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Abstract

We introduce a new class of Backward Stochastic Differential Equations in which

the T -terminal value YT of the solution (Y, Z) is not fixed as a random variable, but

only satisfies a weak constraint of the form E[Ψ(YT )] ≥ m, for some (possibly ran-

dom) non-decreasing map Ψ and some threshold m. We name them BSDEs with weak

terminal condition and obtain a representation of the minimal time t-values Yt such

that (Y, Z) is a supersolution of the BSDE with weak terminal condition. It provides

a non-Markovian BSDE formulation of the PDE characterization obtained for Marko-

vian stochastic target problems under controlled loss in Bouchard, Elie and Touzi [2].

We then study the main properties of this minimal value. In particular, we analyze

its continuity and convexity with respect to the m-parameter appearing in the weak

terminal condition, and show how it can be related to a dual optimal control problem in

Meyer form. These last properties generalize to a non Markovian framework previous

results on quantile hedging and hedging under loss constraints obtained in Föllmer and

Leukert [6, 7], and in Bouchard, Elie and Touzi [2].
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1 Introduction

Solving a backward stochastic differential equation (hereafter BSDE), with terminal data

ξ ∈ L2(FT ) and driver g, consists in finding a pair of predictable processes (Y,Z), with

certain integrability properties, such that the dynamics of Y satisfies dYt = −g(t, Yt, Zt)dt+

ZtdWt and YT = ξ (where W denotes a standard Brownian motion). It can be rephrased in:

find an initial data Y0 and a control process Z such that the solution Y Z of the controlled

stochastic differential equation

Y Z
t = Y0 −

∫ t

0
g(s, Y Z

s , Zs)ds+

∫ t

0
ZsdWs , 0 ≤ t ≤ T , (1.1)

satisfies Y Z
T = ξ. In cases where the previous problem does not admit a solution, a weaker

formulation is to find an initial data Y0 and a control Z such that

Y Z
T ≥ ξ P− a.s. (1.2)

In most applications, one is interested in the minimal initial condition Y0 and in the as-

sociated control Z. This is for instance the case in the financial literature in which Y0

represents the cost of the cheapest super-replication strategy for the contingent claim ξ,

and Z provides the associated hedging strategy, see e.g. [5].

Motivated by situations where this minimal value Y0 is too large for practical applications,

it was suggested to relax the strong constraint (1.2) into a weaker one of the form

E
[

ℓ(Y Z
T − ξ)

]

≥ m , (1.3)

where m is a given threshold and ℓ is a non-decreasing map. For ℓ(x) = 1{x≥0}, this

corresponds to matching the criteria Y Z
T ≥ ξ at least with probability m. In financial

terms, this is the so-called quantile hedging problem, see [6]1 . More generally, ℓ is viewed

as a loss function, one typical example being ℓ(x) := −(x−)q with q ≥ 1, see [7] for

general non-Markovian but linear dynamics. Such problems were coined “stochastic target

problems with controlled loss” by [2] who consider a non-linear Markovian formulation in

a Brownian diffusion setting, see also [8] for the jump diffusions setting.

The aim of this paper is to study the non-linear non-Markovian setting in which the

terminal constraint is of the form

E
[

Ψ(Y Z
T )

]

≥ m. (1.4)

In the above, m ∈ R and Ψ is a (possibly random) non-decreasing real-valued map. Our

problem can then be written as

Find the minimal Y0 such that (1.1) and (1.4) hold for some Z. (1.5)

This leads to the introduction of a new class of BSDEs which we call BSDEs with weak

terminal condition. More precisely, we refer to this problem by saying that we want to solve

1In fact, their original formulation also imposes a budget constraint constraint Y Z
T ≥ 0 P − a.s., which

can be taken into account by imposing a criteria of the form (1.4) with Ψ(Y Z
T ) := 1{Y Z

T
−ξ≥0} −∞1{Y Z

T
<0}.
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the BSDE with driver g and weak terminal condition (Ψ,m) to insist on the fact that the

terminal condition Y Z
T is not fixed as a random variable, but only has to satisfy the weak

constraint (1.4).

The first step in our analysis lies in a reformulation based on the martingale representation

theorem, as suggested in [2]. More precisely, if Y0 and Z are such that (1.4) holds, then the

martingale representation Theorem implies that we can find an element α in the set A0, of

predictable square integrable processes, such that

Ψ(Y Z
T ) ≥ Mα

T := m+

∫ T

0
αsdWs.

On the other hand, since Ψ is non-decreasing, one can introduce its left-continuous inverse

Φ and note that the solution (Y α, Zα) of the BSDE

Y α
t = Φ(Mα

T ) +

∫ T

t
g(s, Y α

s , Zα
s )ds −

∫ T

t
Zα
s dWs, 0 ≤ t ≤ T , (1.6)

actually solves (1.1) and (1.4). We indeed show that the solution of (1.5) is given by

inf{Y α
0 , α ∈ A0}. (1.7)

This leads to study its dynamical counterpart

Yα
τ := essinf{Y α′

τ , α′ ∈ A0 s.t. α′ = α on [[0, τ ]]} , 0 ≤ τ ≤ T . (1.8)

We verify that the family {Yα, α ∈ A0} satisfies a dynamic programming principle which

can be seen as a counterpart of the geometric dynamic programming principle of [15] used in

[2]. In particular, this implies that {Yα, α ∈ A0} is a g-submartingale family to which we

can apply the non-linear Doob-Meyer decomposition of [11]. This provides a representation

of the family {Yα, α ∈ A0} in terms of minimal supersolutions to a family of BSDEs with

driver g and (strong) terminal conditions {Φ(Mα
T ), α ∈ A0}. This representation allows in

particular to characterize the family {Yα, α ∈ A0} uniquely. Under additional convexity

assumptions on the coefficients g and Φ, we observe that the essential infimum in (1.8) is

attained. Hence, there exists an optimal α̂ ∈ A0 such that solving the BSDE with weak

terminal condition (Ψ,m) boils down to solving the BSDE with dynamics (1.6) and strong

terminal condition Φ(M α̂
T ). In a Markovian framework, our approach provides in particular

a BSDE formulation for the PDEs derived in [2].

We then study in details important properties of this family and focus in particular on

the regularity of Yα with respect to the threshold parameter m. We exhibit, under weak

conditions, a stability property of the solution with respect to the variations of the param-

eter m. We also observe that Yα is convex with respect to the threshold parameter. This

observation allows us in particular to conclude that Φ (whenever it is deterministic) can

be replaced by its more regular convex envelope in order to compute Yα on [0, T ). This

was already observed in the restrictive Markovian setting of [2], in which it is proved by

using PDE technics. We provide here a pure probabilistic argument. Similarly, it was also

observed in [6], [7] and [2] that (1.5) admits a dual linear problem when g is linear. We

extend this result via probabilistic arguments to the semi-linear setting, for which the dual
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formulation takes the form of a stochastic control problem in Meyer form.

The rest of the paper is organized as follows. In Section 2, we provide a precise formulation

for (1.5) and relate this problem to a g-submartingale family satisfying a dynamic program-

ming principle. Attainability of the optimal control α̂ ∈ A0 is also discussed. Section 3

collects the continuity and convexity properties as well as the dual formulation of the prob-

lem. Finally, Section 4 contains the proof of the BSDE representation for {Yα, α ∈ A0}.

We close this introduction with a series of notations that will be used all over this paper.

Let d ≥ 1 and T > 0 be fixed. We denote by W := (Wt)t∈[0,T ] a d-dimensional Brownian

motion defined on a probability space (Ω,F ,P) with P-augmented natural filtration F =

(Ft)t∈[0,T ]. The components of W will be denoted by W = (W 1, · · · ,W d) and E will stand

for the expectation with respect to P. For simplicity, we assume that F = FT . Throughout

the paper we will make use of the following spaces.

- Lp(U,G) denotes the set of p-integrable G-measurable random variables with values

in U , p ≥ 0, U a Borel set of Rn for some n ≥ 1 and G ⊂ F . When U and G can be

clearly identified by the context, we omit them. This will be in particular the case

when G = F .

- T denotes the set of F-stopping times in [0, T ]. For τ1 ∈ T , Tτ1 is the set of stopping

times τ2 in T such that τ2 ≥ τ1 P− a.s. The notation Eτ [·] stands for the conditional

expectation given Fτ , τ ∈ T .

- S2 denotes the set of R-valued, càdlàg2 and F-adapted stochastic processes X =

(Xt)t∈[0,T ] such that ‖X‖S2
:= E[supt∈[0,T ] |Xt|

2]1/2 < ∞.

- H2 denotes the set of Rn-valued, F-predictable stochastic processes X = (Xt)t∈[0,T ]

such that ‖X‖H2
:= E

[

∫ T
0 |Xt|

2dt
]1/2

< ∞. In the following, the dimension n will

be given by the context.

- K2 denotes the set of non-decreasing R-valued and F-adapted stochastic processes

X = (Xt)t∈[0,T ] such that ‖X‖S2
< ∞.

Inequalities between random variables are understood in the P− a.s.-sense.

2 BSDE with weak terminal condition

2.1 Definitions and problem reformulation

We first define the main object of this paper.

Definition 2.1 (Solution to a BSDE with weak terminal condition). Given a measurable

map Ψ : R × Ω 7→ U , with U ⊂ R ∪ {−∞}, τ ∈ T and µ ∈ L0(U,Fτ ), we say that

2right-continuous with left limits
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(Y,Z) ∈ S2×H2 is a supersolution of the BSDE with generator g : Ω× [0, T ]×R×Rd → R

and weak terminal condition (Ψ, µ, τ), in short BSDE(g,Ψ, µ, τ), if for any 0 ≤ s ≤ t ≤ T ,

Ys ≥ Yt +

∫ t

s
g(r, Yr , Zr)dr −

∫ t

s
ZrdWr, and (2.1)

Eτ [Ψ(YT )] ≥ µ. (2.2)

Before discussing the well-posedness of Equation (2.1)-(2.2), let us emphasize that the

difference with classical BSDEs lies in the fact that we do not prescribe a terminal condition

to Y in the classical P − a.s.-sense but only impose a weak condition in expectation form

(which justifies the terminology of BSDE with weak terminal condition). Even if we were

asking for equalities in (2.1)-(2.2), this would obviously be too weak to expect uniqueness,

as any random variable ξ satisfying Eτ [Ψ(ξ)] = µ could serve as a terminal condition.

However, when Ψ is non-decreasing, the set

Γ(τ, µ) := {Yτ : (Y,Z) ∈ S2 ×H2 is a supersolution of BSDE(g,Ψ, µ, τ)} , (2.3)

defined for any τ ∈ T and µ ∈ L0(U,Fτ ), can be characterized by its lower-bound, when-

ever it is achieved.

Throughout the paper, we shall restrict to the case where g is Lipschitz continuous with

linear growth, Ψ+ is bounded, and the domain of Ψ is bounded from below, in order to

avoid un-necessary technicalities.

Standing Assumption (HΨ): For P − a.e. ω ∈ Ω, the map y ∈ R 7→ Ψ(ω, y) is non-

decreasing, right-continuous, valued in [0, 1]∪{−∞}, and its left-continuous inverse Φ(ω, ·)

satisfies Φ : Ω× [0, 1] 7→ [0, 1] is measurable.

By left-continuous inverse we mean the left-continuous map defined for ω fixed by

Φ(ω, x) := inf{y ∈ R, Ψ(ω, y) ≥ x},

which satisfies

Φ ◦Ψ ≤ Id ≤ Ψ ◦ Φ. (2.4)

The left-hand side follows from the definition of Φ, the right-hand side holds by right-

continuity of Ψ. Note that the above assumption implies Ψ(ω, ·) = −∞ on (−∞, 0) and

Ψ(ω, ·) = 1 on [1,∞). In particular, the constraint in expectation (2.2) implies YT ≥ 0

P − a.s. Obviously the set [0, 1] is chosen for ease of notations and can be replaced by any

closed interval.

