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Abstract

We introduce a new class of Backward Stochastic Differential Equations in which
the T-terminal value Y7 of the solution (Y, Z) is not fixed as a random variable, but
only satisfies a weak constraint of the form E[U(Y7)] > m, for some (possibly ran-
dom) non-decreasing map ¥ and some threshold m. We name them BSDFEs with weak
terminal condition and obtain a representation of the minimal time t-values Y; such
that (Y, Z) is a supersolution of the BSDE with weak terminal condition. It provides
a non-Markovian BSDE formulation of the PDE characterization obtained for Marko-
vian stochastic target problems under controlled loss in Bouchard, Elie and Touzi [3].
We then study the main properties of this minimal value. In particular, we analyze
its continuity and convexity with respect to the m-parameter appearing in the weak
terminal condition, and show how it can be related to a dual optimal control problem in
Meyer form. These last properties generalize to a non Markovian framework previous
results on quantile hedging and hedging under loss constraints obtained in Féllmer and
Leukert [10, 11], and in Bouchard, Elie and Touzi [3]. Finally, we observe a surprisingly
strong connection between BSDEs with weak terminal condition and 2nd order BSDEs
in the quasi linear case.

Key words: Backward stochastic differential equations, optimal control, stochastic target.

MSC Classification (2000): Primary: 60H10; 93E20; Secondary: 491.20; 91G80

*and CREST, bouchard@ceremade.dauphine.fr
felie@ceremade.dauphine.fr
tanthony.reveillac@ceremade.dauphine.fr



1 Introduction

Solving a backward stochastic differential equation (hereafter BSDE), with terminal data
¢ € Lo(Fr) and driver g, consists in finding a pair of predictable processes (Y, Z), with
certain integrability properties, such that the dynamics of Y satisfies dY; = —g(¢,Y;, Zy)dt+
ZydWy and Yr = £ (where W denotes a standard Brownian motion). It can be rephrased in:
find an initial data Yy and a control process Z such that the solution YZ of the controlled

stochastic differential equation
t t
YtZ:YO—/ g(s,Y;Z,Zs)der/ ZgdWs,  0<t<T, (1.1)
0 0

satisfies YTZ = £. In cases where the previous problem does not admit a solution, a weaker
formulation is to find an initial data Y{; and a control Z such that

Y >¢ P—as. (1.2)

In most applications, one is interested in the minimal initial condition Yy and in the as-
sociated control Z. This is for instance the case in the financial literature in which Yj
represents the cost of the cheapest super-replication strategy for the contingent claim &,
and Z provides the associated hedging strategy, see e.g. [9].

Motivated by situations where this minimal value Y} is too large for practical applications,
it was suggested to relax the strong constraint (1.2) into a weaker one of the form

E[(Yf-8]>m, (1.3)

where m is a given threshold and ¢ is a non-decreasing map. For £(z) = 1,50y, this
corresponds to matching the criteria YTZ > £ at least with probability m. In financial
terms, this is the so-called quantile hedging problem, see Follmer and Leukert [10]. More
generally, ¢ is viewed as a loss function, one typical example being ¢(x) := —(x~ )¢ with
g > 1, see Follmer and Leukert [11] for general non-Markovian but linear dynamics. Such
problems were coined “stochastic target problems with controlled loss” by Bouchard, Elie
and Touzi [3] who consider a non-linear Markovian formulation in a Brownian diffusion
setting, see also Moreau [12] for the jump diffusions setting,.

The aim of this paper is to study the non-linear non-Markovian setting in which the

terminal constraint is of the form
E[¥(Y7)] = m. (1.4)

In the above, m € R and V¥ is a (possibly random) non-decreasing real-valued map. Our
problem can then be written as

Find the minimal Y such that (1.1) and (1.4) hold for some Z. (1.5)

This leads to the introduction of a new class of BSDEs which we call BSDEs with weak
terminal condition. More precisely, we refer to this problem by saying that we want to solve
the BSDE with driver g and weak terminal condition (¥, m) to insist on the fact that the



terminal condition YTZ is not fixed as a random variable, but only has to satisfy the weak
constraint (1.4).

The first step in our analysis lies in a reformulation based on the martingale representation
theorem, as suggested in [3]. More precisely, if Yy and Z are such that (1.4) holds, then the
martingale representation Theorem implies that we can find an element « in the set Ay, of
predictable square integrable processes, such that

T
W(YF) > M :=m +/0 s dW.

On the other hand, since ¥ is non-decreasing, one can introduce its right inverse ¢ and
note that the solution (Y%, Z%) of the BSDE

T

T
Y = &(M) +/ g(s, Y2, Z%)ds —/ Z0dW,, 0<t< T, (1.6)
t

t

actually solves (1.1) and (1.4). We indeed show that the solution of (1.5) is given by
inf{Yy", o € Ag}. (1.7)
This leads to study its dynamical counterpart
VO i=essinf{V*, o’ € Agst. o/ =aon[0,7]}, 0<7<T. (1.8)

We verify that the family {)%, « € Ay} satisfies a dynamic programming principle which
can be seen as a counterpart of the geometric dynamic programming principle of Soner and
Touzi [20] used in [3]. In particular, this implies that {}%, a € Ay} is a g-submartingale
family to which we can apply the non-linear Doob-Meyer decomposition of [16]. This pro-
vides a representation of the family {V*, «a € Ap} in terms of minimal supersolutions
to a family of BSDEs with driver g and (strong) terminal conditions {®(M%), o € Ap}.
This representation allows in particular to characterize the family {V“, a € Ay} uniquely.
Under additional convexity assumptions on the coefficients g and ®, we observe that the
essential infimum in (1.8) is attained. Hence, there exists an optimal & € Ag such that
solving the BSDE with weak terminal condition (¥,m) boils down to solving the BSDE
with dynamics (1.6) and strong terminal condition ®(M¢). In a Markovian framework, our
approach provides in particular a BSDE formulation for the PDEs derived in [3].

We then study in details important properties of this family and focus in particular on
the regularity of Y with respect to the threshold parameter m. We exhibit, under weak
conditions, a stability property of the solution with respect to the variations of the param-
eter m. We also observe that Y is convex with respect to the threshold parameter. This
observation allows us in particular to conclude that ® (whenever it is deterministic) can
be replaced by its more regular convex envelope in order to compute Y* on [0,7"). This
was already observed in the restrictive Markovian setting of [3], in which it is proved by
using PDE technics. We provide here a pure probabilistic argument. Similarly, it was also
observed in [10], [11] and [3] that (1.5) admits a dual linear problem when g is linear. We
extend this result via probabilistic arguments to the semi-linear setting, for which the dual



formulation takes the form of a stochastic control problem in Meyer form.

The rest of the paper is organized as follows. In Section 2, we provide a precise formu-
lation for (1.5) and relate this problem to a g-submartingale family satisfying a dynamic
programming principle. Attainability of the optimal control & € Ay is also discussed. Sec-
tion 3 collects the continuity and convexity properties as well as the dual formulation of
the problem. The connection with PDEs in a Markovian framework is given in Section 4.
Finally, Section 5 contains the proof of the BSDE representation for {J%, o € Ap}.

We close this introduction with a series of notations that will be used all over this paper.
Let d > 1 and T' > 0 be fixed. We denote by W := (Wy)cjo,7] @ d-dimensional Brownian
motion defined on a probability space (2, F,P) with P-augmented natural filtration F =
(Ft)iefo,r)- The components of W will be denoted by W = (W1, .. , W) and E will stand
for the expectation with respect to P. For simplicity, we assume that F = Fp. Throughout
the paper we will make use of the following spaces.

- Lp(U, G) denotes the set of p-integrable G-measurable random variables with values
in U, p>0, U a Borel set of R” for some n > 1 and G C F. When U and G can be
clearly identified by the context, we omit them. This will be in particular the case

when G = F.

- T denotes the set of F-stopping times in [0, T]. For 71 € T, T, is the set of stopping
times 75 in 7 such that 79 > 71 P — a.s. The notation E[-] stands for the conditional

expectation given F,, 7 € T.

- S, denotes the set of R-valued, cadlag® and F-adapted stochastic processes X =
(Xt)te[o,T] such that [|X|[s, = E[Supte[QT} ’Xt‘Q]l/Q < 0.

- Hs denotes the set of R™-valued, F-predictable stochastic processes X = (Xt)te[o,T]

1/2
such that | X||g, := F {fOT |Xt|2dt} < 00. In the following, the dimension n will
be given by the context.

- K5 denotes the set of non-decreasing R-valued and F-adapted stochastic processes
X = (Xi)iejo,r) such that || X|[s, < oc.

Inequalities between random variables are understood in the P — a.s.-sense.

2 BSDE with weak terminal condition

2.1 Definitions and problem reformulation

We first define the main object of this paper.

Definition 2.1 (Solution to a BSDE with weak terminal condition). Given a measurable
map ¥ : Rx Q w— U, with U C RU{—o0}, 7 € T and p € Lo(U,F;), we say that

!yight-continuous with left limits



(Y,Z) € Sy x Hy is a supersolution of the BSDE with generator g : @ x [0,T] x R xR — R
and weak terminal condition (¥, u,7), in short BSDE(g, ¥, u, 1), if

T T

Y >Yr —i—/ q(s,Ys, Zs) — / ZsdWs, te[0,T], and (2.1)
t t

B, [W(¥p)] > (22)

Before discussing the well-posedness of Equation (2.1)-(2.2), let us emphasize that the

difference with classical BSDEs lies in the fact that we do not prescribe a terminal condition

to Y in the classical P — a.s.-sense but only impose a weak condition in expectation form

(which justifies the terminology of BSDE with weak terminal condition). Even if we were

asking for equalities in (2.1)-(2.2), this would obviously be too weak to expect uniqueness,

as any random variable ¢ satisfying E. [V(£)] = u could serve as a terminal condition.
However, when W is non-decreasing, the set

D(r,p) :={Y;: (Y, Z) € Sy x Hy is a supersolution of BSDE(g, ¥, u, 7)} , (2.3)

defined for any 7 € T and p € Lo(U, F;), can be characterized by its lower-bound, when-
ever it is achieved.

Throughout the paper, we shall restrict to the case where g is Lipschitz continuous with
linear growth, ' is bounded, and the domain of ¥ is bounded from below, in order to
avoid un-necessary technicalities.

Standing Assumption (Hg): For P —a.e. w € Q, the map y € R — ¥(w,y) is non-
decreasing and valued in [0, 1] U {—o0}, its right-inverse ®(w,-) is such that ® : Q x [0, 1] —
[0, 1] is measurable.

The above assumption means that ¥(w, ) € [0,1] on [0, 00) and ¥(w, -) = —oo on (—o0, 0).
In particular, the constraint in expectation (2.2) implies Y7 > 0 P — a.s. Obviously the set
[0, 1] is chosen for ease of notations and can be replaced by any closed interval. By right-
inverse we mean ®(z) := inf{y € R, ¥(y) > z}. Immediate computations show that

do W <Id. (2.4)

Standing Assumption (H,) g is a measurable map from § x [0,7] x R x R? to R and
g(-,y,2) is F-predictable, for each (y,z) € R x R%. There exists a constant K, >0 and a
random variable x4, € Lo(R), such that

|g(t70,0)| < Xg P — a.s.
l9(t, y1,21) — g(t,y2, 22)| < Ky(lyr — ya| + |21 — 22|) P —aus.
V(t,yi,2z) € [0,T] x R x R%, i =1,2.

