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Vision-Aided Inertial Navigation Using Virtual Features

Chiara Troiani and Agostino Martinelli

Abstract— This paper considers the following scenario. A
vehicle accomplishes a 3D-trajectory in the surrounding of
a planar surface. The vehicle is equipped with a monocular
camera and inertial sensors. Additionally, a laser pointer is
mounted on the vehicle and it produces a laser spot on the
planar surface. This laser spot is observed by the monocular
camera and it is the unique point feature used in the proposed
approach. The paper provides two main contributions. The
former is the analytical derivation of all the observable modes,
i.e. all the physical quantities that can be determined by only
using the inertial data and the camera observations of the laser
spot during a short time-interval. Specifically, it is shown that
the observable modes are: the distance of the vehicle from the
planar surface; the component of the vehicle speed, which is
orthogonal to the planar surface; the relative orientation of
the vehicle with respect to the planar surface; the orientation
of the planar surface with respect to the gravity. The second
contribution is the introduction of a simple recursive method
to perform the estimation of all the aforementioned observable
modes. This method is based on a local decomposition of the
original system, which separates the observable modes from
the rest of the system. The method is validated by using both
synthetic and real data.

I. INTRODUCTION

In recent years, vision and inertial sensing have received
great attention by the mobile robotics community. These
sensors require no external infrastructure and this is a key
advantage for robots operating in unknown environments
where GPS signals are shadowed. Additionally, these sensors
have very interesting complementarities and together provide
rich information to build a system capable of vision-aided
inertial navigation and mapping.

A special issue of the International Journal of Robotics
Research has recently been devoted to the problem of fusing
vision and inertial data [6]. In [5], a tutorial introduction to
the vision and inertial sensing is presented. This work pro-
vides a biological point of view and it illustrates how vision
and inertial sensors have useful complementarities allowing
them to cover the respective limitations and deficiencies. In
[1], these sensors are used to perform egomotion estimation.
The sensor fusion is obtained by an Extended Kalman Filter
(EKF ) and by an Unscented Kalman Filter (UKF ). The
approach proposed in [7] extends the previous one by also
estimating the structure of the environment where the motion
occurs. In particular, new landmarks are inserted on line
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into the estimated map. This approach has been validated
by conducting experiments in a known environment where
a ground truth was available. Also, in [20] an EKF has
been adopted. In this case, the proposed algorithm estimates
a state containing the robot speed, position and attitude,
together with the inertial sensor biases and the location of
the features of interest. In the framework of airbone SLAM,
an EKF has been adopted in [12] to perform 3D−SLAM
by fusing inertial and vision measurements. It was observed
that any inconsistent attitude update severely affects any
SLAM solution. The authors proposed to separate attitude
update from position and velocity update. Alternatively, they
proposed to use additional velocity observations, such as air
velocity observation. More recently, a vision based naviga-
tion approach in unknown and unstructured environments has
been suggested [3].

Recent works investigate the observability properties of
the vision-aided inertial navigation system [9], [10], [11],
[17], [18] and [19]. In particular, in [18], the observable
modes are expressed in closed-form in terms of the sensor
measurements acquired during a short time-interval.

In this paper we consider a vehicle which accomplishes
a 3D-trajectory in the surrounding of a planar surface. The
vehicle is equipped with a monocular camera and inertial
sensors. This is the typical navigation problem in an indoor
environment or in a city-like environment. All the approaches
previously mentioned, require to extract natural features from
the images provided by the camera and in particular to detect
the same features in different images. The feature matching
task becomes critical in outdoor environment because of pos-
sible illumination changes. In order to significantly reduce
the computational burden required to perform these tasks and
to make the feature matching more robust, we introduce a
virtual feature by equipping our vehicle with a laser pointer.
The laser beam produces a laser spot on the planar surface.
This laser spot is observed by the monocular camera and it
is the unique point feature used by the proposed approach.

To the best of our knowledge, this problem has never been
considered so far. Compared to classical vision and IMU data
fusion problems, the feature is moving in the environment
but we exploit the hypothesis that it moves on a planar
surface. The first question which arises is to understand
which are the observable modes, i.e. the physical quantities
that can be determined by only using the inertial data and
the camera observation of the laser spot during a short time-
interval. We will show (in section III and appendix II) that
the observable modes are: the distance of the vehicle from
the planar surface; the component of the vehicle speed, which
is orthogonal to the planar surface; the relative orientation of



the vehicle with respect to the planar surface; the orientation
of the planar surface with respect to the gravity. Then, the
second step we consider is to analytically determine the
link between the observable modes and the sensor data.
This is obtained by performing a local decomposition of the
original system (section IV). This decomposition separates
the observable modes from the rest of the system. This
decomposition will allow us to introduce a simple recursive
method to perform the estimation of all the observable modes
(second part of section IV). The method is validated by using
both synthetic and real data (section V).