Standing Assumption (Hg) g is a measurable map from Ω× [0, T ]×R×Rd to R and

g(·, y, z) is F-predictable, for each (y, z) ∈ R × Rd. There exists a constant Kg > 0 and a

random variable χg ∈ L2(R+), such that

|g(t, 0, 0)| ≤ χg P− a.s.

|g(t, y1, z1)− g(t, y2, z2)| ≤ Kg(|y1 − y2|+ |z1 − z2|) P− a.s.

∀(t, yi, zi) ∈ [0, T ]× R× Rd, i = 1, 2.
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Let Aτ,µ denote the set elements α ∈ H2 such that

M (τ,µ),α := µ+

∫ τ∨·

τ
αsdWs takes values in [0, 1]. (2.5)

Then, (2.2) is equivalent to Ψ(YT ) ≥ M
(τ,µ),α
T for some α ∈ Aτ,µ. In view of (2.4), this

is equivalent to YT ≥ Φ(M
(τ,µ),α
T ) for some α ∈ Aτ,µ. This implies that supersolutions of

BSDE(g,Ψ, µ, τ) can be characterized in terms of g-expectations whose definition is recalled

below.

Definition 2.2 (g-expectation). Given τ2 ∈ T and ξ ∈ L2(R,Fτ2), let (Y,Z) ∈ S2 × H2

denote the solution of

Y = ξ +

∫ τ2

·∧τ2

g(s, Ys, Zs)ds−

∫ τ2

·∧τ2

ZsdWs.

Then, we define the (conditional) g-expectation of ξ at the stopping time τ1 ≤ τ2 as

Eg
τ1,τ2 [ξ] := Yτ1 . When τ2 ≡ T , we only write Eg

τ1 [ξ], and say that (Y,Z) solves BSDE(g, ξ).

Note that existence and uniqueness hold under Assumption (Hg). In the following, we

shall adopt the terminology of Peng [12] and call g-martingale (resp. g-submartingale) a

process Y such that Eg
t,s[Ys] = Yt (resp. E

g
t,s[Ys] ≥ Yt), for all t ≤ s ≤ T .

Proposition 2.1. Fix τ ∈ T , µ ∈ L0([0, 1],Fτ ). Then, (Y,Z) ∈ S2×H2 is a supersolution

of BSDE(g,Ψ, µ, τ) if and only if (Y,Z) satisfies (2.1) and there exists α ∈ Aτ,µ such that

Yt ≥ Eg
t [Φ(M

(τ,µ),α
T )] for t ∈ [0, T ] P− a.s.

Proof. Let (Y,Z) be a super solution of BSDE(g,Ψ, µ, τ). Then there exists some element

ρ in L0([0, 1],Fτ ) with ρ ≥ µ, P − a.s. and α̃ in Aτ,ρ such that Ψ(YT ) = M
(τ,ρ),α̃
T . Set

θα̃ := inf{s ≥ τ, M
(τ,µ),α̃
s = 0}. It is clear that θα̃ belongs to T and that α := α̃1[0,θα̃)

belongs to Aτ,µ and satisfies M
(τ,ρ),α̃
T ≥ M

(τ,µ),α
T , P − a.s., since M

(τ,ρ),α̃
T ≥ 0 by definition

of Aτ,ρ. The monotonicity of Φ and (2.4) imply that

YT ≥ (Φ ◦Ψ)(YT ) ≥ Φ(M
(τ,µ),α
T ).

By comparison for Lipschitz BSDEs, we obtain Yt ≥ Eg
t [Φ(M

(τ,µ),α
T )] for t ∈ [0, T ]. Conver-

sly, let α ∈ Aτ,µ be such that Yt ≥ Eg
t [Φ(M

(τ,µ),α
T )] for t ∈ [0, T ] and assume that (Y,Z)

satisfies (2.1). Then, (2.4) implies

Ψ(YT ) ≥ (Ψ ◦ Φ)(M
(τ,µ),α
T ) ≥ M

(τ,µ),α
T .

Taking the conditional expectation on both sides leads to (2.2). ✷

In view of Proposition 2.1, the lower bound of Γ(τ, µ) (which we recall, has been defined

in (2.3)) can be expressed in terms of

Yτ (µ) := ess inf
α∈Aτ,µ

Eg
τ

[

Φ(M
(τ,µ),α
T )

]

, τ ∈ T , µ ∈ L0([0, 1],Fτ ). (2.6)

This is the statement of the next corollary.
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Corollary 2.1. essinf Γ(τ, µ) = Yτ (µ), ∀ τ ∈ T , µ ∈ L0([0, 1],Fτ ).

Proof. The fact that Yτ ∈ Γ(τ, µ) implies Yτ ≥ Yτ (µ) follows from Proposition 2.1. On the

other hand, the same proposition implies that each Eg
τ [Φ(M

(τ,µ),α
T )] with α ∈ Aτ,µ belongs

to Γ(τ, µ). ✷

Remark 2.1. For later use, note that the assumptions (Hg) and (HΨ) ensure that we

can find η ∈ S2 such that |Eg
t [Φ(M)]| ∨ |Yt(µ)| ≤ ηt, for all t ≤ T and µ ∈ L0([0, 1],Ft),

M ∈ L0([0, 1]). See (i) of Proposition 5.2 in the Appendix.

Remark 2.2. Note that Yτ (µ) = Yτ (µ1)1A + Yτ (µ2)1Ac whenever µ := µ11A + µ21Ac

for A ∈ Fτ , µ1, µ2 ∈ L0([0, 1],Fτ ), and τ ∈ T . Indeed, α := 1[τ,T ](α11A + α21Ac) ∈

Aτ,µ for all αi ∈ Aτ,µi
with i = 1, 2. Since Eg

τ

[

Φ(M
(τ,µ),α
T )

]

= Eg
τ

[

Φ(M
(τ,µ1),α1

T )
]

1A +

Eg
τ

[

Φ(M
(τ,µ2),α2

T )
]

1Ac , this implies Yτ (µ) ≤ Yτ (µ1)1A+Yτ (µ2)1Ac . The converse inequality

follows from the previous identity applied with α1 := α1A and α2 := α1Ac for any α ∈ Aτ,µ

so that αi ∈ Aτ,µi
for i = 1, 2.

Remark 2.3. Before going on with the study of the set Γ, let us notice that a similar

analysis can be carried out for weak constraints of the form Eh
τ [Ψ(YT )] ≥ µ in place of

Eτ [Ψ(YT )] ≥ µ in (2.2), with Eh defined as the h-expectation associated to some random

map h satisfying similar conditions as g. In finance, the latter condition interprets as a

risk-measure constraints, see e.g. [12], while our condition is more related to expected loss

constraints, see [7]. Again, we try to avoid un-necessary additional technicalities and stick

to the case h ≡ 0.

2.2 BSDE characterization of the minimal initial condition

The main result of this section is a BSDE characterization for the lower bound of the set

Γ(τ, µ) of time-τ initial conditions of supersolutions of BSDE(g,Ψ, µ, τ). In particular, this

extends to a non Markovian framework the PDE characterization of [2].

For ease of notations, we now fix mo ∈ [0, 1] and set
{

Mα
t := M

(0,mo),α
t , Aα

τ := {α′ ∈ Aτ,Mα
τ
: α′ = α dt× dP on [[0, τ ]]},

A0 := A0,mo and Yα
t := Yt(M

α
t ) for α ∈ A0, t ∈ [0, T ],

where we recall that M (0,mo),α and A0,mo are given in (2.5).

Theorem 2.1. For any α ∈ A0, Y
α is a g-submartingale, it is làdlàg 3 on countable sets,

and the following dynamic programming principle holds:

(i) Yα
τ1 = ess inf

ᾱ∈Aα
τ1

Eg
τ1,τ2 [Y

ᾱ
τ2 ], for each τ1 ∈ T , τ2 ∈ Tτ1.

Under the additional assumption that

m ∈ [0, 1] 7→ Φ(ω,m) is continuous for P-a.e. ω ∈ Ω, (2.7)

the following holds:

3left and right-limited according to the french celebrated acronym
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(ii) Yα is indistinguishable from a càdlàg g-submartingale, for each α ∈ A0.

(iii) There exists a family (Zα,Kα)α∈A0
⊂ H2 ×K2 satisfying

sup
α∈A0

‖(Yα,Zα,Kα)‖
S2×H2×K2

< ∞ , (2.8)

and such that, for all α ∈ A0, we have

Yα = Φ(Mα
T ) +

∫ T

·
g(s,Yα

s ,Z
α
s )ds −

∫ T

·
Zα
s dWs +Kα −Kα

T , (2.9)

Kα
τ1 = ess inf

ᾱ∈Aα
τ1

E
[

Kᾱ
τ2 |Fτ1

]

, ∀ τ1 ∈ T , τ2 ∈ Tτ1 , (2.10)

and

(Yα,Zα,Kα)1[[0,τ ]] = (Y ᾱ,Z ᾱ,Kᾱ)1[[0,τ ]], ∀ τ ∈ T , ᾱ ∈ Aα
τ . (2.11)

(iv) (Yα,Zα,Kα)α∈A0
is the unique family of S2 ×H2 ×K2 satisfying (2.8)-(2.9)-(2.10)-

(2.11) for all α ∈ A0.

The proof of this theorem is reported in Section 4.

Remark 2.4. (i) The precise continuity assumption needed in the proof is : Φ(Mαn

T )

converges in L2 to Φ(Mα
T ) whenever ‖M

αn

T −Mα
T ‖L2

tends to 0, for any sequence (αn)n ⊂

A0. However, this condition implies that Φ is continuous, as soon as random variables with

non-absolutely continuous law with respect to the Lebesgue measure might be considered

(which is the case here).

(ii) We shall see in Proposition 3.3 below that Φ can be replaced by its m-convex envelope,

under mild assumptions. In this case, the continuity assumption of the second part of

Theorem 2.1 is not required anymore because the convex envelope of Φ is continuous, see

Remark 3.1 below.

2.3 Representation as a BSDE with strong terminal condition

The previous section raises in particular one natural question: Does there exist an admis-

sible control α̂ on the whole time interval [0, T ] allowing to match all time t-values of the

minimal solution of a BSDE with weak terminal condition? Rephrasing, we wonder about

the existence of a control α̂ in A0 such that

Y α̂
t = Eg

t

[

Φ(M α̂
T )

]

, 0 ≤ t ≤ T .

Hereby, solving the BSDE with weak terminal condition (Ψ,mo, 0) boils down to solving

the classical BSDE with the optimal strong terminal one Φ(M α̂
T ): along the optimal path

α̂, the compensator Kα̂ of the BSDE (2.9) must degenerate to 0.

Not surprisingly, the existence of an optimal control requires the addition of convexity

assumptions on the coefficients of the BSDE. We shall therefore assume that:
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(Hconv) For all (λ,m1,m2, t, y1, y2, z1, z2) ∈ [0, 1]×[0, 1]2×[0, T ]×R2×[Rd]2, the following

holds P− a.s.:

Φ(λm1 + (1− λ)m2) ≤ λΦ(m1) + (1− λ)Φ(m2)

g(t, λy1 + (1− λ)y2, λz1 + (1− λ)z2) ≤ λg(t, y1, z1) + (1− λ)g(t, y2, z2)

Remark 2.5. We recall the following result which is based on standard comparison argu-

ments, see e.g. [14, Proposition 7]: For any τ ∈ T , the map Eg
τ [Φ(·)] : L0([0, 1]) → L0 is

convex under Assumption (Hconv).

Proposition 2.2. Assume that Assumptions (Hconv) and (2.7) hold. Then, for any

(τ, α) ∈ T ×H2, there exists α̂τ,α ∈ Aα
τ such that

Yα
τ = Eg

τ

[

Φ(M α̂τ,α

T )
]

= Eg
τ,τ ′

[

Y α̂τ,α

τ ′

]

, ∀ τ ′ ∈ Tτ .