Let A, denote the set elements o € Hy such that

TV-
M — +/ asdWy takes values in [0, 1]. (2.5)
T



Then, (2.2) is equivalent to ¥(Y7) > M:(FT’“)’a for some a € A, . In view of (2.4), this
is equivalent to Y > CID(M}T’“ )’O‘) for some o € A7 ;. This implies that supersolutions of
BSDE(g, ¥, u, 7) can be characterized in terms of g-expectations whose definition is recalled
below.

Definition 2.2 (g-expectation). Given 15 € T and £ € Lo(R, F7,), let (Y,Z) € Sy x Hy
denote the solution of

T2 T2
Y:§+/ 9(87}{97Z8)_/ stws-

AT AT

Then, we define the (conditional) g-expectation of & at the stopping time 71 < 7o as
&L €] =Y. When 7o =T, we only write E2 €], and say that (Y, Z) solves BSDE(g, ).

Note that existence and uniqueness hold under Assumption (Hy). In the following, we
shall adopt the terminology of Peng [17] and call g-martingale (resp. g-submartingale) a
process Y such that & [Yy] = Y; (resp. & [Y:] > Y;), forall t <s <T.

Proposition 2.1. Fix T € T, u € Lo([0,1], F;). Then, (Y,Z) € Sy xHa is a supersolution
of BSDE(g, ¥, i, 7) if and only if (Y, Z) satisfies (2.1) and there exists o« € A, ,, such that
Y, > EB(MIT)] for t € [0,T] P — a.s.

Proof. Let (Y, Z) be a super solution of BSDE(g, ¥, s, 7). Then there exists some element
p in Lo([0,1], F;) with p > u, P — a.s. and & in A, , such that U(Yy) = M}T’p)’d. Set
6% = inf{s > 1, ME = 0}. It is clear that #% belongs to 7 and that o := alyy gay
belongs to A, and satisfies M}T’p)’d > M:(FT’“)’Q, P — a.s., since M:(FT’p)’d > 0 by definition
of A; ,. The monotonicity of ® and Relation (2.4) imply that

Yr > (o U)(Yy) > S(MITH),

By comparison for Lipschitz BSDEs, we obtain Y; > Ef[Q)(MQ(qT’“)’a)] for t € [0,T]. Conver-
sly, let « € A, be such that Y; > Ef[q)(Mg’“)’a)] for ¢ € [0, 7] and assume that (Y, Z)
satisfies (2.1). Then, by definition of @, it holds that

U(Yr) > (Vo @)(Mj(f’”)’o‘) > Mj(f’“)’o‘.

Taking the conditional expectation on both sides leads to (2.2). O

In view of Proposition 2.1, the lower bound of I'(7, ) (which we recall, has been defined
in (2.3)) can be expressed in terms of

V() :==ess inf &9 {@(M:(FT’“)’Q)] , T €T, ue Lp([0,1], Fr). (2.6)

a€A;
This is the statement of the next proposition.
Proposition 2.2. essinf I'(7, u) = V- (1), for all 7 € T and p € Ly([0,1], F;).

Proof. The fact that Y, € T'(r, u) implies Y; > V. (u) follows from Proposition 2.1. On the

other hand, the same proposition implies that each Eg[fb(M:(pT’“ )’a)] with o € A, belongs

to T'(7, ). O



Remark 2.1. For later use, note that the assumptions (H,) and (Hy) ensure that we
can find 7 € Sa such that |EJ(®(M))| V | Ve(u)] < mt, for all ¢ < T and p € Lo([0, 1], F),
M € Ly(]0,1]). See (i) of Proposition 6.2 in the Appendix.

Remark 2.2. Note that Y, (u) = V-(pu1)1a + Yr(p2)1ae whenever p = pylyg + polge
for A € Fr, p1,pe € Lo([0,1], F7), and 7 € T. Indeed, o := 1. 7j(a1la + azlac) €

A, for all a; € A, with i = 1,2. Since &7 {@(M}T’”)’a)] = & [@(M}T’“l)’al) 14 +

&7 {@(M}T’M)’m)} 1 4c, this implies V; (1) < Vr(11)1a+Y-(2)1 4. The converse inequality
follows from the previous identity applied with a1 := al4 and ag := al e for any o € A, ,
so that o; € A, for i =1,2.

Remark 2.3. Before going on with the study of the set I', let us notice that a similar
analysis can be carried out for weak constraints of the form £ [¥(Y7)] > u in place of
E, [U(Yy)] > pin (2.2), with " defined as the h-expectation associated to some random
map h satisfying similar conditions as g. In finance, the latter condition interprets as a
risk-measure constraints, see e.g. [17], while our condition is more related to expected loss
constraints, see [11]. Again, we try to avoid un-necessary additional technicalities and stick
to the case h = 0.

2.2 BSDE characterization of the minimal initial condition

The main result of this section is a BSDE characterization for the lower bound of the set
(7, u) of time-7 initial conditions of supersolutions of BSDE(g, ¥, i, 7). In particular, this
extends to a non Markovian framework the PDE characterization of [3].

For ease of notations, we now fix m, € [0,1] and set

M = MOmo)a A% = {a/ € A;pe: o =adt xdP on [0,7]},
Ay = A07m0 and Y< = y(MO‘) for a € Ay,

where we recall that M (™)@ and Ag,,, are given in (2.5).

Theorem 2.1. For any a € Ag, Y% is indistinguishable from a ladlag g-submartingale,
and the following dynamic programming principle holds:

(i) Y& = essdierga EL V2], for each i € T, 2 € Ty,
71

Under the additional assumption that
m € [0,1] = ®(w, m) is continuous for P-a.e. w € Q, (2.7)
the following holds:
(i) V< is indistinguishable from a cadlag g-submartingale, for each a € Ay.
(iii) There exists a family (2%, K*)aca, C Ha x Ko satisfying

sup [[(V*, 2% K ls, xmoxk, < 00, (2.8)
acAg



and such that, for all o« € Ag, we have

T T
v = o)+ [ gls, Ve Eds— [ ZRdW. KT - K on 0.7], (29)

Koy = ess inf E[RL|F], Vi eT, meTn, (2.10)
a 21
and
(ya,Zo‘,lCa)l[O,T] = (y@,Za‘,IC‘S‘)l[Oﬂ, VreT, ae A?_{ (211)

(iv) (Y Z% K acA, is the unique family of So x Ha x Ko satisfying (2.8)-(2.9)-(2.10)-
(2.11) for all a € Ay.

The proof of this theorem is reported in Section 5.

Remark 2.3. (i) The precise continuity assumption needed in the proof is : ®(M7")
converges in Ly to ®(M§) whenever ||[M7" — Mg ||, tends to 0, for any sequence (ay,), C
Ay. However, this condition implies that ® is continuous, as soon as random variables with
non-absolutely continuous law with respect to the Lebesgue measure might be considered
(which is the case here).

(ii) We shall see in Proposition 3.3 below that ® can be replaced by its m-convex envelope,
under mild assumptions. In this case, the continuity assumption of the second part of
Theorem 2.1 can be replaced by a similar continuity assumption on the convex envelope of
®, which is clearly a much weaker condition as it only concerns the right boundary point 1
(since @ is non-decreasing). A typical example is given in Remark 3.4 below.

2.3 Representation as a BSDE with strong terminal condition

The previous section raises in particular one natural question: Does there exist an admis-
sible control & on the whole time interval [0,7] allowing to match all time ¢-values of the
minimal solution of a BSDE with weak terminal condition? Rephrasing, we wonder about
the existence of a control & in Ay such that

VE = Etg[@(M;‘?)], 0<t<T.

Hereby, solving the BSDE with weak terminal condition (¥, m,,0) boils down to solving
the classical BSDE with the optimal strong terminal one ®(M2): along the optimal path
@, the compensator K of the BSDE (2.9) must degenerate to 0.

Not surprisingly, the existence of an optimal control requires the addition of convexity
assumptions on the coefficients of the BSDE. We shall therefore assume that:

(Hconv) For all (A)mlme,t’ylayQ,ZhZ?) € [07 1] X [0’ 1]2 X [07T] X RQ X [Rd]Q:

O(Amy+ (1 —=X)ma) < AP(my1) + (1 — A\)P(m2) P—as.
gt Ay + (1= Ny, Az + (1= N)z2) < Ag(t,y1,21) + (1 — N)g(t,y2, 22) P — aus.



Remark 2.4. We recall the following result which is based on standard comparison argu-
ments, see e.g. [19, Proposition 7]: For any 7 € T, the map E7[®(-)] : Lo([0,1]) — Lo is
convex under Assumption (Heopny)-

Proposition 2.3. Assume that Assumptions (Heony) and (2.7) hold. Then, for any
(1,a) € T x Hy, there exists ™% € AY such that

Ve = g9 [@(M%T’“)} =&, [yg] Ve T

Remark 2.5. As detailed in Remark 3.3 below, the convexity assumption on the terminal
map P can be avoided in some cases. In particular, if ® is deterministic then it can be

replaced by its convex envelope. Then, only the convexity assumption on g has to hold.

Proof. Lemma 5.1 below provides a sequence ("), valued in A% such that
V¥ = lim | & [®(MF")], P—as. (2.12)
n—oo

Since the sequence (M%"),, is bounded in [0, 1], we can find sequences of non-negative real
numbers (A);>, with ) .o A" = 1, such that only a finite number of A" do not vanish, for

each n, and such that the sequence of convex combinations (Mj@)n given by

Myo= o arMg (2.13)

>n

converges P — a.s. to some My € Lo(]0,1]). By dominated convergence, the convergence
holds in Ly, in particular ET[MT] = M¢, and the martingale representation Theorem
implies that we can find & € A% such that My = M:% . Using the convexity of ® and g, see
Remark 2.4, we deduce that

vr=Y ared [@(M;f")] > &9 [@(M’TT)] .
i>n
By (2.12), Y — Y P—a.s. On the other hand, the convergence MJ: — M$ in Ly combined
with the boundedness and a.s. continuity of ® implies that ®(M}) — ®(M$) in Lo, after
possibly passing to a subsequence. Therefore the convergence &7 [CP(M%)] — &7 [CID(M%)]
P — a.s. follows by Proposition 6.1 below. This gives Y& > &7 [@(M%)}, while the converse
holds by definition of V2.

It remains to show that Y& = Ef,T/ D)f,], for 7/ € T-. To see this, first note that the above
implies that Y& = Ef_’ﬁ, (&9 [@(MP)]] > Ef_’ﬁ, (V3] by standard comparison arguments and
the fact that £7[®(MS)] > V& by definition. As above, we can find a sequence (&) € A%,
such that &%, [®(M£")] — V4 P — a.s. In view of Remark 2.1, the convergence holds in Ly
and Proposition 6.1 below implies

ve<er, [en[eou)]] — e [y,

where we used the fact that &" € A% C A2 to obtain the left hand-side. O



2.4 Link with second order BSDEs

Note that the formulation of Theorem 2.1(iii), is very close to the one obtained in [21] for
2BSDEs. The connection with 2BSDEs can actually be established more precisely, at least
at an informal level, in the case where the driver g and ® are deterministic maps, and g

does not depend on its Z-component.

