
HAL Id: hal-00743240
https://hal.science/hal-00743240v1

Submitted on 18 Oct 2012 (v1), last revised 11 Jun 2013 (v3)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Fresh Approach to Learning Register Automata
Benedikt Bollig, Peter Habermehl, Martin Leucker, Benjamin Monmege

To cite this version:
Benedikt Bollig, Peter Habermehl, Martin Leucker, Benjamin Monmege. A Fresh Approach to Learn-
ing Register Automata. 2012. �hal-00743240v1�

https://hal.science/hal-00743240v1
https://hal.archives-ouvertes.fr


A Fresh Approach to Learning Register
Automata?

Benedikt Bollig1, Peter Habermehl2, Martin Leucker3, and Benjamin
Monmege1

1 LSV, ENS Cachan & CNRS, France
2 Univ Paris Diderot, Sorbonne Paris Cité, LIAFA, CNRS, France

3 ISP, University of Lübeck, Germany

Abstract. This paper provides an Angluin-style learning algorithm for
a class of register automata supporting the notion of fresh data values.
More specifically, we introduce session automata which are well suited for
modeling protocols in which sessions using fresh values are of major inter-
est, like in security protocols or ad-hoc networks. We show that session
automata (i) have an expressiveness partly extending, partly reducing
that of register automata, (ii) admit a symbolic regular representation,
and (iii) have a decidable equivalence problem. We use these results to es-
tablish a learning algorithm that can infer inherently non-deterministic
session automata. Moreover, in the case of deterministic automata, it
has a better complexity wrt. membership queries than existing learning
algorithms for register automata. We strengthen the importance of our
automaton model by its characterization in monadic second-order logic.

1 Introduction

Learning automata deals with the inference of automata based on some partial
information, for example samples, which are words that either belong to their
accepted language or not. A popular framework is that of active learning defined
by Angluin [2] in which a learner may consult a teacher for so-called membership
and equivalence queries to eventually infer the automaton in question. Learning
automata has a lot of applications in computer science. Notable examples are
the use in model checking [12] and testing [3]. See [18] for an overview.

While active learning of regular languages is meanwhile well understood and
is supported by freely available libraries such as learnlib [19] and libalf [8], exten-
sions beyond plain regular languages are still an area of active research. Recently,
automata dealing with potentially infinite data as first class citizens have been
studied. Seminal works in this area are that of [1, 15] and [14]. While the first
two use abstraction and refinement techniques to cope with infinite data, the
second approach learns a sub-class of register automata.

In this paper, we follow the work on learning register automata. However,
we study a different model than [14], having the ability to require that input
data is fresh in the sense that it has not been seen so far. This feature has been

? This work is partially supported by EGIDE/DAAD-Procope (LeMon).



proposed in [24] in the context of semantics of programming languages, as, for
example, fresh names are needed to model object creation in object-oriented
languages. Moreover, fresh data values are important ingredients in modeling
security protocols which often make use of so-called fresh nonces to achieve their
security assertions [17]. Finally, fresh names are also important in the field of
network protocols and are one of the key ingredients of the π-calculus [20].

In general, the equivalence problem of register automata is undecidable (even
without freshness). This limits their applicability in active learning, as equiva-
lence queries cannot be implemented (correctly and completely). Therefore, we
restrict the studied automaton model to either store fresh data values or read
data values from registers. In the terminology of [24], we retain global freshness,
while local freshness is discarded. We call our model session automata. They
are well-suited whenever fresh values are important for a finite period, for which
they will be stored in one of the registers. Session automata correspond to the
model from [7] without stacks. They are incomparable with the model from [14].

Session automata accept data words, i.e., words over an alphabet Σ × D,
where Σ is a finite set of labels and D an infinite set of data values. A data word
can be mapped to a so-called symbolic word where we record for each different
data value the register in which it was stored (when appearing for the first time)
or from which it was read later. To each symbolic word we define a symbolic
word in unique normal form representing the same data words by fixing a canon-
ical way of storing data values in registers. Then, we show how to transform a
session automaton into a unique canonical automaton that accepts the same
data language. This canonical automaton can be seen as a classical finite-state
automaton and, therefore, we can define an active learning algorithm for session
automata in a natural way. In terms of the size of the canonical automaton, the
number of membership and equivalence queries needed is polynomial (both in
the number of states and in the number of registers). When the reference model
are arbitrary (data) deterministic automata, the complexity is polynomial in the
number of states and exponential in the number of registers.