Remark 2.6. As detailed in Remark 3.2 below, the convexity assumption on the terminal

map Φ can be avoided in some cases. In particular, if Φ is deterministic then it can be

replaced by its convex envelope. Then, only the convexity assumption on g has to hold.

Proof. Lemma 4.1 below provides a sequence (αn)n valued in Aα
τ such that

Yα
τ = lim

n→∞
↓ Eg

τ

[

Φ(Mαn

T )
]

, P− a.s. (2.12)

Since the sequence (Mαn

T )n is bounded in [0, 1], we can find sequences of non-negative real

numbers (λn
i )i≥n with

∑

i≥n λ
n
i = 1, such that only a finite number of λn

i do not vanish, for

each n, and such that the sequence of convex combinations (M̃n
T )n given by

M̃n
T :=

∑

i≥n

λn
i M

αi

T (2.13)

converges P − a.s. to some M̂T ∈ L0([0, 1]). By dominated convergence, the convergence

holds in L2, in particular Eτ [M̂T ] = Mα
τ , and the martingale representation Theorem

implies that we can find α̂ ∈ Aα
τ such that M̂T = M α̂

T . Using the convexity of Φ and g, see

Remark 2.5, we deduce that

Ỹ n
τ :=

∑

i≥n

λn
i E

g
τ

[

Φ(Mαi

T )
]

≥ Eg
τ

[

Φ(M̃n
T )

]

.

By (2.12), Ỹ n
τ → Yα

τ P−a.s. On the other hand, the convergence M̃n
T → M α̂

T in L2 combined

with the boundedness and a.s. continuity of Φ implies that Φ(M̃n
T ) → Φ(M α̂

T ) in L2, after

possibly passing to a subsequence. Therefore the convergence Eg
τ

[

Φ(M̃n
T )

]

→ Eg
τ

[

Φ(M α̂
T )

]

P− a.s. follows by Proposition 5.1 below. This gives Yα
τ ≥ Eg

τ

[

Φ(M α̂
T )

]

, while the converse

holds by definition of Yα
τ .

It remains to show that Yα
τ = Eg

τ,τ ′

[

Y α̂
τ ′
]

, for τ ′ ∈ Tτ . To see this, first note that the above

implies that Yα
τ = Eg

τ,τ ′

[

Eg
τ ′ [Φ(M

α̂
T )]

]

≥ Eg
τ,τ ′

[

Y α̂
τ ′
]

by standard comparison arguments and

the fact that Eg
τ ′ [Φ(M

α̂
T )] ≥ Y α̂

τ ′ by definition. As above, we can find a sequence (α̂n) ∈ Aα̂
τ ′

such that Eg
τ ′

[

Φ(M α̂n

T )
]

→ Y α̂
τ ′ P− a.s. In view of Remark 2.1, the convergence holds in L2

and Proposition 5.1 below implies

Yα
τ ≤ Eg

τ,τ ′

[

Eg
τ ′

[

Φ(M α̂n

T )
]]

→ Eg
τ,τ ′

[

Y α̂
τ ′

]

,

where we used the fact that α̂n ∈ Aα̂
τ ′ ⊂ Aα

τ to obtain the left hand-side. ✷
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3 Main properties of the minimal initial condition process

In this section, we emphasize remarkable properties of the map Yt : µ ∈ L0([0, 1],Ft) 7→

Yt(µ), for t ∈ [0, T ). We first derive the continuity of this map under a weak continuity

assumption on Eg[Φ(·)]. Then, we verify that this map (or more precisely its l.s.c. envelope)

is convex, and discuss the propagation of the convexity property to the time boundary T−.

Finally, we retrieve, in this non-Markovian setting, a dual representation of the map Y0,

using solely probabilistic arguments.

3.1 Continuity

Our continuity result is stated in terms of the quantities

Errt(η) := esssup
{

Rt(M,M ′) : M,M ′ ∈ L0([0, 1]) , Et[|M −M ′|2] ≤ η
}

,

defined for η ∈ L0([0, 1]), in which

Rt(M,M ′) := |Eg
t [Φ(M)]− Eg

t [Φ(M
′)]|.

Observe that classical a priori estimates on BSDEs ensure that Errt(ηn) → 0 as ηn → 0

P − a.s. with (ηn)n ⊂ L0([0, 1]), whenever Φ is a deterministic Lipschitz map, see e.g.

Proposition 5.1 below. This observation remains valid when Φ is simply continuous, via a

classical convolution density argument for Lipschitz maps on bounded domains. The next

result indicates that this property ensures the regularity of the map: µ 7→ Yt(µ).

Proposition 3.1. Let t < T , µ1, µ2 ∈ L0([0, 1],Ft). Then,

|Yt(µ1)− Yt(µ2)| ≤ Errt(∆(µ1, µ2)) + Errt(∆(µ2, µ1)),

where

∆(µi, µj) := (1−
µi

µj
)1{µi<µj} +

µi − µj

1− µj
1{µi>µj}, i, j = 1, 2.

Moreover,

|Yt(µ1)− Yt(µ2)|1{µ1=0} ≤ Rt(µ2, 0)

and

|Yt(µ1)− Yt(µ2)|1{µ1=1}

≤ esssup
{

Rt(1,M) : M ∈ L0([0, 1]) , Et[|1−M |2] ≤ 1− µ2

}

.

In particular, if Errt(ηn) → 0 P − a.s. as ηn → 0 P − a.s., for all (ηn)n ⊂ L0([0, 1]), then

µ ∈ L0((0, 1),Ft) 7→ Yt(µ) is continuous for the sequential P − a.s. convergence and the

strong L2 convergence.
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Proof. Step 1. Fix µ1, µ2 ∈ L0([0, 1],Ft). Given α2 ∈ At,µ2
, we define

λ :=
1− µ1

1− µ2
1{µ2<µ1} +

µ1

µ2
1{µ1<µ2} + 1{µ1=µ2} ,

which is by construction valued in [0, 1]. Since M (t,µ2),α2 takes values in [0, 1],

M (t,µ1),λα2 = µ1 − λµ2 + λM (t,µ2),α2 ∈ [µ1 − λµ2, µ1 + λ(1− µ2)] ⊂ [0, 1] .

In particular, λα2 ∈ At,µ1
. Thus, (2.6) leads to

Yt(µ1) ≤ Eg
t [Φ(M

(t,µ2),α2

T )] + (Eg
t [Φ(M

(t,µ1),λα2

T )]− Eg
t [Φ(M

(t,µ2),α2

T )]) . (3.1)

Besides,

M
(t,µ1),λα2

T −M
(t,µ2),α2

T = µ1 − λµ2 + (λ− 1)M
(t,µ2),α2

T

so that, since M
(t,µ2),α2

T belongs to [0, 1], we have

µ1 − 1 + λ(1− µ2) ≤ M
(t,µ1),λα2

T −M
(t,µ2),α2

T ≤ µ1 − λµ2.

In addition,

µ1 − λµ2 = 0 , if µ1 < µ2 , and

µ1 − 1 + λ(1− µ2) = 0 , if µ1 ≥ µ2 .

This directly leads to

Et[|M
(t,µ1),λα2

T −M
(t,µ2),α2

T |] ≤ ∆(µ1, µ2) .

Since these two processes belong to [0, 1], we get

Et[|M
(t,µ1),λα2

T −M
(t,µ2),α2

T |2] ≤ ∆(µ1, µ2).

Hence, the arbitrariness of α2 ∈ At,µ2
together with (2.6) and (3.1) provides

Yt(µ1) ≤ Yt(µ2) +Errt(∆(µ1, µ2)) .

Interchanging the roles of µ1 and µ2 leads to

Yt(µ2) ≤ Yt(µ1) +Errt(∆(µ2, µ1)) .

Step 2. We next consider the case where P [µ1 = 0] > 0. Without loss of generality,

we can assume that µ1 ≡ 0. Fix α ∈ At,µ2
. Since At,µ1

= {0}, M
(t,µ2),α
T ≥ 0 and Φ is

non-decreasing, comparison implies that

Yt(0) = Eg
t [Φ(0)] ≤ Eg

t [Φ(M
(t,µ2),α
T )].

In particular, Yt(0) = Eg
t [Φ(0)] ≤ Yt(µ2) ≤ Eg

t [Φ(M
(t,µ2),0
T )] = Eg

t (Φ(µ2)).

Step 3. We now consider the case where P [µ1 = 1] > 0. Again, we can assume that

µ1 ≡ 1 so that At,µ1
= {0}. By comparison as above, one has

Yt(1) = Eg
t [Φ(1)] ≥ Yt(µ2).

On the other hand, since M (t,µ2),α is a martingale taking values in [0, 1], we have

Et[|1−M
(t,µ2),α
T |2] ≤ Et[1−M

(t,µ2),α
T ] = 1− µ2, α ∈ At,µ2

,

from which the result follows. ✷
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3.2 Convexity

In [2] and [8], it is shown that the map m ∈ [0, 1] 7→ Y0(m) is convex. This is done in

a Markovian framework using PDE arguments. In this section, we provide a probabilistic

proof of this result which hereby extends to our setting. The result is stated for the lower-

semicontinuous envelope Yt∗ of Yt defined as

Yt∗(µ) := lim
ε→0

essinf{Yt(µ
′) : |µ′ − µ| ≤ ε, µ′ ∈ L0([0, 1],Ft)}, (3.2)

for any t ∈ [0, T ]. We refer to Proposition 3.1, the discussion before it and to (ii) of Remark

2.4 for conditions ensuring that Y∗ = Y.

We first make precise the notion of convexity adapted to our non-Markovian setting. Fix

a time t ∈ [0, T ].

Definition 3.1 (Ft-convexity).

(i) In the following, we say that a subset D ⊂ L∞(R,Ft) is Ft-convex if λµ1+(1−λ)µ2 ∈

D, for all µ1, µ2 ∈ D and λ ∈ L0([0, 1],Ft).

(ii) Let D be an Ft-convex subset of L∞(R,Ft). A map J : D 7→ L2(R,Ft) is said to be

Ft-convex if

Epi(J ) := {(µ, Y ) ∈ D × L2(R,Ft) : Y ≥ J (µ)}

is Ft-convex.

(iii) Let Epic(Yt) be the set of elements of the form
∑

n≤N λn(µn, Yn) with (µn, Yn, λn)n≤N ⊂

Epi(Yt)× L0([0, 1],Ft) such that
∑

n≤N λn = 1, for some N ≥ 1. We then denote by

Epi
c
(Yt) its closure in L2. Finally, the Ft-convex envelope of Yt is defined as

Yc
t (µ) := essinf{Y ∈ L2(R,Ft) : (µ, Y ) ∈ Epi

c
(Yt)}. (3.3)

We can now state the convexity property. It requires a right continuity property in time,

which holds under the conditions of Theorem 2.1(ii), also recall (ii) of Remark 2.4.

Proposition 3.2. Assume that Yt(µ) = Yt+(µ) for any µ ∈ L0([0, 1],Ft) and t < T . Then,

the map µ ∈ L0([0, 1],Ft) 7→ Yt∗(µ) is Ft-convex, for all t < T .

Proof. Fix t ∈ [0, T ) and set D := L0([0, 1],Ft) for ease of notations. The proof is divided

in several steps.

Step 1. (µ,Yc
t (µ)) ∈ Epi

c
(Yt), for all µ ∈ D.

