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Matching detected features in two images based on the similarity of
their descriptor often provides good correspondences (inliers). But it of-
ten also includes false matches (outliers). Eliminating those false matches
while preserving true correspondences remains challenging for images
with numerous ambiguities or strong transformations, e.g., due to strong
occlusions. In these cases, individual feature matching is not enough;
global methods are required, such as RANSAC or graph matching.

However, RANSAC-like methods hardly treat low inlier rates (less
than 10%) and, when estimating a fundamental matrix, they cannot elimi-
nate outliers corresponding to points that have matches near their epipolar
line. As for graph matchers, they can cope with higher-order constraints
(involving more than one match) and optimize a global consistency score.
However, most of them are based on geometric constraints rather than
photometry. Besides, they are not well suited for a high outlier rate,
and their time and space complexity grows exponentially with the order,
which limits in practice applications to a few hundred points.

In this paper, we define a 2nd-order photometric descriptor for virtual
lines joining two neighbouring feature points. We show it can be used in
existing graph matchers to significantly improve their accuracy. We also
define a scalable, semi-local matching method based on this descriptor.
We show that it is robust to strong transformations and more accurate than
existing graph matchers for scenes with significant occlusions, including
for very low inlier rates. If used as a preprocessor, it also significantly im-
proves the robustness of RANSAC and reduces camera calibration errors.
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Virtual line descriptor (VLD). Our approach is based on the fact
that, for any two points Pi,Pj in image I, and any two points P�

i� ,P
�
j� in im-

age I�, it is unlikely to find similar photometric information around lines
(Pi,Pj) and (P�

i� ,P
�
j�) unless both (Pi,P�

i�) and (Pj,P�
j�) are correct matches

(see Fig. 1). To measure this property, we define a virtual line descriptor
(VLD) that captures photometric information between any two points.

Figure 2: Disk covering of line (Pi,Pj)
and histogram of gradient orientation.

We consider a regular disk
covering, with overlap, of an im-
age strip between Pi and Pj, and
use a SIFT-like descriptor to rep-
resent each disk. The cover-
ing consists of U disks Du of
radius r= dist(Pi,Pj)

U+1 (see Fig. 2).
Each disk is described at im-
age scale max(r/rmin,1) where
rmin is a minimum description
radius. Scales are actually dis-
cretized and precomputed. The
disk descriptor includes a small-size histogram of gradients and an orien-
tation (see Fig. 2). The global, virtual line descriptor is the concatenation
of all disk descriptors. Although it requires less dimensions, VLD inher-
its SIFT descriptor’s robustness to noise and changes of scale, orientation
and illumination. Last we define a distance between VLDs that can be
used in the pairwise score of a graph matcher.

K-VLD matching method. We introduce K-VLD, a novel semi-
local, 2nd-order matching method. It relies both on geometric and photo-
metric consistency (based on VLD). Two matches (Pi,Pi�) and (Pj,Pj�) are
considered VLD-consistent iff virtual lines (Pi,Pj) in I and (Pi� ,Pj�) in I�

have a VLD-distance less than a given threshold. In the paper, we also de-
fine a geometric consistency measure for two matches based on the scale
and main orientation of feature points, assuming the local transformation
is close to a similitude; if this measure is under a given threshold, then
the matches are considered geometry-consistent. Finally, two matches are
gVLD-consistent iff they are both geometry- and VLD-consistent.

The basic idea of K-VLD relies on the fact that, given a potential
match (Pi,P�

i�), if there are in the neighborhood of Pi and P�
i� at least K

other matches (Pjk ,P
�
j�k
)k∈{1,...,K} that are gVLD-consistent with (Pi,P�

i�),
then (Pi,P�

i�) is likely to be a correct match. Given a match m among a set
of matches M, the paper defines a notion of neighborhood NM(m) whose
size adapts to the density of feature points. Experimentally, requiring
that good matches have at least K gVLD-consistent neighbors eliminates
many outliers, but some may still remain, especially in ambiguous scenes.
We found that adding an extra constraint on the proportion of geometry-
consistent neighbors and on their average measure of geometric consis-
tency helped in removing many of these remaining outliers.

The K-VLD algorithm starts with all the potential matches and itera-
tively removes matches that have less than K gVLD-consistent neighbors
and matches that do not satisfy the extra geometric constraint, until no
match is removed. Ambiguous matches are solved too, based on a pref-
erence for matches with many gVLD-consistent neighbors or, when the
number of such neighbors is equal, a preference for matches with lowest
average VLD-distance. Additional optimizations and heuristics ensure a
performance that is in practice quasi linear in the number of matches.

Figure 3: Dětenice fountain: K-VLD clusters & average accuracy.

Evaluation. We experimented with various matching methods: prob-
abilistic hypergraph matching (HGM), tensor matching, hypergraph match-
ing via reweighted random walks, spectral matching (SM) / integer pro-
jected fixed point, and game-theoretic matching. We also augmented
methods SM and HGM with our VLD. And we compared with K-VLD.

We evaluated matching accuracy w.r.t. changing imaging conditions
with Mikolajczyk’s dataset. K-VLD often outperforms other methods and
VLD significantly improves existing methods, especially for scenes with
viewpoint or scale changes. We also evaluated the case of strong occlu-
sion with Dětenice fountain’s dataset (see Fig. 3). K-VLD creates clus-
ters of consistent matches despite occlusions, mostly outperforming other
methods. Last we tested K-VLD as a pre-filter to RANSAC-based cali-
bration (ORSA) using Strecha’s castle dataset (see Fig. ). It considerably
improves the quality of match selection. As it can eliminate false matches
near epipolar lines, it greatly improves precision, as well as stability. It
also substantially reduces the number of iterations, which improves speed.

Figure 4: Left: inliers by ORSA. Middle: false matches near epipolar
lines by ORSA, rejected by K-VLD. Right: inliers by K-VLD + ORSA.


