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Vision and IMU Data Fusion: Closed-Form
Solutions for Attitude, Speed, Absolute Scale and

Bias Determination
Agostino Martinelli

Abstract—This paper investigates the problem of vision and
inertial data fusion. A sensor assembling constituted by one
monocular camera, three orthogonal accelerometers and three
orthogonal gyroscopes is considered. The first paper contribution
is the analytical derivation of all the observable modes, i.e. all
the physical quantities that can be determined by only using
the information in the sensor data acquired during a short
time interval. Specifically, the observable modes are the speed
and attitude (roll and pitch angles), the absolute scale and the
biases affecting the inertial measurements. This holds even in
the case when the camera only observes a single point feature.
The analytical derivation of the aforementioned observable modes
is based on a non standard observability analysis, which fully
accounts the system non linearities. The second contribution is the
analytical derivation of closed-form solutions which analytically
express all the aforementioned observable modes in terms of
the visual and inertial measurements collected during a very
short time interval. This allows introducing a very simple and
powerful new method able to simultaneously estimate all the
observable modes without the need of any initialization or a priori
knowledge. Both the observability analysis and the derivation
of the closed-form solutions are carried out in several different
contexts, including the case of biased and unbiased inertial
measurements, the case of a single and multiple features, and
in presence and absence of gravity. In addition, in all these
contexts, the minimum number of camera images necessary for
the observability is derived. The performance of the proposed
approach is evaluated via extensive Monte Carlo simulations and
real experiments.

Index Terms—Sensor Fusion, Vision-aided Inertial Navigation,
Computer Vision, Non linear Observability, Aerial Robotics

I. INTRODUCTION

In recent years, vision and inertial sensing have received
great attention by the mobile robotics community. These
sensors require no external infrastructure and this is a key ad-
vantage for robots operating in unknown environments where
GPS signals are shadowed. Additionally, these sensors have
very interesting complementarities and together provide rich
information to build a system capable of vision-aided inertial
navigation and mapping.

When fusing vision and inertial measurements, the follow-
ing two issues must be addressed:

1) find all the physical quantities that the information
contained in the sensor data allows us to estimate;
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2) find a reliable and efficient method to estimate these
physical quantities starting from the raw sensor data.

Throughout this paper, we will call these physical quantities
the Observable Modes.

It is very reasonable to expect that, when fusing vision
and inertial measurements, the absolute scale is an observable
mode and can be obtained by a closed-form solution. Let us
consider the trivial case where a vehicle, equipped with a
bearing sensor (e.g. a camera) and an accelerometer, moves
on a line (see fig 1). If the initial speed in A is known, by
integrating the data from the accelerometer, it is possible to
determine the vehicle speed during the subsequent time steps
and then the distances A − B and B − C by integrating
the speed. The lengths A − F and B − F are obtained by
a simple triangulation by using the two angles βA and βB
from the bearing sensor. Let us now assume that the initial
speed vA is unknown. In this case, all the segment lengths
can be obtained in terms of vA. In other words, we obtain
the analytical expression of A−F and B−F in terms of the
unknown vA and all the sensor measurements performed while
the vehicle navigates from A to B. By repeating the same
computation with the bearing measurements in A and C, we
have a further analytical expression for the segment A − F ,
in terms of the unknown vA and the sensor measurements
performed while the vehicle navigates from A to C. The two
expressions for A − F provide an equation in the unknown
vA. By solving this equation we finally obtain all the lengths
in terms of the measurements performed by the accelerometer
and the bearing sensor.

Fig. 1. A vehicle equipped with an accelerometer and a camera moves on a
line. The camera performs three observations of the feature in F , repsectively
from the points A, B and C.

The previous example is very simple because of several
unrealistic restrictions. First of all, the motion is constrained
on a line. Additionally, the accelerometer provides gravity-
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free and unbiased measurements. In this paper we will relax
these restrictions by considering the case of a vehicle equipped
with IMU1 and bearing sensors. We want to know which
are the observable modes, namely the physical quantities that
can be determined without any a priori knowledge (i.e. by
only collecting the data from the sensors during a short time
interval). For instance, are the absolute scale, the vehicle speed
and the vehicle orientation observable modes? Are they ob-
servable modes even in the case of biased IMU measurements?
Are the biases (affecting the IMU measurements) observable
modes? And more importantly: is it possible to determine all
these quantities by a closed form solution (as in the simple
unrealistic example previously provided)? And, if yes, what
is the minimum number of camera images necessary for this
determination?

An answer to the first three questions can be found by
applying the method introduced in [21], where a non standard
observability analysis, based on the new concept of continuous
symmetry, has been introduced. The advantages of this non
standard observability analysis is that, in contrast to previous
approaches, it is able not only to check whether a given state
is observable or not, but, in the negative case, it is also able
to detect the quantities which are observable. In particular, by
analyzing the continuous symmetries of a given system, it is
possible to obtain a system of partial differential equations.
The observable modes are all the independent solutions of
this system of partial differential equations. In [21], this new
concept of continuous symmetry has been adopted to deal with
a calibration problem in the framework of wheeled robotics. In
[22], this concept has been adopted to deal with the problem
of vision and inertial data fusion. Specifically, the observable
modes have been provided in the case of one feature and in the
case of unbiased IMU measurements. Additionally, a closed-
form solution has been derived in this special case and the
performance of an estimator based on an Extended Kalman
Filter has also been discussed. In this paper, we also provide
the analytical derivation of the observable modes starting from
the theory developed in [21]. Additionally, also new realistic
contexts are considered, by including the case of biased and
unbiased inertial measurements, the case of single and multiple
features, and in presence and absence of gravity.

The paper is organized as follows. Section III illustrates and
summarizes the basic steps of the method introduced in [21],
by dealing with a simple 2D localization problem. Section IV
provides a mathematical description of the system. Starting
from this description, in sections V and VI the observability
analysis is performed. Then, in section VII, we provide closed-
form expressions of the observable modes in terms of the
sensor measurements. The performance of the method in esti-
mating the observable modes is evaluated by using synthetic
and real data (section VIII). Finally, conclusions are provided
in section IX.

1Throughout this paper, we will adopt the term IMU (Inertial Measurement
Unit) to indicate the sensor assembling constituted by three orthogonal
accelerometers and three orthogonal gyroscopes.

II. RELATED WORKS

The problem of fusing vision and inertial data has been
extensively investigated in the past. A special issue of the
International Journal of Robotics Research has recently been
devoted to this important topic [4]. In [3], a tutorial intro-
duction to the vision and inertial sensing is presented. This
work provides a biological point of view and it illustrates
how vision and inertial sensors have useful complementar-
ities allowing them to cover the respective limitations and
deficiencies. In [25] the inertial measurements are used in
order to reduce the ambiguities in the structure from motion
problem. Recent works investigate the observability properties
of the vision-aided inertial navigation system [10], [12] and
[24]. These works show that the absolute roll and pitch angles
of the vehicle are observable modes while the yaw angle is
unobservable. This result is consistent with the experimental
results obtained in [2] which clearly show how the roll and
pitch angles remain more consistent than the heading. In [11],
the authors provide a theoretical investigation to analytically
derive the motion conditions under which the vehicle state is
observable. This analysis also includes the conditions under
which the parameters describing the transformation camera-
IMU are identifiable. On the other hand, a general theoretical
investigation able to also derive the minimum number of
camera observations2 necessary for the state determination still
lacks. The results presented in section VI address precisely
these limitations. In addition, in section V, the observability
analysis is performed in several contexts by also including the
case of biased inertial measurements.

The majority of the approaches so far introduced, perform
the fusion of vision and inertial sensors by filter-based algo-
rithms. In [1], these sensors are used to perform egomotion
estimation. The sensor fusion is obtained by an Extended
Kalman Filter (EKF ) and by an Unscented Kalman Filter
(UKF ). The approach proposed in [6] extends the previous
one by also estimating the structure of the environment where
the motion occurs. In particular, new landmarks are inserted on
line into the estimated map. This approach has been validated
by conducting experiments in a known environment where a
ground truth was available. Also, in [30] an EKF has been
adopted. In this case, the proposed algorithm estimates a state
containing the robot speed, position and attitude, together with
the inertial sensor biases and the location of the features of
interest. In the framework of airbone SLAM, an EKF has
been adopted in [13] to perform 3D−SLAM by fusing inertial
and vision measurements. It was observed that any inconsistent
attitude update severely affects any SLAM solution. The
authors proposed to separate attitude update from position and
velocity update. Alternatively, they proposed to use additional
velocity observations, such as air velocity observation.

When using an EKF , an important issue which arises is
the initialization problem. Indeed, because of the system non-
linearities, an erroneous initialization can irreparably damage
the entire estimation process. This problem has been consid-

2Throughout this paper, we will adopt the term camera observation to
mean the bearing measurements provided by the camera from a single pose,
i.e. obtained by a single image.
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ered in [18]. In particular, the proposed method is able to
estimate the absolute scale by using a square root information
filter. Additionally, the same authors proposed an EKF which
does not suffer from the initialization of the speed and of the
orientation [19].

In [24] it is introduced a measurement model that is able
to express the geometric constraints that arise when the
same feature is observed from multiple camera poses. This
measurement model does not require to include the feature
position in the state which is estimated by an EKF . A similar
idea is adopted in [31]. Also in this case, the problem of
estimating the location of each feature is avoided, by using
epipolar points on the image plane.

There are very few methods able to perform the fusion
of image and inertial measurements without a filter-based
approach. One algorithm of this type has been suggested
in [29]. This algorithm is a batch method which performs
SLAM from image and inertial measurements. Specifically,
it minimizes a cost function by using the Leven-Marquardt
algorithm. This minimization process starts by initializing
the velocities, the gravity and the biases to zero. In [5] the
graphical SLAM approach has been suggested to fuse the data
from many different sensors: encoder, inertial, vision and GPS.