II. THE CONSIDERED SYSTEM

Let us consider an aerial vehicle equipped with a monoc-
ular camera and IMU sensors. The vehicle is also equipped
with a laser pointer. The configuration of the laser pointer
in the camera reference frame is known. The vehicle moves
in front of a planar surface and we assume that the laser
spot produced by the laser beam belongs to this planar
surface (see fig. 1). The position and the orientation of
this planar surface are unknown. The camera observations
consist in the position of the laser spot in the camera frame
up to a scale factor. The IMU consists of three orthogonal
accelerometers and three orthogonal gyroscopes. We assume
that the monocular camera is intrinsically calibrated and that
the transformations among the camera frame and the IMU
frames are known (we can assume that the vehicle frame
coincides with the camera frame). The IMU provides the
vehicle angular speed and acceleration. Actually, regarding
the acceleration, the one perceived by the accelerometer
(A) is not simply the vehicle acceleration (Av). It also
contains the gravity acceleration (G). In particular, we have
A = Av − G since, when the camera does not accelerate
(i.e. Av is zero) the accelerometer perceives an acceleration
which is the same of an object accelerated upward in the
absence of gravity.

We will use uppercase letters when the vectors are ex-
pressed in the local frame and lowercase letters when they are
expressed in the global frame. Hence, regarding the gravity
we have: g = [0, 0, − g]T , being g ' 9.8 ms−2.

Finally, we will adopt a quaternion to represent the vehicle
orientation. Indeed, even if this representation is redundant,
it is very powerful since the dynamics can be expressed in
a very easy and compact notation [13].

Our system is characterized by the state [r, v, q]T where
r = [rx, ry, rz]

T is the 3D vehicle position, v is its
time derivative, i.e. the vehicle speed in the global frame
(v ≡ dr

dt ), q = qt+iqx+jqy+kqz is a unitary quaternion (i.e.
satisfying q2

t +q2
x+q2

y+q2
z = 1) and characterizes the vehicle

orientation. The analytical expression of the dynamics and
the camera observations can be easily provided by expressing
all the 3D vectors as imaginary quaternions. In practice,
given a 3D vector w = [wx, wy, wz]

T we associate with it
the imaginary quaternion wq ≡ 0 + iwx + jwy + kwz . The
dynamics of the state [rq, vq, q]

T are:

Fig. 1. Helicopter equipped with a monocular camera, IMU and a laser
pointer. The laser spot is on a planar surface and its position in the camera
frame is obtained by the camera up to a scale factor.


ṙq = vq

v̇q = qAvqq
∗ = qAqq

∗ + gq

q̇ =
1

2
qΩq

(1)

being q∗ the conjugate of q, q∗ = qt − iqx − jqy − kqz and
Ω the angular velocity.

We derive the expression of the camera observation con-
sisting in the position of the laser spot in the camera frame
up to a scale factor. The laser spot is on a planar surface
whose configuration is unknown. Without loss of generality,
we choose the camera frame with the z-axis parallel to the
laser pointer. In addition, the camera frame is such that the
laser beam intercept the xy−plane in [L, 0, 0]. In appendix
I we introduce a simple and efficient method in order to
determine the parameter L together with the rotation to
transform vectors from the original camera frame into the
chosen camera frame.

Finally, we characterize the planar surface in the global
frame with the equation z = ky, where k is an unknown
parameter.