Applicability of our framework in verification (e.g., compositional verification
[10] and infinite state regular model checking [13]) is underpinned by the fact that
session automata form a robust language class: While inclusion is undecidable
for register automata [21], we show that it is decidable for session automata.
In [7], model checking session automata was shown decidable wrt. a powerful
monadic second-order logic with data-equality predicate (dMSO). Here, we also
provide a natural fragment of dMSO that precisely captures session automata.

To summarize, we show that session automata (i) have a unique canonical
form, (ii) have a decidable inclusion problem, (iii) enjoy a logical characteriza-
tion, and (iv) can be learned via an active learning algorithm. Altogether, this
provides a versatile learning framework for languages over infinite alphabets.

Outline. The paper is structured as follows. In Section 2 we introduce session
automata. In Section 3 we present an active learning algorithm for them and in
Section 4 we give some language theoretic properties of our model and a logical
characterization. Missing proofs can be found in the appendix.

2



2 Data Words and Session Automata

2.1 Data Words, Sessions, and Symbolic Words

We let N (respectively, N>0) be the set of natural numbers (respectively, non-
zero natural numbers). For n ∈ N, we let [n] denote the set {1, . . . , n}. In the
following, we fix a non-empty finite alphabet Σ of labels and an infinite set D
of data values. In examples, we usually use D = N. A data word is a sequence of
elements of Σ ×D, i.e., an element from (Σ ×D)∗. An example data word over
Σ = {a, b} and D = N is (a, 4)(b, 2)(b, 4).

Our automata will not be able to distinguish between data words that are
equivalent up to permutation of data values. Intuitively, this corresponds to say-
ing that data values can only be compared wrt. equality. When two data words
w1 and w2 are equivalent in that sense, we write w1 ≈ w2, e.g. (a, 4)(b, 2)(b, 4) ≈
(a, 2)(b, 5)(b, 2). The equivalence class of a data word w wrt. ≈ is written [w]≈.

We can view a data word as being composed of (not necessarily disjoint)
sessions, each session determining the scope in which a given data value is used.
Let w = (a1, d1) · · · (an, dn) ∈ (Σ×D)∗ be a data word. We let Fresh(w)

def
= {i ∈

[n] | di 6= dj for all j ∈ {1, . . . , i− 1}} be the set of positions of w where a data
value occurs for the first time. Accordingly, we let Last(w)

def
= {i ∈ [n] | di 6= dj

for all j ∈ {i+1, . . . , n}}. A set S ⊆ [n] is a session of w if there are i ∈ Fresh(w)
and j ∈ Last(w) such that S = {i, . . . , j} and di = dj . For i ∈ [n], let Session(i)
denote the unique session S with dmin(S) = di. Thus Session(i) is the scope in
which di is used. Note that Fresh(w) = {min(Session(i)) | i ∈ [n]}. For k ≥ 1,
we say that w is k-bounded if every position of w belongs to at most k sessions.
A language L is k-bounded if every word in L is so. Note that the set of all data
words is not k-bounded, for any k.

Figure 1 illustrates a data word w with four sessions. It is 2-bounded, as
no position shares more than 2 sessions. We have Session(7) = {4, . . . , 9} and
Fresh(w) = {1, 2, 4, 6}.

Intuitively, k is the number of resources that will be needed to execute a
k-bounded word. Speaking in terms of automata, a resource is a register that
can store a data value. Our automata will be able to write a fresh data value
into some register r, denoted f(r), or reuse a data value that has already been
stored in r, denoted r(r). In other words, automata will work over (a finite subset
of) the alphabet Σ × Γ where Γ

def
= { f(r), r(r) | r ∈ N>0}. A word over Σ × Γ

is called a symbolic word. Given a symbolic word u = (a1, t1) · · · (an, tn) and a
position i ∈ [n], reg(i) denotes the register r that is used at i, i.e., such that
ti ∈ {f(r), r(r)}. Similarly, we define the type type(i) ∈ {f, r} of i.

1 2 3 4 5 6 7 8 9

a b a a c c b c c
4 2 4 3 2 1 3 1 3

Fig. 1. A data word

1 2 3 4 5 6 7 8 9

a b a a c c b c c
f(1) f(2) r(1) f(1) r(2) f(2) r(1) r(2) r(1)

Fig. 2. A symbolic word

3



A: a, f(1)
a, r(1)
a, f(2)
a, r(2)

Fig. 3. A simple session automaton

ε1 2

12

21

B:

a, f(1)

b, r(1)

a, f(2)

a, f(1)b, r(2)

b, r(1)

a, f(2)

b, r(2)

Fig. 4. A client-server system

Naturally, a register has to be initialized before it can be used. So, we call
u well formed if, for all j ∈ [n] with type(j) = r, there is i ≤ j such that
ti = f(reg(j)). Let WF denote the set of well formed words. A well formed
symbolic word is illustrated in Figure 2. We have type(5) = r and reg(5) = 2.