Indeed, the family F := {Y ∈ L2(R,Ft) : (µ, Y ) ∈ Epi
c
(Yt)} is directed downward (for

every fixed element µ in D) since Y 11{Y 1≤Y 2} + Y 21{Y 1>Y 2} ∈ F , by Ft-convexity of

Epi
c
(Yt), for all Y

1, Y 2 ∈ F . It then follows from [9, Proposition VI.1.1] that there exists

a sequence (Y n)n≥1 ⊂ F such that Y n ↓ Yc
t (µ) P − a.s. Since Y 1 and Yc

t (µ) ∈ L2, the

monotone convergence Theorem implies that Y n → Yc
t (µ) in L2, as n goes to infinity. The

set Epi
c
(Yt) being closed in L2, this proves our claim.
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Step 2. Let η ∈ S2 be as in Remark 2.1. Then, |Yc
t (µ)| ≤ ηt, for all t ≤ T and µ ∈ D.

We first observe that Y ≥ Yc by construction. Remark 2.1 thus implies that Yc
t (µ) ≤ ηt.

On the other hand, let (Y n)n≥1 be as in the step above. We claim that it satisfies Y n ≥ −ηt,

for each n ≥ 1. Then, the lower bound Yc
t (µ) ≥ −ηt is obtained by passing to the limit. To

see this, it suffices to prove this property for any Y ∈ L2(R,Ft) such that (µ, Y ) ∈ Epi
c
(Yt).

But, such an element (µ, Y ) is obtained by taking the L2 limit of elements of the form
∑

n≤N λn(µn, Yn) with (µn, Yn, λn)n≤N ⊂ Epi(Yt)× L0([0, 1],Ft), such that
∑

n≤N λn = 1.

Each Yn of the latter family is bounded from below by −ηt by Remark 2.1, and hence so is

Y .

Step 3. The map µ ∈ D 7→ Yc
t (µ) is Ft-convex.

Fix µ1, µ2 ∈ D and λ ∈ L0([0, 1],Ft). Step 1 implies that (µi,Yc
t (µ

i)) ∈ Epi
c
(Yt) for i =

1, 2. Clearly, Epi
c
(Yt) is Ft-convex. It follows that (λµ

1+(1−λ)µ2, λYc
t (µ

1) +(1−λ)Yc
t (µ

2))

∈ Epi
c
(Yt), so that λYc

t (µ
1) +(1− λ)Yc

t (µ
2) ≥ Yc

t (λµ
1 + (1− λ)µ2). Now, for any Y i such

that (µi, Y i) ∈ Epi(Yc
t ), one has Y i ≥ Yc

t (µ
i), i = 1, 2. This fact combined with the

previous inequality thus implies λY 1 +(1− λ)Y 2 ≥ Yc
t (λµ

1 + (1− λ)µ2). This means that

Epi(Yc
t ) is Ft-convex.

Step 4. Yt∗(µ) ≥ Yc
t (µ), for all µ ∈ D.

Fix ε > 0 and set Dε
µ := {µ′ ∈ L0([0, 1],Ft), |µ

′ − µ| ≤ ε}. It follows from Remark 2.2

that the family {Yt(µ
′) : µ′ ∈ Dε

µ} is directed downward. Then, we can find a sequence

(µε
n)n≥1 ⊂ Dε

µ such that

Yt(µ
ε
n) → Zε(µ) := essinf{Yt(µ

′) : µ′ ∈ Dε
µ} P− a.s.

Since (Zε(µ))ε>0 is non-decreasing, limN→∞Z1/N (µ) = Yt∗(µ), recall (3.2). Note that

Remark 2.1 implies that (Yt(µ
1/N
n ))n≥1 →n Z1/N (µ) in L2 and define

kN := min{n ≥ 1 : ‖Yt(µ
1/N
n )− Z1/N (µ)‖L2 ≤ 1/N}.

Then, (µ
1/N
kN

,Yt(µ
1/N
kN

)) → (µ,Yt∗(µ)) in L2 as N → ∞. Since Epi(Yt) ⊂ Epi
c
(Yt) and the

latter is closed under L2-convergence, this implies that (µ,Yt∗(µ)) ∈ Epi
c
(Yt). We conclude

by appealing to the definition of Yc
t in (3.3).

Step 5. Yc
t (µ) ≥ Yt∗(µ), for all µ ∈ D.

In view of Steps 3 and 4, the result of Step 5 actually proves that Yt∗ = Yc
t is Ft-convex.

We now proceed to the proof of Step 5 which is itself divided in two parts.

Step 5.a It follows from Step 1, that there exists a sequence

(µn, Yn, λ
N
n )n≥1,N≥1 ⊂ Epi(Yt)× L0([0, 1],Ft) (3.4)

such that
∑

n≤N λN
n = 1, for all N , and

(µ̂N , ŶN ) :=
∑

n≤N

λN
n (µn, Yn) → (µ,Yc

t (µ)) in L2. (3.5)
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Fix N ≥ 1 and ε > 0. Let α̂N ∈ H2 be such that µ̂N = mo +
∫ t
0 α̂

N
s dWs. Since the

family (λN
n )n≤N is composed of Ft-measurable random variables summing to 1, one can

find αN ∈ H2 and a random variable ξεN ∈ L2(Ft+ε) such that

µ̂N +

∫ t+ε

t
αN
s dWs = ξεN and P [ξεN = µn|Ft] = λN

n , for n ≤ N. (3.6)

Without loss of generality, we can assume that αN = α̂N dt × dP on [0, t]. Then, (i) of

Theorem 2.1 and Remark 2.2 yield

Yt(µ̂N ) = Y α̂N

t ≤ Eg
t,t+ε(Y

αN

t+ε) = Eg
t,t+ε(Yt+ε(ξ

ε
N ))

= Eg
t,t+ε





∑

n≤N

1ξε
N
=µn

Yt+ε(µn)



 . (3.7)

We claim that

lim inf
ε→0

Eg
t,t+ε





∑

n≤N

1ξε
N
=µn

Yt+ε(µn)



 ≤
∑

n≤N

λN
n Yt(µn). (3.8)

Then, (3.7), (3.8), (3.4) and (3.5) lead to

Yt(µ̂N ) ≤
∑

n≤N

λN
n Yt(µn) ≤

∑

n≤N

λN
n Yn = ŶN .

Appealing to (3.5), we deduce that

lim inf
N→∞

Yt(µ̂N ) ≤ Yc
t (µ).

Since µ̂N → µ P− a.s., this together with Remark 2.2 implies that

Zε(µ) ≤ lim inf
N→∞

Yt(µ̄N ) = lim inf
N→∞

(

Yt(µ̂N )1{|µ̂N−µ|≤ε} + Yt(µ)1{|µ̂N−µ|>ε}

)

≤ Yc
t (µ),

for all ε > 0, where

µ̄N := µ̂N1{|µ̂N−µ|≤ε} + µ1{|µ̂N−µ|>ε} ∈ Dε
µ,

see Step 4 for the definitions of Zε(µ) and Dε
µ. Since Zε(µ) ↑ Yt∗(µ) as ε goes to 0 by (3.2),

this shows the required result.

Step 5.b It finally remains to prove the claim (3.8).

Remark 2.1 and (ii) of Proposition 5.2 in the Appendix imply that

Eg
t,t+ε





∑

n≤N

1ξεN=µn
Yt+ε(µn)



 ≤ Et





∑

n≤N

1ξεN=µn
Yt+ε(µn)



+ ηε

≤ Et





∑

n≤N

1ξε
N
=µn

Yt(µn)



+ ηε

+
∑

n≤N

Et [|Yt+ε(µn)− Yt(µn)|] ,
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where ηε → 0 P− a.s. as ε → 0. The right-hand side of (3.6) then leads to

Eg
t,t+ε





∑

n≤N

1ξε
N
=µn

Yt+ε(µn)



 ≤
∑

n≤N

λN
n Yt(µn) + ηε

+
∑

n≤N

Et [|Yt+ε(µn)−Yt(µn)|] .

Recall that Yt+(µn) = Yt(µn) by assumption, and that (Y(µn))n is bounded by some

η ∈ S2, see Remark 2.1. Sending ε → 0 in the above inequality and appealing to the

Lebesgue dominated convergence Theorem proves (3.8). ✷

In the context of PDEs, convexity in the domain propagates up to the boundary, which

leads to a boundary layer phenomenon. In [2] and [8] this translates in the fact that the

natural T -time boundary condition should be stated in terms of the m-convex envelope of

Φ. We observe hereafter that this property extends to our non-Markovian setting, whenever

Φ is deterministic.

We recall from Theorem 2.1 (i) that Y is làdlàg on countable sets. Under the following

condition, it will actually be càdlàg up to undistinguishability. As opposed to Proposition

3.2, we shall not need to impose any right-continuity for the following.

Proposition 3.3. Assume that Φ is deterministic and let Φ̂ denote its convex envelope.

Then,

lim
t↑T

Yα
t = Φ̂(Mα

T ) and Yα
τ = ess inf

α′∈Aα
τ

Eg
τ

[

Φ̂(Mα
′

T )
]

,

for all α ∈ A0 and τ ∈ T such that τ < T .

Before proving this result, let us make some observations.

Remark 3.1. Since Φ is non-decreasing, its convex envelope is continuous on [0, 1). More-

over, Φ is left-continuous, so that Φ̂ has to be continuous at 1 as well.

Remark 3.2. In Section 2.3, we observed that the essential infimum in the dynamic pro-

gramming principle is attained whenever Φ and g are convex. Hence, the previous propo-

sition allows straightforwardly to avoid the convexity requirement on Φ, whenever it is

deterministic.

Remark 3.3. The proof below can easily be adapted to the case where Φ(ω,m) = φ(m)ξ(ω)

for some non-negative random variable ξ and a deterministic map φ. This is due to the

fact that the m-convex envelope of Φ is fully characterized by the convex envelope φ̂ of

φ: Φ̂(ω,m) = φ̂(m)ξ(ω). This allows one to follow the construction used in our proof. In

particular, in the quantile hedging problem of Fölmer and Leukert [6], one has Φ(ω,m) =

1{m>0}ξ(ω) (m ∈ [0, 1]), with ξ taking non-negative values, so that Φ̂(ω,m) = mξ(ω), see

also [2].

Proof of Proposition 3.3. We prove each assertion separately.

15



Step 1. By definition of the convex envelope, we can find a measurable map m ∈ [0, 1] 7→

(℘(m), ℘(m), ε(m)) ∈ [0, 1]3 such that ℘(m) ≤ m ≤ ℘(m), ε(m)℘(m)+(1−ε(m))℘(m) = m

and

Φ̂(m) = ε(m)Φ(℘(m)) + (1− ε(m))Φ(℘(m)) ,

for any m ∈ [0, 1]. Let tn ↑ T . Then, one can find αn ∈ Aα
tn and ξn ∈ L0([0, 1])

such that Mαn

T = Mα
tn +

∫ T
tn
αn
s dWs = ξn, where P

[

ξn = ℘(Mα
tn)|Ftn

]

= ε(Mα
tn) and

P
[

ξn = ℘(Mα
tn)|Ftn

]

= 1 − ε(Mα
tn). It follows from the above and (iii) of Proposition

5.2 in the Appendix that

Yα
tn ≤ Etn [Φ(ξ

n)] + ηn = Φ̂(Mα
tn) + ηn,

where ηn → 0 as n → ∞. Since Y is làdlàg on countable sets (by Proposition 4.2), passing

to the limit implies that

lim
n→∞

Yα
tn ≤ Φ̂(Mα

T ). (3.9)

We now prove the converse inequality. We use (iii) in Proposition 5.2 in the Appendix and

Jensen’s inequality to deduce that

Y α′

tn := Eg
tn,T

[Φ(Mα′

T )] ≥ Etn

[

Φ̂(Mα′

T )
]

− η̄n ≥ Φ̂(Mα
tn)− η̄n , α′ ∈ Aα

tn ,

where η̄n → 0 as n → ∞. Combining the arbitrariness of α′ ∈ Aα
tn with the làdlàg property

of Y on countable sets, we get that

lim
n→∞

Yα
tn ≥ lim inf

n→∞
ess inf

α′∈Aα
tn

Y α′

tn ≥ Φ̂(Mα
T ) .