To the best of our knowledge, no prior work has addressed
the problem of determining the trajectory of a platform in
closed form, by only using visual and inertial measurements.
Section VII addresses precisely this important problem by pro-
viding closed-form expressions of all the observable modes in
several different contexts. These solutions have the advantage
of not requiring any prior information about the state.

Finally, an important issue which arises when inertial and
vision sensors are simultaneously used, is the problem of the
extrinsic calibration, i.e. the estimation of the relative pose
of these sensors. This problem has been approached in the
past and several iterative and non-iterative solutions have been
proposed. In [23] the extrinsic calibration has been performed
by using an EKF . Non-iterative solutions have been proposed
in [9] and [16].

III. OBSERVABLE MODES AND CONTINUOUS
SYMMETRIES

When a state is not observable, there are in general infinite
initial states reproducing exactly the same inputs and outputs.
Let us consider for instance, the 2D localization problem when
the vehicle moves along a corridor, equipped with odometry
sensors and sensors able to perform relative observations
(e.g. bearing and range sensors). In this situation, all the
initial states differing for a shift along the corridor, reproduce
exactly the same inputs and outputs. Intuitively, we remark
that the entire system has one continuous symmetry that is the
invariance of the corridor with respect to a shift. It is obvious
that the only quantities that we can estimate (i.e. the observable
modes) are invariant with respect to this continuous symmetry
(i.e. the vehicle orientation and the distance of the vehicle
from the corridor walls). The previous consideration regarding
this simple localization problem is quite trivial and it’s not
required to introduce special mathematical tools. However,

there are cases where deriving the observable modes is a
very challenging task. The key to deal with these cases is to
first provide a mathematical definition of continuous symmetry
able to generalize the intuitive idea of symmetry. In [21], a
procedure which allows us to analytically derive the observ-
able modes for a generic system, has been introduced. This
procedure is based on the concept of continuous symmetry,
whose mathematical definition has also been provided. In this
section we remind the reader the basic concepts characterizing
the theory developed in [21]. For the sake of clarity, these
concepts will be illustrated by referring to a simple localization
problem, which is introduced in section III-A.

A. A Simple Localization Problem

We consider a mobile robot moving in a 2D-environment.
The configuration of the robot in a global reference frame, can
be characterized through the vector [xR, yR, θR]T where xR
and yR are the cartesian robot coordinates, and θR is the robot
orientation. It is also possible to characterize the robot config-
uration by using the polar coordinates, i.e. D ≡

√
x2
R + y2

R

and φR ≡ arctan 2(yR, xR). The dynamics are described by
the following non-linear differential equations:

 ẋR = v cos θR

ẏR = v sin θR

θ̇R = ω

or


Ḋ = v cos(θR − φR)

φ̇R =
v

D
sin(θR − φR)

θ̇R = ω

(1)

where v and ω are the linear and the rotational robot speed
respectively. The robot is equipped with proprioceptive sensors
which are able to evaluate these two speeds. We assume that
a point feature exists in our environment and, without loss of
generality, we fix the global reference frame onto it (see figure
2a). The robot is also equipped with a bearing sensor (e.g. a
camera), able to evaluate the bearing angle of the point feature
in its own frame. Therefore, our system has the following
output (see fig. 2a):

y = β ≡ π − θR + atan2(yR, xR) = π − θR + φR (2)

a b

Fig. 2. A simple localization problem. The robot is equipped with odometry
and bearing sensors able to evaluate the angle β. In b, the three initial robot
configurations are compatible with the same initial observation (β).

To check whether the robot configuration [xR, yR, θR]T

is observable or not, we have to prove that it is possible to
uniquely reconstruct the initial robot configuration by knowing
the input controls and the outputs (observations) in a given
time interval. When at the initial time, the bearing angle β
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of the origin is available, the robot can be everywhere in the
plane but, for each position, only one orientation provides the
right bearing β. In fig. 2b all the three positions A, B and
C are compatible with the observation β, provided that the
robot orientation satisfies (2). In particular, the orientation is
the same for A and B but not for C.

Let us suppose that the robot moves according to the inputs
v(t) and ω(t). With the exception of the special motion
consisting of a line passing by the origin, by only performing
a further bearing observation it is possible to distinguish all
the points belonging to the same line passing by the origin. In
fig. 3a the two initial positions in A and B do not reproduce
the same observations (βA 6= βB). On the other hand, all the
initial positions whose distance from the origin is the same,
cannot be distinguished independently of the chosen trajectory.
In fig. 3b, the two indicated trajectories provide the same
bearing observations at any time. Therefore, the dimension
of the undistinguishable region is 1 and the dimension of the
largest observable subsystem is 3− 1 = 2.

a b

Fig. 3. In a the two initial positions (A and B) do not reproduce the same
observations (βA 6= βB). In b the two indicated trajectories provide the same
bearing observations at any time.

We remark that the system has a continuous symmetry: the
system inputs (v(t) and ω(t)), and outputs (y(t)), are invariant
with respect to a rotation of the global frame about the vertical
axis (in the next section we will provide a mathematical
definition for a general continuous symmetry). Based on the
fact that the dimension of the largest observable subsystem
is two, we know that we can only estimate two indepen-
dent modes. In addition, these two modes must satisfy the
aforementioned system invariance, i.e. they must be rotation
invariant. A possible choice is provided by the two quantities
D and θ in figure 2a (θ ≡ θR − atan2(yR, xR)).

The new system is characterized by the following equations: Ḋ = v cos θ

θ̇ = ω − v

D
sin θ

y = β = π − θ (3)

which express the link between the new state [D, θ]T and the
proprioceptive data (v, ω) and the exteroceptive data (β).

The detection of the two modes (D and θ) and the derivation
of the equations in (3) is fundamental. Indeed, estimating the
original state brings inconsistencies with catastrophic conse-
quences.

In the next subsections we remind the reader some concepts
in the theory by Hermann and Krener in [8] and some basic
tools introduced in [21] in order to perform the same analysis
in the case of more complex systems. This will allow us to

derive the observable modes when fusing monocular vision
and IMU sensor measurements.

B. Observability Rank Criterion

A general characterization for systems in the framework
of autonomous navigation, is provided by the following two
equations, which describe the dynamics and the observation
respectively: Ṡ = f(S,u) = f0(S) +

L∑
i=1

fi(S)ui

y = h(S)

(4)

where S ∈ Σ ⊆ <n is the state, u = [u1, u2, ..., uL]T are
the system inputs, y ∈ < is the output (we are considering
a scalar output for the sake of clarity; the extension to
a multi dimensional output is straightforward). The system
defined by (1-2) (both in cartesian and in polar coordinates)
and the one defined by (3) can be characterized by (4).
For instance, for the system in (1) in polar coordinates,
we have: S = [D, φR, θR]T , f0 = [0, 0, 0]T , L = 2,
u1 = v, u2 = ω, f1(S) = [cos(θR − φR), sin(θR−φR)

D , 0]T ,
f2(S) = [0, 0, 1]T , h(S) = π − θR + φR.

We indicate the kth order Lie derivative of a field Λ along
the vector fields vi1 , vi2 , ..., vik with Lkvi1 , vi2 , ..., viK Λ.
The definition of the Lie derivative is provided by the follow-
ing two equations:

L0Λ = Λ, Lk+1
vi1 ,...,vik+1

Λ = ∇S
(
Lkvi1 ,...,vik

Λ
)
. vik+1

(5)

where the symbol ”.” denotes the scalar product and ∇S the
gradient operation with respect to the state S. We remark that
the Lie derivatives quantify the impact of changes in the con-
trol input (ui) on the output function (h). Additionally, we de-
note with dLk

fi1 , ..., fik
h, the gradient of the corresponding

Lie derivative (i.e. dLk
fi1 , ..., fik

h ≡ ∇SL
k
fi1 , ..., fik

h),
and, we denote with dΩ, the space spanned by all these
gradients.

In this notation, the observability rank criterion can be
expressed in the following way: The dimension of the largest
observable sub-system at a given S0 is equal to the dimension
of dΩ.

We consider again the simple example introduced in III-A,
and we show that by using the observability rank criterion, we
find the same result obtained by following intuitive reasoning
(i.e. that the dimension of the largest observable subsystem is
2).

The computation of the rank for the system in (1-2)
is straightforward. Let us use the polar coordinates. From
(2), we obtain: L0h = π − θR + φR whose gradient is
dL0h ≡ w1 = [0, 1,−1]. The first order Lie derivatives
are: L1

f1
h = sin(θR−φR)

D and L1
f2
h = −1. We have:

dL1
f1h ≡ w2 = [− sin(θR−φR)

D2 ,− cos(θR−φR)
D , cos(θR−φR)

D ].
It is easy to realize that each vector wi obtained by extending
the previous computation to every Lie derivative order, has the
structure: wi = [%i, ςi,−ςi]. Indeed, every Lie derivative will
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depend on θR and φR only through the quantity θR − φR,
whose sign changes with respect to the change θR ↔ φR.
Therefore, the rank of the matrix

Γ ≡
{
wT1 , w

T
2 , ..., w

T
i , ...

}
(6)

is equal to two. We conclude that the largest observable sub-
system has dimension two as derived in section III-A.

C. Continuous Symmetries

We refer to the input output system given in (4). In [21], we
introduced the following definition of continuous symmetry:

Definition 1 (Continuous Symmetry) The vector field
ws(S) (S ∈ Σ) is a continuous symmetry in S for the system
defined in (4) if and only if it is a non null vector belonging
to the null space of the matrix whose lines are the gradients
of all the Lie derivatives computed in S.

We discuss again the simple example provided in section
III-A. We show that the previous definition corresponds to a
global rotation.