A symbolic word u = (a1, t1) · · · (an, tn) ∈WF generates a set of data words.
Intuitively, a position i with ti = f(r) opens a new session, writing a fresh data
value in register r. The same data value is reused at positions j > i with tj = r(r),
unless r is reinitialized at some position i′ with i < i′ < j. Formally, w ∈ (Σ×D)∗

is a concretization of u if it is of the form (a1, d1) · · · (an, dn) such that, for all
i, j ∈ [n] with i ≤ j, (i) i ∈ Fresh(w) iff type(i) = f, and (ii) di = dj iff both
reg(i) = reg(j) and there is no position i′ with i < i′ ≤ j such that ti′ = f(reg(i)).
For example, the data word from Figure 1 is a concretization of the symbolic
word from Figure 2. By γ(u), we denote the set of concretizations of a well formed
word u. We extend γ to sets L ⊆ (Σ×Γ )∗ and let γ(L)

def
= {γ(u) | u ∈ L∩WF}.

Remark 1. Let us state some simple properties of γ. It is easily seen that w ∈
γ(u) implies γ(u) = [w]≈. Let k ≥ 1. If u ∈ WF ∩ (Σ × Γk)∗ where Γk

def
=

{ f(r), r(r) | r ∈ [k]}, then all data words in γ(u) are k-bounded. Moreover,
γ((Σ × Γk)∗) is the set of all k-bounded data words.

2.2 Session Automata

As suggested, we consider automata over the alphabet Σ × Γ to process data
words. Actually, they are equipped with a finite number k ≥ 1 of registers so
that we rather deal with finite automata over Σ × Γk.

Definition 1. Let k ≥ 1. A k-register session automaton (or just session au-
tomaton) over Σ and D is a finite automaton over Σ × Γk, i.e., a tuple A =
(Q, q0, F, δ) where Q is the finite set of states, q0 ∈ Q the initial state, F ⊆ Q
the set of accepting states, and δ : Q× (Σ × Γk)→ 2Q the transition function.

The symbolic language Lsymb(A) ⊆ (Σ × Γk)∗ of A is defined in the usual
way, considering A as a finite automaton. Its (data) language is Ldata(A)

def
=

γ(Lsymb(A)). By Remark 1, Ldata(A) is closed under ≈. Moreover, it is k-
bounded, which motivates the naming of our automata.

4



Example 1. Consider the 2-register session automaton A from Figure 3. It rec-
ognizes the set of all 2-bounded data words over Σ = {a}.

Example 2. The 2-register session automaton B over Σ = {a, b} from Figure 4
represents a client-server system. A server can receive requests on two channels
of capacity 1, represented by the two registers. Requests are acknowledged in the
order in which they are received. When the automaton performs (a, f(r)), a client
gets a unique transaction key, which is stored in r. Later, the request is acknowl-
edged performing (b, r(r)). E.g., (a, 8)(a, 4)(b, 8)(a, 3)(b, 4)(b, 3) ∈ Ldata(B).

Session automata come with two natural notions of determinism.

– We call A = (Q, q0, F, δ) symbolically deterministic if |δ(q, (a, t))| ≤ 1 for all
(a, t) ∈ Σ×Γk so that δ can be seen as a partial function Q× (Σ×Γk)→ Q.

– We call A data deterministic if it is symbolically deterministic and, for all
q ∈ Q, a ∈ Σ, and r1, r2 ∈ [k] with r1 6= r2, we have that δ(q, (a, f(r1))) 6=
∅ implies δ(q, (a, f(r2))) = ∅. Intuitively, given a data word as input, the
automaton is data deterministic if, in each state, given a pair letter/data
value, there is at most one fireable transition.

While “data deterministic” implies “symbolically deterministic”, the converse is
not true. For example, the data automata A and B from Figures 3 and 4 are sym-
bolically deterministic but not data deterministic. However, the automaton B′
with the dashed transition from state ε to state 2 removed is data deterministic.

Note that we allow inherently data non-deterministic automata in our frame-
work, while [14] restricts to deterministic ones.

Theorem 1. Session automata are strictly more expressive than data determin-
istic session automata.