Step 2. It follows from Theorem 2.1 (i) that

Yα
τ = ess inf

α′∈Aα
τ

Eg
τ,tn∨τ [Y

α′

tn∨τ ] , n ∈ N .

The process Yα′

.∨τ being làdlàg on the set {tn, n ≥ 1}, limn→∞ Yα′

tn∨τ is well-defined and

coincides with limn→∞ Yα′

tn . Moreover, it follows from the bound in Remark 2.1 that the

convergence holds in L2. In view of the stability result of Proposition 5.1 and Step 1. above,

passing to the limit as n → ∞ leads to

Yα
τ ≤ ess inf

α′∈Aα
τ

Eg
τ [ limn→∞

Yα′

tn ] = ess inf
α′∈Aα

τ

Eg
τ [Φ̂(M

α′

T )].

Since Φ ≥ Φ̂, the reverse inequality holds by definition of Yα
τ in (2.6). Since Φ̂ is continuous

by Remark 3.1, we can now appeal to the second statement of Proposition 4.2 to assert

that, up to indistinguishability, Yα is càdlàg, so that limt↑T Yα
t = limn→∞ Yα

tn . ✷

3.3 Dual representation

In this section, we provide a dual formulation for the minimal initial condition at time 0,

m 7→ Y0(m). It requires the introduction of the Fenchel transforms of g and Φ.
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We therefore define

Φ̃ : (ω, l) ∈ Ω× R 7→ sup
m∈[0,1]

(ml − Φ(ω,m))

and

g̃ : (ω, t, u, v) ∈ Ω× [0, T ]× R× Rd 7→ sup
(y,z)∈R×Rd

(

yu+ z⊤v − g(ω, t, y, z)
)

.

Remark 3.4. It follows from the assumption (Hg) that the domain of g̃(ω, t, ·), dom(g̃(ω, t, ·)),

is contained in [−Kg,Kg]
d+1 for P−a.e. ω ∈ Ω and all t ≤ T . The assumption (HΨ) ensures

that the domain of Φ̃(ω, ·) is the all real line, P− a.s..

In the following, we denote by Λ the set of predictable processes λ with values in R×Rd

such that λt(ω) ∈ dom(g̃(ω, t, ·)) for Leb× P-a.e. (ω, t) ∈ Ω× [0, T ].

To λ = (ν, ϑ) ∈ Λ, we associate the process Lλ defined by

Lλ
t = 1 +

∫ t

0
Lλ
sνsds+

∫ t

0
Lλ
sϑsdWs , t ∈ [0, T ].

Our dual formulation for Y0 is stated in terms of

X0(l) := inf
λ∈Λ

Xl,λ
0 , l > 0,

where

Xl,λ
0 := E

[∫ T

0
Lλ
s g̃(s, λs)ds+ Lλ

T Φ̃(l/L
λ
T )

]

, λ ∈ Λ , l > 0.

The fact that the Fenchel transform of X0 provides a lower bound for Y0 is straightfor-

ward, and detailed in Proposition 3.4 below for the convenience of the reader. For ease of

notations, we now write Am for A0,m, Mm,α for M (0,m),α, and denote by (Y m,α, Zm,α) the

solution of the BSDE(g,Φ(Mm,α
T )), α ∈ Am.

Proposition 3.4. Y0(m) ≥ supl>0 (lm− X0(l)), for all m ∈ [0, 1].

Proof. Fix α ∈ Am and λ = (ν, ϑ) ∈ Λ. Then, it follows from the definition of Φ̃ and g̃

that

E
[

Y m,α
T Lλ

T

]

= Y m,α
0

+ E

[∫ T

0
Lλ
s

(

νsY
m,α
s + ϑ⊤

s Z
m,α
s − g(s, Y m,α

s , Zm,α
s )

)

ds

]

≤ Y m,α
0 + E

[∫ T

0
Lλ
s g̃(s, λs)ds

]

,

and

Y m,α
T Lλ

T = Φ(Mm,α
T )Lλ

T ≥ lMm,α
T − Lλ

T Φ̃(l/L
λ
T ),

for l > 0. Note that, in the above, we have cancelled the expectation of the local martingale

part
∫ T
0 (Lλ

sZ
m,α
s + Y m,α

s Lλ
sϑs)dWs although LλZm,α might not belong to H2. If not, one

17



may use a localization argument since all other terms belongs to L1 uniformly in time.

Combining the above and using the martingale property of Mm,α yields

Y m,α
0 ≥ lm− E

[∫ T

0
Lλ
s g̃(s, λs)ds+ Lλ

T Φ̃(l/L
λ
T )

]

= lm−X l,λ
0 .

The result follows from the arbitrariness of l > 0, λ ∈ Λ, and α ∈ Am. ✷

We now show that equality is satisfied in Proposition 3.4 whenever existence holds in

the dual problem. This is proved under the following assumptions. Let C1
b be the set of

continuously differentiable maps with bounded first derivatives.

Assumption (H1

d
) The following holds for Leb× P-a.e. (t, ω) ∈ [0, T ]× Ω:

(a) the maps Φ̃(ω, ·) and g̃(ω, ·) are C1
b on their domain, and dom(g̃(ω, t, ·)) is closed;

(b) |∇Φ̃(ω, ·)|+ |∇g̃(ω, t, ·)| ≤ χΦ̃,g̃(ω), for some χΦ̃,g̃ ∈ L2(R);

(c) Φ(ω,m) = sup
l>0

(

lm− Φ̃(ω, l)
)

, for all m ∈ [0, 1];

(d) g(ω, t, y, z) = max
(u,v)∈dom(g̃(ω,t,·))

(

yu+ z⊤v − g̃(ω, t, u, v)
)

, for all (y, z) ∈ R× Rd.

In the above, ∇Φ̃ and ∇g̃ stands for the gradient with respect to l and (u, v) respectively.

Note that (a) and (b) are of technical nature, while (c) and (d) mean that Φ and g are

convex, i.e. coincide with their bi-dual. The latter is a minimal requirement if one wants

the duality to hold.

Proposition 3.5. Let Assumption (H1

d
) hold. Assume further that there exists l̂ > 0 and

λ̂ ∈ Λ such that

sup
l>0

(lm− X0(l)) = l̂m− X0(l̂) = l̂m−Xl̂,λ̂
0 . (3.10)

Then, there exists α̂ ∈ Am such that

Y0(m) = Y m,α̂
0 = l̂m− X0(l̂).

It satisfies

g(·, Y m,α̂, Zm,α̂) = λ̂⊤(Y m,α̂, Zm,α̂)− g̃(·, λ̂) , Φ(Mm,α̂
T ) =

Mm,α̂
T l̂

L

λ̂

T
− Φ̃(l̂/Lλ̂

T ). (3.11)

Before to provide the proof, let us make the following observation which pertains for the

case of a linear driver g.

Remark 3.5. Assume that g is linear, i.e. there exist bounded predictable processes

AY and AZ such that g : (ω, t, y, z) 7→ g(ω, t, 0, 0) + AY
t (ω)y + AZ

t (ω)z. In this case,

Λ = {(AY , AZ)} and therefore

X0(l) = E

[∫ T

0
Lsg̃(s,A

Y
s , A

Z
s )ds + LT Φ̃(l/LT )

]

,

18



with L given by

Lt = 1 +

∫ t

0
LsA

Y
s ds+

∫ t

0
LsA

Z
s dWs , t ∈ [0, T ].

Then, the dual formulation of Proposition 3.5 above drops down to finding l̂ which max-

imizes lm − X0(l). This generalizes the result of [6] and [2] obtained for quantile hedging

problems in linear models of financial markets.

Proof of Proposition 3.5. We split the proof in two steps.

Step 1. For ease of notations, we set L̂ := Lλ̂. By optimality of l̂, one has

l̂m− E
[

L̂T Φ̃(l̂/L̂T )
]

≥ m(l̂ + ι)− E
[

L̂T Φ̃((l̂ + ι)/L̂T )
]

,

for all ι > −l̂. Since Φ̃ is by construction P − a.s. convex, this implies that ζι := ∇Φ̃((l̂ +

ι)/L̂T ) satisfies mι ≤ E[ζι]ι, for all ι > −l̂, recall (H1

d
) (a) and (b). Taking ι of the form

−1/n and then 1/n, for n → ∞, and using (H1

d
) (a) and (b) then leads to

m = E[ζ] where ζ := ∇Φ̃(l̂/L̂T ). (3.12)

We now appeal to (H1

d
) (c) to deduce that

Φ(ζ) = ζ(l̂/L̂T )− Φ̃(l̂/L̂T ). (3.13)

By construction, Φ̃ is P− a.s. 1-Lipschitz and non-decreasing, i.e. ζ ∈ L0([0, 1]). In view

of (3.12), the martingale representation Theorem then implies that we can find α̂ ∈ Am

such that M̂T := Mm,α̂
T = ζ.

Step 2. We now write (ν̂, ϑ̂) := λ̂ and fix λ = (ν, θ) ∈ Λ to be chosen later on. Clearly, Λ

is convex. Hence, λε := (1−ε)(ν̂ , ϑ̂)+ε(ν, ϑ) ∈ Λ, ε ∈ [0, 1]. Moreover, direct computations

show that

∂

∂ε
Lλε

|ε=0 = L̂R̂ where R̂ :=

∫ ·

0
(δνs − δϑsϑ̂s)ds +

∫ ·

0
δϑsdWs,

in which we use the notations δλ := (δν, δϑ) := (ν − ν̂, ϑ − ϑ̂).

Recalling that elements of Λ take bounded values, see Remark 3.4, and arguing as in Step

1, one easily checks that the optimality condition Xl̂,λε

0 ≥ Xl̂,λ̂
0 , for all ε ∈ [0, 1], implies that

η̂ := ∇g̃(·, λ̂) satisfies

0 ≤E

[∫ T

0
L̂s

(

R̂sg̃(s, λ̂s) + η̂⊤s δλs

)

ds+ R̂T L̂T (Φ̃(l̂/L̂T )

]

+ E
[

−(l̂/L̂T )∇Φ̃(l̂/L̂T ))
]

=E

[∫ T

0
L̂s

(

R̂sg̃(s, λ̂s) + η̂⊤s δλs

)

ds− R̂T L̂TΦ(M̂T )

]

, (3.14)

in which we used (3.12), (3.13) and the relation ζ = M̂T to deduce the second equality. Let

(Ŷ , Ẑ) be defined by

Ŷ := L̂−1E.

[

L̂TΦ(M̂T )−

∫ T

.
L̂sg̃(s, λ̂s)ds

]

and Ẑ := Z̄ − Ŷ ϑ̂, (3.15)
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where Z̄ ∈ H2 is implicitly given by

L̂tŶt = L̂TΦ(M̂T )−

∫ T

t
L̂sg̃(s, λ̂s)ds−

∫ T

t
L̂sZ̄sdWs, 0 ≤ t ≤ T . (3.16)

The above combined with (3.14) implies

0 ≤ E

[∫ T

0
L̂s

(

R̂sg̃(s, λ̂s) + η̂⊤s δλs

)

ds− R̂T L̂T ŶT

]

.

Recalling the definition of R̂ and η̂ and applying Itô’s Lemma, this leads to

0 ≤ E

[
∫ T

0
L̂s

(

η̂s − (Ŷs, Ẑs)
)⊤

δλsds

]

= E

[∫ T

0
L̂s

(

∇g̃(s, λ̂s)− (Ŷs, Ẑs)
)⊤

δλsds

]

. (3.17)

By Assumption (H1

d
) (a), Remark 3.4 and [1, Theorem 18.19, p. 605], one can choose λ̄ ∈ Λ

such that

λ̄ = argmin {f(·, u, v), (u, v) ∈ dom(g̃(·))} Leb× P−a.e.

where

f : (ω, s, u, v) 7→
(

∇g̃(ω, s, λ̂s(ω))− (Ŷs(ω), Ẑs(ω))
)⊤

(u− ν̂s(ω), v − ϑ̂s(ω)).