In these settings, by carrying out analytical computation
(which uses the basic quaternion rules) we obtain the ana-
lytical expression of the position [X, Y, Z] of the laser spot
in the camera reference frame. We have:


X = L

Y = 0

Z =
rz + 2qzqxL− 2qykqxL− 2qyqtL− 2qtLkqz − kry

2kqzqy − 2kqtqx − q2
z − q2

t + q2
y + q2

x
(2)

The camera provides the vector [X, Y, Z] up to a scale
factor. This is equivalent to the two ratios X

Z and Y
Z . Hence,

since the latter is identically zero, the camera observation is
given by hcam = X

Z , which is:



hcam =
L(2kqzqy − 2kqtqx − q2

z − q2
t + q2

y + q2
x)

rz + 2qzqxL− 2qykqxL− 2qyqtL− 2qtLkqz − kry
(3)

III. OBSERVABILITY PROPERTIES

We investigate the observability properties of the system
whose dynamics are given in (1) and whose observation
function is given in (3). We have also to consider the
constraint q∗q = 1. This can be dealt as a further observation
(system output):

hconst(rq, vq, q) = q∗q (4)

Finally, we want to investigate whether the parameter k is
identifiable or not. This is done by performing an observabil-
ity analysis on the extended state S = [rq, vq, q, k]T , whose
dynamics are given in (1) and by the additional equation
k̇ = 0.

We apply the method introduced in [16]. This will allow
us to detect all the observable modes, i.e. all the physical
quantities that can be determined by only using the infor-
mation contained in the data provided by the IMU and the
camera in a given time-interval. In appendix II we perform
this analytical computation and we show that the system has
six observable modes. Additionally, in the appendix II, we
provide the physical meaning of these observable modes.
Specifically, we found convenient to express the observable
modes in a new global reference frame, denoted with x̃, ỹ, z̃.
In this frame the z̃-axis coincides with the axis normal to
the planar surface. From now on, we will adopt this global
frame to characterize the vehicle configuration. The state in
this frame is S̃ = [r̃q ṽq q̃, k]T . The observable modes are
(see the derivation in appendix II):

m1 = r̃z

m2 = ṽz

m3 = 2(q̃tq̃x + q̃y q̃z)

m4 = 2(q̃tq̃y − q̃xq̃z)
m5 = k

m6 = q̃∗q̃

(5)

m1 is the z̃-coordinate of the vehicle, m2 the component of
the vehicle speed along the z̃-axis, m3 and m4 are related
to the roll and pitch angles of the vehicle in this frame. In

particular, the roll is arctan

(
m3√

1−m2
3−m2

4

)
and the pitch is

arcsin(m4). m5 is related to the orientation of the x̃ỹ-plane
with respect to the gravity. In particular, the z̃-axis makes
an angle arctan(k) = arctan(m5) with the gravity. m6 is
trivially the magnitude of the quaternion q̃, which is 1 since
it describes a rotation.

By summarizing the results of the observability analysis
performed in this section (and in the appendix II) we say that
the information contained in the data provided by the IMU
and the camera during a given time-interval, allows us to
determine the six modes m1, ..., m6. For this reason, in the

rest of the paper, we will focus our attention only on these
six quantities (actually, on the first five, since m6 trivially
expresses the constraint of having a unitary quaternion).

IV. LOCAL DECOMPOSITION AND RECURSIVE
ESTIMATION

The goal of this section is to provide a method able
to estimate the observable modes, i.e. the distance of the
vehicle from the planar surface (|m1|), the component of the
vehicle speed orthogonal to the surface (m2), the attitude of
the vehicle relative to the surface (characterized by m3 and
m4) and the orientation of the planar surface with respect
to the gravity (arctan(m5)). To achieve this goal, the first
step is to determine the link between the observable modes
and the sensor data. By adopting the terminology introduced
in [8], we have to perform a local decomposition of our
system. We remind the reader that the local decomposition
is the extension of the Kalman canonical decomposition [4]
to the case of a non linear system. It consists in writing the
equations characterizing the dynamics and the observation
only in terms of the observable modes. We also remind
the reader that in the non linear case it is often impossible
to characterize the system with a unique decomposition.
The decomposition only holds in a local region of the
space of states. This is the reason why it is called local
decomposition. To cover the entire space of states more than
one decomposition is required (see [8]). In the following, we
will show that for our system the number of decompositions
is two.