Session automata are expressively incomparable with the various register
automata models considered in [16, 21, 23, 9, 14]. In particular, the languages
from Examples 1 and 2 are not recognizable by the model for which a learning
algorithm exists [14]. On the other hand, our model cannot recognize “the set of
all data words” or “every consecutive data values are distinct”. Our automata
are subsumed by fresh-register automata [24], class memory automata [5], and
data automata [6]. However, no algorithm for the inference of the latter is known.
Note that we consider one-dimensional data words, unlike [14] where labels have
an arity and can carry several data values. We chose our restriction for ease
of presentation. Following [7], our automata can be easily extended to multi-
dimensional data words. This also holds for the learning algorithm.

2.3 Canonical Session Automata

Our goal will be to infer the data language of a session automaton A in terms
of a canonical session automaton AC , which we develop in the following.

As a first step, we associate with w = (a1, d1) · · · (an, dn) ∈ (Σ × D)∗ a
symbolic normal form snf (w) ∈ WF such that w ∈ γ(snf (w)), based on the

5



idea that data values are always stored in the first register whose data value is
not needed anymore. To do so, we determine t1, . . . , tn ∈ Γ and set snf (w) =
(a1, t1) · · · (an, tn). Let S1, . . . , Sm be the unique enumeration of all sessions of w
such that min(S1) < · · · < min(Sm). We define τ : Fresh(w)→ N>0 inductively
by τ(i) = min(FreeReg(i)) where FreeReg(i)

def
= N>0 \ {τ(i′) | i′ ∈ Fresh(w) such

that i′ < i and i ∈ Session(i′)}. With this, we set, for all i ∈ [n],

ti =

{
f(τ(i)) if i ∈ Fresh(w)
r(τ(min(Session(i)))) otherwise.

One readily verifies that snf (w) = (a1, t1) · · · (an, tn) is well formed and that
properties (i) and (ii) in the definition of a concretization hold. This proves
w ∈ γ(snf (w)). For example, Figure 2 shows the symbolic normal form of the
data word from Figure 1. The mapping snf carries over to languages in the
expected manner.

Remark 2. Let w ∈ (Σ × D)∗. Then, w is k-bounded iff snf (w) ∈ (Σ × Γk)∗.
Moreover, for all data languages L, we have L = γ(snf (L)). Note that w ≈ w′

implies snf (w) = snf (w′), which validates our choice of denomination for snf .
Indeed, two equivalent data words w and w′ have the same set of sessions (in
particular, Fresh(w) = Fresh(w′)) and the same Σ-labels. Thus, the mappings
τ used to define snf (w) and snf (w′) are the same and snf (w) = snf (w′).

Example 3. (continued from Example 2) We consider again B of Figure 4. Let B′
be the automaton that we obtain from B when we remove the dashed transition.
We have Ldata(B) = Ldata(B′), but snf (Ldata(B)) = Lsymb(B′) $ Lsymb(B).

Example 4. Let us consider the language NFk
def
= snf (γ(Σ × Γk)∗) consisting

of the symbolic normal forms of all k-bounded data words. We explain how to
construct a symbolically deterministic k-register session automaton A such that
Lsymb(A) = NFk. Its state space is Q = ({0} ∪ [k]) × 2[k], consisting of (i) the
greatest register already initialized (indeed we will only use a register r if every
register r′ < r is already used), (ii) a subset P of registers that we promise to
reuse again before resetting their value. The initial state of A is (0, ∅), the set of
accepting states is ({0} ∪ [k])× {∅}. We now describe the set of transitions. For
every a ∈ Σ, i ∈ {0} ∪ [k], P ⊆ [k], and r ∈ [k]:

δ
(
(i, P ), (a, r(r))

)
=

{
{(i, P \ {r})} if r ≤ i
∅ otherwise

δ
(
(i, P ), (a, f(r))

)
=

{
{(max(i, r), P ∪ [r − 1])} if r − 1 ≤ i ∧ r /∈ P
∅ otherwise

Figure 5 depicts the 2-register session automaton for NF2.

The example shows that regularity of the symbolic language (Σ × Γk)∗ is
preserved under snf (γ( . )). We now prove that this is the case for every regular
language over Σ × Γk. The proof will actually use the special case of NFk.

Lemma 1. Let L be a regular language over Σ × Γk. Then, snf (γ(L)) is a
regular language over Σ × Γk.

