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Classification de documents
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Abstract : La classification conjointe d’objets et de leur descripteurs – par exemple de
documents avec les mots les composant – encore appelée co-classification, a été large-
ment étudiée ces dernières années, car elle permet d’extraire des classes plus pertinents,
qu’elle soit explicite ou latente. Dans de précédents travaux (Bisson & Hussain, 2008),
nous avons proposé une méthode de calcul simultané des matrice de similarité entre ob-
jets et entre descripteurs, chacune étant construite à partir de l’autre. Nous proposons ici
une généralisation de cette approche en introduisant une pseudo-norme et un algorithme
de seuillage. Nos expérimentations mettent en évidence une amélioration significative
de la classification, notamment par rapport à d’autres méthodes.

Mots-clés : co-clustering, similarity measure, text mining

1. Introduction

Clustering task is used to organize data coming from databases. Classically,
these data are described as a set of instances characterized by a set of features.
In some cases, these features are homogeneous enough to allow us to cluster
them, in the same way as we do for the instances. For example, when using the
Vector Space Model introduced by Salton (1971), text corpora are represented
by a matrix whose rows represent document vectors and whose columns rep-
resent the word vectors. Thus, the similarity between two documents depends
on the similarity between the words they contain and vice-versa. In the classi-
cal clustering methods, such dependencies are not exploited. The purpose of
co-clustering is to take into account this duality between rows and columns to
identify the relevant clusters. Co-clustering has been largely studied in recent
years both in Document clustering (Dhillon et al., 2003; Long et al., 2005;
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Rege et al., 2008; Liu et al., 2004) and Bioinformatics (Madeira & Oliveira,
2004; Speer et al., 2004; Cheng & Church, 2000).

In text analysis, the advantage of co-clustering is related to the well-known
problem that document and words vectors tend to be highly sparse and suffer
from the curse of dimensionality (Slonim & Tishby, 2001). Thus, traditional
metrics such as Euclidean distance or Cosine similarity do not always make
much sense (Beyer et al., 1999). Several methods have been proposed to
overcome these limitations by exploiting the dual relationship between docu-
ments and words to extract semantic knowledge from the data. Consequently,
the concept of higher-order co-occurrences has been investigated in (Livezay
& Burgess, 1998; Lemaire & Denhière, 2008), among others, as a measure of
semantic relationship between words; one of the best known approach to ac-
quire such knowledge being the Latent Semantic Analysis (Deerwester et al.,
1990). The underlying analogy is that humans do not necessarily use the same
vocabulary when writing about the same topic. For example, let us consider
a corpus in which a subset of documents contains a significant number of co-
occurrences between the words sea and waves and another subset in which the
words ocean and waves co-occur. A human could infer that the worlds ocean
and sea are conceptually related even if they do not directly co-occur in any
document. Such a relationship between waves and ocean (or sea and waves)
is termed as a first-order co-occurrence and the conceptual association be-
tween sea and ocean is called a second-order relationship. This concept can
be generalized to higher-order (3rd, 4th, 5th, etc) co-occurrences.

In this context, we recently introduced an algorithm, called χ-Sim (Bisson
& Hussain, 2008), exploiting the duality between words and documents in a
corpus as well as their respective higher-order co-occurrences. While most
authors have focused to directly co-cluster the data, in χ-Sim, we just built
two similarity matrices, one for the rows and one for the columns, each being
built iteratively on the basis of the other. We call this process the co-similarity
measure. Hence, when the two similarity matrices are built, each of them
contains all the information needed to do a ‘separate’ co-clustering of the
data (documents and words) by using any classical clustering algorithm.

In this paper, we further analyze the behavior of χ-Sim and we propose
some ideas leading to dramatically improve the quality of the co-similarity
measures. First, we introduce a new normalization schema for this measure
that is more consistent with the framework of the algorithm and that offers
new perspectives of research. Second, we propose an efficient way to deal
with noise in the data and thus to improve the accuracy of the clustering.
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2. The χ-Sim Similarity Measure