We first provide the dynamics of the state S̃ =
[r̃q ṽq q̃, k]T . We use (11), (12), (13) and (1). We obtain:

˙̃rq = ṽq
˙̃vq = q̃Aq q̃

∗ + p∗gqp

˙̃q =
1

2
q̃Ωq

k̇ = 0

(6)

A local decomposition for the dynamics is:



ṁ1 = m2

ṁ2 = −m4Ax +m3Ay + ξ(m3, m4)Az + gz

ṁ3 = Ωx ξ(m3, m4) + Ωzm4

ṁ4 = Ωy ξ(m3, m4)− Ωzm3

ġz = 0

(7)

where gz is the component of the gravity along the z̃-axis, i.e.
gz = −g cos(arctan(k)) = −g√

1+k2
= −g√

1+m2
5

; the function

ξ(m3, m4) depends on the original state and in particular
changes its sign depending on the sign of q̃2

x + q̃2
y − 1

2 :

ξ(m3, m4) ≡


√

1−m2
3 −m2

4 if q̃2
x + q̃2

y <
1

2

−
√

1−m2
3 −m2

4 if q̃2
x + q̃2

y >
1

2

(8)



Hence, as previously said, we have two local decompositions
for our original system. The validity of (7) can be checked
by using (5) and (6). Note that deriving (7) is troublesome.
In contrast, checking its validity is very simple since only
demands to perform differentiation.

To complete the local decomposition we need to express
the camera observation function in (3) in terms of the
observable modes. We obtain:

hcam =
Lξ(m3, m4)

m4L−m1
(9)

The validity of (9) can be checked by using (3), (5), (8),
(11), (12) and (13).

The equations (7) and (9) represent a local decomposition
for our system. They provide the analytical expression of
the link between the observable modes and the sensor data.
Specifically, equation (7) provides the link between the ob-
servable modes and the IMU data. Equation (9) provides the
link between the observable modes and the data delivered by
the monocular camera. Having these equations allows us to
perform the estimation of the state [m1, m2, m3, m4, gz].
An efficient and simple approach is obtained by using an
Extended Kalman Filter, EKF . To implement this filter it
suffices to compute the Jacobian of the dynamics in (7) and
the Jacobian of the observation function in (9) (see [2]). We
provide these Jacobians in appendix III.

V. PERFORMANCE EVALUATION

We evaluate the performance of the proposed strategy
by using both synthetic and real data. The advantage of
simulations is that the ground truth is perfectly known and
this allows us a quantitative evaluation of the proposed
strategy.

A. Simulations

We simulate many different trajectories in 3D and many
different scenarios corresponding to different orientation
of the planar surface. For all the simulations we use the
proposed strategy to estimate the observable modes, i.e.:

1) the distance of the vehicle from the planar surface (d =
|m1|);

2) the component of the vehicle speed orthogonal to the
planar surface (vo = m2);

3) the roll (R) and the pitch (P ) angles in the x̃, ỹ, z̃-
frame (i.e. the frame where the x̃, ỹ-plane coincides
with the planar surface);

4) the orientation of the plane with respect to the gravity
(α).

Specifically, in all the simulations the values of the esti-
mated d, vo, R, P and α will be compared with the ground
truth values.

1) Simulated Trajectories: The trajectories are generated
by randomly generating the linear and angular acceleration
of the vehicle at 100 Hz. In particular, at each time step, the
three components of the linear acceleration and the angular
speed are generated as Gaussian independent variables whose
mean values will be denoted respectively with µa and µω

and whose variances will be denoted respectively with σ2
a

and σ2
ω . We set the parameters in order to be close to a real

case: µa = 0 ms−2, σa = 1 ms−2, µω = 0 deg s−1 and
σω = 1 deg s−1. The initial vehicle position is at x̃ = 0, ỹ =
0, z̃ = 1m. The initial vehicle speed is [1, 0, 0]ms−1 in
the x̃, ỹ, z̃-frame.

2) Simulated Sensors: Starting from the performed tra-
jectory, the true angular speed and the linear accelera-
tion are computed at each time step of 0.01s (respec-
tively, at the time step i, we denote them with Ωtrue

i

and Atrue
v i ). Starting from them, the IMU sensors are

simulated by randomly generating the angular speed and
the linear acceleration at each step according to the
following: Ωi = N

(
Ωtrue

i − Ωbias, PΩi

)
and Ai =

N
(
Atrue

v i − Agi − Abias, PAi

)
where:

• N indicates the Normal distribution whose first entry is
the mean value and the second its covariance matrix;

• PΩi and PAi are the covariance matrices characterizing
the accuracy of the IMU ;

• Agi is the gravitational acceleration in the local frame
and Abias is the bias affecting the data from the
accelerometer;

• Ωbias is the bias affecting the data from the gyroscope.
In all the simulations we set both the matrices PΩi and

PAi diagonal and in particular: PΩi = σ2
gyroI3 and PAi =

σ2
accI3, where I3 is the identity 3× 3 matrix. We considered

several values for σgyro and σacc, in particular: σgyro ∈
[0.3, 10] deg s−1 and σacc ∈ [0.01, 0.3]ms−2.