Given o € Ay, let (Y%, Z) denote the solution of the classical BSDE(g, ®(M%)). If o
belongs to the subset Ag~¢ of elements of Ay that have dt x dP-a.e. non-zero compo-
nents, we can define Y® = —Y® and Z%' := —Z% /ot i = 1,...,d. Let us also set
2(b) == —B(mo + L, b)), £(-,-) = —g(-, —), and B*" := Jo @bdW. Then,

T T
Ve — =(BY)+ / (s, V) ds — / Z94B° on [0,T], P— as.

Let P, denote the Wiener measure and P% = P, o (B%)~! denote the pull-back measure
associated to B® on the canonical space. Then, the canonical process B has the same law

under P than B® under P,. This implies, at an informal level, that Y has the same law
under P, than Y** under P, where (Y ZF") denotes the solution of the BSDE

le%

T T
Y = =2(By) —|—/ f(s,YEVds —/ Z¥"dB, on [0,T], P* — a.s.
An informal density argument then leads to

—Yo=esssup Y =ess sup Y =ess sup Yj .
achAp acAo,>0 acAo,>0

In view of [21, Theorem 4.3], this corresponds to the time 0 value of the Y-component of the
2BSDE with driver f and terminal condition Z(Br), for the family of probability measures
{P* o € Ag>0}. The corresponding time ¢ values could be similarly related. Note that in
our setting (Y2, Z$)s<+ only depends on the path of the control o up to time ¢, see (2.11).
In 2BSDEs, this dependency is incorporated in the dependency of the solution on the path
of the canonical process: the solution is progressively measurable with respect to the right
limit of the raw filtration. The dependencies are therefore similar. The difference lies in
the fact that the solution of a 2BSDE, when it exists, is defined at the same time for all
measures P*. This requires a non-trivial aggregation procedure which does not appear in
our setting.

Since this connection is, at least for the moment, more of rhetorical nature, we will not
elaborate further on it in this paper.

3 Main properties of the minimal initial condition process

In this section, we emphasize remarkable properties of the map )} : u € Lg([0,1],F;) —
Vi(p), for t € [0,7). We first derive the continuity of this map under a weak continuity
assumption on E9[P(-)]. Then, we verify that this map (or more precisely its l.s.c. envelope)
is convex, and discuss the propagation of the convexity property to the time boundary T —.
Finally, we retrieve, in this non-Markovian setting, a dual representation of the map ),
using solely probabilistic arguments.

10



3.1 Continuity
Our continuity result is stated in terms of the quantities
Erry(n) := esssup {Ry(M, M) + M,M" € Lo([0,1]) , E[|M — M')?] < n},
defined for n € Ly([0, 1]), in which
Re(M, M) := |E/[®(M)] — & [2(M)].

Observe that classical a priori estimates on BSDEs ensure that Erri(n,) — 0 as n, — 0
P — a.s. with (n,), C Lo([0,1]), whenever ® is a deterministic Lipschitz map, see e.g.
Proposition 6.1 below. This observation remains valid when @ is simply continuous, via a
classical convolution density argument for Lipschitz maps on bounded domains. The next
result indicates that this property ensures regularity on the map: u— YV (p).

Proposition 3.1. Let t < T, uy,p2 € Lo([0,1], F;). Then,

(Ve(p1) = Vi(p2)| < Erre(A(p, p2)) + Erre(A(pz, p1)),

where
i i — Hy .
Apiy pg) = (1 = _Z,)l{ui<uj} + ﬁl{umw}’ g =12
Hj Hj
Moreover,
(Ve(p1) — Ve(p2) 1, =0p < Re(p2,0)
and

Ve(p1) = Ve(p2) 1y =13 < esssup {Re(1, M) : M € Lo([0,1]) , B[]l = M|*] <1 pa},

In particular, if Erry(n,) — 0P —a.s. as n, = 0 P — a.s., for all (n,)n C Lo([0,1]), then
€ Lo((0,1), F) — Vi(u) is continuous for the sequential P — a.s. convergence and the
strong Lo convergence.

Proof. Step 1. Fix py,u2 € Lo([0,1], 7). Given ap € Ay ,,, we define

L= 1
A= g My M <im) + =)
which is by construction valued in [0,1]. Since M ®#2):22 takes values in [0, 1],
ME#DAR =y — Ay + AM #2002 € [y — Aptg, pin + M1 — )] € [0,1]
In particular, Aag € Ay ;. Thus, (2.6) leads to
Velp) < EBMGT)] + (EP@AMG)] — g @M - (3.1)
t\ 1 > t T t T t T : :

Besides,
M,J(_‘tvﬂ/l)vAa? _ M[](fv“?)vOC? — ,UJ _ )\,LLQ + ()\ _ 1)M,1(—‘t7/1/2)7a2
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so that, since M¥7u2),az belongs to [0, 1], we have
_ _ (tvul))‘a? _ (t7/1/2)7a2 _
p1— 1L+ M1 — p2) < My My < 1 — Apg.
In addition,

pr—Apg = 0, if gy < po, and
p =14+ A1—p2) =0, if gy > pio .

This directly leads to
Ey[| MDA — M < Ay, prg)
Since these two processes belong to [0, 1], we get
Eyl| My — M P < A, o).
Hence, the arbitrariness of as € Ay, together with (2.6) and (3.1) provides
Vi) < Vi(u2) + Errg(Aug, p2)) -
Interchanging the roles of py and o leads to

Vilp2) < Vi(pr) + Erry(A(pa, pr)) -

Step 2.  We next consider the case where P[u; = 0] > 0. Without loss of generality,
we can assume that y; = 0. Fix a € Ay,,. Since A, = {0}, Mg’”)’“ >0 and @ is
non-decreasing, comparison implies that

Y,(0) = E/[®(0)] < & [@ (M),

In particular, Y,(0) = &7[®(0)] < Vi(2) < & [D(MFH)] = £(®(12)).

Step 3.  We now consider the case where P[u; = 1] > 0. Again, we can assume that
p1 = 1 so that A, ,, = {0}. By comparison as above, one has

Vi(1) = E7[2(1)] = Ve(p2)-
On the other hand, since M¢:#2):% is a martingale taking values in [0, 1], we have
EtHl _Mj(f,/i2)7a|2] < Et[l _Mj(f,/m)u] —1 — 2, Q€ At,uQ,

from which the result follows. O
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3.2 Convexity

In [3] and [12], it is shown that the map m € [0,1] — Yy(m) is convex. This is done in
a Markovian framework using PDE arguments. In this section, we provide a probabilistic
proof of this result which hereby extends to our setting. The result is stated for the lower-
semicontinuous envelope Yy, of )y defined as

Ve (pt) = i essinf (V4 (1) | — pl < e, 1 € Lo([0, 1), Fo)}, (3.2)

for any t € [0,T]. We refer to Proposition 3.1, the discussion before it and to (ii) of Remark
2.3 for conditions ensuring that ), = ).

We first make precise the notion of convexity adapted to our non-Markovian setting. Fix
a time ¢ € [0, 7.

Definition 3.1 (F;-convexity).

(i) In the following, we say that a subset D C Loo(R, Fy) is Fi-convex if Apg+(1— N €
D, for all py,p2 € D and X € Ly([0,1], F).

(ii) Let D be an Fi-convex subset of Loo(R, Ft). A map J : D — La(R,F) is said to be
Fi-convex if

Epi(J) = {(1,Y) € D x La(R, F) : Y > J(u)}

is JFi-conver.

(111) Let Epi®(V:) be defined as the set of elements of the form Y n An(fin, Yn) with
(tn, Yo, An)n<n C Epi(Qr) x Lo([0, 1], F¢) such that Y, - An = 1, for some N > 1.
We then denote by E—pic(yt) its closure in Lo. Finally, the Fi-convex envelope of Yy
is defined as

VE(u) = essinf{Y € Lo(R, ;) : (1, Y) € Epi (W)} (3.3)

We can now state the convexity property. It requires a right continuity property in time,
which holds under the conditions of Theorem 2.1(ii), also recall (ii) of Remark 2.3.

Proposition 3.2. Assume that Yi(p) = Vit (1) for any p € Lo([0,1], F;) and t < T. Then,
the map p € Lo([0,1], F) — Vs (p) is Fi-convex, for all t < T.

Proof. Fixt € [0,7) and set D := Ly([0, 1], F;) for ease of notations. The proof is divided
in several steps.

Step 1. (1, V5 (1)) € Epi (W), for all p € D.

Indeed, the family F := {Y € Ly(R, F;) : (u,Y) € Epi ())} is directed downward (for
every fixed element p in D) since Yll{y1§y2} + Y21{y1>y2} € F, by Fi-convexity of
Epi‘(),), for all Y', Y2 € F. It then follows from [13, Proposition VI.1.1] that there exists
a sequence (Y"),>1 C F such that Y™ | V¢(u) P — a.s. Since Y! and V§(u) € Lo, the
monotone convergence Theorem implies that Y — V5 (u) in Lo, as n goes to infinity. The
set E—pic(yt) being closed in Lsg, this proves our claim.
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Step 2. Let n € Sy be as in Remark 2.1. Then, |Y§(u)| < mn, for allt <T and p € D.

We first observe that ) > Y° by construction. Remark 2.1 thus implies that V() < ;.
On the other hand, let (Y),,>1 be as in the step above. We claim that it satisfies Y > —n,
for each n > 1. Then, the lower bound Yf(p) > —mn; is obtained by passing to the limit. To
see this, it suffices to prove this property for any Y € Lo (R, ;) such that (11,Y) € Epi ()}).
But, such an element (u,Y’) is obtained by taking the Ly limit of elements of the form

> <N An(ns Yo) with (pin, Yo, An)n<n C Epi(Vr) x Lo([0,1], F¢), such that >, - An = 1.
Each Y,, of the latter family is bounded from below by —n; by Remark 2.1, and hence so is

Y.
Step 3. The map p € D — Y5 (u) is Fy-convex.

Fix p!, > € D and X € Lo([0,1], F;). Step 1 implies that (u*, V¢ (u')) € Epi (Y;) for i =
1,2. Clearly, Epi () is Fi-convex. It follows that (Au'+(1—=X)p?, AVE(pt) +(1=N)Ve(1?))
€ Epi’())), so that AVE(pt) +(1 = NYe(u?) > Ve + (1 — M\)p?). Now, for any Y7 such
that (uf,Y?) € Epi()f), one has Y* > Y¢(u'), i = 1,2. This fact combined with the
previous inequality thus implies AY! +(1 — \)Y?2 > YV¢(Au! + (1 — X\)p?). This means that
Epi()y) is Fi-convex.

Step 4. Vu(u) > Yi(u), for all p € D.