6



0, ∅ 1, ∅ 2, {1} 2, ∅
f(1)

f(1)
r(1)

f(2)

f(2)
r(2)

r(1)

f(2)

f(1)
r(1)
r(2)

Fig. 5. A 2-register session automaton recognizing NF2

Proof. Let L ⊆ (Σ × Γk)∗ be regular. Consider the language L̃ = {u ∈ WF ∩
(Σ × Γk)∗ | there is u′ ∈ L such that γ(u) = γ(u′)}, i.e., the set of well formed
symbolic words having the same concretizations as some word from L. We can
easily show that snf (γ(L)) = NFk ∩ L̃. Indeed, if u ∈ snf (γ(L)), then there are
u′ ∈ L and w ∈ γ(u′) such that u = snf (w). Necessarily, w is k-bounded. Hence,
u ∈ NFk. Moreover, we have [w]≈ = γ(u′) (by Remark 1) and w ∈ γ(snf (w)) =
γ(u) implying also [w]≈ = γ(u). Finally, we obtain γ(u) = γ(u′). Reciprocally, if
u ∈ NFk ∩ L̃, then there is u′ ∈ L such that γ(u) = γ(u′). Hence, starting from
any word w in γ(u), we have u = snf (w) (by uniqueness of the symbolic normal
form stated in Remark 2) and w ∈ γ(u′) ⊆ γ(L), so that u ∈ snf (γ(L)).

We know from Example 4 that NFk is regular. It remains to be shown that
L̃ is regular. To do so, let A = (Q, q0, F, δ) be a k-register session automaton
such that Lsymb(A) = L. We construct a k-register session automaton Ã = (Q×
Inj(k), (q0, 0), F × Inj(k), δ̃) recognizing the symbolic language L̃. Hereby, Inj(k)
is the set of partial injective mappings from [k] to [k], and 0 ∈ Inj(k) denotes
the mapping with empty domain. These partial mappings are used to remember
the correspondence between old register indices and new ones, so they may be
understood as a set of constraints. For example, the mapping (2 7→ 1, 1 7→ 3)
stands for “old register 2 henceforth refers to 1, and old register 1 henceforth
refers to 3”. Any subset of these constraints forms always a valid partial injective
mapping. In the following, such a subset is called a sub-mapping. For example,
π = (1 7→ 3) is a sub-mapping of the previous one; it can then be extended
with the new constraint 2 7→ 2, that we denote π[2 7→ 2]. We describe now the
transition relation of A′:

δ̃
(
(q, π), (a, r(π(r)))

)
= {(q′, π) | q′ ∈ δ

(
q, (a, r(r))

)
}

δ̃
(
(q, π), (a, f(r′))

)
= {(q′, π′) | q′ ∈ δ

(
q, (a, f(r))

)
∧ π′ = π′′[r 7→ r′]

with π′′ maximal sub-mapping of π s.t. π′′[r 7→ r′] injective}

We simulate r-transitions simply using the current mapping π. For f-transitions,
we update π, recording the new permutation of the registers. One can indeed
show that Lsymb(Ã) = L̃.

Building the product of the automaton recognizing NFk and the automaton
Ã, we obtain a k-register session automaton recognizing snf (γ(L)). Its number
of states is bounded above by O(|Q|×k!× (k+1)×2k) (as the number of partial
injective mappings in Inj(k) is bounded above by O(k!)). �

7



a, f(1)
b, r(1)
a, f(2)
b, r(2)

0

1 7→ 12 7→ 1 1 7→ 22 7→ 2

1 7→ 1

2 7→ 2

1 7→ 2

2 7→ 1

a, f(1)

a, f(1)

a, f(2)a, f(2)

a, f(1)
b, r(1)

a, f(1)
b, r(1)

a, f(2)
b, r(2)

a, f(2)
b, r(2)

a, f(1)

a, f(2)

a, f(1)a, f(2)

a, f(1)

a, f(2)

a, f(2)a, f(2)

a, f(1)a, f(1)

a, f(1)
a, f(2)
b, r(1)
b, r(2)

a, f(1)
a, f(2)
b, r(1)
b, r(2)

a, f(1)a, f(1)

a, f(2)a, f(2)

a, f(1)

a, f(1)
b, r(1)

a, f(2)

a, f(2)
b, r(2)

b, r(1)a, f(2)
a, f(1)
b, r(1)
b, r(2)

A Ã AC

Fig. 6. A 2-register automaton A, the automaton Ã, and the canonical automaton AC

In other words, for every k-register session automaton A, there is a k-register
session automaton A′ such that Lsymb(A′) = snf (Ldata(A)) and, therefore,
Ldata(A′) = Ldata(A). We denote by AC the minimal symbolically deterministic
automaton A′ satisfying Lsymb(A′) = snf (Ldata(A)). Note that the number k′ of
registers effectively used in AC may be smaller than k, and we actually consider
AC to be a k′-register session automaton.

From the constructions of the automata for NFk and L̃ (proof of Lemma 1),
we can infer upper bounds on the size of the canonical session automaton.