Regarding the camera, the provided readings are generated
in the following way. By knowing the true trajectory, and
the position and the orientation of the planar surface, the
true bearing angles of the laser spot in the camera frame are
computed1. They are computed each 0.1s. The parameter L
is set equal to 0.1m. Then, the camera readings are generated
by adding to the true values zero-mean Gaussian errors
whose variance is equal to (1 deg)2 for all the readings.

3) Simulation Results: Figure 2 displays a typical 3D tra-
jectory obtained in our simulations. The figure also displays
the planar surface, consisting of a plane, which makes an
angle of α = π

8 rad = 22.5 deg with the gravity.
Figures 3 a and b display the estimated α respectively

in the case without and with bias. The values of the biases
adopted in our simulations are: Ωbias = [1 0 0]T (deg s−1)
and Abias = [0 0.1 0]T (ms−2). As expected, the estimation
in presence of bias becomes worse. However, the error on
the estimated α in presence of bias is smaller than 1 deg.

Figures 4 a and b display the estimated P and R in the
bias-free case while figures 5 a and b display the estimated
P and R in the case of biased inertial data. Figures 6 a and
b display the estimated vo and d in the bias-free case while
figures 7 a and b display the estimated vo and d in the case
of biased inertial data. We remark that the convergence of
the filter occurs in less than 2 seconds for all the observable
modes. To this regard, we initialized the filter by using a

1This is obtained also by knowing that the laser pointer has the same
orientation as the camera and that it is located at the position [L, 0, 0]



Fig. 2. A typical vehicle trajectory in our simulations.

a b

Fig. 3. Estimated α in absence (a) and in presence of bias (b) on the
inertial data. Blue dots indicate ground true values while red discs indicate
the estimated values.

value of the initial observable state which differs from the
ground truth by a relative error in the range [10, 20]%. We
also remark that the presence of bias corrupts the estimation
of the pitch while it is negligible on the other observable
modes.

a b

Fig. 4. Estimated P (a) and R (b) in the bias-free case. Blue dots indicate
ground true values while red discs indicate the estimated values.

B. Preliminary experiments

In this last section we provide preliminary results obtained
by using the Pelican helicopter, shown in figure 8. These are
preliminary results since, as will be explained below, the
observations of the laser spot by the monocular camera are
simulated. The data have been provided by the autonomous

a b

Fig. 5. Estimated P (a) and R (b) in the case of biased inertial data.
Blue dots indicate ground true values while red discs indicate the estimated
values.

a b

Fig. 6. Estimated vo (a) and d (b) in the bias-free case. Blue dots indicate
ground true values while red discs indicate the estimated values.

system laboratory at ETHZ in Zurich. The data are provided
together with a reliable ground-truth, which has been ob-
tained by performing the experiments at the ETH Zurich
Flying Machine Arena [15], which is equipped with a Vicon
motion capture system. As previously said, the observations
of the laser spot are simulated. This was possible thanks to
the fact that a reliable ground truth was provided together
with the inertial data. In particular, given the true trajectory,
we simulated the same planar surface described in the
previous section. By having the true vehicle configuration
it was possible to create the observations performed by the
camera on the laser spot produced by a laser pointer as in
the simulations (see the last paragraph in V-A.2).

Figure 9 displays the estimated α. Figures 10 a and b
display the estimated P and R and figures 11 a and b
display the estimated vo and d. All the observable modes are
estimated with very good accuracy. Additionally, we remark

a b

Fig. 7. Estimated vo (a) and d (b) in the case of biased inertial data.
Blue dots indicate ground true values while red discs indicate the estimated
values.



Fig. 8. The Pelican Helicopter used to take inertial data and ground truth
data.

that the convergence of the filter occurs in less than half
second for all the observable modes.

Fig. 9. Estimated α in the experiment. Blue dots indicate ground true
values while red discs indicate the estimated values.