Throughout this paper, we will use the classical notations: matrices (in capital
letters) and vectors (in small letters) are in bold and variables are in italic.
Data matrix: let M be the data matrix representing a corpus having r rows
(documents) and c columns (words); mij corresponds to the ‘intensity’ of the
link between the ith row and the j th column (for a document-word matrix, it
can be the frequency of the j th word in the ith document); mi: = [mi1 · · ·mic]
is the row vector representing the document i and m:j = [m1j · · ·mrj] is the
column vector corresponding to word j. We will refer to a document as di

when talking about documents casually and refer to it as mi: when specifying
its (row) vector in the matrix M. Similarly, we will casually refer to a word
as wj and use the notation m:j when emphasizing the vector.
Similarity matrices: SR and SC represent the square and symmetrical row
similarity and column similarity matrices of size r× r and c× c respectively,
with ∀i, j = 1..r, srij ∈ [0, 1] and ∀i, j = 1..c, scij ∈ [0, 1].
Similarity function: generic function Fs(·, ·) takes two elements mil and mjn

of M and returns a measure of the similarity Fs(mil,mjn) between them.

2.1. Similarity measures

χ-Sim is a co-similarity based approach which builds on the idea of simulta-
neously generating the similarity matrices SR (documents) and SC (words),
each of them built on the basis of the other. Similar ideas have also been used
for supervised leaning in (Liu et al., 2004) or for image retrieval in (Wang
et al., 2004). First, we present how to compute the matrix SR. Usually, the
similarity (or distance) measure between two documents mi: and mj: is de-
fined as a function – denoted here as Sim(mi:,mj:) – that is more or less the
sum of the similarities between words occurring in both mi: and mj::

Sim(mi:,mj:) = Fs(mi1,mj1) + · · ·+ Fs(mic,mjc) (1)

Now let’s suppose we already know a matrix SC whose entries provide a
measure of similarity between the columns (words) of the corpus. In parallel,
let’s introduce, by analogy to the norm Lk (Minkowski distance), the notion
of a pseudo-norm k. Then, Equation (1) can be re-written as follows without
changing its meaning if scll = 1 and if k = 1:

Sim(mi:,mj:) =
k

√√√√ c∑
l=1

(Fs(mil,mjl))
k × scll (2)
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Now the idea is to generalize (2) in order to take into account all the pos-
sible pairs of features (words) occurring in documents mi: and mj:. In this
way, we “capture” not only the similarity between their common words but
also the similarity coming from words that are not directly shared by the two
documents. Of course, for each pair of words not directly shared by the doc-
uments, we weight their contribution to the document similarity srij by their
own similarity scln. Thus, the overall similarity between documents mi: and
mj: is defined in (3) in which the terms for l = n are those occurring in (2):

Simk(mi:,mj:) =
k

√√√√ c∑
l=1

c∑
n=1

(Fs (mil,mjn))
k × scln (3)

Assuming that Fs(mil,mjn) is defined as a product (see (Bisson & Hus-
sain, 2008) for further details) of the elementsmil andmjn, i.e. Fs(mil,mjn) =
mil ×mjn (as with the cosine similarity), we can rewrite Equation (3) as:

Simk(mi:,mj:) =
k
√
(mi:)

k × SC×
(
mT

j:

)k (4)

where (mi:)
k =

[
(mij)

k · · · (mic)
k
]

and mT
j: denotes the transpose of the vec-

tor mj:. Finally, let’s introduce the term N (mi:,mj:) that is a normalization
function allowing to map the similarity to [0, 1]. We obtain the following
equation in which srij denotes an element of the SR matrix:

srij =

k
√
(mi:)

k × SC×
(
mT

j:

)k
N (mi:,mj:)

(5)

Equation (5) is a classic generalization of several well-known similarity mea-
sures. For example, with k = 1, the Jacard index can be obtained by setting
SC to I andN (mi:,mj:) to ‖mi:‖1+‖mj:‖1−mi:m

T
j:, while the Dice coeffi-

cient can be obtained by setting SC to 2I andN (mi:,mj:) to ‖mi:‖1+‖mj:‖1.
Furthermore, if SC is set to a positive semi-definite matrix A, one can define
the following inner product <mi:,mj: >A = mi: ×A×mT

j:, along with the
associated norm ‖mi:‖A = <mi:,mi: >A. Then by setting N (mi:,mj:) to√
‖mi:‖A ×

√
‖mj:‖A, we obtain the Generalized Cosine similarity (Qamar

& Gaussier, 2009), as it corresponds to the Cosine measure in the underlying
inner product space. Of course, by binding A to I, this similarity becomes the
standard Cosine measure between document mi: and mj:.
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2.2. The χ-Sim Co-Similarity Measure