Fix ¢ > 0 and set D;, := {|p' —p| < e, ¢/ € Lo([0,1],F;)}. It follows from Remark 2.2
that the family {V;(¢') : 1’ € Dy} is directed downward. Then, we can find a sequence
(15, )n>1 C Dy, such that

Vilps,) = Ze(p) == essinf{Yy (') : p' € D} P—as.

Since (Ze(p1))e>o0 is non-decreasing, limy o0 Z1/n (1) = Vix(pt), recall (3.2). Note that
Remark 2.1 implies that (yt(,u}/N))nzl —n Z1n(p) in L? and define

ky = min{n > 1: [ V(™) = Zyyn ()2 < 1/N},

Then, (:“kN ,yt(u,iva)) — (1, V() in L2 as N — oo. Since Epi()ﬂC Epi ()) and the
latter is closed under L2-convergence, this implies that (1, Vi« (1)) € Epi (). We conclude
by appealing to the definition of YV in (3.3).

Step 5. V() > Vis(p), for all p € D.

In view of Steps 3 and 4, the result of Step 5 actually proves that V.. = Vf is Fi-convex.
We now proceed to the proof of Step 5 which is itself divided in two parts.
Step 5.a It follows from Step 1, that there exists a sequence

(ks Yo, AN s 1351 C Epi(Y) x Lo([0,1], F¢) (3.4)

such that >, - AN =1, for all N, and

(v, YN) o= ) AN (i, Y) = (1, V5 () in Ly, (3.5)
n<N
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Fix N > 1 and ¢ > 0. Let & € Hy be such that ixy = mo, + [, @¥dW,. Since the
M 0 ¥s

family (AN),<n is composed of Fj-measurable random variables summing to 1, one can

find o € Hy and a random variable £5 € Lo(F;-) such that
t+e
AN —i—/ oNdW, = €5, and P[5 = | Fi] =AY, for n < N. (3.6)
t

Without loss of generality, we can assume that o = &V dt x dP on [0,t]. Then, (i) of
Theorem 2.1 and Remark 2.2 yield

~ aN alN
yt(ﬂN) =Y < 5gt+5(3’t+e) = 5gt+s(yt+e(fzev)) - 53t+5 Z 1£%=unyt+6(ﬂn) : (3-7)
n<N
We claim that
1i§1j51f5tg,t+s Z 1§§Vzunyt+6(ﬂn) < Z )‘nNyt(/‘n)- (3.8)
n<N n<N

Then, (3.7), (3.8), (3.4) and (3.5) lead to

Vi) <Y A Velpn) <0 AV =Yy

n<N n<N

Appealing to (3.5), we deduce that
lin inf Y () < VS (10).
N—o0
Since iy — p P — a.s., this together with Remark 2.2 implies that
Ze(p) < liminf Yy(pn) = lminf (Y (An) 1y —pi<ey + Vel Ly —p>ep) < Vi (1),
for all € > 0, where
AN 1= N Ljay—pi<e} 11 ax—p>e} € Dps

see Step 4 for the definitions of Z.(u) and Dj,. Since Z:(u) T Vex(p) as € | 0 by (3.2), this
shows the required result.

Step 5.b It finally remains to prove the claim (3.8).
Remark 2.1 and (ii) of Proposition 6.2 in the Appendix imply that

gzgtJre Zlfi\,:unyt%(/‘n) < LB Zlfi\,:unyﬂre(/‘n) + 7

n<N _nSN
< E Z Leg,=pn V(i) | + 1e

| n<N
+ Z Ey [|Vive(pin) — Ve(un)|]

n<N
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where . — 0 P — a.s. as ¢ — 0. The right-hand side of (3.6) then leads to

5§t+e Z 1£%=unyt+a(,un) < Z )‘nNyt(Mn) + N

n<N n<N

+ Z E; [‘yt+5(un) - yt(ﬂn)” :

n<N

Recall that Vi (pn) = Vi(un) by assumption, and that (Y(uy))n is bounded by some
7 € So, see Remark 2.1. Sending ¢ — 0 in the above inequality and appealing to the
Lebesgue dominated convergence Theorem proves (3.8). O

In the context of PDEs, convexity in the domain propagates up to the boundary, which
leads to a boundary layer phenomenon. In [3] and [12] this translates in the fact that the
natural T-time boundary condition should be stated in terms of the m-convex envelope of
®. We observe hereafter that this property extends to our non-Markovian setting, whenever
® is deterministic.

We recall from Theorem 2.1 (i) that ) can be associated to a ladlag process, up to
indistinguishability. As opposed to Proposition 3.2, we shall not need to impose any right-
continuity for the following.

Proposition 3.3. Assume that ® is deterministic and that its convex envelope d is con-
tinuous on [0,1]. Then,

Vi = B(MF) and V2 =ess inf & [&(Mg/)} ,

a'€AT

forallaa e Ay and 7 € T such that T < T.
Before proving this result, let us make some observations.

Remark 3.2. Since ® is non-decreasing, its convex envelope is continuous on [0,1) and
coincides with ® at points 1— and 1. Hence @ is continuous on [0, 1] if and only if ® is
left-continuous at 1.

Remark 3.3. In Section 2.3, we observed that the essential infimum in the dynamic pro-
gramming principle is attained whenever ® and g are convex. Hence, the previous propo-
sition allows straightforwardly to avoid the convexity requirement on ®, whenever it is
deterministic.

Remark 3.4. The proof below can easily be adapted to the case where ®(w, m) = ¢(m)&(w)
for some non-negative random variable £ and a deterministic map ¢. This is due to the
fact that the m-convex envelope of ® is fully characterized by the convex envelope qAS of
¢: ®(w,m) = d(m)&(w). This allows one to follow the construction used in our proof. In
particular, in the quantile hedging problem of Félmer and Leukert [10], one has ®(w,m) =
101 é(w) (m € [0,1]), with £ taking non-negative values, so that d(w, m) = mé(w), see
also [3].
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Remark 3.5. Our proof could also be adapted to Markovian settings in which the ran-
domness in ® is driven by the terminal value of an SDE. This will be done in the context
of Section 4 below, see Proposition 4.3. Again, it is clear that a more general probabilistic
argument could be used as well under suitable regularity conditions.

Proof of Proposition 3.3. We prove each assertion separately.
Step 1. By definition of the convex envelope, we can find a measurable map m € [0

(p(m),B(m),e(m)) € [0,1]* such that p(m) < m < H(m), e(m)p(m)+(1—e(m))p(m )

and

1] +—

b (m) = e(m)®(p(m)) + (1 — (m))2(p(m)) ,
for any m € [0,1]. Let ¢, T T. Then, one can find o™ € A and £" € Lo([0,1])
such that M$" = MY + ftz: adW, = £, where P [£" = p(M{)|F,| = e(M) and
P& =p(MP)|F,] = 1 —e(Mp). It follows from the above and (iii) of Proposition
6.2 in the Appendix that

Vi, Ep, [B(EM)] + 0 = (M) + 11,

n

where 7, — 0 as n — 0o. Since ) can be considered ladlag, up to indistinguishability (by
Proposition 5.2), passing to the limit implies that

VE < (M) (3.9)

We now prove the converse inequality. We use (iii) in Proposition 6.2 in the Appendix and
Jensen’s inequality to deduce that

Y;a/ = &9

n tn,T

(@M = By, [S(MF)] =0 = B(ME) — 71, o' € AL,

where 7, — 0 as n — co. Combining the arbitrariness of o/ € A¢ with the ladlag property
of YV, we get that

Vs >hm1nfess mf Ao "> d(ME) .
o’'€A

Step 2. It follows from Theorem 2.1 (i) that

/
Ve = eSSaléli &y vrlVivrl s neN.

The process V%, being ladlag, lim,, ygl’w = Y% is well-defined. Moreover, it follows
from the bound in Remark 2.1 that the convergence holds in Lo. In view of the stability
result of Proposition 6.1 and Step 1. above, passing to the limit as n — oo leads to

@ < : gy’ 1 91%H o )
ye < esso/léljgg EIVF_] = essalgj{a EI[D(MS))
Since ¢ > <i>, the reverse inequality holds by definition of Y& in (2.6). |
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3.3 Dual representation

In this section, we provide a dual formulation for the minimal initial condition at time 0,
m — Yo(m). It requires the introduction of the Fenchel transforms of g and ®.
We therefore define

D (W) €eQUXR— sup (ml—d(w,m))
me[0,1]

and

G (wtu,0) € Qx[0,T] xR xRY—  sup (yu—l—va—g(w,t,y,z)).
(y,2)ERXR

Remark 3.1. It follows from the assumption (Hj) that the domain of g(w, t,-), dom(g(w, t,-)),
is contained in [~ K, K )91 for P—a.e. w € Qandallt < T. The assumption (Hy) ensures
that the domain of ®(w, ) is the all real line, P — a.s..

In the following, we denote by A the set of predictable processes A with values in R x R¢
such that A\ (w) € dom(g(w,t,-)) for Leb x P-a.e. (w,t) € Q x [0,T].
To A = (v,9) € A, we associate the process L* defined by

t t
L§:1+/ Lgusder/ L9, dW, , t €[0,T).
0 0

Our dual formulation for ) is stated in terms of

Xo(l) := Aigﬂxgk, >0,

where

T
X = F [/ ng(s,As)dHL;@(Z/L;)] ., AeA, 1>0.
0

The fact that the Fenchel transform of Xy provides a lower bound for ) is straightfor-
ward, and detailed in Proposition 3.4 below for the convenience of the reader. For ease of
notations, we now write A,,, for Ag,,, M for M(O’m)’a, and denote by (Y™ Z"™) the
solution of the BSDE(g, ®(M}"")), a € A,y,.

Proposition 3.4. Yy(m) > sup;q (Im — Xy(1)), for all m € [0, 1].

Proof. Fix o € A,,, and A = (v,9) € A. Then, it follows from the definition of P and §
that

T
plypent] = e[ [0 (e v olzpe - glsvre 20 as
0

IN

T

Y™ 4 B U Lg‘g(s,)\s)ds} ,
0

and

YLy = ®(MP )Ly > IMp»® — Ly®(1/ 1Y),

18



for [ > 0. Note that, in the above, we have cancelled the expectation of the local martingale
part fOT(Li‘ZgL’a + YL ) dW although LA Z™© might not belong to Ha. If not, one
may use a localization argument since all other terms belongs to L' uniformly in time.
Combining the above and using the martingale property of M™% yields

T
Y > m — E U LYG(s, \s)ds + Ly®(1/L3) | = Im — X5 .
0

The result follows from the arbitrariness of [ > 0, A € A, and o € A,,,. O

We now show that equality is satisfied in Proposition 3.4 whenever existence holds in
the dual problem. This is proved under the following assumptions. Let Cg be the set of
continuously differentiable maps with bounded first derivatives.