Theorem 2. Let A = (Q, q0, F, δ) be a k-register session automaton. Then, AC

has at most 2O(|Q|×(k+1)!×2k) states. If A is data deterministic, then AC has at
most O(|Q| × (k + 1)!× 2k) states. Finally, AC uses at most k registers.

Example 5. Examples of A and Ã, as defined in the previous proof, are given in
Figure 6. The figure also depicts the canonical automaton AC associated with
A, obtained by determinizing and minimizing the product of both Ã and the
deterministic automaton recognizing NF2 (as given in Figure 5). Note that AC
is symbolically deterministic and minimal.

3 Learning Session Automata

In this section, we introduce an active learning algorithm for session automata.
In the usual active learning setting (as introduced by Angluin [2]), a learner
interacts with a so-called minimally adequate teacher (MAT), an oracle which
can answer membership and equivalence queries. In our case, the learner is given
the task to infer the data language Ldata(A) defined by a given session automaton
A. We suppose here that the learner knows the session automaton or any other
device accepting Ldata(A). In practice, this might not be the case — A could

8



be a black box — and equivalence queries could be (approximately) answered,
for example, by extensive testing. The learner can ask if a data word is accepted
by A or not. Furthermore it can ask equivalence queries which consist in giving
an hypothesis session automaton to the teacher who either answers yes, if the
hypothesis is equivalent to A (i.e., both data languages are the same), or gives a
data word which is a counterexample, i.e., either a data word which is accepted
by the hypothesis automaton but should not or vice versa.

Given the data language Ldata(A) accepted by a session automaton A over Σ
and D, our learning algorithm will learn the canonical k-register session automa-
ton AC , i.e., the minimal symbolically deterministic automaton recognizing the
data language Ldata(A) and the regular language Lsymb(AC) over Σ×Γk. There-
fore one can consider that the learning target is the regular language Lsymb(AC)
and use any active learning algorithm for regular languages. However, as the
teacher answers only questions over data words, membership queries have to be
adapted: since AC only accepts symbolic data words which are in normal form,
a membership query for a given symbolic data word u not in normal form will be
answered negatively (without consulting the teacher); otherwise, the teacher will
be given one data word included in γ(u) (all the answers on words of γ(u) are
the same). Notice that the number of registers needed to accept a data language
is a priori not known. Thus the learning algorithm starts by trying to learn a
1-register session automaton and increases the number of registers as necessary.

Any active learning algorithm for regular languages may be adapted to our
setting. Here we describe a variant of Rivest and Schapire’s [22] algorithm which
is itself a variant of Angluin’s L∗ algorithm [2]. An overview of learning algo-
rithms for deterministic finite state automata can be found for example in [4].

The algorithm is based on the notion of observation table which contains
the information accumulated by the learner during the learning process. An
observation table over a given alphabet Σ × Γk is a triple O = (T,U, V ) with
U, V two sets of words over Σ × Γk such that ε ∈ U, V and T a mapping (U ∪
U.(Σ × Γk)) × V → {+,−}. A table is partitioned into an upper part U and
a lower part U.(Σ × Γk). We define for each u ∈ U ∪ U.(Σ × Γk) a mapping
row(u) : V → {+,−} where row(u)(v) = T (u, v). An observation table must
satisfy the following property: for all u, u′ ∈ U such that u 6= u′ we have row(u) 6=
row(u′), i.e., there exists a v ∈ V such that T (u, v) 6= T (u′, v). This means that
the rows of the upper part of the table are pairwise distinct. A table is closed if
for all u′ in U.(Σ × Γk) there exists a u ∈ U such that row(u) = row(u′). From
a closed table we can construct, as follows, a symbolically deterministic session
automaton whose states correspond to the rows of the upper part of the table.

Definition 2. For a closed table O = (T,U, V ) over a finite alphabet Σ ×
Γk we define a symbolically deterministic k-register session automaton AO =
(Q, q0, F, δ) over Σ × Γk by Q = U , q0 = ε, F = {u ∈ Q | T (u, ε) = +}, and for
all u ∈ Q and (a, t) ∈ Σ × Γk, δ(u, (a, t)) = u′ if row(u(a, t)) = row(u′). Notice
that this is well defined as the table is closed.