Of course, χ-Sim co-similarity, as defined in (Bisson & Hussain, 2008) can
be also reformulated with (5). We set k to 1, and since the maximum value
defined by the function scij is 1, it follows from (3) that, the upper bound
of Sim(mi:,mj:) for 1 6 i, j 6 r, is given by the product of the sum of
elements of mi: and mj: denoted by |mi:| × |mj:| (product of L1-norms).
This normalization seems well-suited for textual datasets since it allows us
to take into consideration pairs of documents (or words) vectors of uneven
length, which is common in text corpora. Therefore, we can rewrite (5) as:

∀i, j ∈ 1..r, srij =
mi: × SC×mT

j:

|mi:| × |mj:|
(6a)

Symmetrically, the elements scij of the SC matrix are defined as:

∀i, j ∈ 1..c, scij =
mT

:i × SR×m:j

|m:i| × |m:j|
(6b)

Equations (6a) and (6b) define a systems of linear equations, whose so-
lutions correspond to the (co)-similarities between two documents and two
words. Thus, the algorithm of χ-Sim is based on an iterative approach – i.e.
we compute alternatively the values scij and srij . However, before detailing
this algorithm for a more generic case in section 3.3., we are going to explain
the meaning, considering the associated bipartite graph, of these iterations.

2.3. Graph Theoretical Interpretation

The graphical interpretation of the method helps to understand the working
of the algorithm and provides some intuition on how to improve it. Let’s
consider the bipartite graph representation of a sample data matrix in Fig. 1.
Documents and words are represented by square and circle nodes respectively
and an edge (of any kind) between a document di and a word wj corresponds
to a non-zero entry mij in the document-word matrix. There is only one or-
der-1 path between documents d1 and d2 given by d1

m12−−→ w2
m22−−→ d2. If

we consider that the SC matrix is initialized with the identity matrix I, at the
first iteration, Sim(m1:,m2:) corresponds to the inner product between m1:

and m2: as given by (6a) and equals m12 ×m22. Omitting the normalization
for the sake of clarity, the matrix SR(1) = M ×MT thus represents all or-
der-1 paths between all the possible pairs of documents di and dj . Similarly,
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each element of SC(1) = MT ×M represents all order-1 paths between all
the possible pairs of words wi and wj . Now, documents d1 and d4 do not

d1 d2 d3 d4

w1 w2 w3 w4 w5 w6

Figure 1: A bi-partite graph view of a sample document-word matrix.

have an order-1 path but are linked together through d2 (bold paths in Fig. 1)
and d3 (dotted paths in Fig. 1). Such paths with one intermediate vertice are
called order-2 paths, and will appear during the second iteration. The simi-
larity value contributed via the document d2 can be explicitly represented as
d1

m12−−→ w2
m22−−→ d2

m24−−→ w4
m44−−→ d4. The sub-sequence w2

m22−−→ d2
m24−−→ w4

represents an order-1 path between words w2 and w4 which is the same as
sc

(1)
24 . The contribution of d2 in the similarity of sr(1)14 can thus be re-written

as m12 × sc(1)24 ×m44. This is a partial similarity measure since d2 is not the
only document that provides a link between d1 and d4. The similarity via d3

is equal to m13 × sc(1)35 ×m55. To find the overall similarity measure between
documents d1 and d4, we need to add these partial similarity values given by
m12 × sc(1)24 ×m44 +m13 × sc(1)35 ×m55. Hence, the similarity matrix SR(2)

at the second iteration corresponds to paths of order-2 between documents. It
can be shown similarly that, the matrices SR(t) and SC(t) represent order-t
paths between documents and between words respectively.

Consequently, at each iteration t, when we compute the value of equa-
tions (6a) and (6b) one or more new links may be found between previously
disjoint objects (documents or words) corresponding to paths with length of
order-t, and existing similarity measures may be strengthened. It has been
shown that “in the long run”, the ending point of a random walk does not de-
pend on its starting point (Seneta, 2006) and hence it is possible to find a path
(and hence similarity) between any pair of nodes in a connected graph (Ze-
likovitz & Hirsh, 2001) by iterating a sufficiently large number of times.
However, co-occurrences beyond the 3rd and 4th order have little semantic
relevance (Bisson & Hussain, 2008; Lemaire & Denhière, 2008). Therefore,
the number of iterations is usually limited to 4 or less.
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3. Discussion and Improvements of χ-Sim

In this section, first, we discuss a new normalization schema for χ-Sim in
order to satisfy (partially) the maximality property of a similarity measure
(Sim(a, b) = 1), then we propose a pruning method allowing to remove the
’noisy’ similarity values created during the iterations.