Assumption (H}) The following holds for Leb x P-a.e. (t,w) € [0,T] x £
(a) the maps ®(w,-) and §(w, ) are C} on their domain, and dom(g(w,,-)) is closed;

(b) |V‘i>(w, )| + |V§(w’ta )| < Xi)@(w)’ for some Xci>7g € L2(R)a

(¢) ®(w,m) = sup (lm — ci>(cu,l)), for all m € [0,1];
>0

(d) g(w,t,y,z) = max (yu+ 2Ty — §(w,t,u,v)), for all (y,2) € R x R,
(u,v)edom(g(w,t,-))

In the above, V® and V§ stands for the gradient with respect to [ and (u,v) respectively.

Note that (a) and (b) are of technical nature, while (c) and (d) mean that ® and g are
convex, i.e. coincide with their bi-dual. The latter is a minimal requirement if one wants
the duality to hold.

Proposition 3.5. Let Assumption (HY) hold. Assume further that there exists [>0 and
A € A such that

sup (Im — Xo(1)) = Im — Xy(1) = Im — Xé’j‘. (3.10)
>0

Then, there exists & € Ay, such that
Yo(m) = Yy = Im — X(1).
It satisfies

g, Y, Zmay = NT (v 7m0y 5 8) and ®(MG®) = MPeI/L) — ®(1/1}).
(3.11)

Before to provide the proof, let us make the following observation which pertains for the
case of a linear driver g.
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Remark 3.2. Assume that ¢ is linear, i.e. there exist bounded predictable processes
AY and A% such that g : (w,t,y,2) — g(w,t,0,0) + A (w)y + A7 (w)z. In this case,
A = {(AY, A%)} and therefore

T
Xoa):E[ | mts. AV 425 + Ledyan)|
0

with L given by

t t
Lt:1+/ LsAg”der/ LyAZaw, , t € [0,T).
0 0

Then, the dual formulation of Proposition 3.5 above drops down to finding [ which maxi-
mizes Im — Xy(l). This generalizes the result of [10] and [3] obtained for quantile hedging
problems in linear models of financial markets.

Proof of Proposition 3.5. We split the proof in two steps.
Step 1. For ease of notations, we set L= L By optimality of Z, one has

im — B [Lrd(i/Lr)] > m(i +0) — B [Lrd((i +1)/Lr)] .

for all . > —I. Since ® is by construction P — a.s. convex, this implies that ¢, := V®((I +
1)/ Lr) satisfies me < E[(]e, for all ¢ > —I, recall (H}) (a) and (b). Taking ¢ of the form
—1/n and then 1/n, for n — oo, and using (H}) (a) and (b) then leads to

m = E[¢] where ¢:=V®(/Ly). (3.12)
We now appeal to (H}) (c) to deduce that
®(¢) = ¢(I/Lr) — ®(I/Lr). (3.13)

By construction, ® is P — a.s. 1-Lipschitz and non-decreasing, i.e. ¢ € Lo([0,1]). In view
of (3.12), the martingale representation Theorem then implies that we can find & € A,
such that My = M;n’d = (.

Step 2. We now write (#,9) := X and fix A = (1,6) € A to be chosen later on. Clearly, A
is convex. Hence, X* := (1—¢)(0,9)+&(v,09) € A, € € [0,1]. Moreover, direct computations
show that

%L/\E|€:0 = LR where R;:/(5us—5z931§s)ds+/ 89 5dWs,
0 0

in which we use the notations A := (6v, 09) := (v — 0,9 — V).
Recalling that elements of A take bounded values, see Remark 3.1, and arguing as in Step

1, one easily checks that the optimality condition Xf)’)‘s > Xf)’)‘, for all € € [0, 1], implies that

i = Vg(-, \) satisfies
T N N . o o A o
0 < FE [/ Ly (RS?J(S, As) + ﬁsT5>\s> ds + RpLp(®(l/Lr) — (I/LT)V®(l/LT))
0
T A~ A A~ A A ~
B [/ i, (ng(s, As) + ﬁjéAs> ds — RpLr®(Myr)| | (3.14)
0
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in which we used (3.12), (3.13) and the relation ¢ = My to deduce the second equality. Let
(Y, Z) be defined by

T
Vo ip [ﬁm(m) _ / ﬁsg(s,As)ds] and 7= 7 — V0, (3.15)
where Z € Hy is implicitly given by
A A A~ ~ T A A T A~ —
LYy = Lp®(Myp) — / Lsg(s, As)ds — / LsZgdW,, 0<t<T. (3.16)
t t
The above combined with (3.14) implies
T A~ A ~ A A A
0 < E U L (ng(s, ) + ﬁJ5A5> ds — RTLTYT] .
0
Recalling the definition of R and 7 and applying It6’s Lemma, this leads to
T, W A NT T, . W A NT
0<E U L <ﬁ5 (Y., ZS)> 5)\Sds} —E U L <V§((s, R) — (Vs ZS)) 5)\Sds} L (3.17)
0 0

By Assumption (H}) (a), Remark 3.1 and [1, Theorem 18.19, p. 605], one can choose A € A
such that

A =argmin { f(-,u,v), (u,v) € dom(g(-))} Leb x P—a.e.

where
R . . T
I+ @,5,0) = (V50,5 A(@)) = (Va(), Z6(@)) ) (1= 25(w), 0 = 0,(w)).

Considering now Relation (3.17) with A chosen to be equal to A1 {f(-2)<0}> We see that, for
Leb x P-ae. (w,t) € Q x [0,7], the gradient A(w) at Ai(w) of the convex map

A~

(u,0) € dom(@w, 1, )) o Flw,t,0) = §eort,1,0) — u¥i(e0) — 01 Zy(w)
satisfies
Ar(w) (b= M(w)) >0,  forall b € dom(j(w,t,-)).

This implies that A;(w) minimizes F(w,t,-) for Leb x P-a.e. (w,t) € Q x [0,T] and therefore
we compute

G =AT(Y,2) —g(-,Y,Z) Leb x P — a.e.

by (H}) (d). Combining the above identity with (3.16) leads to (V,Z) = (Y™%, Zzm).
Then, by using (3.12), (3.13) and (3.15), in which Lo = 1, we obtain

m,&
Yy

B[ Lratin) - | "L )|

B[ (citie - /i) - [ "Ll s

= Im—E {ﬁTé(Z/ﬁT) +/0T Lsg(s,As)ds] .
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In view of Proposition 3.4, this concludes the proof. |

We now state the reciprocal statement: existence in the primal problem provides existence
in the dual one. Here again, we need to impose some additional technical conditions.

Assumption (H2) The following holds for Leb x P-a.e. (t,w) € [0,T] x
(a) the maps ®(w,-) and g(w,t,-) are C} on [0,1] and R x R? respectively;

(b) [V@(w,-)| < xo(w), for some x¢ € La(R).

Proposition 3.6. Let Assumption (H3) hold. Let 1 > 0 be fized and assume that there
exists € [0,1] and & € Ay, such that

sup sup (ml— Yo(m)) =rml — Yom’d. (3.18)
mE[O,l} aEAm

Then, there exists X\ € A such that

Yolin) = 1l — Xy (1) = il — X5,
and X satisfies (3.11) with m =1 and | = 1.
Proof. Given € € [0,1], a martingale M with values in [0,1], m := My, we set m. =
m 4+ e(m — m), M := M + e(M — M), where M := M™%, For ease of notation, we set
(Y, Z) := (Y™® Z™%) and denote by (Y¢, Z¢) the solution of BSDE(g, ®(M3)), dm :=
m — 1, (6M,0Y¢,625) := (M — M,Y* —Y 75 — 7).
Step 1. We first show that e 1(0YF,0Z5) converges in S x Hy as € — 0 to the solution
(VY,VZ) of

T T
VYt:V@(MT)aMT+/ Vg(s,?s,Zs)T(Vl/;,VZS)ds—/ VZ AW, , t <T. (3.19)
t t

First note that existence and uniqueness of the solution to the above BSDE in guaranteed
by Assumption (H3).
Letting £° := e~} (®(M5) — ®(Mr)), one easily checks that e~ ' (§YE,62%) solves

ye T e T ve e
oYy =¢° _/ J " AW, +/ <AT3§65_7’ +A7?765_T> dr,
€ s € B € €

where
1 . . 1 .
AYe ::/ Dyg(r, Yy +05YF, Z,)d0 and AZF ::/ 0.9(r, Y5, Z, + 0677 )db.
0 0

In the above, dyg and 0,g denotes respectively the partial gradients of g with respect to y
and z, recall (H3). The Assumption (H,) implies |AY¥| + [47¢| < K.

We now set U¢ := ¢~ 10YE — VY, V¢ := 71625 — VZ and (¢ := £ — V&(Mrp)dM. The
pair (U®,V¢) is an element of Sy x Hy and solves

T T
U§=C€—/ VdemL/ (AYeUs + AZ°VE+ R ) dr, 0<s<T,
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with
RE =V Z.(A%* — 0.9(r, Yy, Z,)) + VYo (AYS — 8,9(r,Y,, Z,)), 0<r<T.

Hence, by stability for Lipschitz BSDEs (see Proposition 6.1 in the Appendix) there exists
a constant C' > 0 (which does not depend on ¢) such that

The result of Step 1. will follow if we prove that the right-hand side of the inequality (3.20)
vanishes as ¢ tends to zero. The convergence of ||R[|f, to 0 follows from Assumption
(H2) and the convergence of M5 to Mrp. As for the second term, it suffices to prove that
(Y#,Z°). converges in So x Hy to (Y, Z), and to appeal to (H,) and (H2). The latter is
obtained by standard stability results, see Proposition 6.1 below, which imply the existence
of a constant C' > 0 (which does not depend on ¢) such that

IYe = YI§, +12° — ZIIfy, < Cll®(M7) — ®(Mr)|F, —>ems0 0.

In the latter, the convergence follows from Lebesgue’s dominated convergence Theorem and
assumption (H3).

Step 2. By optimality of (1, &), Y5 —mel — Yo + il > 0, for any € > 0. In view of Step
1, dividing by € > 0 and sending € — 0 leads to

T T
0 < V&(Mrp)dMy — 16m +/ Vy(s, Yy, Zs) T (VYy, VZs)ds — / VZ,dW, = VY, — lom,
0 0

after possibly passing to a subsequence.
Set L := L* where \ := V(- 17, Z) Observe that the latter belongs to A. For later use,
also notice that

g Y, 2) = (0,9)T(Y,Z) = (-, 0,0), (3.21)

see e.g. [18]. Then, it follows from (3.19) that LVY is a martingale. The previous inequality
thus implies that

0< LoVYy—lom =E [ﬁTVYT] Ibm=E [ﬁTcSMT <V<I>(MT) 1 /ﬁT>] ,

in which we used the fact that Lo = 1 and E[6Mz] = dm. Since My can be any arbitrary
random variable with values in [0,1], this shows that, P — a.s., My(w) minimizes m €
[0,1] = ®(w,m) — ml/Ly(w). Hence,

Myl — Ly®(Myp) = Ly®(1/ L),

see e.g. [18]. Combining the above identity together with (3.21) and using Itd’s Lemma
leads to I — Yy = XZO’A. One concludes by appealing to Proposition 3.4. O

23



4 PDE characterization in the Markovian case

4.1 The Markovian framework

In this section, we specialize to a Markovian framework. Given (¢,z,m) € [0,T] x R? x [0, 1]
and o € Ha, we let (X4 M%"™%) denote the unique strong solution of

X = g4 / b(XE®)dr + / o(XEP)AW,, s € [0,T)
t

Vs tVs

S
Mg’m’o‘ = m+/ o, dW,.
t

Vs

In the above,
(b,0) : R —» R x R4 is Lipschitz continuous. (4.1)
Given two deterministic maps £ : R x R+ [0,1]U{—oc} and g : RY x R x R? = R, we set
Vo) = 0(X7", ) and gi o := g(X"",4) , (t,2) € [0,T] x R™.
We assume that, for each z € R?, y € R ~ £(x, ) admits a right-inverse
¢ Hx,m) = inf{y €R: L(z,y) > m}

which is measurable and maps [0, 1] into itself. We then set ®; ,(w,m) = E_l(X%x(w), m)
for m € [0, 1].