VI. CONCLUSION

In this paper we considered a vehicle which accomplishes
a 3D-trajectory in the surrounding of a planar surface. The
vehicle is equipped with a monocular camera and inertial
sensors. Additionally, it is equipped with a laser pointer
which produces a laser spot on the planar surface. This
laser spot is observed by the monocular camera and it is the
unique point feature used by the proposed approach. The
paper provided two main contributions. The former is the
analytical derivation of all the observable modes, i.e. all the
physical quantities that can be determined by only using the
inertial data and the camera observation of the laser spot
during a short time-interval. Specifically, it is shown that the
observable modes are: the distance of the vehicle from the
planar surface; the component of the vehicle speed, which is

a b

Fig. 10. Estimated P (a) and R (b) in the experiment. Blue dots indicate
ground true values while red discs indicate the estimated values.

a b

Fig. 11. Estimated vo (a) and d (b) in the experiment. Blue dots indicate
ground true values while red discs indicate the estimated values.

orthogonal to the planar surface; the relative orientation of
the vehicle with respect to the planar surface; the orientation
of the planar surface with respect to the gravity. Once the
observed modes have been derived, a local decomposition
of the original system has also been provided. This decom-
position separates the observable modes from the rest of
the system. This decomposition allowed us to introduce a
simple recursive method to perform the estimation of all
the observable modes (second contribution). The method
was validated by using both synthetic and real data. In
the paper the method has been implemented and used in
the framework of aerial navigation. However, we want to
emphasize that both the paper contributions are very general
and can be applied in other frameworks. In particular, in all
the environment where GPS is denied and where the most
of objects have planar surfaces (e.g. in an indoor or city-like
environment). For instance, these paper contributions could
be used in the framework of humanoid robotics (where visual
and inertial sensing are often adopted and the navigation
usually occurs in an indoor environment).

An important aspect to be considered in future works is the
extrinsic camera-laser pointer calibration. We assumed that
the laser is aligned with the camera and that the position
of the laser in the camera frame is [L, 0, 0]. An extrinsic
calibration must estimate the angle between the camera frame
and the orientation of the laser pointer together with the
position of the laser pointer in the camera frame. This
calibration requires to use both the two bearing angles of the
laser spot in the camera frame. In the paper, one of them was
always zero because of the assumed perfect alignment and
because the y-coordinate of the laser pointer in the camera



frame was exactly zero.
Finally, a very important extension of the proposed strat-

egy consists in considering other kind of laser spots. So
far, the simplest case of a point-spot was considered. Other
kind of shapes will be considered in order to improve the
precision.

APPENDIX I
CAMERA-LASER MODULE CALIBRATION

In figure 12, we display the position and the direction of
the laser pointer in the original camera frame. The calibration
consists in estimating the four parameters Lx, Ly, θ, φ.
In other words, it consists in estimating the line made by
the laser beam in the original camera frame. This line is
determined starting from the position of the laser spot in
the original camera frame for at least two spots. To have an
accurate estimate the two spots must be as far as possible
one each other. The precision can be further improved by
considering more than two spots and by finding the best line
fit. In order to have the Cartesian coordinates of a single spot
in the original camera frame it suffices to produce the spot
on a chess. By using the Matlab calibration camera toolbox,
it is possible to get the equation of the plane for the chess
in the original camera frame and, by having the direction of
the spot from the camera measurement, the 3D position is
finally obtained.

Fig. 12. The original camera frame XY Z, the new camera frame X′Y ′Z′
and the laser module at the position [Lx, Ly , 0] and the direction (θ, φ)
(in the original frame) and position [L, 0, 0] and the direction (0, 0) (in
the new frame).

The new camera frame is obtained by rotating the original
frame such that in the new frame the z−axis has the same
orientation of the laser beam. Additionally, we also require
that the laser beam intersects the new x − axis. In other
words, we require that the laser beam intersects the new
xy−plane in the point [L, 0, 0]T , for a given L. We want
to obtain the quaternion q which characterizes this rotation.
This will allow us to express the vectors provided by the
camera in the new frame. Note that, since the two frames

only differ by a rotation (i.e., they share the same origin),
we are allowed to express the vectors provided by the camera
in the new frame, even if these vectors are defined up to a
scale. Finally, in this section we want to determine the value
of L. As we will see, both the quaternion q and the parameter
L only depend on the calibration parameters: Lx, Ly, θ, φ.