3.1. Normalization

In this paper, we investigate extensions of the Generalized Cosine measure, by
relaxing the positive semi-definiteness of the matrix, and by adding a pseudo-
norm parameter k. Henceforth, using the equation (4) we define the elements
of the matrices SR and SC with the two new equations (7a) and (7b):

∀i, j ∈ 1..r, srij =
Simk(mi:,mj:)√

Simk(mi:,mi:)×
√

Simk(mj:,mj:)
(7a)

∀i, j ∈ 1..c, scij =
Simk(m:i,m:j)√

Simk(m:i,m:i)×
√
Simk(m:j,m:j)

(7b)

However, this normalization is what we will call a pseudo-normalization
since if it guaranties that srii = 1, it does not satisfy that ∀i, j ∈ 1..r, srij ∈
[0, 1] (and the same for scij). Consider for example a corpus having, among
many other documents, the documents d1 containing the word orange (w1)
and d2 containing the words red (w2) and banana (w3), along with SC – the
similarity matrix of all the words of the corpus – indicating that the similarity
between orange and red is 1, the similarity between orange and banana is
1 and the similarity between red and banana is 0. Thus, Sim1(d1, d1) = 1,
Sim1(d2, d2) = 2 and Sim1(d1, d2) = 2. Consequently, sr12 = 2√

1×2 >
1. One can notice that this problem arises from the polysemic nature of
the word orange. Indeed, the similarity between these two documents is
overemphasized because of the double analogy between orange (the color)
and red, and between orange (the fruit) and banana. It is possible to cor-
rect this problem by setting k = +∞ since the pseudo-norm-k becomes
max16k,l6c {mik × sckl ×mil} and thus, Sim∞(d1, d1) = Sim∞(d2, d2) =
Sim∞(d1, d2) = 1, implying sr12 = 1. Of course, k = +∞ is not necessarily
a good setting for real tasks and experimentally we observed that the values
of srij and scij remain generally smaller or equal to 1.
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In this framework it is nevertheless very interesting to investigate the dif-
ferent results one can obtain from varying k, including values lower than
1, as suggested in (Aggarwal et al., 2001) for the norm Lk, to deal with
high dimensional spaces. The resulting χ-Sim algorithm will be denoted by
χ-Simk. However, the situation is different from the norm Lk in the sense
that our method does not define a proper Normed Vector Space. To under-
stand the problem it is worth looking closely to the simple case k = 1 where
Sim1(mi:,mj:) = mi: × SC ×mT

i: is the general form of an inner product,
with the condition that SC is symmetric positive semi-definite (PSD). Un-
fortunately, in our case due to the normalization steps, SC is not necessarily
PSD, as the condition ∀i, j ∈ 1..c, |scij| 6

√
scii × scjj = 1 is not verified

(cf. previous example). Thus, our similarity measure is just a bilinear form in
a degenerated inner product space (as the conjugate and linearity axioms are
trivially satisfied) in which it corresponds to the ’cosine’.

A straightforward solution would be to project SC (and SR) after each
iteration onto the set of PSD matrices (Qamar & Gaussier, 2009). By con-
straining the similarity matrices to be PSD, we would ensure that the new
space remains a proper inner product space. However, we experimentally
verified that such an additional step did not improve the results though, as
when testing on real datasets, the similarity matrices are very close to the set
of PSD matrices. In addition, the projection step is very time consuming, for
these reasons, we won’t use it in the remaining of this paper.

3.2. Dealing with ‘noise’ in SC and SR matrices

As explained in section 2.3., the elements of the SR matrix after the first iter-
ation are the weighted order-1 paths in the graph: the diagonal elements srii
correspond to the paths from each document to itself, while the non-diagonal
terms srij count the number of order-1 paths between a document i and a
neighbour j, which is based on the number of words they have in common.
SR(1) is thus the adjacency matrix of the document graph. Iteration t amounts
thus to count the number of order-t between nodes. However, in a corpus, we
can observe there are many words with few occurrences, that are not really
relevant with the topic of the document, or to be more precise, that are not spe-
cific to any families of documents semantically related. These words are sim-
ilar to a ’noise’ in the dataset. Thus, during the iterations, these noisy words
allow the algorithm to create some new paths between the different families
of documents; of course these paths have a very small similarity value but
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they are numerous and we make the assumption that they blur the similarity
values between the classes of documents (same for the words). Based on this
observation, we thus introduce in the χ-Sim algorithm a parameter, termed
pruning threshold and denoted by p, allowing us to set to zero the lowest p%
of the similarity values in the matrices SR and SC at each iteration.