The set I'(t, z,m) is defined as I'(t,m) in (2.3) but for ¥, , and ¢, in place of ¥ and g.
We shall also use the notations

Vi z(m) == essinf I'(¢, z, m)

and
Yt,$7m704 p— 597,3;50 [@t,x(M%m’a)]? o e At,m.

All over this section, we assume that

(z,y,2) € R x R x R? = g(x,9, 2) is Lipschitz continuous. (4.2)

4.2 Link with stochastic target problems with controlled loss

We first relate Vs »(m) to the stochastic target with controlled loss problem of Bouchard,
Elie and Touzi [3]. Given Z € Hy, we let Y%(:2%) denote the solution of

S S
Y, =y —/ g(Xﬁ’”C,YT,Z,n)ds—i—/ Z dW,, s € [t,T).
t t
Proposition 4.1. The map (t,x,m) € [0,T] x R x [0,1] = Vy.(m) admits a deterministic
version and satisfies
Vio(m) = v(t, z,m) == inf {y €R:3ZcH,y st E [wt,m(YTZ’(t’x’y))} > m} . (43)

It has linear growth.
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Proof. The linear growth property follows from the boundedness of @, (i) in Proposition
6.2 in the Appendix, (4.1) and (4.2):

N

lg(X%*,0,0)| < C(1+ sup |X5*|), where E
t<s<T

sup [ X;°f?
t<s<T

<O+ 2))

for some C' > 0.

The rest of the proof is divided in several steps.

Step 1. We first show that (t,z,m) € [0,T] x R? x [0,1] = Y, .(m) is deterministic.

We proceed as in [5]. Let H denote the Cameron-Martin space of absolutely continuous
elements h € ) whose Radon-Nikodym derivative h is square integrable for the Lebesgue
measure on [0,7]. One sets Hy:={h € H:h=h(-At)} and dpw =w + h, w € Q, h € H;.
It suffices to show that ) .,(m)(dp) is independent of h € Hy, see [5, Lemma 4.1]. Let
a € Hy, h € Hy, and set o’ := a(dy-). Note that

a € Ay, if and only if o € Ay, h € Hy. (4.4)
Then, X%(8;,) = X* and Mtme" = Mtme(§,), and therefore
Y;t,:v,m,ah — Y;t,m,m,a(é-h)‘ (45)

Since, Vi.(m) < Y "™ one gets V;.(m)(6,) < Y;"""™%(5)) for all a € Ay, and
therefore Yy ,(m)(0p,) < ess in {v;"""™%(§;,)}. On the other hand, for a random variable
aec t,m

¢ such that ¢ < Y,"""™%(3), we have ((0_) < Y"™"™*. By arbitrariness of o € Ay,
this shows that ((6_5) < V;(m). Hence, essaeigf (Y5506 -1) < Viw(m), which,
t.m
combined with the above, implies ess EIRf (V5™ (6,)} = Vew(m)(81). We now use the
@ t,m
latter together with (4.5) and (4.4) to obtain

h
5 _ inf Yt,:v,m,a 5 _ inf Yt,:v,m,a _ inf Yt,:v,m,a:
Via(m)(0n) = ess imf {Y;70(0n)} = ess inf ¥ ess daf Y Vew(m),

which is the required result.
Step 2. We now show that

Viw(m) = inf Yo, (4.6)
t,m

where Atnn denotes the subset of elements o € Ay, that are predictable with respect to the
P-augmented filtration generated by W.,p — Wr.

It follows from Step 1 above that Y, (m) = E [V ,(m)] = E [ess in Yf’w’m’a} Thus,
€A m

by Lemma 5.1, we can find a sequence (), C Ay, such that Y;t’x’m’a" decreases to Vs »(m)

[P —a.s. The monotone convergence theorem then implies that )y ,(m) = lim,, £ {Yf’m’m’a"]

> infaca,,, £ [Yf’m’m’a] > E Vi o(m)] = Vi o(m), in which the latter equality follows from
Step 1. It remains to show that

inf E [nt,x,m,a} _ i[lf tht,a:,m,oz
aeAt,m OéeAt’m
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The fact that the right-hand side is bigger than the left-hand side follows from the inclusion
At,m C Ay, and the fact that Y;t’x’m’a is deterministic for all o € At,m. Conversely, fix
a € Ay, It can be identified to a measurable map on the canonical space, see e.g. [22,
Theorem 2.10] and [2, Lemma 1.3]. Let us denote a, : @ € Q — a(w.pr + (0.v¢ — @¢)). For
w € ( fixed, this defines an element of Ay ,,. Moreover, by independence of the increments

of the Brownian motion,
E _Y;t,m,m,a] _ / E [Y;t,m,m,aw} dP(w) — / Y;t,:v,m,awdp(w)‘
- Q Q

This implies that

inf B |v""| = inf / Yoo dp(w) > / inf VIUTOdP(w) = inf YO
a€Aim . a€Aim Jo Qa€A; a€A¢m

which concludes the proof.

Step 3. Fix y > v(t,x,m). Then, one can find Z € Hy such that F [\II(YTZ’(t’x’y))} >m.
By the same argument as in Step 2, one can choose Z such that it is independent on
Fi. Hence, E; {\I/(YTZ’(t’gﬁ’y))] > m. The process (Y%2¥) 7) is a supersolution of the
BSDE with weak terminal condition BSDE(gt ;, ¥4, m,t) on [t,T]. Obviously it can be
extended to [0, 7] by pasting it with the solution of BSDE(gt,xl[Qﬂ,Y;Z’(t’x’y)) on [0,¢]. This
shows that y > Vs »(m). Hence, v(t,z,m) > Y, ,(m). Conversely, for a € Ay ,,, we can find
Z € Hy such that Y2 :5y) = yheme with ¢ .= Ytt’m’m’a, satisfies YTZ’(t’x’y) = @t,x(M%m’a)
and therefore F {\IIM(YTZ’(t’x’y)) > m. This implies that y > v(t,z,m). Hence, Y} »(m) >
v(t,x,m) by Step 2. O

4.3 The dynamic programming equation
The PDE characterization of the value function v follows from Bouchard, Elie and Touzi
[3]. For (t,z,m,y,q,p,A) €[0,T] x R x R x R x RY x R**? and a € R?, we set

- 1
Fa(t’x,m’y,q,p, A) = —g(m,y,p&(x,a)) - q _pr('I) - §TI’[5'5'T(£C,CL)A]

b(x) = ( b(g) ) , 0(z,a) = ( U(ax) ) .

F .= sup F*
acR4

with

We then define

Theorem 2.1 in [3] implies that v is a discontinuous viscosity solution of F =0 Ttis
stated in terms of the lower- and upper-semicontinuous envelopes v, and v* of v defined by

ve(t, x,m) := e lir,r)liﬁn(f; ) vt 2, m')
(t/,z/,r;ﬂ)ye [0,T) xR x (0,1)

and

v*(t,z,m) = lim sup vt 2’ m').

(t',a',m') = (t,z, m)
(' 2, m’) €[0,T) x R? x (0, 1)
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Since F' may only be lower-semicontinuous, we also need to consider its upper-semicontinuous
envelope F™.

Proposition 4.2. The function v, is a viscosity supersolution on [0,T) x R? x (0,1) of
F*p =0.

The function v* is a viscosity subsolution on [0,T) x R% x (0,1) of
Fgo = 0.

We now discuss the boundary conditions, along the line of arguments suggested in [3] in
a more abstract framework. We show that they can be fully characterized in our particular
context.

We first consider the boundary as ¢ — T'. In the following, we let 71 denote the convex
envelope of (z,m) +— £~ (x, m) with respect to m. We denote by DH—Tits right-derivative
with respect to m.

Proposition 4.3. Assume that ¢-1 and DO are continuous with polynomial growth.
Then, v, (T, xz,m) > £~ (xz,m) > v*(T,z,m), for all (z,m) € R% x [0,1].

Proof. Let (tn,xn,my) — (T,2,m) be such that v(t,,x,, my,) = v(T,z,m). It follows
from Proposition 4.1 and Proposition 3.3 that v(t,,z,,m,) < Ef;”’”” [ffl(X;"’x",mn)].
Sending n to oo implies v, (T, z,m) < limsup,,_,, & ™" [f/*\l(X;"’xn,mn)] = ﬁ(m,m),

where the latter follows from standard estimates and the continuity of 1. We conclude by
proceeding as in [3, Proposition 3.2] and [12, Proposition 3.2]. We consider (., T,, my) —
(T, z,m) such that v(t,,z,, m,) — v*(T,z,m), and set y, := v(tn, Tn, my) +n~'. Then,
one can find Z, € Hy and «,, € Ay, ,n, such that

YTva(tnyxnyyn) Z 6—1 (X;nyl'n’ M%nymnyan)
> (X m) 4+ DY LX) (M — )
> N(XET m) + DY, m) (M0 — m)

—2|DY (X m) — DY (2, m)|
where we used the convexity of £~1(X7" .) and the fact that My " and m have
values in [0,1]. It follows from the uniform Lipschitz continuity assumption on g that we

can find (p",7")n>1 C Hy taking uniformly bounded values such that LY Zno(tnsnyn) ig g
non-negative locale martingale (and therefore a super-martingale), for L™ defined as

© o ’ 1 [
L™ = edin P59 oxp (/t Yo dWg — 3 ), |7?|2d5> .

Note that L™ — 1 as n — oo P — a.s., after possibly passing to a subsequence, and that
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(L%)y, is uniformly bounded in any L,, ¢ > 1. The above implies that

T E_L%YTZ"’(t"’m"’y")]
> B :L:’ﬁ (Fl(XtTMn,m) — 2| DX ) — D+F1(m,m)‘)]
+ D, m) B [ M — ] — 2D (@, m) El| L — 1]
> ElLn (ﬁ(XtT"’xn, m) — 2 (D+?3(XW", m) — D1 (z, m)D]

—2D (2, m)E |13 — 1]].
Passing to the limit and using standard estimates imply

v (T,z,m) = lim y, > E/*\l(x,m)
n—oo

We now discuss the space boundary condition as m — {0,1}.

We set wy, : (t,x) — v(t,z,m) for m € {0,1}. Since m € {0,1} trivially implies Ay, =
{0}, one has
W (t, ) = EX (07 (XET,m)] for m € {0,1}.