We now describe in detail our active learning algorithm for a given session
automaton A given in Table 1. It is based on a loop which repeatedly constructs

9



initialize k := 1 and
O := (T, U, V ) by U = V = {ε} and T (u, ε) for all u ∈ U ∪ U.(Σ × Γk) with membership queries
repeat

while O is not closed
do

find u ∈ U and (a, t) ∈ Σ × Γk such that for all u ∈ U : row(u(a, t)) 6= row(u)
extend table to O := (T ′, U ∪ {u(a, t)}, V ) by membership queries

from O construct the hypothesized automaton AO (cf. Definition 2)
if Ldata(A) = Ldata(AO)

then equivalence test succeeds
else get counterexample w ∈ (Ldata(A) \ Ldata(AO)) ∪ (Ldata(AO) \ Ldata(A))

find minimal k′ such that snf (w) ∈ Σ × Γk′
if k′ > k

then set k := k′

extend table to O := (T ′, U, V ) over Σ × Γk by membership queries
if O is closed /∗ is true if k′ ≤ k ∗/

then find a breakpoint where v is the distinguishing word
extend table to O := (T ′, U, V ∪ {v}) by membership queries

until equivalence test succeeds
return AO

Table 1. The learning algorithm for a session automaton A

a closed table using membership queries, builds the corresponding automaton
and then asks an equivalence query. This is repeated until A is learned. An
important part of any active learning algorithm is the treatment of counterex-
amples provided by the teacher as an answer to an equivalence query. Suppose
that for a given AO constructed from a closed table O = (T,U, V ) the teacher
answers by a counterexample data word w. Let z = snf (w). If z uses more reg-
isters than available in the current alphabet, we extend the alphabet and then
the table. If the obtained table is not closed, we restart from the beginning of
the loop. Otherwise – and also if z does not use more registers – we use Rivest
and Schapire’s [22] technique to extend the table by adding a suitable v to V
making it non-closed. The technique is based on the notion of breakpoint. As z
is a counterexample, (1) z ∈ Lsymb(AO) ⇐⇒ z 6∈ Lsymb(AC). Let z = z1 · · · zm.
Then, for any i with 1 ≤ i ≤ m + 1, let z be decomposed as z = uivi, where
u1 = vm+1 = ε, v1 = um+1 = z and the length of ui is equal to i − 1 (we have
also z = uizivi+1 for all i s.t. 1 ≤ i ≤ m). Let si be the state visited by z just be-
fore reading the ith letter, along the computation of z on AO: i is a breakpoint
if sizivi+1 ∈ Lsymb(AO) ⇐⇒ si+1vi+1 /∈ Lsymb(AC). Because of (1) such a
break-point must exist and can be obtained with O(log(m)) membership queries
by a dichotomous search. The word vi is called the distinguishing word. If V is
extended by vi the table is not closed anymore (row(si) and row(sizi) are differ-
ent). Now, the algorithm closes the table again, then asks another equivalence
query and so forth until termination. At each iteration of the loop the number
of rows (each of those correspond to a state in the automaton AC) is increased
by at least one. Notice that the same counterexample might be given several
times. The treatment of the counterexample only guarantees that the table will
contain one more row in its upper part. We obtain the following theorem.

10



Theorem 3. Let A be a k′-register session automaton over Σ and D. Let AC be
the corresponding canonical k-register session automaton. Let N be its number
of states, K be the size of Σ×Γk and M the length of the longest counterexample
returned by an equivalence query. Then, the learning algorithm for A terminates
with at most O(KN2 +N log(M)) membership and O(N) equivalence queries.

Proof. This follows directly from the proof of correctness and complexity of
Rivest and Schapire’s algorithm [4, 22]. Notice that the equivalence query cannot
return a counterexample whose normal form uses more than k registers, since
either it is accepted by AC and therefore uses at most k registers or it is rejected
by AC and uses k′ > k registers but then it is also rejected by any automaton
over an alphabet Σ × Γk′′ with k′′ < k′ as is the case of all constructed AO. �

Let us discuss the complexity of our algorithm. In terms of the canonical
session automaton, the number of required membership and equivalence queries
is polynomial. When we consider data deterministic session automata, the com-
plexity is still polynomial in the number of states, but exponential in k (with con-
stant base). As usual, we have to add one exponent wrt. (data) non-deterministic
automata. In [14], the number of equivalence queries is polynomial in the size of
the underlying automaton. In contrast, the number of membership queries con-
tains a factor nk where n is the number of states and k the number of registers.
This may be seen as a drawback, as n is typically large. Note that our setting
allows one to infer automata that are inherently data non-deterministic. This
also distinguishes our work from [14].

Example 6. We apply our learning algorithm on the data language given by
the automaton A of Figure 6. In Figure 7 the successive observation tables
constructed by the algorithm are given. To save space some letters whose rows
contain only −’s are omitted. In Figure 8 the successive automata constructed
from the closed observation tables are given. For sake of clarity we omit for each
automaton the sink state and the transitions leading to it.