Considering now Relation (3.17) with λ chosen to be equal to λ̄1{f(·,λ̄)<0}, we see that, for

Leb× P-a.e. (ω, t) ∈ Ω× [0, T ], the gradient ∆t(ω) at λ̂t(ω) of the convex map

(u, v) ∈ dom(g̃(ω, t, ·)) 7→ F (ω, t, u, v) := g̃(ω, t, u, v) − uŶt(ω)− v⊤Ẑt(ω)

satisfies

∆t(ω)
⊤(b− λ̂t(ω)) ≥ 0 , for all b ∈ dom(g̃(ω, t, ·)).

This implies that λ̂t(ω) minimizes F (ω, t, ·) for Leb×P-a.e. (ω, t) ∈ Ω× [0, T ] and therefore

we compute

g̃(·, λ̂) = λ̂⊤(Ŷ , Ẑ)− g(·, Ŷ , Ẑ) Leb× P− a.e.

by (H1

d
) (d). Combining the above identity with (3.16) leads to (Ŷ , Ẑ) = (Y m,α̂, Zm,α̂).

Then, by using (3.12), (3.13) and (3.15), in which L̂0 = 1, we obtain

Y m,α̂
0 = E

[

L̂TΦ(M̂T )−

∫ T

0
L̂sg̃(s, λ̂s)ds

]

= E

[

L̂T

(

ζl̂/L̂T − Φ̃(l̂/L̂T )
)

−

∫ T

0
L̂sg̃(s, λ̂s)ds

]

= l̂m− E

[

L̂T Φ̃(l̂/L̂T ) +

∫ T

0
L̂sg̃(s, λ̂s)ds

]

.

In view of Proposition 3.4, this concludes the proof. ✷

We now state the reciprocal statement: existence in the primal problem provides existence

in the dual one. Here again, we need to impose some additional technical conditions.

Assumption (H2

d
) The following holds for Leb× P-a.e. (t, ω) ∈ [0, T ]× Ω:
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(a) the maps Φ(ω, ·) and g(ω, t, ·) are C1
b on [0, 1] and R× Rd respectively;

(b) |∇Φ(ω, ·)| ≤ χΦ(ω), for some χΦ ∈ L2(R).

Proposition 3.6. Let Assumption (H2

d
) hold. Let l > 0 be fixed and assume that there

exists m̂ ∈ [0, 1] and α̂ ∈ Am̂ such that

sup
m∈[0,1]

sup
α∈Am

(ml − Y0(m)) = m̂l − Y m̂,α̂
0 . (3.18)

Then, there exists λ̂ ∈ Λ such that

Y0(m̂) = m̂l − X0(l) = m̂l −Xl,λ̂
0 ,

and λ̂ satisfies (3.11) with m = m̂ and l̂ = l.

Proof. Given ε ∈ [0, 1], a martingale M with values in [0, 1], m := M0, we set mε :=

m̂ + ε(m − m̂), M ε := M̂ + ε(M − M̂), where M̂ := M m̂,α̂. For ease of notation, we set

(Ŷ , Ẑ) := (Y m̂,α̂, Zm̂,α̂) and denote by (Y ε, Zε) the solution of BSDE(g,Φ(M ε
T )), δm :=

m− m̂, (δM, δY ε, δZε) := (M − M̂, Y ε − Ŷ , Zε − Ẑ).

Step 1. We first show that ε−1(δY ε
s , δZ

ε
s ) converges in S2 ×H2 as ε → 0 to the solution

(∇Y,∇Z) of

∇Yt = ∇Φ(M̂T )δMT +

∫ T

t
∇g(s, Ŷs, Ẑs)

⊤(∇Ys,∇Zs)ds−

∫ T

t
∇ZsdWs. (3.19)

First note that existence and uniqueness of the solution to the above BSDE in guaranteed

by Assumption (H2

d
).

Letting ξε := ε−1(Φ(M ε
T )− Φ(M̂T )), one easily checks that ε−1(δY ε

s , δZ
ε
s ) solves

δY ε
s

ε
= ξε −

∫ T

s

δZε
r

ε
dWr +

∫ T

s

(

AY,ε
r

δY ε
r

ε
+AZ,ε

r

δZε
r

ε

)

dr,

where

AY,ε
r :=

∫ 1

0
∂yg(r, Ŷr + θδY ε

r , Ẑr)dθ and AZ,ε
r :=

∫ 1

0
∂zg(r, Y

ε
r , Ẑr + θδZε

r )dθ.

In the above, ∂yg and ∂zg denotes respectively the partial gradients of g with respect to y

and z, recall (H2

d
). The Assumption (Hg) implies |AY,ε|+ |AZ,ε| ≤ Kg.

We now set U ε := ε−1δY ε
s −∇Y , V ε := ε−1δZε

s −∇Z and ζε := ξε −∇Φ(M̂T )δM . The

pair (U ε, V ε) is an element of S2 ×H2 and solves

U ε
s = ζε −

∫ T

s
V ε
r dWr +

∫ T

s

(

AY,ε
r U ε

r +AZ,ε
r V ε

r +Rε
r

)

dr , 0 ≤ s ≤ T ,

with

Rε
r := ∇Zr(A

Z,ε
r − ∂zg(r, Ŷr, Ẑr)) +∇Yr(A

Y,ε
r − ∂yg(r, Ŷr, Ẑr)) , 0 ≤ r ≤ T .
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Hence, by stability for Lipschitz BSDEs (see Proposition 5.1 in the Appendix) there exists

a constant C > 0 (which does not depend on ε) such that

‖U ε‖2S2
+ ‖V ε‖2H2

≤ C
(

‖ζε‖2L2
+ ‖Rε

r‖
2
H2

)

. (3.20)

The result of Step 1. will follow if we prove that the right-hand side of the inequality (3.20)

vanishes as ε tends to zero. The convergence of ‖Rε
r‖

2
H2

to 0 follows from Assumption

(H2

d
) and the convergence of M ε

T to MT . As for the second term, it suffices to prove that

(Y ε, Zε)ε converges in S2 ×H2 to (Ŷ , Ẑ), and to appeal to (Hg) and (H2

d
). The latter is

obtained by standard stability results, see Proposition 5.1 below, which imply the existence

of a constant C > 0 (which does not depend on ε) such that

‖Y ε − Ŷ ‖2S2
+ ‖Zε − Ẑ‖2H2

≤ C‖Φ(M ε
T )−Φ(M̂T )‖

2
L2

−→ε→0 0.

In the latter, the convergence follows from Lebesgue’s dominated convergence Theorem and

assumption (H2

d
).

Step 2. By optimality of (m̂, α̂), Y ε
0 −mεl− Ŷ0 + m̂l ≥ 0, for any ε > 0. In view of Step

1, dividing by ε > 0 and sending ε → 0 leads to

0 ≤ ∇Φ(M̂T )δMT − lδm+

∫ T

0
∇g(s, Ŷs, Ẑs)

⊤(∇Ys,∇Zs)ds−

∫ T

0
∇ZsdWs

= ∇Y0 − lδm,

after possibly passing to a subsequence.

Set L̂ := Lλ̂ where λ̂ := ∇g(·, Ŷ , Ẑ). Observe that the latter belongs to Λ. For later use,

also notice that

g(·, Ŷ , Ẑ) = (ν̂, ϑ̂)⊤(Ŷ , Ẑ)− g̃(·, ν̂, ϑ̂), (3.21)

see e.g. [13]. Then, it follows from (3.19) that L̂∇Y is a martingale. The previous inequality

thus implies that

0 ≤ L̂0∇Y0 − lδm = E
[

L̂T∇YT

]

− lδm = E
[

L̂T δMT

(

∇Φ(M̂T )− l/L̂T

)]

,

in which we used the fact that L̂0 = 1 and E[δMT ] = δm. Since MT can be any arbitrary

random variable with values in [0, 1], this shows that, P − a.s., M̂T (ω) minimizes m ∈

[0, 1] 7→ Φ(ω,m)−ml/L̂T (ω). Hence,

M̂T l − L̂TΦ(M̂T ) = L̂T Φ̃(l/L̂T ),

see e.g. [13]. Combining the above identity together with (3.21) and using Itô’s Lemma

leads to lm̂− Ŷ0 = Xl̂,λ̂
0 . One concludes by appealing to Proposition 3.4. ✷

4 Proof of Theorem 2.1

In all this section, we use the notations introduced at the beginning of Section 2.2. The first

main result provides a dynamic programming principle for the family {Yα
τ , τ ∈ T , α ∈ A0}.
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Proposition 4.1. For all (τ1, τ2, α) ∈ T × T ×A0 such that τ1 ≤ τ2, we have

Yα
τ1 = ess inf

α′∈Aα
τ1

Eg
τ1,τ2 [Y

α′

τ2 ] .

Proof. We prove the two corresponding inequalities separately.

Step 1. Yα
τ1 ≥ ess inf

α′∈Aα
τ1

Eg
τ1,τ2

[

Yα′

τ2

]

.

It follows from Lemma 4.1 below that there exists (αn)n in Aα
τ1 such that the sequence

(Eg
τ1,T

[Φ(Mαn

T )])n is non-increasing and

lim
n→∞

Eg
τ1,T

[Φ(Mαn

T )] = Yα
τ1 , P− a.s. (4.1)

Since αn ∈ Aαn

τ2 for every n ≥ 1, we deduce that

Yαn

τ2 ≤ Eg
τ2,T

[Φ(Mαn

T )] .

By comparison for BSDEs with Lipschitz continuous drivers on the time interval [τ1, τ2],

this implies

Eg
τ1,τ2 [Y

αn

τ2 ] ≤ Eg
τ1,τ2 [E

g
τ2,T

[Φ(Mαn

T )]] = Eg
τ1,T

[Φ(Mαn

T )] ,

leading to

ess inf
α′∈Aα

τ1

Eg
τ1,τ2

[

Yα′

τ2

]

≤ Eg
τ1,T

[Φ(Mαn

T )] ,

Letting n go to infinity in the above inequality, (4.1) provides directly

ess inf
α′∈Aα

τ1

Eg
τ1,τ2

[

Yα′

τ2

]

≤ Yα
τ1 .

Step 2. Yα
τ1 ≤ ess inf

α′∈Aα
τ1

Eg
τ1,τ2

[

Yα′

τ2

]

.

Fix α′ in Aα
τ1 . Lemma 4.1 below ensures the existence of a sequence (α′

n)n in Aα′

τ2 such

that (Eg
τ2,T

[Φ(Mα′n

T )])n is non-increasing and

lim
n→∞

Eg
τ2,T

[Φ(M
α′
n

T )] = Yα′

τ2 , P− a.s.

In view of Remark 2.1, the convergence holds in L2 as well. Thus the stability result

of Proposition 5.1 below indicates that Eg
τ1,T

[Φ(M
α′
n

T )] converges to Eg
τ1,τ2 [Y

α′

τ2 ] in L2. In

addition, α′
n ∈ Aα′

τ2 ⊂ Aα
τ1 by construction. Combining the above leads to

Eg
τ1,τ2 [Y

α′

τ2 ] = lim
n→∞

Eg
τ1,T

[Φ(M
α′
n

T )] ≥ Yα
τ1 .

The arbitrariness of α′ ∈ Aα
τ1 allows one to conclude

ess inf
α′∈Aα

τ1

Eg
τ1,τ2 [Y

α′

τ2 ] ≥ Yα
τ1 .