For the system defined in (1-2) only one continuous
symmetry exists given, in polar coordinates, by the vector
ws = [0, 1, 1]T (i.e. belonging to the null space of the
matrix Γ in (6)). Let us provide an intuitive interpretation
of this continuous symmetry. It is possible to see that this
symmetry corresponds to an infinitesimal rotation. Indeed, an
infinitesimal rotation of magnitude ε about the vertical axis
changes the state as follows [7]:

 D
φR
θR

→
 D
φR
θR

+ ε

 0
1
1

 =

 D
φR
θR

+ ε ws

In [21] we proved the following fundamental property:

Property 1 g(S) is an observable mode if and only if its
gradient is orthogonal to all the symmetries.

This property can be expressed by a system of partial
differential equations, one for each symmetry:

n∑
i=1

wsi(S)
∂g

∂Si
= 0 (7)

where wsi(S) is the ith component of the symmetry ws.
In other words, for every symmetry there is an associated
partial differential equation which must be satisfied by all the
observable modes.

We use (7) to derive the two observable modes for the
system discussed in section III-A. As previously mentioned,
this system only has the symmetry [0, 1, 1]T . Hence, the
associated equation (7) becomes:

∂g

∂φR
+

∂g

∂θR
= 0

and two independent solutions are g = D and g = θR − φR.
This is the same result we obtained in section III-A.

We conclude this section by summarizing the main steps
illustrated in this section to detect the observability properties
of a given input-output system. The first step consists in the
derivation of all the continuous symmetries. This is obtained
by computing the analytical expression of the Lie derivatives3.
Then, according to property 1, a system of partial differ-
ential equations is obtained and the observability properties
are obtained by solving this system of partial differential
equations. Indeed, all the independent observable modes are
all the independent solutions of this system.

IV. THE CONSIDERED SYSTEM

Let us consider a sensor assembling constituted by a monoc-
ular camera and IMU sensors. The IMU consists of three
orthogonal accelerometers and three orthogonal gyroscopes.
We assume that the transformations among the camera frame
and the IMU frames are known (we can assume that the local
frame coincides with the camera frame). In the following, we
will use the word vehicle to refer to this sensor assembling.
The IMU provides the vehicle angular speed and acceleration.
Actually, regarding the acceleration, the one perceived by the
accelerometer (A) is not simply the vehicle acceleration (Av).
It also contains the gravitational acceleration (Ag). In partic-
ular, we have A = Av −Ag since, when the camera does
not accelerate (i.e. Av is zero) the accelerometer perceives an
acceleration which is the same of an object accelerated upward
in the absence of gravity.

We will use uppercase letters when the vectors are expressed
in the local frame and lowercase letters when they are ex-
pressed in the global frame. Hence, regarding the gravity we
have: ag = [0, 0, − g]T , being g ' 9.8 ms−2.

We assume that the camera is observing a point feature
during a given time interval. We fix a global frame attached
to this feature. The vehicle and the feature are displayed in fig
4.

Fig. 4. The feature position (F ), the vehicle acceleration (Av) the vehicle
angular speed (Ω) and the gravitational acceleration (Ag).

Finally, we will adopt a quaternion to represent the vehicle
orientation. Indeed, even if this representation is redundant,
it is very powerful since the dynamics can be expressed in a
very easy and compact notation [14].

3In section V we will see that sometimes the symmetries can easily be
derived from physical considerations, i.e. by remarking the system invariance
under several transformations. This allows us to avoid the computation of high
order Lie derivative
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Our system is characterized by the state [r, v, q]T where
r = [rx, ry, rz]

T is the 3D vehicle position, v is its time
derivative, i.e. the vehicle speed in the global frame (v ≡
dr
dt ), q = qt + iqx + jqy + kqz is a unitary quaternion (i.e.
satisfying q2

t +q2
x+q2

y +q2
z = 1) and characterizes the vehicle

orientation. The analytical expression of the dynamics and the
camera observations can be easily provided by expressing all
the 3D vectors as imaginary quaternions. In practice, given
a 3D vector w = [wx, wy, wz]

T we associate with it the
imaginary quaternion ŵ ≡ 0+iwx+jwy+kwz . The dynamics
of the state [r̂, v̂, q]T are:

˙̂r = v̂

˙̂v = qÂvq
∗ = qÂq∗ + âg

q̇ =
1

2
qΩ̂

(8)

being q∗ the conjugate of q, q∗ = qt − iqx − jqy − kqz . We
now want to express the camera observations in terms of the
same state ([r̂, v̂, q]T ). We remark that the camera provides
the direction of the feature in the local frame. In other words,
it provides the unit vector F

|F | (see fig. 4). Hence, we can

assume that the camera provides the two ratios y1 = Fx

Fz
and

y2 =
Fy

Fz
, being F = [Fx, Fy, Fz]

T . We need to express
F in terms of [r̂, v̂, q]T . We note that the position of the
feature in the frame with the same orientation of the global
frame but shifted in such a way that its origin coincides with
the one of the local frame is −r. Therefore, F is obtained by
the quaternion product F̂ = −q∗r̂q. The observation function
provided by the camera is:

hcam(r̂, v̂, q) = [y1, y2]T =

[
(q∗r̂q)x
(q∗r̂q)z

,
(q∗r̂q)y
(q∗r̂q)z

]T
(9)

where the pedices x, y and z indicate respectively the i, j
and k component of the corresponding quaternion. We have
also to consider the constraint q∗q = 1. This can be dealt as
a further observation (system output):

hconst(r̂, v̂, q) = q∗q (10)

A. The Case with Multiple Features

We consider the case when the camera observes Nf fea-
tures, simultaneously. We fix the global frame on one of
the features. Let us denote with di the 3D vector which
contains the cartesian coordinates of the ith feature (i =
0, 1, ..., Nf−1). We assume that the global frame is attached
to the 0th feature, i.e. d0 = [0 0 0]T . The new system is
characterized by the state [r̂, v̂, q, d̂1, ..., d̂Nf−1]T , whose
dimension is 7 + 3Nf . The dynamics of this state are given
by (8) together with the equations:

ḋi = [0 0 0]T i = 1, ..., Nf − 1 (11)

The position Fi of the ith feature in the local frame is obtained
by the quaternion product F̂i = q∗(d̂i−r̂)q. The corresponding
observation function is:

hicam =

[
(q∗(d̂i − r̂)q)x
(q∗(d̂i − r̂)q)z

,
(q∗(d̂i − r̂)q)y
(q∗(d̂i − r̂)q)z

]T
i = 0, 1, ..., Nf−1

(12)
which coincides with the observation in (9) when i = 0.
Summarizing, the case of Nf features is described by the state
[r̂, v̂, q, d̂1, ..., d̂Nf−1]T , whose dynamics are given in (8)
and (11) and the observations are given in (12) and (10).

B. The Case with Bias

We consider the case when the data provided by the IMU
are biased. In other words, we assume that the measurements
provided by the three accelerometers and the three gyroscopes
are affected by an error which is not zero-mean. Let us
denote with Abias and with Ωbias the two 3D-vectors whose
components are the mean values of the measurement errors
from the accelerometers and the gyroscopes, respectively. The
two vectors Abias and Ωbias are time-dependent. However,
during a short time interval, it is reasonable to consider them
to be constant. Under these hypotheses, the dynamics in (8)
become:



˙̂r = v̂

˙̂v = qÂvq
∗ = qÂq∗ + qÂbiasq

∗ + âg

q̇ =
1

2
qΩ̂ +

1

2
qΩ̂bias

Ȧbias = Ω̇bias = [0 0 0]T

(13)

Note that these equations only hold for short time intervals.
In the following, we will use these equations only when this
hypothesis is satisfied (in particular, during time intervals
allowing the camera to perform at most ten consecutive
observations).

V. OBSERVABILITY PROPERTIES

We investigate the observability properties of the system
whose dynamics are given in (8) and whose observations are
given in (9) and (10). For the sake of clarity, we discuss
both the case without gravity (V-A) and with gravity (V-B).
Moreover, in V-C we discuss the case when the camera is
observing simultaneously more than one feature, namely we
investigate the observability properties of the system defined
by (8), (10), (11) and (12). Then, the case when the IMU
sensors are affected by a bias is investigated (V-D).

The observability analysis performed in this section takes
into account all the degrees of freedom allowed by the
dynamics in (8). In other words, the observability of the modes
here derived, could require the vehicle to move along all
these degrees of freedom. The modes derived in this section
could become unobservable when the vehicle performs special
motions. In section VI we discuss the observability properties
for special vehicle motions.
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A. The Case without Gravity

Let us set g = 0 in (8). By directly computing the Lie
derivatives and their gradients, it is possible to detect three
independent symmetries for the resulting system. They are:

wRotx
s =

[
0 − rz ry 0 − vz vy −

qx
2

qt
2
− qz

2

qy
2

]T
(14)

wRoty
s =

[
rz 0 − rx vz 0 − vx −

qy
2

qz
2

qt
2
− qx

2

]T

wRotz
s =

[
−ry rx 0 − vy vx 0 − qz

2
− qy

2

qx
2

qt
2

]T
According to definition 1, these vectors are orthogonal to
all the gradients of all the Lie derivatives. These symmetries
could also be derived by remarking the system invariance with
respect to rotations about all the three axes. For instance, an
infinitesimal rotation of magnitude ε about the vertical axis
changes the state as follows [7]: rx

ry
rz

→
 rx
ry
rz

+ ε

 −ryrx
0


 vx
vy
vz

→
 vx
vy
vz

+ ε

 −vyvx
0



qt
qx
qy
qz

→

qt
qx
qy
qz

+
ε

2


−qz
−qy
qx
qt


that is:  r

v
q

→
 r
v
q

+ εwRotz
s

On the other hand, without computing the Lie derivatives, we
could not conclude that the rotational symmetries are all the
symmetries for the considered system. In order to be sure that
they are all the symmetries, we must detect 10 − 3 = 7
independent Lie derivatives. In appendix A, we provide a
possible choice of 7 independent Lie derivatives.