Note that, ¢ being non-decreasing in y,
wo < v(-,m) < w. (4.7)

The following characterization is standard, see e.g. [15]. We denote by Lx the Dynkin
operator associated to X.

Proposition 4.4. Fizm € {0,1}. Then, wy, is continuous on [0, T] x R? and is a viscosity
solution on [0,T) x R% of

—9(,, Do) — Lxp = 0. (4.8)
If £=1(-,m) is continuous, then
W (T,-) = 71 (-,m) on RY. (4.9)
We can now provide the space boundary condition.

Proposition 4.5. Assume that the conditions of Proposition 4.3 hold. Then, v*(-,m) =
Ve (-, m) = Wy, on [0,T] x R, for m € {0,1}.

Proof. Let (t,,2n,myn) — (t,2,0) be such that v(tn,zn,my) — v*(t,2,0). Then,
Proposition 4.1 and Proposition 3.3 imply that v(ty, zn,my) < & [(=1(X™ my,)].
Sending n — oo and using Proposition 6.1 below together with the continuity of 1
imply that v*(t,z,0) < Sft’”[ﬁ(Xélm,O)] < wo(t,z). Recalling (4.7), this shows that
v*(+,0) = v.(+,0) = wp. Conversely, it follows from [3, Theorem 3.1] that v.(-,1) is a vis-
cosity supersolution of (4.8). Note that ¢=1(-,1) = £71(-,1) since £~! is non-decreasing.
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Then, Proposition 4.3 implies that the boundary condition (4.9) with m = 1 holds for
v4(+, 1). Recall from Proposition 4.4 that w; is a subsolution of the same equations. Since
v4(+,1) and w; have polynomial growth (Proposition 4.1), it follows from a standard com-
parison argument that v.(-,1) > wi, see e.g. [7]. In view of (4.7), this implies that
v*(, 1) = v+, 1) = wy. ]

Combining the above results shows that v* is a viscosity subsolution of

F( 9,010, Dp,D*¢) =0 on [0,T) x RY x (0,1),
©(+,1) = w;y and ¢(-,0) = wo on [0,T) x RY, (4.10)
o(T,) =071 on R? x [0, 1].

However, v, is only a supersolution of the same equation but with F* in place of F. Since,
F* # F in general, this does not allow to characterize v as a unique viscosity solution of
(4.10). One can however show that it is the biggest subsolution.

Theorem 4.1. Let the conditions of Proposition 4.5 hold and assume that £='(m,-) is
continuous for m € {0,1}. Then, the function v is upper-semicontinuous. Moreover, for
any subsolution T of (4.10) with polynomial growth, one has v > on [0,T] x R? x [0, 1].

Proof. Step 1. Given k > 1, let us denote by A,’;m the subset of elements a € Ay, such
that || < k Lebx P on [0, 7], where Ay, is defined in Step 2 of the proof of Proposition 4.1.
We then set v*(t,z,m) = inf e ax YO Let {09, a € A, .} be a family of stopping
times with value in [¢,T] such that {X ;f, M;;m’a, a € Ay} takes values in a compact set
O which is given and contains (x,m). One has
o (t,x,m) = inf &% [}/;fa,:v,m,a}
acAk, "
in which

t,x t,m,x
0% X My o

Y—éf&x,m,a(w) _ }/:904 (w) > <p(00‘(w), Xéf (W)7 Mélxm7a (w))

k

for any continuous map ¢ lower than v* on ©. This implies that v* satisfies the weak

dynamic programming principle, compare with [4],

Uk(t,x,m) > inf Ef’gz [<P(9a,Xéf,M£;m’O‘)]
aeAf’m ’

for any smooth function ¢ < v* on . Similar arguments as in [4] then implies that the

lower semicontinuous envelope v¥ of v¥ is a viscosity supersolution of
Fk(',@, atSD,DQDa D2gp) =0on [O’T) X Rd X (0’1) (411)

where Fj, := sup|q|<x -
Moreover, v* > v by Proposition 4.1 and Relation (4.6). It then follows from Propositions
4.3, 4.4 and 4.5 that v* is a supersolution of

@(-+1) = wi and o(-,0) =wy on [0,T) x RY, 2
,m

o(T,) = -1(z,m) onR? x [0,1].
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Step 2. Let v be a viscosity subsolution of (4.10) with polynomial growth. Then, it
is a subsolution of (4.11)-(4.12). In view of Step 1, standard comparison results, see e.g.
[7], imply that v¥ > @, the fact that v* has polynomial growth falling from the same
considerations as in the proof of Proposition 4.1.

Step 3. It remains to prove that v* | v pointwise. Clearly, {M;m’a, a € Afm} is dense
in Ly in {M;m’a, « € Ay} The required result then follows from Proposition 6.1 in the
Appendix, Proposition 4.1 and Relation (4.6).

O

5 Proof of Theorem 2.1

In all this section, we use the notations introduced at the beginning of Section 2.2. The first
main result provides a dynamic programming principle for the family {Y%, 7 € T,a € Ap}.

Proposition 5.1. For all (11, m2,) € T x T X Ag such that 71 < 19, we have

V& = ess inf &7 D}%/].

71,72
/ o )
a’eAQ,

Proof. We prove the two corresponding inequalities separately.
Step 1. V5 > ess inf &, | V2],
oz’eA,?f1

It follows from Lemma 5.1 below that there exists (a"), in A% such that the sequence
(& ®(ME™)]),, is non-increasing and

lim & [BMF)] = V2, P-as. (5.1)

n—oo ’ T

Since a™ € A% for every n > 1, we deduce that

or <& ple(Men)].

T2

By comparison for BSDEs with Lipschitz continuous drivers on the time interval [y, 72],
this implies
E RV < &L L8 7 @(ME))) = £ ple(MF")],

leading to

s, nf € [ V] S 0 ple0),

Letting n go to infinity in the above inequality, (5.1) provides directly

/
ess inf &9 [3}0‘} < yo.
wEAs, T,y [T T1

o ; g o
Step 2. V7 < essa/ler‘lgg1 i { TQ}.
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Fix o/ in A%. Lemma 5.1 below ensures the existence of a sequence (a;,), in A%, such
that (Ef%T[CI)(M%m)])n is non-increasing and

Jim €0, p[®OF)] = Y2, P as

In view of Remark 2.1, the convergence holds in Ly as well. Thus the stability result
of Proposition 6.1 below indicates that Efl’T[fﬁ(M;f")] converges to Y | 2‘2/] in Ly. In

addition, o), € A%/ C A by construction. Combining the above leads to
g ol : g ar, o
571772[3}@] - nh_)n;OgThT[q)(MT )] Z yrl .
The arbitrariness of o/ € A2 allows one to conclude
essa/ierga 579.1@ Vel = Y.
1

a

Lemma 5.1. Fiz§,7 € T, with0 > 7, u € Lo([0,1], ;) and o € A+ . Then, there exists a
sequence (al)) C A?;g :={a' € Ary, /1) = aldjyg }such that lim, | EJ [®(Mp" )] =
Vg (My" ) P — a.s.

Proof. It suffices to show that the family {J (/) := SgT[Q(M;’“’a,)], o € Aﬁﬁ} is directed

downward, sce e.g. [13]. Fix o, oy in A% and set
&' = aljgg) + L ry(@)1a + ablae)
where A := {J (o)) < J(ah)} € Fp, so that &' € Aﬁﬁ and
J(@) = £ [@(M )14 + (M7 )1 4] = min{J(a}), J (ah)}.

O

We now observe that the family (V*)acm, is undistinguishable from a ladlag process?,
(Y*)aecH, hereafter, which also satisfies the preceding dynamic programming principle. If
in addition @ is assumed to be continuous, the process (Y“)acm, is even indistinguishable

from a cadlag® process.

Proposition 5.2. Fiz o € Ag. Then, Y% is indistinguishable from a ladlag process. Be-
sides, if m € [0,1] — ®(w,m) is continuous for P-a.e. w € Q, then Y is indistinguishable

from a cadlag process.

Proof. Fix a € Ay. Proposition 5.1 and Remark 2.1 imply that —Y is a —g(—)-
supermartingale in the sense of [6] (a g-submartingale in the sense of [16]). It follows from
the non-linear up-crossing Lemma, see [6, Theorem 6], that the following limits

(e} 67

lim and  lim <

seQN(t, Tt~ ° SEQN[0,¢)1t

2left and right-limited according to the french celebrated acronym

3right-continuous and left-limited

“Note that [6, Theorem 6] restricts to positive g-supermartingales. However, the proof can be reproduced
without difficulty under the integrability condition of Remark 2.1. In addition, [6, Theorem 6] implies that
EQ[DZ (Y, n)] < V5 Ab < b, where D2(Y*, n) denotes the number of down crossing of Y from an interval
[a,b] on a discrete time-grid 0 =tg < t; < --- < ¢, =T and Q is a particular measure absolutely continuous
with respect to P. To conclude, it is enough to reproduce the proof of [8, Chapter VI Theorem (2) point

1)].
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are well-defined for every t in [0, 7], P — a.s., so is the process

&= lim

tel0,1].
seQN(t, T)t

S )

Hence, Y is undistinguishable from a ladlag process.

Besides, Y is by definition cad. Assuming that ® is continuous, we will prove that, for
every stopping time 7, it holds that:

Ve = esso/ig[gg EfvT [@(M%/)] (=)Y) P —a.s. (5.2)

By [8, Chapter IV. (86), p. 220], the relation (5.2) entails that Y and J® are undistin-
guishable showing that Y is undistinguishable from a cadlag process. The rest of the proof
is devoted to prove (5.2).

For this purpose, let us introduce (7)., a decreasing sequence of stopping times with
values in [0, 7] N Q such that 7 < 7, <7+ n"!and Y& = lim, ye.

Step 1. Yo <ess inf &7, [(I)(M%’)].
a’'€eAx

a. Fix o/ € A% and set

Mz 11— M
Ap 1= M%‘: A 1 —Mf‘n/ 1{Mgn¢{0,1}} € [0,1],

with the convention a/0 = oo for a > 0. Using the fact that MTO‘T: —|—f3; oldWy = M% € [0,1],
direct computations lead to

T
0< MO — A\MY < M® +)\n/ lLdW, < M2 4+ An(1— M) < 1.