✷
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Lemma 4.1. Fix θ, τ ∈ T , with θ ≥ τ , µ ∈ L0([0, 1],Fτ ) and α ∈ Aτ,µ. Then, there exists a

sequence (α′
n) ⊂ Aθ,α

τ,µ :={α′ ∈ Aτ,µ, α
′
1[0,θ) = α1[0,θ)}such that limn ↓ Eg

θ,T [Φ(M
τ,µ,α′

n

T )] =

Yα
θ (M

τ,µ,α
θ ) P− a.s.

Proof. It suffices to show that the family {J(α′) := Eg
θ,T [Φ(M

τ,µ,α′

T )], α′ ∈ Aθ,α
τ,µ} is directed

downward, see e.g. [9]. Fix α′
1, α

′
2 in Aθ,α

τ,µ and set

α̃′ := α1[0,θ) + 1[θ,T ](α
′
11A + α′

21Ac)

where A := {J(α′
1) ≤ J(α′

2)} ∈ Fθ, so that α̃′ ∈ Aθ,α
τ,µ and

J(α̃′) = Eg
θ,T [Φ(M

τ,µ,α′
1

T )1A +Φ(M
τ,µ,α′

2

T )1Ac ] = min{J(α′
1), J(α

′
2)}.

✷

We now observe that the family (Yα)α∈H2
is làdlàg on countable sets. If in addition Φ

is assumed to be continuous, the process (Yα)α∈H2
is even indistinguishable from a càdlàg

process.

Proposition 4.2. Fix α ∈ A0. Then, Yα is làdlàg on countable sets. Besides, if m ∈

[0, 1] 7→ Φ(ω,m) is continuous for P-a.e. ω ∈ Ω, then Yα is indistinguishable from a càdlàg

process.

Proof. Fix α ∈ A0. Proposition 4.1 and Remark 2.1 imply that −Yα is a −g(−·)-

supermartingale in the sense of [3] (a g-submartingale in the sense of [11]). It follows from

the non-linear up-crossing Lemma, see [3, Theorem 6]4, that the following limits

lim
s∈D∩(t,T ]↓t

Yα
s and lim

s∈D∩[0,t)↑t
Yα
s

are well-defined for every t in [0, T ], P− a.s., and for all countable set D. So is the process

Ȳα
t := lim

s∈Q∩(t,T ]↓t
Yα
s , t ∈ [0, T ] .

Besides, Ȳα is by definition càd. Assuming that Φ is continuous, we will prove that, for

every stopping time τ , it holds that:

Ȳα
τ = ess inf

α′∈Aα
τ

Eg
τ,T

[

Φ(Mα′

T )
]

(= Yα
τ ) P− a.s. (4.2)

By [4, Chapter IV. (86), p. 220], the relation (4.2) entails that Yα and Ȳα are undistin-

guishable showing that Yα is undistinguishable from a càdlàg process. The rest of the proof

is devoted to prove (4.2).

4Note that [3, Theorem 6] restricts to positive g-supermartingales. However, the proof can be reproduced

without difficulty under the integrability condition of Remark 2.1. In addition, [3, Theorem 6] implies that

EQ[Db
a(Y

α, n)] ≤ Y
α
0 ∧ b ≤ b, where Db

a(Y
α, n) denotes the number of down crossing of Yα from an interval

[a, b] on a discrete time-grid 0 = t0 ≤ t1 ≤ · · · ≤ tn = T and Q is a particular measure absolutely continuous

with respect to P. To conclude, it is enough to reproduce the proof of [4, Chapter VI Theorem (2) point

1)].
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For this purpose, let us introduce (τn)n, a decreasing sequence of stopping times with

values in [0, T ] ∩Q such that τ ≤ τn ≤ τ + n−1 and Ȳα
τ = limn→∞ Yα

τn .

Step 1. Ȳα
τ ≤ ess inf

α′∈Aα
τ

Eg
τ,T

[

Φ(Mα′

T )
]

.

a. Fix α′ ∈ Aα
τ and set

λn :=

(

Mα
τn

Mα′

τn

∧
1−Mα

τn

1−Mα′

τn

)

1{Mα
τn

/∈{0,1}} ∈ [0, 1],

with the convention a/0 = ∞ for a > 0. Using the fact thatMα′

τn+
∫ T
τn

α′
sdWs = Mα′

T ∈ [0, 1],

direct computations lead to

0 ≤ Mα
τn − λnM

α′

τn ≤ Mα
τn + λn

∫ T

τn

α′
sdWs ≤ Mα

τn + λn(1−Mα′

τn ) ≤ 1.

We set α
′

n := α1[0,τn) + λnα
′1[τn,T ]. The above implies that α′

n belongs to Aα
τn .

b. Now we prove that M
α′
n

T converges Mα′

T in L2 as n goes to infinity, possibly up to

a subsequence. Since both have norms bounded by 1, it suffices to show the P − a.s.

convergence, possibly up to a subsequence. To see this, first note that

M
α′
n

T −Mα′

T = Mα
τn −Mα′

τn +

∫ T

τn

(λn − 1)α′
sdWs,

from which we deduce that

M
α′
n

T −Mα′

T = Mα
τn −Mα′

τn + (λn − 1{Mα
τn

/∈{0,1}})

∫ T

τn

α′
sdWs

− 1{Mα
τn

∈{0,1}}

∫ T

τn

α′
sdWs.

Since τn → τ P−a.s. and α′ = α on [[0, τ ]], the above construction implies that limn→∞Mα
τn−

Mα′

τn = 0 P−a.s. and limn→∞ λn = limn→∞ 1{Mα
τn

/∈{0,1}} P−a.s. It thus only remains to prove

that 1{Mα
τn

∈{0,1}}

∫ T
τn

α′
sdWs → 0 P − a.s. First note that α′1[τn,T ] = 0 on {Mα′

τn ∈ {0, 1}}.

This follows from the martingale property of this process with values in [0, 1]. Hence, it

suffices to consider 1{Mα′
τn

6=Mα
τn

∈{0,1}}

∫ T
τn

α′
sdWs. But, since Mα′

τ = Mα
τ ,

P[Mα′

τn 6= Mα
τn ∈ {0, 1}] ≤ P[Mα′

τn 6= Mα
τn ] = P

[∣

∣

∣

∣

∫ τn

τ
(αs − α′

s)dWs

∣

∣

∣

∣

> 0

]

→n→∞ 0.

c. Now, since Φ is continuous and M
α′
n

T ∈ L0([0, 1]), we get that Φ(M
α′
n

T ) → Φ(Mα′

T ) in L2,

after possibly passing to a subsequence. The stability property for Lipschitz BSDEs given

in Proposition 5.1 implies that
∥

∥

∥E
g
τn,T

[

Φ(M
α′
n

T )
]

− Eg
τn,T

[

Φ(Mα′

T )
]∥

∥

∥

L2

→n→∞ 0 . (4.3)

On the other hand, the bound of Remark 2.1 implies that
∥

∥

∥
Eg
τn,T

[

Φ(Mα′

T )
]

− Eg
τ,T

[

Φ(Mα′

T )
]∥

∥

∥

L2

→n→∞ 0 , (4.4)
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by Lebesgue’s dominated convergence Theorem and by continuity of the process Eg
·,T

[

Φ(Mα′

T )
]

.

Combining (4.3) and (4.4) leads to

Ȳα
τ = lim

n→∞
Yα
τn ≤ lim

n→∞
Eg
τn,T

[

Φ(M
α′
n

T )
]

= Eg
τ,T

[

Φ(Mα′

T )
]

.

We conclude by arbitrariness of α′ ∈ Aα
τ .

Step 2. Ȳα
τ ≥ ess inf

α′∈Aα
τ

Eg
τ,T

[

Φ(Mα′

T )
]

.

Applying on [τ, τn] the stability result of Proposition 5.1 for the BSDEs with parameters

(Ȳα
τ , 0) and (Yα

τn , g1[0,τn)), we get

∥

∥Ȳα
τ − Eg

τ,τn [Y
α
τn ]

∥

∥

L2

≤ C

(

∥

∥Ȳα
τ −Yα

τn
∥

∥

L2

+ E

[
∫ τn

τ

∣

∣g(s, Ȳα
τ , 0)

∣

∣

2
ds

])

≤ C
∥

∥Ȳα
τ − Yα

τn
∥

∥

L2

+
C

n
, n ∈ N ,

for some C > 0, since the bound of Remark 2.1 holds for Ȳα
τ , recall that Assumption

(Hg) is in force. Therefore, Eg
τ,τn [Y

α
τn ] converges to Ȳα

τ as n goes to infinity. Proposition

4.1 implies Eg
τ,τn [Y

α
τn ] ≥ Yα

τ . Passing to the limit leads to the required inequality: Ȳα
τ ≥

Yα
τ = ess inf

α′∈Aα
τ

Eg
τ,T

[

Φ(Mα′

T )
]

. ✷

In the rest of this section, we complete the proof of Theorem 2.1.

Proof of Theorem 2.1. Items (i) and (ii) are already proved in Proposition 4.1 and

Proposition 4.2, it remains to prove (iii) and (iv). For α ∈ A0, it follows from Proposition

4.1, Proposition 4.2 and standard comparison results for BSDEs that Yα is a càdlàg strong

g-submartingale in the sense of [11]. Hence, the existence of a process (Zα,Kα) ∈ H2×K2

such that (2.9) holds follows from [11, Theorem 3.3]. We now verify successively that the

family (Yα,Zα,Kα)α∈H2
satisfies (2.8), (2.10), (2.11) and the uniqueness of solution for

(2.8)-(2.9)-(2.10)-(2.11).

The bound (2.8) follows directly from Remark 2.1 and the representation Theorem 3.3 in

[11], note that the driver function g does not depend on α ∈ A0.

Step 1. The irrelevance of future property (2.11)

For (α, τ) ∈ A0 × T , observe that Aα′

. = Aα
. on [0, τ ] when α′ ∈ Aα

τ . The definition of Y

thus implies that Yα1[0,τ ] = Yα′
1[0,τ ] for α

′ ∈ Aα
τ . Hence (2.11) follows from the uniqueness

of the representation provided in [11, Theorem 3.3].

Step 2. The minimality property (2.10)

We follow the arguments in the proof [16, Theorem 4.6]. We fix (α, τ1, τ2) ∈ H2 × T × T

such that τ1 ≤ τ2. For any α′ ∈ Aα
τ1 , we denote by (Y α′

, Zα′
) the solution of the classical

BSDE

Y α′

t = Φ(Mα′

T ) +

∫ T

t
g(s, Y α′

s , Zα′

s )ds−

∫ T

t
Zα′

s dWs , 0 ≤ t ≤ T .
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Let Lα′
be the process whose dynamics is given by

Lα′

t = exp

(
∫ t

τ1

Λz
sdWs+

∫ t

τ1

(

Λy
s−

|Λz
s|
2

2

)

ds

)

, τ1 ≤ t ≤ T ,

where (Λy,Λz) is the linearization process given by

Λy :=
g(Yα′

s ,Zα′

s )− g(Y α′

s ,Zα′

s )

Yα′

s − Y α′

s

1{Yα′ 6=Y α′} ,

Λz :=
g(Y α′

s ,Zα′

s )− g(Y α′

s , Zα′

s )

|Zα′

s − Zα′

s |2
(Zα′

− Zα′
)1{Zα′ 6=Zα′} .