We start by rotating the original frame of φ about
its z−axis. The quaternion characterizing this rotation is
qz−axis(φ) = cos

(
φ
2

)
+ k sin

(
φ
2

)
. Then, we rotate the

frame obtained with this rotation of θ about its y−axis.
The quaternion characterizing this rotation is qy−axis(θ) =
cos
(
θ
2

)
+ j sin

(
θ
2

)
. Hence, the previous two rotations are

characterized by the quaternion qzy ≡ qz−axis(φ)qy−axis(θ).
The obtained frame has the z−axis aligned with the laser
beam. On the other hand, the laser beam does not intersect
necessarily the x−axis. In order to obtain this, we have
to rotate again the frame about its current z−axis. Let
us compute the intersection of the laser beam with the
xy−plane. We compute this point in the original frame. By
a direct computation we obtain: rinters = [Lx − v2

xLx −
vxvyLy, Ly − vxvyLx − v2

yLy, − vxvzLx − vyvzLy]T .
We then compute this vector in the rotated frame by doing
the quaternion product: Rintersq = q∗zyr

inters
q qzy . Let us

denote Rinters with [L′x, L
′
y, 0]T . We finally have: L =√

L′2x + L′2x and q = qzyqz−axis(α), where qz−axis(α) =

cos
(
α
2

)
+ j sin

(
α
2

)
and α = arctan

(
L′

y

L′
x

)
.

APPENDIX II
CONTINUOUS SYMMETRIES AND OBSERVABLE MODES

FOR THE SYSTEM DEFINED IN SECTION II

The system is characterized by the state: S =
[rq vq q, k]T , whose dimension is 11 (rq and vq are
imaginary quaternions, i.e. they are characterized by 3 real
numbers; q contains 4 real numbers; k is a real number).
The dynamics are given in (1) together with the equation
k̇ = 0 and the observations are given in (3) and (4). In
order to compute the Lie derivatives, we need to express the
dynamics as follows:

Ṡ = f(S,u) = f0(S) +

L∑
i=1

fi(S)ui (10)

We have L = 6 and the six inputs are the three components
of the acceleration, A, and the three components of the
angular speed, Ω. Namely: u1 = Ax, u2 = Ay , u3 = Az ,
u4 = Ωx, u5 = Ωy , u6 = Ωz . The seven vector functions
f0, f1, ..., f6 are:

f0 = [vx, vy, vz, 0, 0, −g, 05]T

f1 = [03, q
2
t+q2

x−q2
y−q2

z , 2qtqz+2qyqx, −2qtqy+2qzqx, 05]T

f2 = [03, −2qtqz+2qyqx, q
2
t+q2

y−q2
z−q2

x, 2qtqx+2qzqy, 05]T

f3 = [03, 2qtqy+2qzqx, −2qtqx+2qzqy, q
2
t+q2

z−q2
x−q2

y, 05]T

f4 = [06, −1/2qx, 1/2qt, 1/2qz, −1/2qy, 0]T



f5 = [06, −1/2qy, −1/2qz, 1/2qt, 1/2qx, 0]T

f6 = [06, −1/2qz, 1/2qy, −1/2qx, 1/2qt, 0]T

where we denoted with 0n the vector line whose dimension
is n and whose entries are all zeros.

We must compute the Lie derivatives of the two obser-
vation functions given in (3) and (4) with respect to all the
vector fields. By a direct computation, performed by using
the symbolic Matlab computational tool, we were able to
find not more than 6 independent Lie derivatives2.

In particular, according to the notation introduced in [16],
the system has 5 continuous symmetries which are:

w1
s = [0, 1, k, 08]

T

w2
s = [1, 010]

T

w3
s = [04, 1, k, 05]

T

w4
s = [03, 1, 07]

T

w5
s = [06, qz − kqy, qy + kqz, − qx + kqt, − qt − kqx, 0]

T

The observable modes are all the solutions of the system
of partial differential equations associated with the five
symmetries. For instance, the equation associated with w1

s is
∂
∂ry

+k ∂
∂rz

= 0 (see [16] for more details). Since this system
of partial differential equations consists of 5 equations on a
manifold whose dimension is 11, the number of independent
solutions is 6 = 11 − 5 [14]. A possible choice of these
solutions is:

rz − kry
vz − kvy
2[cksk(−q2

t + q2
x − q2

y + q2
z) + (2c2k − 1)(qtqx + qyqz)]

4cksk(qtqz + qxqy) + 2(2c2k − 1)(qtqy − qxqz)
k

q∗q

where ck ≡ cos
(

arctan(k)
2

)
and sk ≡ sin

(
atan(k)

2

)
. By

knowing the value of the first solution, rz − kry and the
value of the fifth solution, k, we can determine the quantity
|rz−kry|√

1+k2
, which is the distance of the vehicle from the planar

surface3. Hence, to better visualize the physical meaning, it
is convenient to select the following 6 observable modes:

2A possible choice of 6 independent Lie derivatives is: L0hconst,
L0hcam, L1

f0
hcam, L1

f4
hcam, L1

f5
hcam, L2

f0, f0
hcam.