Summarizing, we detected all the symmetries by proceed-
ing in two separate steps. In the first, we used the system
invariance under rotations which allowed us to immediately
detect three symmetries. Then, by providing 7 independent Lie
derivatives, we concluded that these are all the symmetries.

According to property 1, for every symmetry there is an
associated partial differential equation (the one provided in
(7)). Hence, every observable mode must satisfy simultane-
ously all the three partial differential equations. Since our
system is defined by 10 variables, the number of independent
solutions satisfying all the three partial differential equations
is 10 − 3 = 7 [15]. On the other hand, their derivation,
once the three symmetries are detected, is easy. Indeed, it
is immediate to prove that the distance of the feature from

the camera, i.e. |r|, is a solution of the three equations (this
can be checked by substitution for the partial differential
equations associated with the symmetries in (14) but can also
be proved by remarking that the absolute scale is invariant
under rotations). This means that the distance of the feature is
observable and it is one among the 7 independent solutions.
On the other hand, since the camera provides the position of
the feature in the local frame up to a scale factor, having the
distance means that the feature position in the local frame is
also observable. Therefore, the three components of the feature
position in the local frame are three independent solutions. By
using quaternions, we can say that three independent solutions
are provided by the components of the imaginary quaternion
q∗r̂q. Additionally, since the three partial differential equations
are invariant under the transformation r ↔ v, three other
independent solutions are the components of the imaginary
quaternion q∗v̂q. Physically, this means that the vehicle speed
in the local frame is also observable. Finally, the last solution
is q∗q since it is directly observed (see equation (10); it can be
in any case verified that it satisfies the three partial differential
equations).

The analytical results derived in this subsection can be
summarized with the following property:

Property 2 (Observable Modes without Gravity) Let us
consider the system defined by (8), (9) and (10) in absence
of gravity (i.e. g = 0). All the independent observable modes
are 7 and they are the three components of the imaginary
quaternion q∗r̂q (i.e. the position of the observed feature
in the local frame), the three components of the imaginary
quaternion q∗v̂q (i.e. the vehicle speed in the local frame)
and the product q∗q (i.e. the norm of the the quaternion).

B. The Case with Gravity

We investigate the observability properties when g 6= 0.
The presence of the gravity breaks two of the three rotational
symmetries. In other words, the system remains invariant only
with respect to rotations about the vertical axis. This means
that wRotx

s and wRoty
s are no longer symmetries for the new

system. By directly computing the Lie derivatives, we were
able to find nine independent Lie derivatives (the computation
is similar to the one illustrated in appendix A). Hence, the
system has 10− 9 = 1 symmetry which is wRotz

s .
The partial differential equation associated with wRotz

s is:

−2ry
∂Λ

∂rx
+ 2rx

∂Λ

∂ry
− 2vy

∂Λ

∂vx
+ 2vx

∂Λ

∂vy
+ (15)

−qz
∂Λ

∂qt
− qy

∂Λ

∂qx
+ qx

∂Λ

∂qy
+ qt

∂Λ

∂qz
= 0

The number of independent solutions Λ =
Λ(rx, ry, rz, vx, vy, vz, qt, qx, qy, qz) is equal to
the number of variables (i.e. 10) minus the number of
equations (i.e. 1) [15]. Hence, in this case we have two
additional observable modes. They are:

Qr ≡
qtqx + qyqz

1− 2(q2
x + q2

y)
; Qp ≡ qtqy − qzqx (16)
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Also for these two solutions it is possible to find a physical
meaning. They are related to the roll and pitch angles [14]. In
particular, the first solution provides the roll angle which is
R = arctan(2Qr). The latter provides the pitch angle which
is P = arcsin(2Qp). Finally, we remark that the expression
of the yaw, Y = arctan

(
2
qtqz+qxqy

1−2(q2y+q2z)

)
, does not satisfy (15).

The analytical results derived in this subsection can be
summarized with the following property:

Property 3 (Observable Modes with Gravity) Let us con-
sider the system defined by (8), (9) and (10). All the indepen-
dent observable modes are 9 and they are the 7 observable
modes for the case without gravity together with the roll and
pitch angles.

C. The Case with Multiple Features
Let us suppose that the vehicle is observing Nf > 1

features, simultaneously. The new system is characterized by
the (7+3Nf )− dimensional state [r̂, v̂, q, d̂1, ..., d̂Nf−1]T ,
whose dynamics are given in (8) and (11) and the observations
are given in (12) and (10).

It is immediate to realize that all the camera observations are
invariant with respect to the same symmetries found in the case
of one single feature (for instance, the camera observations do
not change when the initial state [r̂, v̂, q, d̂1, ..., d̂Nf−1]T is
rotated about the vertical axis). Hence, in presence of gravity,
the yaw angle is still unobservable. In absence of gravity, also
the roll and pitch angles are unobservable. Hence, in presence
of gravity, the number of independent modes cannot exceed
7 + 3Nf − 1 = 6 + 3Nf . In absence of gravity, this number
cannot exceed 7 + 3Nf − 3 = 4 + 3Nf .

On the basis of the results obtained in the previous subsec-
tions, we know that the position of each feature in the local
frame provides 3 observable modes. Also, the vehicle speed in
the local frame provides 3 observable modes. In addition, an
observable mode is the norm of the quaternion. Therefore, in
both the cases with and without gravity, we have 3Nf + 4
observable modes. In absence of gravity, these are all the
observable modes. In presence of gravity, also the roll and
pitch angles are observable modes, since they are observable
modes with a single feature.

The analytical results derived in this subsection can be
summarized with the following property:

Property 4 (Observable Modes with Multiple Features)
Let us consider the system defined by (8), (10), (11) and (12).
All the independent observable modes are the components of
the imaginary quaternion q∗(d̂i − r̂)q, i = 0, 1, ..., Nf − 1
(i.e. the position of the observed features in the local frame),
the three components of the imaginary quaternion q∗v̂q (i.e.
the vehicle speed in the local frame) and the product q∗q
(i.e. the norm of the quaternion). In addition, in presence of
gravity, also the roll and pitch angles are observable modes.

D. The Case with Bias
In this subsection we will prove that, even when the

camera only observes a single feature, the biases affect-
ing the accelerometers and the gyroscopes are observable.

The system we are considering is defined by the state:
[r v q Abias Ωbias]T , whose dimension is 16. This state
satisfies the dynamics in (13). Finally, this system is charac-
terized by the observations given in (9) and (10).

We know that the state is not observable. Indeed, even
without bias, we know that it is not possible to estimate the
yaw angle (section V-B). In other words, also this system is in-
variant with respect to rotations about the vertical axis. Hence,
its observable modes must satisfy the equation in (15), where,
now, Λ also depends on the components of Abias and Ωbias.
On the other hand, we do not know if the system has additional
symmetries in which case the observable modes must satisfy
additional partial differential equations, simultaneously. In
order to prove that the system has a single symmetry, we
must provide 15 independent Lie derivatives. By a direct
computation, performed by using the symbolic Matlab compu-
tational tool, we were able to find the following 15 indepen-
dent Lie derivatives: L0y1, L0y2, L0hconst, L1

f0
y1, L1

f0
y2,

L2
f0, f0

y1, L2
f0, f1

y1, L2
f0, f4

y1, L2
f0, f0

y2, L2
f0, f4

y2,
L2
f0, f5

y2, L3
f0, f0, f5

y1, L3
f0, f0, f6

y1, L3
f0, f0, f2

y2,
L3
f0, f0, f6

y2. As previously mentioned, we know that we
cannot have more than 15 independent Lie derivatives (oth-
erwise, the yaw angle would be observable). Note that in
the previous computation the expression of the vector fields
f0, f1, ..., f6 is not the one given in appendix A. The right
one must be computed starting from the dynamics in (13).
The fact that we have 15 independent Lie derivatives means
that there are no additional symmetries and, the independent
observable modes, are the independent solutions of (15). They
are: the 9 solutions provided in V-B and the six components of
the two vectors Abias and Ωbias (note that these components
are trivial solutions of (15)).

The analytical results derived in this subsection can be
summarized with the following property:

Property 5 (Observable Modes in Presence of Bias) Let
us consider the system defined by (13), (9) and (10). All the
independent observable modes are the same as in the case
without bias and the six components of the two bias vectors
Abias and Ωbias.

E. Unknown Gravity

The results provided in the previous sections are obtained by
assuming that the magnitude of the gravitational acceleration
(g) is a priori known. In [20] we prove that g is among the
observable modes even in the worst case when the inertial
sensors are affected by a bias and when only a single feature
is available. In other words, the following property holds:

Property 6 (Observability of gravity) The gravity vector is
observable even in the case of biased inertial measurements
and when a single feature is available.

VI. OBSERVABILITY FOR SPECIAL TRAJECTORIES AND
FEW CAMERA IMAGES

The goal of this section is to discuss the following two
issues:
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1) Derivation of the observability properties for special
vehicle trajectories;

2) Derivation of the minimum number of camera images
necessary for the observability of the modes derived in
section V.

As we will see, the second issue can be dealt starting from
the results obtained by dealing with the first issue.

A. Special Trajectories

We are interested in deriving the observability properties
for special trajectories. Mathematically, this can be done by
introducing in (8) the constraints characterizing the trajectory
we want to consider. Then, it suffices to apply the method
described in section III to the system characterized by the
new dynamics and the same observations (9) and (10). We
only consider two special cases since they allow us to derive
important necessary conditions on the minimum number of
camera images (see theorem 1). However, there are many
other special motions/feature configurations, for which the
observability properties degenerate. Some of them will be
discussed for the case of two point features in three camera
images (section VII-B).

The following property holds:

Property 7 (Observability with constant acceleration)
When the vehicle moves with constant acceleration all
the modes derived in section V are observable except the
magnitude of the gravitational acceleration.