This linearization procedure implies that Y α′

τ1 − Yα′

τ1 rewrites as

Y α′

τ1 − Yα′

τ1 = Eτ1

[

Lα′

τ2(Y
α′

τ2 − Yα′

τ2 )
]

+Eτ1

[∫ τ2

τ1

Lα′

s dKα′

s

]

≥ Eτ1

[

(Kα′

τ2 −Kα′

τ1 ) inf
[τ1,τ2]

Lα′

]

, (4.5)

where we used the fact that Y α − Yα ≥ 0. Using Hölder inequality, this implies

Eτ1

[

(Kα′

τ2 −Kα′

τ1 )
]3

≤ Eτ1

[

(Kα′

τ2 −Kα′

τ1 ) inf
[τ1,τ2]

Lα′

]

Eτ1

[

sup
[τ1,τ2]

(1/Lα′
)

]

Eτ1

[

(Kα′

τ2 −Kα′

τ1 )
2
]

≤ C Eτ1

[

(Kα′

τ2 −Kα′

τ1 )
2
]

(Y α′

τ1 −Yα′

τ1 ) ,

for some C > 0 that depends on the uniform bounds on (Λy,Λz), recall (Hg). Hence, the

estimate (2.8) together with the monotonicity of K implies

0 ≤ Eτ1

[

(Kα′

τ2 −Kα′

τ1 )
]

≤ Cη′τ1 (Y α′

τ1 − Yα′

τ1 )
1/3 , α′ ∈ Aα

τ1 , (4.6)

where

η′τ1 := ess sup
ᾱ∈Aα

τ1

Eτ1

[

(Kᾱ
τ2 −Kᾱ

τ1)
2
]1/3

.

By the same arguments as in Lemma 4.1, we can find a sequence (α′
n)n ⊂ Aα

τ1 such that

η′τ1 = lim
n→∞

↑ Eτ1

[

(Kα′
n

τ2 −Kα′
n

τ1 )
2
]1/3

.

The monotone convergence Theorem together with Jensen’s inequality and Relation (2.8)

imply that

E[η′τ1 ] = lim
n→∞

↑ E
[

(Kα′
n

τ2 −Kα′
n

τ1 )
2
]1/3

< ∞ .

Since η′τ1 is in addition non-negative, it is a.s. bounded. Hence, combining (2.11) and (4.6),

we obtain for α′ ∈ Aα
τ1

0 ≤ Eτ1

[

Kα′

τ2

]

−Kα′

τ1

≤ C (Eg
τ1,τ2 [Y

α′

τ2 ]− Yα
τ1)

1/3

= C (Eg
τ1 [Φ(M

α′

T )]− Yα
τ1)

1/3 , .

27



Taking the essential infimum in the above inequality and appealing to (2.6) leads to (2.10).

Step 3. The uniqueness property for (2.8)-(2.9)-(2.10)-(2.11)

Let us now consider a family (Ỹ α, Z̃α, K̃α)α∈A0
of S2 × H2 × K2 satisfying (2.8)-(2.9)-

(2.10)-(2.11). Then, (2.6) together with (2.9)-(2.11) applied to (Ỹ α, Z̃α, K̃α)α∈A0
imply

via a direct comparison argument that

Yα
t = ess inf

α′∈Aα
t

Eg
t [Φ(M

α′

T )] ≥ Ỹ α
t , α ∈ A0 , 0 ≤ t ≤ T . (4.7)

On the other hand, following the exact same line of arguments as the one developed in Step

2 in order to derive (4.5), one easily shows that there exists a S2-uniformly bounded family

of processes (L̃α)α∈A0
such that

Eg
t [Φ(M

α
T )]− Ỹ α

t = Et

[
∫ T

t
L̃α
s dK̃

α
s

]

≤ CEt

[

|K̃α
T − K̃α

t |
2
]1/2

for all α ∈ A0, 0 ≤ t ≤ T , for some C > 0.

Now observe that (2.10), applied to K̃α, and the same arguments as in Lemma 4.1 provide

the existence of (α̂n)n ⊂ Aα
t such that Et[K̃

α̂n

T −K̃α
t ] → 0, P−a.s. Hence, (2.8) ensures that

Et[|K̃
α̂n

T − K̃α
t |

2] → 0. Since (2.11) implies (Ỹ α̂n

t , K̃ α̂n

t ) = (Ỹ α
t , K̃α

t ) for n ∈ N, we deduce

Eg
t [Φ(M

α̂n

T )]− Ỹ α
t ≤ C Et

[

|K̃ α̂n

T − K̃α
t |

2
]1/2

→n→∞ 0 .

Combined with (4.7), this shows that

Ỹ α
t = ess inf

α′∈Aα
t

Eg
t [Φ(M

α′

T )] = Yα
t , α ∈ H2 , 0 ≤ t ≤ T .

The fact that (Z̃α, K̃α)α∈A0
= (Zα,Kα)α∈A0

then follows from the uniqueness of the

non-linear Doob-Meyer decomposition of [11, Theorem 3.3]. ✷

5 Appendix

We report here some standard results for Lipschitz BSDEs. The first one can be found in,

e.g., Theorem 1.5 in [10]. The second one is proved for completeness, and by lack of a good

reference.

Proposition 5.1. (Stability for Lipschitz BSDEs) Let (Y 1, Z1) and (Y 2, Z2) in S2×H2 be

solutions on [0, T ] of Lipschitz BSDEs associated to parameters (ξ1, g1) ad (ξ2, g2). Then

the following stability result holds:

∥

∥Y 1 − Y 2
∥

∥

2

S2

+
∥

∥Z1 − Z2
∥

∥

2

H2

≤ C

(

∥

∥ξ1 − ξ2
∥

∥

2

L2

+

∫ T

0
E
∣

∣g1 − g2
∣

∣

2
(t, Y 1

t , Z
1
t )dt

)

,

for some constant C > 0 depending only on T and on the Lipschitz constants of g1 and g2.
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Proposition 5.2. Let the conditions (Hg) hold. Then:

(i) There exists C > 0 which only depends on Kg and T such that

esssupξ∈L0([0,1])|E
g
t [ξ]| ≤ C(1 + Et

[

|χg|
2
]
1

2 ) , 0 ≤ t ≤ T .

(ii) For some ξ ∈ L2 and t ∈ [0, T ], consider a family (ξε)ε≥0 ⊂ L0(R
d) satisfying |ξε| ≤ ξ

and ξε ∈ L0(F(t+ε)∧T ), for any ε > 0. Then, there exists a family (ηε)ε>0 ⊂ L0(R)

which converges to 0 P− a.s. as ε → 0 such that

|Eg
t,t+ε[ξ

ε]− Et [ξ
ε] | ≤ ηε, ∀ε ∈ [0, T − t].

(iii) Let (ξε)ε>0 and t ∈ [0, T ] be as in (ii). Then, there exists a family (ηε)ε>0 ⊂ L0(R)

which converges to 0 P− a.s. as ε → 0 such that

|Eg
t−ε,t[ξ

ε]− Et [ξ
ε] | ≤ ηε, ∀ε ∈ [0, t].

Proof. a. We first prove (ii) (property (iii) being similar) using the standard linearization

argument. Fix t ∈ [0, T ] and set Y ε := Eg
·,t+ε[ξ

ε]. Assumption (Hg) implies that we can

find a family of predictable processes (ρε, γε) with values in [−Kg,Kg]
d+1 such that

LεY ε +

∫ ·

t
Lε
rg(r, 0, 0)dr

is a martingale on [t, t+ ε], with

Lε
s = 1 +

∫ s

t
ρεrL

ε
rdr +

∫ s

t
γεrL

ε
rdWr, t ≤ s ≤ t+ ε.

In particular,

Eg
t,t+ε[ξ

ε] = Lε
tY

ε
t = Et

[

Lε
t+εξ

ε +

∫ t+ε

t
Lε
rg(r, 0, 0)dr

]

.

Condition (Hg) and the assumption on (ξε)ε>0 thus leads to

|Eg
t,t+ε[ξ

ε]− Et [ξ
ε] | ≤ ηε,

in which

ηε := Et

[

ξ|Lε
t+ε − Lε

t |+ χg

∫ t+ε

t
Lε
rdr

]

.

We have:

|ηε| ≤ Et[|ξ|
2]1/2Et[|L

ε
t+ε − Lε

t |
2]1/2 + Et[|χg|

2]1/2Et

[

∣

∣

∣

∣

∫ t+ε

t
Lε
rdr

∣

∣

∣

∣

2
]1/2

≤ Et[|ξ|
2]1/2Et[|L

ε
t+ε − Lε

t |
2]1/2 + εEt[|χg|

2]1/2Et

[

sup
t≤s≤t+ε

|Lε
s|
2

]1/2

. (5.1)
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In addition,

Et[|L
ε
t+ε − Lε

t |
2] ≤ CEt

[∫ t+ε

t
|Lε

r|
2dr

]

≤ εCEt

[

sup
t≤r≤t+ε

|Lε
r|
2

]

.

Hence,

Et[|L
ε
t+ε − Lε

t |
2] ≤ εC

(

1 + Et

[

sup
t≤r≤t+ε

|Lε
r − Lε

t |
2

])

.

Since γε and ρε are bounded, the quantity supt≤τ≤t+ε Eτ [|L
ε
t+ε−Lε

τ |
2] is uniformly bounded.

Plugging back this estimate in (5.1) and recalling that supt∈[0,T ]Et[ξ
2] is finite P− a.s. we

get that Et[|ξ|
2]1/2Et[|L

ε
t+ε −Lε

t |
2]1/2 tends to 0 uniformly in t, P− a.s. as ε goes to 0. The

second term of (5.1) can be estimated in the same way.

b. We now prove (i). Pick any t ∈ [0, T ] and ξ ∈ L0([0, 1]). The same arguments as

above yield

|Eg
t [ξ]| ≤

∣

∣

∣

∣

Et

[

Lξ
T ξ +

∫ T

t
Lξ
rg(r, 0, 0)dr

]∣

∣

∣

∣

≤ Et

[

|Lξ
T |+ T |χg| sup

r≤T
|Lξ

r|dr

]

,

where Lξ solves

Lξ
s = 1 +

∫ s

t
ρξrL

ξ
rdr +

∫ s

t
γξrL

ξ
rdWr, t ≤ s ≤ T ,

for some predictable processes (ρξ , γξ) with values in [−Kg,Kg]
d+1. Hence,

|Eg
t [ξ]| ≤ Et

[

|Lξ
T |+ T |χg| sup

t≤r≤T
|Lξ

r|dr

]

.

Since (ρξ, γξ) are valued in [−Kg,Kg]
d+1, standard estimates imply that we can find C > 0,

which only depends on Kg such that Et

[

supt≤r≤T |Lξ
r|2

]

≤ C2 P− a.s. The above leads to

|Eg
t [ξ]| ≤ (C + TCEt

[

|χg|
2
]
1

2 ) ,

and the arbitrariness of ξ ∈ L0([0, 1]) concludes the proof. ✷
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[7] H. Föllmer and P. Leukert. Efficient hedging: cost versus shortfall risk. Finance and

Stochastics, 4:117–146, 2000.

[8] L. Moreau. Stochastic target problems with controlled expected loss in jump diffusion

models. SIAM Journal on Control and Optimization, 49:2577–2607, 2011.

[9] J. Neveu. Discrete-parameter martingales, volume 10. Elsevier, 1975.

[10] E. Pardoux. Backward stochastic differential equations and viscosity solutions of sys-

tems of semilinear parabolic and elliptic pdes of second order. Progress in Probability,

pages 79–128, 1998.

[11] S. Peng. Monotonic limit theorem of BSDE and nonlinear decomposition theorem of

doob-meyer’s type. Probability theory and related fields, 113:473–499, 1999.

[12] S. Peng. Nonlinear expectations, nonlinear evaluations and risk measures. Stochastic

methods in finance, pages 243–256, 2004.

[13] R.T. Rockafellar. Convex analysis, volume 28. Princeton Univ Pr, 1997.

[14] E. Rosazza Gianin. Risk measures via g-expectations. Insurance: Mathematics and

Economics, 39(1):19–34, 2006.

[15] H.M. Soner and N. Touzi. Stochastic target problems, dynamic programming and

viscosity solutions. SIAM Journal on Control and Optimization, 41:404–424, 2002.

[16] H.M. Soner, N. Touzi, and J. Zhang. Wellposedness of second order backward SDEs.

Probability Theory and Related Fields, 153(1-2):149–190, 2011.

31