3In other words, also rz−kry√
1+k2

is a solution of the system of partial

differential equations.

m1 =
rz − kry√

1 + k2

m2 =
vz − kvy√

1 + k2

m3 = 2[cksk(−q2
t + q2

x − q2
y + q2

z) + (2c2k − 1)(qtqx + qyqz)]

m4 = 4cksk(qtqz + qxqy) + 2(2c2k − 1)(qtqy − qxqz)
m5 = k

m6 = q∗q

Finally, the physical meaning of also m3 and m4 becomes
clear by referring to a new global frame x̃, ỹ, z̃. This
frame has the x̃ỹ-plane coincident with the planar surface.
In other words, this new global frame has the vertical axis
coincident with the axis orthogonal to the planar surface.
In this new frame, m1 is the z̃-coordinate of the vehicle,
m2 is the component of the vehicle speed along the z̃-axis.
m3 and m4 are related to the roll and pitch angles of the
vehicle in the new frame. In particular, the roll angle is

arctan

(
m3√

1−m2
3−m2

4

)
and the pitch is arcsin(m4). m5 is

related to the orientation of the x̃ỹ-plane with respect to the
gravity. In particular, the z̃-axis makes an angle arctan(k) =
arctan(m5) with the gravity. m6 is trivially the magnitude
of the quaternion, which is 1 since it describes a rotation.

From now on, we will adopt the new frame to characterize
the vehicle configuration. The state in this frame is S̃ =
[r̃q ṽq q̃, k]T . The x̃, ỹ, z̃-frame is obtained by rotating the
x, y, z-frame about the x-axis of the angle arctan(k). Hence,
it is characterized by the quaternion:

p = cos

(
arctan(k)

2

)
+ i sin

(
arctan(k)

2

)
(11)

Therefore, q = pq̃ or:

q̃ = p∗q (12)

By using the quaternion p it is also possible to obtain:

r̃q = p∗rqp ṽq = p∗vqp (13)

By using (12) and (13), we obtain the expressions of the
observable modes in the new coordinates. We have:

m1 = r̃z

m2 = ṽz

m3 = 2(q̃tq̃x + q̃y q̃z)

m4 = 2(q̃tq̃y − q̃xq̃z)
m5 = k

m6 = q̃∗q̃

APPENDIX III
EKF-EQUATIONS

Let us consider the state m = [m1, m2, m3, m4, gz].
The basic ingredients to implement an EKF , which esti-
mates m, are the analytical expression of the Jacobians of
the dynamics, and the observation [2].



The Jacobian of the observation is obtained by differenti-
ating the expression of hcam given in (9) with respect to m,
i.e.

H ≡ ∂hcam
∂m

=
Lξ(m3, m4)

(m4L−m1)2
×

×
[

1 0 −m3(m4L−m1)
1−m2

3−m2
4

Lm2
3−L+m1m4

1−m2
3−m2

4
0
]

where the function ξ(m3, m4) is defined in (8). Regarding
the Jacobian of the dynamics, we need first of all to discretize
the equations in (7). Let us denote with δt the discretization
time step. The Jacobian of the dynamics with respect to the
state m is:

Fm =


1 δt 0 0 0
0 0 δt (Ay −Azm3) −δt (Ax +Azm4) 0
0 0 −δtΩxm3 δt(Ωz − Ωxm4) 0
0 0 −δt(Ωz + Ωym3) −δtΩym4 0
0 0 0 0 1


where m3 = m3

ξ(m3, m4) and m4 = m4

ξ(m3, m4) . The Ja-
cobian of the dynamics with respect to the input u =
[Ax, Ay, Az, Ωx, Ωy, Ωz]

T is:

Fu =


0 0 0 0 0 0
−m4 m3 ξ 0 0 0

0 0 0 ξ 0 m4

0 0 0 0 ξ −m3

0 0 0 0 0 0


where ξ ≡ ξ(m3, m4).
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