Proof: The proof is provided in [20] �
A special case of constant acceleration is the case of

constant speed. In this case we have a nice property when
the magnitude of the gravity is a priori known:

Property 8 (Observability with constant speed) When the
magnitude of the gravity is known and the vehicle moves
with constant speed all the modes derived in section V are
observable up to a scale factor.

Proof: Our system is characterized by the dynamics given
in (8), where the second equation is replaced by ˙̂v = 0 and
with the parameter g a priori known. The system outputs are
given in (9) and (10) together with the observations provided
by the accelerometers (in this case Â = −q∗âgq). We want
to derive the observable modes of this system. According to
the method illustrated in section III, we need, first of all,
to detect the system symmetries. Instead of computing the
Lie derivatives, we remark that, with respect to the case of
a general motion (investigated in section V-B), the system is
characterized by a further symmetry. Indeed, the new dynamics
are invariant with respect to the change r → λr, v → λv,
being λ a real number. In addition, also the observations are
invariant with respect to the same change4. We conclude that,
when the vehicle does not accelerate, the system does not

4Note that this invariance corresponds to the continuous symmetry:
wscale

s = [rx, ry , rz , vx, vy , vz , 0, 0, 0, 0]T , which would have
been obtained by the Lie derivatives and definition 1.

contain the information to determine the absolute scale5. This
result also holds in the case of multiple features. Indeed, the
same invariance also characterizes the equations in (11) and
(12) by also considering di → λdi, i = 0, 1, ..., Nf − 1 �

B. Minimum number of camera observations

The observability analysis performed so far, assumes that
the observation is provided continuously during a given time
interval. However, the following property, allows us to obtain
necessary conditions on the number of camera observations.

Property 9 Let us consider the systems defined in section IV.
When the observability of a mode requires the vehicle to move
with a non-constant speed, this mode cannot be determined
by two camera images. Similarly, when the observability of
a mode requires the vehicle to move with a non-constant
acceleration, this mode cannot be determined by three camera
images.

Proof: The proof is provided in [20] �
A consequence of properties 7, 8 and 9 is:

Theorem 1 (Minimum number of camera images) In or-
der to estimate the observable modes the camera must perform
at least three observations (i.e. the observability requires to
have at least three images taken from three distinct camera
poses). When the magnitude of the gravitational acceleration
(g) is unknown, the minimum number of camera images
becomes four.

Proof: The first part of this theorem is a simple conse-
quence of properties 8 and 9. The second part of this theorem
is a simple consequence of properties 7 and 9. �

In most of cases, the magnitude of the gravitational accel-
eration (g) is known with good accuracy. Hence, considering
the case of unknown gravity, could seem useless. On the other
hand, considering this case has a very practical importance (see
property 12 at the end of the next section).

VII. CLOSED-FORM SOLUTIONS TO DETERMINE ALL THE
OBSERVABLE MODES

We provide closed form solutions which directly express
the observable modes in terms of the sensor measurements
collected during a short time interval. For the sake of clarity,
we start by providing the closed-form solution in the case
without gravity (VII-A). Then, we provide the solution in
presence of gravity (VII-B) and bias (VII-C). We also discuss
the case of multiple features.

5Mathematically, this can be seen by proving that the expression of the
scale factor (i.e.

√
r2x + r2y + r2z ) is not a solution of the partial differential

equation associated to wscale
s .
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A. The case without Gravity

1) Single Feature: We start by discussing the case of one
feature. Property 2 states that the sensor data collected during
a given time interval contain the information to estimate the
vehicle speed and the position of the feature in the local
frame. Hence, we start by expressing the dynamics and the
observation in this frame. We have:[

Ḟ = MF − V
V̇ = MV +A

(17)

where F is the position of the feature in the local frame and V
is the vehicle speed in the same frame. The matrix M depends
on the angular speed:

M ≡

 0 Ωz −Ωy
−Ωz 0 Ωx
Ωy −Ωx 0


The validity of (17) can be checked by a direct substitution,
i.e. by using F̂ = −q∗r̂q, V̂ = q∗v̂q and by computing their
time derivatives by means of (8).

In the local frame, the observation in (9) is:

hcam = [y1, y2]T =

[
Fx
Fz
,
Fy
Fz

]T
(18)

Let us consider a given time interval, [T0, T0 +T ]. Our goal is
to estimate the position of the feature and the vehicle speed in
the local frame at T0, i.e. F0 ≡ F (T0) and V0 ≡ V (T0), by
only using the data from the camera and the IMU during the
interval [T0, T0+T ]. The measurements provided by the IMU
are usually delivered at a very high frequency (∼ 100 Hz).
This allows us to integrate the equations in (17). This seems
to be useless since we do not know the initial state [F0, V0]T .
In fact, our goal is to estimate [F0, V0]T . The basic idea is
the following. We numerically integrate the equations in (17)
by leaving symbolic the unknown components of the initial
state. In other words, we obtain for every time t > T0 the
analytical expression of the state [F (t), V (t)]T in terms of
its initial value [F0, V0]T .

The following fundamental property holds:

Property 10 The position of the feature at any time, F (t),
linearly depends on the initial feature position, F0, and on
the initial vehicle speed, V0. In other words:

F (t) = CF (t)F0 + CV (t)V0 +CB(t) (19)

where CF (t), CV (t) are 3 × 3 matrices and CB(t) is a
3D−vector. In addition, CF (t) and CV (t) only depend on
Ω(τ), τ ∈ [T0, t].

Proof: See appendix B where CF , CV and CB are
computed �

We consider the components of F (t), i.e. Fx(t; F0, V0)
Fy(t; F0, V0) and Fz(t; F0, V0). By using (18) we obtain:

Fx(t; F0, V0) = y1(t) Fz(t; F0, V0) (20)

Fy(t; F0, V0) = y2(t) Fz(t; F0, V0)

These are two independent equations in our six unknowns
(which are the components of F0 and V0). On the basis
of property 10, the components of F (t) are linear on the
unknowns. Hence, the equations in (20) are linear and, by
having at least nobs = 3 camera observations, we can easily
obtain the initial state [F0, V0]T . In [20] we analyze the case
nobs = 3 and we prove that the 6 equations are independent
(with the exception of special cases whose probability is zero).
Hence, in this case, the components of F0 and V0 are obtained
by inverting a (6 × 6) matrix. For larger nobs, it suffices to
compute the pseudoinverse of a (2nobs × 6) matrix.

2) Multiple Features: Let us consider the case when the
camera observes Nf features. Let us denote their position
in the local frame with F i, i = 0, 1, ..., Nf − 1. On
the basis of property 4, we know that we can estimate the
state [F 0, F 1, ...,FNf−1, V ] whose dynamics are given
by (17) with the first equation repeated for all the features.
The camera observation model is the one in (18), repeated
for all the features. Each camera observation consists of 2Nf
measurements, yi1, y

i
2, i = 0, 1, ..., Nf − 1. By proceeding

as in the case of one feature, we obtain a system of linear
equations similar to the one in (20). The number of unknowns
are now 3Nf + 3. By considering nobs camera observations,
the number of equations are 2nobsNf . When nobs = 2, we
have 4Nf equations. For Nf ≥ 3 the number of equations
is larger than the number of unknowns, i.e. 4Nf ≥ 3Nf + 3
when Nf ≥ 3. On the other hand, on the basis of theorem 1,
we know that these equations are not independent. Hence, the
minimum number of observations is 3 for any value of Nf .
However, a higher value of Nf will increase the precision of
the estimation.

B. The case with Gravity

1) Single Feature: As in the previous subsection, we start
by considering the case of a single feature. On the basis of
property 3, we know that the sensor data collected during a
given time interval, contain the information to estimate the
vehicle speed and the position of the feature in the local
frame, and, the absolute roll and pitch angles. We express the
dynamics and the observation in the local frame. We have: Ḟ = MF − V

V̇ = MV +A+Ag

q̇ = mq

(21)

where q is the four vector whose components are the com-
ponents of the quaternion q, i.e. q = [qt, qx, qy, qz]

T . The
matrix M is provided in VII-A and the matrix m is:

m ≡ 1

2


0 −Ωx −Ωy −Ωz

Ωx 0 Ωz −Ωy
Ωy −Ωz 0 Ωx
Ωz Ωy −Ωx 0


Ag is the gravitational acceleration in the local frame, i.e.
Âg = q∗âgq. We remark that, because of the gravity, the first
two equations in (21) cannot be separated from the equations
describing the dynamics of the quaternion, in contrast to the
case without gravity.
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Let us consider a given time interval, [T0, T0 +T ]. In con-
trast to the previous case, our goal is now to also estimate the
absolute roll and pitch angles at the time T0. In other words,
the goal is the estimation of the state [F0, V0, R0, P0]T , by
only using the data from the camera and the IMU during the
interval [T0, T0 +T ]. We proceed as in the previous case. We
numerically integrate the equations in (21) by leaving symbolic
the unknown components of the initial state. On the other
hand, the components of q(T0) are not observable since the
yaw angle is not observable. In order to proceed as in the
previous subsection, we need to know how the position of the
feature at the time t, i.e. F (t), depends on [F0, V0, R0, P0]T .
We have the following fundamental property, which extends
property 10 to the case with gravity:

Property 11 The position of the feature at any time, F (t),
linearly depends on the initial feature position, F0, on the
initial vehicle speed, V0, and on the three quantities: χα ≡
2g(qt0qy0 − qx0qz0), χβ ≡ −2g(qt0qx0 + qy0qz0) and χγ ≡
2g(q2

x0 + q2
y0)− g. In other words:

F (t) = CF (t)F0 + CV (t)V0 + Cχ(t)χg +CB(t) (22)

where χg ≡ [χα, χβ , χγ ]T is the gravity vector in the local
frame at time T0, CF (t), CV (t), Cχ(t) are 3×3 matrices and
CB(t) is a 3D−vector. In addition, CF (t), CV (t) and Cχ(t)
only depend on Ω(τ), τ ∈ [T0, t].