In the following, we will refer to this algorithm as χ-Simp when using the
previous normalization factor described in (6a) and (6b), and χ-Simk

p when
using the new pseudo-normalization factor described in (7a) and (7b).

3.3. A Generic χ-Sim Algorithm for χ-Simk
p

Equations (7a) and (7b) allows us to compute the similarities between two
rows and two columns. The extension over all pair of rows and all pair of
columns can be generalized under the form of a simple matrix multiplication.
We need to introduce a new notation here, M◦k =

(
(mij)

k
)
i,j

which is the
element-wise exponentiation of M to the power of k. The algorithm follows:

1. We initialize the similarity matrices SR (documents) and SC (words)
with the identity matrix I, since, at the first iteration, only the similarity
between a row (resp. column) and itself equals 1 and zero for all other
rows (resp. columns). We denote these matrices as SR(0) and SC(0).

2. At each iteration t, we calculate the new similarity matrix between doc-
uments SR(t) by using the similarity matrix between words SC(t−1):

SR(t) = M◦k × SC(t−1) × (M◦k)T and sr(t)ij ←
k
√
sr

(t)
ij

2k
√
sr

(t)
ii × sr

(t)
jj

(8)

We do the same thing for the columns similarity matrix SC(t):

SC(t) = (M◦k)T × SR(t−1) ×M◦k and sc(t)ij ←
k
√
sc

(t)
ij

2k
√
sc

(t)
ii × sc

(t)
jj

(9)

3. We set to 0 the p% of the lowest similarity values in the similarity
matrices SR and SC.

4. Steps 2 and 3 are repeated t times (typically as we saw in section 2 the
value t = 4 is enough) to iteratively update SR(t) and SC(t).
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It is worth noting here that even though χ-Simk
p computes the similarity

between each pair of documents using all pairs of words, the complexity of the
algorithm remains comparable to classical similarity measures like Cosine.
Given that – for a generalized matrix of size n by n – the complexity of matrix
multiplication is in O(n3) and the complexity to compute M◦n is in O(n2),
the overall complexity of χ-Sim is given by O(tn3).

4. Experiments

Here, to evaluate our system, we cluster the documents coming from the well-
known 20-Newsgroup dataset (NG20) by using the document similarity ma-
trices SR generated by χ-Sim. We choose this dataset since it has been widely
used as a benchmark for document classification and co-clustering (Dhillon
et al., 2003; Long et al., 2005; Zhang et al., 2007; Long et al., 2006), thus
allowing us to compare our results with those reported in the literature.

4.1. Preprocessing and Methodology

Test dataset. We replicate the experimental procedures used by Dhillon et al.
(2003); Long et al. (2005, 2006): 10 different samples of each of the 6 subsets
described in Table 1 are generated, we ignored the subject lines, we removed
stop words and we selected the top 2,000 words based on supervised mutual
information (Yang & Pedersen, 1997). We will discuss further this last pre-
processing step in section 5. With these six benchmarks, we compared our
co-similarity measures based on χ-Sim with four similarity measures: Co-
sine, LSA (Deerwester et al., 1990), SNOS (Liu et al., 2004) and CTK (Yen
et al., 2009); as well as three co-clustering methods: ITCC (Dhillon et al.,
2003), BVD (Long et al., 2005) and RSN (Long et al., 2006).

Table 1: Description of the subsets of the NG20 dataset used. We provide the number of
clusters, and the number of documents for every subset.

Newsgroups included #clust. #docs.

