 2010.
[14] R. Y. Rubinstein. Optimization of computer simulation models with

rare events. European Journal of Operational Research, 99(1):89–
112, 1997.

[15] O. Sigaud and S. Wilson. Learning classifier systems: a survey. Soft

Computing-A Fusion of Foundations, Methodologies and Applica-

tions, 11(11):1065–1078, 2007.
[16] P. O. Stalph and M. V. Butz. Documentation of JavaXCSF. Technical

report, COBOSLAB, 2009.
[17] F. Stulp and S. Schaal. Hierarchical reinforcement learning with

movement primitives. In IEEE-RAS International Conference on

Humanoid Robots, pages 231–238. IEEE, 2011.
[18] E. Theodorou, J. Buchli, and S. Schaal. Reinforcement learning

of motor skills in high dimensions: a path integral approach. In
International Conference on Robotics and Automation, pages 2397–
2403. IEEE, 2010.

[19] E. Todorov. Optimality principles in sensorimotor control. Nature

Neurosciences, 7(9):907–915, 2004.
[20] E. Todorov and M. I. Jordan. Optimal feedback control as a theory of

motor coordination. Nature Neurosciences, 5(11):1226–1235, 2002.
[21] E. Todorov and W. Li. A generalized iterative LQG method for

locally-optimal feedback control of constrained nonlinear stochastic
systems. In Proceedings of the American Control Conference, pages
300–306, 2005.

[22] S. W. Wilson. Classifier Fitness Based on Accuracy. Evolutionary

Computation, 3(2):149–175, 1995.
[23] S. W. Wilson. Function approximation with a classifier system.

In Proceedings of the Genetic and Evolutionary Computation Con-

ference (GECCO-2001), pages 974–981, San Francisco, California,
USA, 2001. Morgan Kaufmann.