Proof: See appendix C where CF , CV , Cχ and CB are
computed �

By proceeding as in the case without gravity we obtain the
analogous of equations (20). The new equations also depend
on the vector χg:

Fx(t; F0, V0, χg) = y1(t) Fz(t; F0, V0, χg) (23)

Fy(t; F0, V0, χg) = y2(t) Fz(t; F0, V0, χg)

i.e., each camera observation occurred at the time t ∈
[T0, T0 + T ] provides two equations in the nine unknowns
(which are the components of F0, V0 and χg). On the basis
of property 11, the components of F (t) are linear on the
unknowns. Hence, the equations in (23) are linear and, by
having at least nobs = 5 camera observations, we can easily
obtain the initial state [F0, V0, χg]T . In particular, when
nobs ≥ 5, the components of F0, V0 and χg are obtained by
computing the pseudoinverse of a (2nobs × 9) matrix.

2) Single feature; exploiting additional information: On
the basis of property 3, we know that, regarding the vehicle
orientation, only the roll and pitch angles are observable
modes. Hence, it must be possible to express the components
of the vector χg only in terms of these two angles. In appendix
D we provide these expressions. These expressions contain
additional information to estimate [F0, V0, χg]T . Indeed,
the components of χg are three but they only depend on two
quantities. An important consequence due to this additional in-
formation is that it is possible to estimate [F0, V0, χg]T even
when the camera only performs nobs = 4 observations. On the

other hand, when more than four observations are available
(nobs ≥ 5), the expressions in (37) can be adopted to improve
the precision. We discuss the case of nobs = 4 observations
and we provide a procedure to perform the estimation. When
nobs = 4, the equations in (23) are eight. Hence, it is not
possible to determine the components of F0, V0 and χg by
a simple matrix inversion. However, it is possible to prove
that these equations are in general independent [20]. Let us
denote by Ax = b the linear system in (23) (i.e., the entries
of the nine-dimensional column vector x are the components
of the vectors F0, V0 and χg). The rank of the matrix A is
8. Let us denote by n the unit vector spanning the null space
of A (whose dimension is 1). The linear system Ax = b has
infinite solution. Each solution satisfies the following equation:
x = A∗b+γn, being A∗ the pseudoinverse of A and γ a scalar
number. The determination of γ is obtained by enforcing the
constraint that the norm of the vector formed by the last three
elements of x is equal to g.

|¶ (A∗b+ γn)| = g, ¶ ≡ [03×6, I3] (24)

where 0n×m is the n×m matrix whose entries are all zero
and I3 is the identity 3× 3 matrix. The equation in (24) is a
quadratic polynomial in γ and has two real roots. Hence, we
obtain two discrete solutions for x.

In the case we have nobs ≥ 5, the value of x is obtained by
using the 2nobs(≥ 10) equations in (23) (it suffices to compute
the pseudoinverse of A, whose dimension is (2nobs×9)). Then,
the equations in (37) are used to obtain the roll and pitch
angles. We have:

P = arcsin

(
χα
g

)
, R = − arcsin

(
χβ√
g2 − χ2

α

)
(25)

The procedure described in this case of nobs ≥ 5 does
not exploit a possible knowledge of the magnitude of the
gravitational acceleration. This can be done by minimizing
the cost function:

c(x) = |Ax− b|2 (26)

under the constraint |χg| = g. This minimization problem can
be solved by using the method of Lagrange multipliers.

3) Multiple Features: Let us consider the case where the
camera observes Nf features. As in the previous section,
we denote their position in the local frame with F i, i =
0, 1, ..., Nf − 1. On the basis of property 4 we know that
we can estimate the state [F 0, F 1, ..., FNf−1, V, χg].
Each camera observation consists of 2Nf measurements,
yi1, y

i
2, i = 0, 1, ..., Nf − 1. By proceeding as in the case of

one feature, we obtain a system of linear equations similar to
the one in (23). The number of unknowns are now 3Nf + 6.
We have the following property:

Property 12 When the number of camera images is less or
equal to three (nobs ≤ 3) the rank of the matrix characterizing
the linear system in (23) is always smaller than the number
of unknowns, independently of the number of features.
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Proof: According to theorem 1, when nobs = 3 the
value of g, i.e. the magnitude of the vector χg , cannot
be determined. Hence, χg cannot be determined by simply
solving the linear system in (23). This means that the rank of
the matrix characterizing that linear system is always smaller
than the number of unknowns �

Let us consider the case of two points features in three
camera images. The unknowns are 12: the position of the two
features in the local frame (6 unknowns), the vehicle speed
in the local frame (3 unknowns) and the gravity vector in the
local frame (3 unknowns). The number of equations in (23) is
also 12. On the other hand, because of property 12, the rank
of the matrix characterizing the linear system in (23) is less
than 12. In [20] we prove that this rank is in general equal to
11 with the exception of the following special cases (when it
is less than 11):

1) at least one of the camera pose is aligned with the two
other features;

2) all the camera poses and the two features belong to the
same plane.

In general, i.e. when the rank is 11, the estimation can be
performed by using the value of g which must be a priori
known. Enforcing |χg| = g is obtained by solving equation
(24), with ¶ = [03×(3Nf+3), I3] = [03×6, I3]. Hence, as in the
case of a single feature in four images, two distinct solutions
are obtained.

Property 12 states that when nobs = 3, the determination
of the observable modes cannot be obtained by computing
a pseudoinverse also when the number of features is larger
than two. On the other hand, it is possible to show that, with
the exception of special cases, the observable modes can be
determined by enforcing |χg| = g. Hence, when nobs = 3 and
Nf ≥ 2, two distinct solutions are in general obtained. When
nobs ≥ 4, the determination of the observable modes can be
performed by the computation of a pseudoinverse, provided
that the number of equations is at least as the number of
unknowns and that the vehicle poses and the positions of the
features do not satisfy special conditions, whose probability
is zero (for instance when all the features and all the camera
poses lie on the same plane).

4) Multiple features; exploiting additional information:
As discussed in the second part of VII-B2, it is possible
to exploit an a priori knowledge of the magnitude of the
gravity to improve the precision. The procedure consists of
the minimization of the cost function in (26), as for the case
of one single feature.

C. The Case with Bias

We derive a closed-form solution only when the accelerom-
eters are affected by a bias, i.e. we will consider the case
Abias 6= [0 0 0]T and Ωbias = [0 0 0]T . Indeed, all the
matrices appearing in (22) depend on Ω(τ) and therefore on
Ωbias. Hence, when Ωbias is unknown, the dependence of
F (t) on all the unknowns (F0, V0, χg and Ωbias) becomes
non linear making more complex their derivation. In contrast,
when the bias on the accelerometers is unknown, we obtain
the following property, which extends property 11:

Property 13 The position of the feature at any time, F (t),
linearly depends on the initial feature position, F0, on the
initial vehicle speed, V0, on χg and on the bias on the
accelerometers Abias. In other words:

F (t) = (27)

= CF (t)F0+CV (t)V0+Cχ(t)χg +CAbias
(t)Abias+CB(t)

where χg ≡ [χα, χβ , χγ ]T and CF (t), CV (t), Cχ(t),
CAbias

(t) are 3 × 3 matrices and CB(t) is a 3D−vector. In
addition, CF (t), CV (t), Cχ(t) and CAbias

(t) only depend on
Ω(τ), τ ∈ [T0, t].

Proof: See the last paragraph of appendix C �
By proceeding as in the case without bias we obtain the

analogous of equations (23). The new equations also depend
on the vector Abias:

Fx(t; F0, V0, χg, Abias) = y1(t) Fz(t; F0, V0, χg, Abias)
(28)

Fy(t; F0, V0, χg, Abias) = y2(t) Fz(t; F0, V0, χg, Abias)

i.e., each camera observation occurred at the time t ∈
[T0, T0 + T ] provides two equations in the 12 unknowns
(which are the components of F0, V0, χg and Abias). On
the basis of property 13, the components of F (t) are linear
on the unknowns. Hence, the equations in (28) are linear and
they allow us to determine the state [F0, V0, χg, Abias]T .

VIII. PERFORMANCE EVALUATION

We evaluate the performance of the proposed strategy by
using both synthetic and real data. The advantage of simula-
tions is that the ground truth is perfectly known and this allows
us a quantitative evaluation of the proposed strategy. We also
investigate the accuracy of the proposed approach in the case
where the data from the accelerometers are affected by a bias.
This will be considered in a single simulation discussed in
VIII-A3. In all the other simulations and in the experiments,
we assume unbiased inertial measurements.

A. Accuracy of the Algorithm via Monte Carlo Simulations

We simulate many different trajectories in 3D. For all
the simulations we use the proposed strategy to estimate the
distance of the Nf observed features (di ≡ |di − r| =

∣∣F i
∣∣,

i = 0, 1, ...Nf − 1), the speed of the camera (v ≡ |v| =√
v2
x + v2

y + v2
z =

√
V 2
x + V 2

y + V 2
z ) and the roll and the

pitch angles (R ≡ arctan(2Qr) and P ≡ arcsin(2Qp)).
Specifically, in all the simulations the values of the estimated
di, v, R, P will be compared with the ground truth values.