M2 talk.politics.mideast, talk.politics.misc 2 500
M5 comp.graphics, rec.motorcycles, rec.sport.baseball, sci.space, talk.politics.mideast 5 500
M10 alt.atheism, comp.sys.mac.hardware, misc.forsale, rec.autos, rec.sport.hockey,

sci.crypt, sci.electronics, sci.med, sci.space, talk.politics.gun
10 500

NG1 rec.sports.baseball, rec.sports.hockey 2 400
NG2 comp.os.ms-windows.misc, comp.windows.x, rec.motorcycles, sci.crypt, sci.space 5 1000
NG3 comp.os.ms-windows.misc, comp.windows.x, misc.forsale, rec.motorcycles,

sci.crypt, sci.space, talk.politics.mideast, talk.religion.misc
8 1600
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Creation of the clusters. For the ’similarity based’ algorithms: χ-Sim,
Cosine, LSA, SNOS and CTK, the clusters are generated by an Agglomerative
Hierarchical Clustering (AHC) method on the similarity matrices along with
Ward’s linkage. Then we cut the clustering tree at the level corresponding to
the number of document clusters we are waiting for (two for subset M2, etc).

Implementations. χ-Sim algorithms, as well as Cosine, SNOS and AHC
have been implemented in Python, and LSA have been implemented in Mat-
Lab. For CTK, we used the MatLab implementation kindly provided by the
authors. For ITCC, we used the implementation provided by the authors and
the parameters reported in (Dhillon et al., 2003). For BVD and RSN, as
we don’t have a running implementation, we directly quote the best values
from (Long et al., 2005) and (Long et al., 2006) respectively.

4.2. Experimental Measures

We used the classical micro-averaged precision (Pr) (Dhillon et al., 2003) for
comparing the accuracy of the document classification; the Normalized Mu-
tual Information (NMI) (Banerjee & Ghosh, 2002) is also used to compare
χ-Sim with RSN. For SNOS, we perform four iterations and set the λ pa-
rameter to the value proposed by the authors (Liu et al., 2004). For LSA,
we tested the algorithm iteratively keeping the h highest singular values from
h = 10..200 by steps of 10. We use the value of h providing, on average,
the highest micro-averaged precision. For ITCC, we ran three times the algo-
rithm using the different numbers of word clusters, as suggested in (Dhillon
et al., 2003), for each dataset. For χ-Simp, we performed the pruning step as
described in section 3.3. varying the value of p = 0 to 0.9 by steps of 0.1. For
each subset, we report the best micro-averaged precision obtained with p.

The experimental results are summarized in Table 2. In all the versions,
χ-Sim performs better than all the other tested algorithms. Moreover, the
new normalization schema proposed in Section 3. clearly improved the results
of our algorithm over the previous normalization based on the length of the
documents. The SNOS algorithm performs poorly in spite of the fact that it
is very closed to χ-Sim, probably because it uses a different normalization. It
is interesting to notice that the gain obtained with the pruning when using the
previous version of χ-Sim on the M10 and NG3 (the two hardest problems)
is reduced to almost negligible levels with the new algorithm. Finally, the
impact of the parameter k is small for all the subsets but M10 and NG3. In
these more complex datasets, we observe that setting k to a value lower than
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1 slightly improves the clustering but not in a significative way. This result
seems to show that the results provided by (Aggarwal et al., 2001), suggesting
to use a value of k lower than 1 with the norm Lk when dealing with high
dimensional space, could be relevant in our framework (see next section).

Table 2: Micro-averaged precision (and NMI for χ-Sim based algorithms and RSN) and
standard deviation for the various subsets of NG20.

M2 M5 M10 NG1 NG2 NG3

Cosine Pr 0.60 ± 0.00 0.63 ± 0.07 0.49 ± 0.06 0.90 ± 0.11 0.60 ± 0.10 0.59 ± 0.04

LSA Pr 0.92 ± 0.02 0.87 ± 0.06 0.59 ± 0.07 0.96 ± 0.01 0.82 ± 0.03 0.74 ± 0.03

ITCC Pr 0.79 ± 0.06 0.49 ± 0.10 0.29 ± 0.02 0.69 ± 0.09 0.63 ± 0.06 0.59 ± 0.05

BVD Pr best: 0.95 best: 0.93 best: 0.67 - - -

RSN NMI - - - 0.64 ± 0.16 0.75 ± 0.07 0.70 ± 0.04

SNOS Pr 0.55 ± 0.02 0.25 ± 0.02 0.24 ± 0.06 0.51 ± 0.01 0.24 ± 0.02 0.22 ± 0.05

CTK Pr 0.94 ± 0.01 0.95 ± 0.01 0.71 ± 0.03 0.96 ± 0.01 0.90 ± 0.01 0.87 ± 0.02

χ-Sim Pr 0.91 ± 0.09 0.96 ± 0.00 0.69 ± 0.05 0.96 ± 0.01 0.92 ± 0.01 0.79 ± 0.06
NMI 0.76 ± 0.06 0.79 ± 0.02 0.72 ± 0.03