We set o, := aljy ) + \a'1p, 7. The above implies that «j, belongs to A2 .

b. Now we prove that M;fl” converges M%l in Lo as n goes to infinity, possibly up to
a subsequence. Since both have norms bounded by 1, it suffices to show the P — a.s.
convergence, possibly up to a subsequence. To see this, first note that

/ / / T
ME Mg = M — M+ / O — Do dW,,
Tn
from which we deduce that

, , , T T
M;’jn — Mz = M%L — Mf; + (A — 1{M$‘n¢{0,1}}) / Oc;dWS — 1{M$‘n€{071}} / Oc;dWS.

n

Since 1, — 7 P—a.s. and o/ = avon [0, 7], the above construction implies that lim,, oo M? —
Mf‘n/ = 0 P—a.s. and limy, 00 A, = limy 00 L{pse ¢40,1}) P—a.s. It thus only remains to prove

that 1¢pe 0,13} fri o dWy — 0 P — a.s. First note that o/1f, 7 = 0 on (M € {0,1}}.
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This follows from the martingale property of this process with values in [0, 1]. Hence, it
suffices to consider 1{M7‘-’717’5M3n€{071}} fTZ o, dW,. But, since M® = M2,

PIMY # M € {0,1}] gIP[Mg:#MgL]:p[

/ n(as — o/s)dWs

> 0} —n—oo 0.

c. Now, since @ is continuous and M;f/" € Lo([0,1]), we get that @(M;/") — ®(Mg') in Ly,
after possibly passing to a subsequence. The stability property for Lipschitz BSDEs given
in Proposition 6.1 implies that

.2 (5050 — . [305]| e0 -
2
On the other hand, the bound of Remark 2.1 implies that
‘Efan [‘I’(M%/)] — &7 [fb(M%')] ( L oo 0 (5.4)
2

by Lebesgue’s dominated convergence Theorem and by continuity of the process 9. [@(M%,)] .
Combining (5.3) and (5.4) leads to

Ve = lim Yo < lim &4, 5 |@(M7)| = &0y [o(ap)].
We conclude by arbitrariness of o/ € A2.
Step 2. Y > essa/igj{g &l [@(Mj’f')]
Applying on [r,7"] the stability result of Proposition 6.1 for the BSDEs with parameters
(V7,0) and (Y, gl ), we get

n

9 - illy, < o (19 -vnly,+ 2| [ lats3z0fas))
- C
< ClpE-Yaly,+5,  neN,

for some C' > 0, since the bound of Remark 2.1 holds for Y2, recall that Assumption
(H,) is in force. Therefore, £

T,7"
5.1 implies £7
V& =ess inf &Y, [@(M%’)} O

a’'eAx D

[V2.] converges to Y& as n goes to infinity. Proposition
[V2.] > V2. Passing to the limit leads to the required inequality: J¢ >

In the rest of this section, we complete the proof of Theorem 2.1.

Proof of Theorem 2.1. Items (i) and (ii) are already proved in Proposition 5.1 and
Proposition 5.2, it remains to prove (iii) and (iv). For a € Ay, it follows from Proposition
5.1, Proposition 5.2 and standard comparison results for BSDEs that Y is a cadlag strong
g-submartingale in the sense of [16]. Hence, the existence of a process (2%, K) € Ha x K»
such that (2.9) holds follows from [16, Theorem 3.3]. We now verify successively that the
family (Y%, 2%, K%)aen, satisfies (2.8), (2.10), (2.11) and the uniqueness of solution for
(2.8)-(2.9)-(2.10)-(2.11).
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The bound (2.8) follows directly from Remark 2.1 and the representation Theorem 3.3 in
[16], note that the driver function g does not depend on a € Ay.

Step 1. The irrelevance of future property (2.11)

For (a,7) € Ag x T, observe that A = A® on [0,7] when o/ € A%. The definition of Y
thus implies that Y11y ;] = yo/1[0,T] for o/ € A%. Hence (2.11) follows from the uniqueness
of the representation provided in [16, Theorem 3.3].

Step 2. The minimality property (2.10)

We follow the arguments in the proof [21, Theorem 4.6]. We fix (o, 71,72) € Ho X T X T
such that 7 < 7. For any o/ € A2, we denote by (YO‘/, ZO‘I) the solution of the classical
BSDE

T T
v = <I><M%'>+/ g(s,Y;“/,ZS')dS—/ Z¢dw,,  0<t<T.
t t

Let L be the process whose dynamics is given by

, t t |Az|2
LY = exp </ Ades—i—/ (Ag-%) ds) , n<t<T,
T1 71

where (AY, A?) is the linearization process given by

Ao IV EY) — eV 2

Ve v vty
z . g( SO/’ZSO/)_Q(Y;O/’Z?,) o o
b 28" — Z¢'? e

. . . . . . ! / .
This linearization procedure implies that Y7 — V7 rewrites as

/ / / / / & / !
ve -y = E, [L%(YT‘;‘ -5, )] +Er, [ / L d’C?]

T1

[T1,72]

> By (s - ) nt 2 (5.5)
where we used the fact that Y — Y* > 0. Using Hélder inequality, this implies

sup (1/LO‘,)

[T1,72]

By, (K5 - K2 )}3 < B, [(/c%’ — K) inf LO"} fol By, (K5 - Ko7

[T1,72]

IN

C By, (Ko = Ko 2| (v = 2))

for some C' > 0 that depends on the uniform bounds on (AY,A%), recall (Hg). Hence, the
estimate (2.8) together with the monotonicity of I implies

0 < B |(Ko-K2)| < oy v -V oeAn, (56)
where
n,, = esssup B [(KS —Kf‘l)Q]l/g.
acA2
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By the same arguments as in Lemma 5.1, we can find a sequence (a,),, C A2 such that
' = lim 1 E [(lco/n - lco/n)ﬂ v
777'1 n—00 T1 T2 T1 *
The monotone convergence Theorem together with Jensen’s inequality and Relation (2.8)
imply that
Bl = lim 4B [ (e — kem2]
[777'1] - nl—)rgo/l\ ( T v ) < 00.

Since 7, is in addition non-negative, it is a.s. bounded. Hence, combining (2.11) and (5.6),
we obtain

0 < By K| - K8 < O8] - )Y = C (@ o)] - y5)P ol € A2

71,72

Taking the essential infimum in the above inequality and appealing to (2.6) leads to (2.10).

Step 3. The uniqueness property for (2.8)-(2.9)-(2.10)-(2.11)
Let us now consider a family (?Q,ZO‘,K“)QEAO of Sy x Hy x Ky satisfying (2.8)-(2.9)-
(2.10)-(2.11). Then, (2.6) together with (2.9)-(2.11) applied to (Y, Z% K)4ca, imply
via a direct comparison argument that
Vo= ess inf EOMP)] 2V,  acAy, 0<t<T. (5.7)
o’ €AY
On the other hand, following the exact same line of arguments as the one developed in Step

2 in order to derive (5.5), one easily shows that there exists a So-uniformly bounded family
of processes (L®)qca, such that

- r_o. - - 1/2
Ele(Mp)] Y = E [/t L?dK;‘} < CEt[!K%—K?\Z] , ac€hAy 0<t<T,

for some C' > 0.

Now observe that (2.10), applied to K, and the same arguments as in Lemma 5.1 provide
the existence of (&™), C A% such that Ey[K$%" — K] — 0, P—a.s. Hence, (2.8) ensures that
Ei|K$" — K] — 0. Since (2.11) implies (V;*", K{") = (Y, K§) for n € N, we deduce

AT -~ ~_AM ing 1/2
EOME) -V < CE[EY ~ K] i 0.

Combined with (5.7), this shows that

VY = ess inf EOMY) =V, acHy, 0<t<T.
o’€AY

The fact that (Z% K%)aea, = (2% K*)aca, then follows from the uniqueness of the

non-linear Doob-Meyer decomposition of [16, Theorem 3.3]. |
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6 Appendix

We report here some standard results for Lipschitz BSDEs. The first one can be found
in, e.g., Theorem 1.5 in [14]. The second one is proved for completeness, and by lack of a
good reference.

Proposition 6.1. (Stability for Lipschitz BSDEs) Let (Y1, Z') and (Y2, Z?) in S x Hy be
solutions on [0,T] of Lipschitz BSDEs associated to parameters (€1, g') ad (€2, ). Then
the following stability result holds:

T
I vl ez -2, < o (e €+ [ Bl - P eyt zbe) |
for some constant C > 0 depending only on T and on the Lipschitz constants of g' and g°.

Proposition 6.2. Let the conditions (Hy) hold. Then:

(i) There exists C > 0 which only depends on K, and T such that

N

esssuDgery (0.1 €7 [€)] < C(L+ B [Ixg[]?),  0<t<T.

(ii) For some & € L and t € [0,T], consider a family (£%)e>0 C Lo(RY) satisfying |€°] < &

and &° € LO(]:(HE)AT), for any € > 0. Then, there exists a family (n:)es0 C Lo(R)
which converges to 0 P — a.s. as € — 0 such that

lgiq,t—l—a[ge] - Et [56] ’ S e, Ve € [O,T - t].

(iii) Let (£%)eso and t € [0,T] be as in (ii). Then, there exists a family (n:)e>0 C Lo(R)
which converges to 0 P — a.s. as € — 0 such that

|5tg—5,t[£e] - Et [56] | S Ne, Ve S [O,t].
Proof. a. We first prove (ii) (property (iii) being similar) using the standard linearization

argument. Fix t € [0,7] and set Y* := £, [¢°]. Assumption (H,) implies that we can
find a family of predictable processes (p®,7°) with values in [—K,, Kg]d+1 such that

LFY*® + / L:g(r,0,0)dr
t
is a martingale on [t,t + ¢, with
S S
L = 1+/ pﬁLﬁdr+/ VeLidW,, t <s<t+e.
t t
In particular,
t+e
fel€) =107 = B Lh+ [ Lialn0.00r].
t

Condition (H,) and the assumption on (£%).5¢ thus leads to

(€7 4el€] = ELE°]] < e,
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in which

t+e
ne == By |£|L5, . — Lj| +Xg/ Lidr} .
t

t+e 271/2
/ L:dr ]
t

1/2
< B PRILE . - TP + Bl PR | sw 1. )
<s<t+e

We have:

el < BIEPI 2 BILE - — LiP)Y? + Eullxg ) Ee

In addition,
t+e
Bl|L,. - Lf’] < CE, [ / |Li|2dr}
t

< eCE, [ sup !L:‘ﬂ
t<r<t+te

Hence,

Bl - P <0 (1 B[ swp 125~ 1P ).
t<r<tte
Since 7¢ and pf are bounded, the quantity sup,<, ;. E-[|L,.—L|?] is uniformly bounded.
Plugging back this estimate in (6.1) and recalling that sup,cp ) Bt [€?] is finite P — a.s. we
get that Ey[|¢|?)V2E| L5, — L§|?]"/? tends to 0 uniformly in ¢, P — a.s. as € goes to 0. The
second term of (6.1) can be estimated in the same way.
b. We now prove (i). Pick any t € [0,7] and £ € Lg([0,1]). The same arguments as
above yield
E L <

T
E, [L5T§+ / Lﬁg(r,o,o)dr] <E
t

| LS| + Txg| sup ILﬁldT] :
r<T

where L¢ solves

S S
L§:1+/ pﬁLﬁerr/ VELEAW,, t<s < T,
t t

for some predictable processes (p¢,~¢) with values in [, 9. K, g]d+1. Hence,

&[]l < B

|L£T|+T|Xg| sup |L§|dr] )
t<r<T

d+1

Since (p,~%) are valued in [~ K, K ]!, standard estimates imply that we can find C > 0,

which only depends on K such that £} [SUPtgrgT \Lf]Q] < C? P — a.s. The above leads to

NI

) )

and the arbitrariness of £ € Lo ([0,1]) concludes the proof. ]

E71E]] < (C + TCE, [|x,/]
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