1) Simulated Trajectories: The trajectories are generated by
randomly generating the linear and angular acceleration of the
camera at 100 Hz. In particular, at each time step, the three
components of the linear acceleration and the angular speed
are generated as Gaussian independent variables whose mean
values will be denoted respectively with µa and µω and whose
variances will be denoted respectively with σ2

a and σ2
ω . By

performing many simulations we observed that the precision
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of the proposed strategy in estimating the roll and pitch angles
is almost independent of µω , σ2

ω and σ2
a. On the other hand, the

precision on the estimated di and v significantly depends on µa
and also depends on σ2

a. This is not surprising. Indeed, accord-
ing to property 8, when the camera moves at constant speed,
the absolute scale cannot be estimated. Hence, we expect that
when µa becomes smaller the precision on the estimation of
di and v becomes worse. We set the parameters in order to be
close to a real case (as in the experiment discussed in VIII-B;
see also figure 7 b): σa = 1 ms−2, µω = 0 deg s−1 and
σω = 1 deg s−1. Regarding µa we considered the following
two values µa = 0 ms−2 and µa = 0.3 ms−2. The initial
vehicle position is at the origin. We adopt many different
values for the initial speed. In the simulations here provided
it is set equal to: [0.3, 0.3, 0.3]ms−1.

2) Simulated Sensors: Starting from the performed trajec-
tory, the true angular speed and the linear acceleration are
computed at each time step of 0.01s (respectively, at the time
step i, we denote them with Ωtrue

i and Atrue
v i ). Starting

from them, the IMU sensors are simulated by randomly
generating the angular speed and the linear acceleration at
each step according to the following: Ωi = N

(
Ωtrue

i , PΩi

)
and Ai = N

(
Atrue

v i −Agi −Abias i, PAi

)
where:

• N indicates the Normal distribution whose first entry is
the mean value and the second its covariance matrix;

• PΩi and PAi are the covariance matrices characterizing
the accuracy of the IMU ;

• Agi is the gravitational acceleration in the local frame
and Abias i is the bias affecting the data from the
accelerometer.

In all the simulations we set both the matrices PΩi and
PAi

diagonal and in particular: PΩi
= σ2

gyroI3 and PAi
=

σ2
accI3, where I3 is the identity 3× 3 matrix. We considered

several values for σgyro and σacc, in particular: σgyro ∈
[0.3, 10] deg s−1 and σacc ∈ [0.01, 0.3]ms−2.

Regarding the camera, the provided readings are generated
in the following way. By knowing the true trajectory, the
true bearing angles of the feature in the camera frame are
computed. They are computed each 0.3s. Then, the camera
readings are generated by adding to the true values zero-mean
Gaussian errors whose variance is equal to (1 deg)2 for all
the readings.

3) Simulation Results: We start by showing the results
related to an illustrative case, where the vehicle performs a 3D
trajectory. In particular, the simulated vehicle moves during
100s. Figure 5 a displays the vehicle trajectory together with
the position of the point features.

The camera observes all the features whose distance is
smaller than 5m. In this simulation, the parameters charac-
terizing the error on the IMU are set as follows: σgyro =
1 deg s−1 and σacc = 0.03ms−2. The number of observations
for every estimation is nobs = 8.

Figure 5b shows the norm of the vehicle speed. The blue
dots are the true values while the red disks are the estimated
ones. Figures 6 (left and right) display the roll and pitch
angles and figure 7a shows the three components of the bias
affecting the tri-axial accelerometer. The camera performs a
new observation every 0.3s. Since nobs = 8, the length of the

a b

Fig. 5. In a: typical 3D motion generated in our simulations; the red stars
indicate the point features. In b: the true (blue dots) and the estimated (red
disks) vehicle speed.

time interval necessary to perform a single estimation is 2.4s.
Note that the value of the bias is changing very slowly with
time and it can be assumed constant during every estimation
process.

Fig. 6. Roll (left) and pitch (right) angles during the simulated experiment.
The blue dots are the ground truth and the red disks the estimated values.

a b

Fig. 7. In a: the three bias components of the accelerometers; from the
bottom to the top the x, y and z components. In b: the three components of
the acceleration provided by the tri-axial accelerometer in the real experiments
(see section VIII-B); from the bottom to the top the x, y and z components.

In order to have more quantitative results we performed
many simulations. We considered different scenarios by vary-
ing the number of observed features (Nf ), the values of σgyro
and σacc, the number of observations nobs and the parameter
µa which characterizes the motion. Regarding Nf , we per-
formed simulations with 1 ≤ Nf ≤ 10. We found that there is
a significant precision improvement by passing from Nf = 1
to Nf = 2 while, for larger Nf , the precision improvement is
negligible. For this reason, in this section only the results for
Nf = 1 and Nf = 2 are provided. The position of the features
was randomly generated with a uniform distribution on the box
centered on the origin and with size 5m. Figure 8 summarizes
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the results of this investigation by displaying the estimation
error vs the number of camera observations (nobs). 16 subplots
are provided. From the bottom to the top they display the error
on the pitch angle, the roll angle, the vehicle speed and the
distance of the observed features, respectively. From the left
to the right they regard the case of Nf = 1, µa = 0 ms−2,
Nf = 1, µa = 0.3 ms−2, Nf = 2, µa = 0 ms−2 and
Nf = 2, µa = 0.3 ms−2. Every subplot displays 4 distinct
curves, which correspond to 4 different settings of the sensor
noise (i.e. the values of σgyro and σacc). From the bottom
to the top, the sensor noise increase. In particular, from the
bottom to the top of every subplot the values are: σgyro =
0.3 deg s−1 σacc = 0.01 ms−2, σgyro = 1 deg s−1 σacc =
0.03 ms−2, σgyro = 3 deg s−1 σacc = 0.1 ms−2 and
σgyro = 10 deg s−1 σacc = 0.3 ms−2. Each value is
computed by running 100 Monte Carlo simulations. Regarding
the distance d, the provided error (the four pictures at the
top) is averaged on the two features when Nf = 2. As stated
in section VII-B3, when Nf = 2, three observations allow
performing the estimation. This is the reason why the smallest
nobs is 3 when Nf = 2 (the subplots in the last two columns).
Regarding the case of a single feature, as explained in section
VII-B2, the smallest nobs is 4.

Figure 8 clearly shows that, when the vehicle motion is
characterized by a low acceleration (µa = 0ms−2, first and
third column) the precision on the vehicle speed and on the
absolute scale is worse than for the case of higher acceleration
(µa = 0.3ms−2, second and fourth column). On the other
hand, for the roll and the pitch angles, the precision increases
by decreasing the acceleration.

Fig. 8. Error on the observable modes averaged on 100 simulations.

Finally, we performed Monte Carlo simulations in order to
investigate the statistical properties of the noise resulting from
the estimation procedure. These simulations clearly show that
the proposed procedure is not bias-affected and that the noise
is well approximated by a Gaussian distribution. For the sake
of brevity, only the case of the roll angle is shown. Figure 9
displays the error distribution together with the best Gaussian

fit (solid line). This plot is obtained by counting for each
bin of 0.2deg the number of simulations which provide an
error on the roll angle falling in the considered bin. Then,
the plotted points are normalized by enforcing the area to
be 1. The number of simulations is 104. In every simulation,
the procedure uses four consecutive camera images and two
point features. The variances characterizing the sensors are
σgyro = 10 deg s−1 σacc = 0.3 ms−2, i.e. they are set as
in the worst case considered in the simulations shown in fig.
8. Similar results have been obtained for the other estimated
quantities and by using other noise sensor settings.

Fig. 9. Distribution of the noise on the roll angle (blue line) and its best
Gaussian fit (red line).

B. Performance Evaluation with Real Data

We evaluate the performance of the proposed algorithm by
using two distinct data sets, the first is in 2D and the second
in 3D. For the sake of brevity, we show the results obtained
with the 3D data set. The results obtained with the 2D data
set can be found in [20].

The data have been provided by the autonomous system lab-
oratory at ETHZ in Zurich. The data are provided together with
a reliable ground-truth, which has been obtained by performing
the experiments at the ETH Zurich Flying Machine Arena
[17], which is equipped with a Vicon motion capture system.
The visual and inertial data are obtained with a monochrome
USB-camera gathering 752 × 480 images at 15Hz and a
Crossbow VG400CC-200 IMU providing the data at 75 Hz.
The camera field of view is 150 deg. The calibration of the
camera was obtained by using the omnidirectional camera
toolkit by Scaramuzza [26]. Finally, the extrinsic calibration
between the camera and the IMU has been obtained by using
the strategy introduced in [16]. The experiment here analyzed
lasted for about 250s.

Figure 10 a shows the trajectory (ground truth) during the
time interval [200, 240]s.

Figures 10 b and 11 show the results regarding the estimated
speed, roll and pitch angles, respectively. In all those figures,
the blue dots are the ground truth while the red disks are the
estimated values.

IX. CONCLUSION

In this paper we investigated the problem of vision and in-
ertial data fusion. Specifically, we considered a sensor assem-
bling constituted by one monocular camera, three orthogonal
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a b

Fig. 10. In a: the trajectory (ground truth) in the 3D real data set during the
time interval [200, 240]s. In b: the vehicle speed in the real 3D experiment.
Blue dots are the ground truth and red disks the estimated values.

Fig. 11. Roll (left) and pitch (right) angles in the real 3D experiment. Blue
dots are the ground truth and red disks the estimated values.

accelerometers and three orthogonal gyroscopes. We provided
two main contributions:

1) The analytical derivation of all the observable modes,
i.e. all the physical quantities that can be determined by
only using the information in the sensor data acquired
during a short time interval;

2) The analytical derivation of closed-form solutions which
analytically express the observable modes in terms of the
sensor measurements collected during a very short time
interval.

The first contribution has been discussed in section V and
VI. These sections provide quantitative results in many differ-
ent contexts, including the case of biased and unbiased inertial
measurements, the case of a single and multiple features, and
in presence and absence of gravity. In our opinion, there are
cases where the provided results are not intuitive. Property
5 states that, by only observing one single feature, there is
all the necessary information to determine the speed in the
local frame, the position of the feature in the same frame,
the absolute roll and pitch angles and the biases affecting
the inertial measurements. This is a non intuitive result. In
addition, the minimum number of camera images necessary
to perform the state determination has been provided.