χ-Simp
Pr 0.94 ± 0.01 0.96 ± 0.00 0.73 ± 0.03 0.97 ± 0.01 0.92 ± 0.01 0.84 ± 0.05

NMI 0.78 ± 0.05 0.79 ± 0.02 0.73 ± 0.02

χ-Sim1 Pr 0.95 ± 0.00 0.96 ± 0.02 0.78 ± 0.03 0.97 ± 0.02 0.94 ± 0.01 0.86 ± 0.05
NMI 0.85 ± 0.07 0.83 ± 0.03 0.79 ± 0.03

χ-Sim1
p

Pr 0.95 ± 0.00 0.97 ± 0.01 0.78 ± 0.03 0.98 ± 0.01 0.94 ± 0.01 0.87 ± 0.05
NMI 0.86 ± 0.04 0.83 ± 0.03 0.80 ± 0.02

χ-Sim0.8 Pr 0.95 ± 0.00 0.97 ± 0.01 0.79 ± 0.02 0.98 ± 0.01 0.94 ± 0.01 0.90 ± 0.01
NMI 0.87 ± 0.05 0.84 ± 0.02 0.81 ± 0.02

χ-Sim0.8
p

Pr 0.95 ± 0.00 0.97 ± 0.01 0.80 ± 0.04 0.98 ± 0.00 0.94 ± 0.01 0.90 ± 0.02
NMI 0.88 ± 0.03 0.85 ± 0.02 0.81 ± 0.03

5. Discussion about the Preprocessing

The feature selection step aims at improving the results by removing words
that are not useful to separate the different clusters of documents. Moreover,
this step is also clearly needed due to the spatial and time complexity of the
algorithms inO(n3). Nevertheless, we are performing an unsupervised learn-
ing task, thus using a supervised feature selection method, i.e. selecting the
top 2,000 words based on how much information they bring to one class of
documents or another, introduces some bias since it leads to ease the problem
by building well-separated clusters. In real applications, it is impossible to
use this kind of preprocessing for unsupervised learning. Thus to explore the
potential effects of this bias, we hereby propose to generate similar subsets of
the NG20 dataset but using an unsupervised feature selection method.
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5.1. Unsupervised Feature Selection

To reduce the number of words in the learning set, we used an approach con-
sisting in selecting a representative subset (sampling) of the words with the
help of the k-medoids algorithm. The procedure is the following: first, we
remove from the corpus the words appearing in just one document, as they
do not provide information to built the clusters; then, we run k-medoids to
get 2,000 classes corresponding to a selection of 2,000 words. We used the
implementation of the algorithm provided in the Pycluster package (de Hoon
et al., 2004) with the Euclidean distance.

5.2. Results with k-medoids

Here, we use the same methodology as described in section 4.1. except for
the feature selection step which is now done with k-medoids instead of the
supervised Mutual Information. The results are summarized in Table 3.

Table 3: Micro-averaged precision and standard deviation for the various subsets of NG20,
pre-processed using the k-medoids feature selection.

M2 M5 M10 NG1 NG2 NG3

Cosine 0.61 ± 0.04 0.54 ± 0.08 0.39 ± 0.03 0.52 ± 0.01 0.60 ± 0.05 0.49 ± 0.02

LSA 0.79 ± 0.09 0.66 ± 0.05 0.44 ± 0.04 0.56 ± 0.05 0.61 ± 0.06 0.52 ± 0.03

ITCC 0.70 ± 0.05 0.54 ± 0.05 0.29 ± 0.05 0.61 ± 0.06 0.44 ± 0.08 0.49 ± 0.07

SNOS 0.51 ± 0.01 0.26 ± 0.04 0.20 ± 0.02 0.51 ± 0.00 0.24 ± 0.01 0.22 ± 0.02

CTK 0.67 ± 0.10 0.76 ± 0.04 0.54 ± 0.05 0.69 ± 0.14 0.64 ± 0.06 0.54 ± 0.02

χ-Sim 0.58 ± 0.07 0.62 ± 0.12 0.43 ± 0.04 0.54 ± 0.03 0.60 ± 0.12 0.47 ± 0.05

χ-Simp 0.65 ± 0.09 0.68 ± 0.06 0.47 ± 0.04 0.62 ± 0.12 0.63 ± 0.14 0.57 ± 0.04

χ-Sim1 0.54 ± 0.06 0.62 ± 0.13 0.36 ± 0.04 0.53 ± 0.02 0.35 ± 0.09 0.30 ± 0.05

χ-Sim1
p 0.80 ± 0.13 0.77 ± 0.08 0.53 ± 0.05 0.75 ± 0.07 0.73 ± 0.06 0.61 ± 0.03

χ-Sim0.8 0.54 ± 0.05 0.66 ± 0.07 0.37 ± 0.06 0.52 ± 0.02 0.38 ± 0.08 0.36 ± 0.04

χ-Sim0.8
p 0.81 ± 0.10 0.79 ± 0.05 0.55 ± 0.04 0.81 ± 0.02 0.72 ± 0.02 0.64 ± 0.04

Here, we can observe that the results are different. The version of χ-Sim
using the previous normalization method obtains more or less the same results
as LSA and is totally overcome by CTK. With the new normalization the re-
sults are more contrasted and now, differently from the first experiments, the
impact of the pruning factor p becomes very strong: without pruning the new
method performs poorly on several problems (M2, M10, NG2, NG3), the re-
sults being lower than the Cosine similarity, but by pruning the smallest val-
ues of the similarity matrices the situation is completely opposite and χ-Simp
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based algorithms obtain the best results on all the datasets. As in section 4.,
we observe again that setting a value of k lower than 1 improves the clustering
in all the dataset but one. Now it is interesting to see with more details the

Figure 2: Evolution of the precision for NG1 using χ-Sim0.6
p against p (left side), and using

χ-Simk
0.6 against k (right side). The dotted line represents the supervised feature selection

data, and the plain one the unsupervised feature selection data.

impact of the different values of k and p on a given dataset. Figure 2 (left side)
shows the evolution of the accuracy on NG1 subset according to the value of
p. When the words are selected by supervised utual information the curve
is quite flat, but when the words are selected with k-medoids, the behavior
differs: the accuracy first increases with the pruning level, the best value be-
ing about 60% (it is worth noticing that this value is very stable among the
datasets). This re-enforces our assumption that pruning the similarity matri-
ces can be a good way of dealing with ‘noise’. Indeed, when the features
are selected with Mutual Information, the classes are relatively well separated
thus, similarity propagation as a result of higher order co-occurrences between
documents (or words) of different categories as few influence. However, with
the unsupervised feature selection, there are more ’noise’ in the data and the
pruning process helps significantly to alleviate this problem.

Figure 2 (right side) shows the evolution of the accuracy again on the NG1
subset according to the value of k. As we can see, on this dataset where the
document and words vectors tend to be highly sparse, the best values for this
parameter seems to be found between 0.5 and 1 as for the case of the norm
Lk (Aggarwal et al., 2001), we choose the value 0.8 in the results tables.
However, this effect can only be seen when the pruning parameter is activated
(plain line on the figure). Finally, it is worth noting that in this experiments
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with k-medoids, the difference between LSA and Cosine strongly decreases.
All these results demonstrate that preprocessing the data with a supervised
feature selection approach totally change (unsurprisingly) the behavior of the
clustering methods by simplifying too much the problem.

6. Conclusion

In this paper, we proposed two empirical improvements of the χ-Sim co-
similarity measure. The new normalization we presented for this measure
is more consistent with the framework of the algorithm and also (partially)
satisfies the reflexivity property. Furthermore, we showed that the χ-Sim
similarity measure is susceptible to noise and proposed a way to alleviate
this susceptibility and to improve the precision. On the experimental part,
our co-similarity based approach performs significantly better than the other
co-clustering algorithms we tested for the task of document clustering. In
contrast to (Dhillon et al., 2003; Long et al., 2005), our algorithms does not
need to cluster the words (columns) for clustering the documents (rows), thus
avoiding the need to know the number of word clusters and the learning pa-
rameters p and k introduced here seems relatively easy to tune. However, we
will investigate how to automatically find the best values for these parame-
ters, using similarity matrix analysis from (Aggarwal et al., 2001). It is also
worth noting that our co-similarity measure performs better than LSA and
than CTK by a smaller margin. Unfortunately, as we saw in section 3.1., the
current method is not well-defined from the theoretical point of view and we
need to analyze its behavior in order to understand the role of the pseudo-
normalization and to see if it is possible to turn it into a real normalization.
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