The second contribution provides closed form expressions
which allow us to simultaneously determine all the observable
modes without the need of any initialization or a priori
knowledge. In particular, only few camera observations are
necessary. This is a key advantage since it allows us to quickly
recover the observable modes even after a kidnapping. In
mobile robotics, and in particular in aerial navigation, this
becomes a fundamental advantage. Another important aspect
of these closed form expressions is that they can even work
by only using a single feature. This allows us to design very

efficient and robust computation methods, such as 1-point
RANSAC [27], [28], to prune false matches and outliers.

The performance of the proposed approach has been eval-
uated via extensive Monte Carlo simulations and real experi-
ments.

Future works will be devoted to extend the proposed esti-
mation approach by also taking into account varying sensor
accuracies in order to give preferential weighting to the more
accurate sensor in the results. Additionally, the approach
could be extended to incorporate the benefit of a possible
previous knowledge on the state. To this regard, we remark
that he proposed procedure is not optimal. The mentioned key
advantage that it is able to determine the observable modes
by only using the sensor data provided during a short interval,
has the drawback that it does not exploit a possible previous
information on these modes. We also want to analytically
investigate the independence of the equations in the closed
form solutions in presence of bias. In particular, we want to
investigate the cases when the number of observations and
features are the minimum required to perform the estimation
on the basis of the observability analysis. Currently, this
analysis has been done in the case without bias (section
VII-B2).

APPENDIX A
NUMBER OF INDEPENDENT LIE DERIVATIVES FOR THE

SYSTEM ANALYZED IN V-A

The system is characterized by the state: [r v q]T , whose
dimension is 10. The dynamics are given in (8) (without the
term âg , since we are considering the case g = 0) and the
observations are given in (9) and (10). In order to compute
the Lie derivatives, we need to express the dynamics as in (4).
We have L = 6 and the six inputs are the three components
of the acceleration, A, and the three components of the
angular speed, Ω. Hence: u1 = Ax, u2 = Ay , u3 = Az ,
u4 = Ωx, u5 = Ωy , u6 = Ωz . The seven vector functions
f0, f1, ..., f6 are:

f0 = [vx, vy, vz, 07]T

f1 = [03, q
2
t+q2

x−q2
y−q2

z , 2qtqz+2qyqx, −2qtqy+2qzqx, 04]T

f2 = [03, −2qtqz+2qyqx, q
2
t+q2

y−q2
z−q2

x, 2qtqx+2qzqy, 04]T

f3 = [03, 2qtqy+2qzqx, −2qtqx+2qzqy, q
2
t+q2

z−q2
x−q2

y, 04]T

f4 = [06, −1/2qx, 1/2qt, 1/2qz, −1/2qy]T

f5 = [06, −1/2qy, −1/2qz, 1/2qt, 1/2qx]T

f6 = [06, −1/2qz, 1/2qy, −1/2qx, 1/2qt]
T

where we denoted with 0n the vector line whose dimension
is n and whose entries are all zeros.

We must compute the Lie derivatives of all the three
observations function given in (9) and (10) with respect to
all the vector fields. By a direct computation, performed by
using the symbolic Matlab computational tool, we were able to
find the following 7 independent Lie derivatives: L0y1, L0y2,
L0hconst, L1

f0
y1, L1

f0
y2, L2

f0, f0
y1, L2

f0, f1
y1. We know
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that we cannot have more than 7 independent Lie derivatives
(otherwise, we would have less than three symmetries). Hence,
the number of independent Lie derivatives is 7.

APPENDIX B
COMPUTATION OF F (t) AND V (t) IN THE CASE WITHOUT

GRAVITY

We provide the expression of F (t) and V (t) in terms of
the the initial values F (T0) = F0 and V (T0) = V0 and the
acceleration A(τ) and angular speed Ω(τ), τ ∈ [T0, t].

By discretizing the second equation in (17) and by denoting
with j the jth time step (corresponding with tj), we obtain
Vj = (I3 +Mjdtj)Vj−1 +Ajdtj , where Mj is the matrix M
provided in section VII at the time step j, I3 is the identity
matrix 3× 3 and dtj = tj − tj−1.

The previous expression for Vj provides the following
expression in terms of the initial conditions:

Vj = Ξj

(
V0 +

j∑
k=1

Ξ−1
k Akdtk

)
(29)

where:

Ξj ≡
j∏

k=1

(I3 +Mkdtk) (30)

is the rotation matrix between the local frame at time T0 and
the local frame at time tj . In the same way we finally obtain
the expression of Fj in terms of the initial conditions:

Fj = Ξj

(
F0 −

j∑
k=1

Ξ−1
k Vkdtk

)
= (31)

= Ξj

(
F0 − (tj − T0)V0 −

j∑
k=1

k∑
k′=1

Ξ−1
k′ Ak′dtkdtk′

)
Hence, we have Fj = CF (tj)F0 + CV (tj)V0 + CB(tj)
with: CF (tj) ≡ Ξj , CV (tj) ≡ (T0 − tj)Ξj , CB(tj) ≡
−Ξj

∑j
k=1

∑k
k′=1 Ξ−1

k′ Ak′dtkdtk′ .

APPENDIX C
COMPUTATION OF F (t) AND V (t) IN THE CASE WITH

GRAVITY

We provide the expression of F (t) and V (t) in terms of the
the initial values F (T0) = F0, V (T0) = V0, q(T0) = q0 and
the acceleration A(τ) and angular speed Ω(τ), τ ∈ [T0, t].
As we will see, the dependence on the initial quaternion q0 is
only through the three quantities: χα ≡ 2g(qt0qy0 − qx0qz0),
χβ ≡ −2g(qt0qx0+qy0qz0) and χγ ≡ 2g(q2

x0+q2
y0)−g, which

are the component of the gravity vector in the local frame at
time T0. In addition, this dependence is linear as it is linear
the dependence on F0 and V0.

Before integrating the second equation in (21), as in the
appendix B, we consider the new term Ag , which depends
on the quaternion. In particular, we separate in this term the
time-dependent part from the part which is time-independent.
Specifically, we introduce the quaternion p(t) such that q(t) =

q0p(t): Âg(t) = q(t)∗âgq(t) = p(t)∗q∗0 âgq0p(t). p(t) satisfies
the same time differential equation as q(t), i.e. ṗ = 1

2pΩ̂, but,
p(0) = 1. Let us denote with χg the 3D vector associated
with the quaternion q∗0 âgq0, i.e. χ̂g ≡ q∗0 âgq0. By a direct
computation we obtain:

χg = 2g

 qt0qy0 − qx0qz0
−qt0qx0 − qy0qz0
q2
x0 + q2

y0 − 1
2

 =

 χα
χβ
χγ

 (32)

and Ag(t) = Ξ(t)χg , where Ξ(t) is given in (30). We
integrate the second equation in (21), obtaining:

Vj = (I3 +Mjdtj)Vj−1 +Bjdtj (33)

where Bj = Aj +Ag j = Aj + Ξjχg .
The previous expression for Vj provides the following

expression in terms of the initial conditions:

Vj = Ξj

[
V0 + (tj − T0)χg +

j∑
k=1

Ξ−1
k Akdtk

]
(34)

In the same way we finally obtain the expression of Fj in
terms of the initial conditions:

Fj = Ξj

(
F0 −

j∑
k=1

Ξ−1
k Vkdtk

)
= Ξj [F0+ (35)

−(tj − T0)V0 −
(tj − T0)2

2
χg −

j∑
k=1

k∑
k′=1

Ξ−1
k′ Ak′dtkdtk′

]
Hence, we have:

Fj = CF (tj)F0 + CV (tj)V0 + Cχ(tj)χg +CB(tj) (36)

with: CF (tj) ≡ Ξj , CV (tj) ≡ (T0 − tj)Ξj , Cχ(tj) ≡
−Ξj

(tj−T0)2

2 , CB(tj) ≡ −Ξj
∑j
k=1

∑k
k′=1 Ξ−1

k′ Ak′dtkdtk′

and the matrix Ξj , given in (30), is computed by only
using the gyro’s measurements in the time-interval [T0, tj ].
Note that CF (tj), CV (tj) and Cχ(tj) only depend on Ω(τ),
τ ∈ [T0, tj ].

In the case where the tri-axial accelerometer is affected by a
bias, the derivation of the expression of Fj is very similar. The
only difference is that in (33), the term Bj also includes the
biasAbias. In particular we haveBj = Aj+Ξjχg +Abias.
The expression of Fj differs from the one in (36) since
it includes a new term: Fj = CF (tj)F0 + CV (tj)V0 +
Cχ(tj)χg +CB(tj) + CAbias

(tj)Abias, where CAbias
(tj) ≡

−Ξj

(∑j
k=1

∑k
k′=1 Ξ−1

k′ dtk′dtk

)
.

APPENDIX D
ANALYTICAL EXPRESSION OF χα, χβ AND χγ IN TERMS OF

THE ROLL AND PITCH ANGLES

Let us consider the unit quaternion: qt + qxi + qyj + qzk.
By denoting with R, P and Y respectively the roll, pitch and
yaw angles, we have [14]:
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qt = cos
R

2
cos

P

2
cos

Y

2
+ sin

R

2
sin

P

2
sin

Y

2

qx = sin
R

2
cos

P

2
cos

Y

2
− cos

R

2
sin

P

2
sin

Y

2

qy = cos
R

2
sin

P

2
cos

Y

2
+ sin

R

2
cos

P

2
sin

Y

2

qz = cos
R

2
cos

P

2
sin

Y

2
− sin

R

2
sin

P

2
cos

Y

2

We use these expressions to obtain χα = 2g(qtqy − qxqz),
χβ = −2g(qtqx + qyqz) and χγ = 2g(q2

x + q2
y) − g in terms

of the roll, pitch and yaw angles. As expected on the basis of
property 3, they only depend on the roll and pitch angles. By
a direct substitution we obtain:

χα = g sinP, χβ = −g sinR cosP, χγ = −g cosR cosP
(37)
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