We start with the alphabet Σ × Γ1 = {(a, f(1)), (a, r(1)), (b, f(1)), (b, r(1))}.
We omit letters (a, r(1)) and (b, f(1)). TableO1 is obtained after initialization and
closing by adding (b, r(1)) to the top. We use to indicate that all letters will lead
to the same row. From O1 the first hypothesis automaton A1 is constructed. We
suppose that the equivalence query gives back as counterexample the data word
(a, 3)(b, 3) whose normal form is (a, f(1))(b, r(1)). Here the breakpoint yields
the distinguishing word (b, r(1)). We add it to V . The obtained table is not
closed anymore. We close it by adding (a, f(1)) to the top and get table O2

yielding hypothesis automaton A2. Notice that Lsymb(A2) = Lsymb(AC)∩ (Σ ×
Γ1)∗. This means that the equivalence query must give back a data word whose
normal form is using at least 2 registers (here (a, 7)(a, 4)(b, 7) with normal form
(a, f(1))(a, f(2))(b, r(1))). As the word uses 2 registers we extend the alphabet
to Σ × Γ2 and obtain table O3. We close the table and get O4. From there
we obtain the hypothesis automaton A4. After the equivalence query we get
(a, f(1))(a, f(2))(b, r(1))(b, r(2)) as normal form of the data word counterexample

11



O1 ε

ε +
(b, r(1)) −
(a, f(1)) +

(b, r(1)) −

⇒

O2 ε (b, r(1))

ε + −
(b, r(1)) − −
(a, f(1)) + +

(b, r(1)) − −
(a, f(1))(a, f(1)) + +
(a, f(1))(b, r(1)) + +

⇒

O3 ε (b, r(1))

ε + −
(b, r(1)) − −
(a, f(1)) + +

(a, f(2)) − −
(b, r(2)) − −

(b, r(1)) − −
(a, f(1))(a, f(1)) + +
(a, f(1))(b, r(1)) + +
(a, f(1))(a, f(2)) − +
(a, f(1))(b, r(2)) − −

⇒

O4 ε (b, r(1))

ε + −
(b, r(1)) − −
(a, f(1)) + +

(a, f(1))(a, f(2)) − +

(a, f(2)) − −
(b, r(2)) − −

(b, r(1)) − −
(a, f(1))(a, f(1)) + +
(a, f(1))(b, r(1)) + +
(a, f(1))(b, r(2)) − −

(a, f(1))(a, f(2))(a, f(1)) − −
(a, f(1))(a, f(2))(b, r(1)) + +
(a, f(1))(a, f(2))(a, f(2)) − +
(a, f(1))(a, f(2))(b, r(2)) − +

⇒

O5 ε (b, r(1)) (b, r(2))

ε + − −
(b, r(1)) − − −
(a, f(1)) + + −

(a, f(1))(a, f(2)) − + −
(a, f(1))(a, f(2))(b, r(1)) + + +

(a, f(2)) − − −
(b, r(2)) − − −

(b, r(1)) − − −
(a, f(1))(a, f(1)) + + −
(a, f(1))(b, r(1)) + + −
(a, f(1))(b, r(2)) − − −

(a, f(1))(a, f(2))(a, f(1)) − − −
(a, f(1))(a, f(2))(a, f(2)) − + −
(a, f(1))(a, f(2))(b, r(2)) − + −

(a, f(1))(a, f(2))(b, r(1))(a, f(1)) + + +
(a, f(1))(a, f(2))(b, r(1))(b, r(1)) + + +
(a, f(1))(a, f(2))(b, r(1))(a, f(2)) − + −
(a, f(1))(a, f(2))(b, r(1))(b, r(2)) + + +

Fig. 7. The successive observation tables

(a, 9)(a, 3)(b, 9)(b, 3). After adding (b, r(2)) to V and closing the table by moving
(a, f(1))(a, f(2))(b, r(1)) to the top we get finally the table O5 from which the
canonical automaton AC is obtained and the equivalence query succeeds.

4 Language Theoretical Results

In this section, we establish some language-theoretic properties of session au-
tomata, which they inherit from classical regular languages. These results demon-
strate a certain robustness as required in verification tasks such as compositional
verification [10] and infinite-state regular model checking [13].

4.1 Closure and Decidability Properties

Theorem 4. Data languages recognized by session automata are closed under
intersection and union. They are also closed under complementation in the fol-
lowing sense: given a k-register session automaton A, the language γ((Σ×Γk)∗)\
Ldata(A) is recognized by a k-register session automaton.

12



a, f(1)

a, f(1)

a, f(1)
b, r(1)

a, f(1)

a, f(1)
b, r(1)

a, f(2)

a, f(2)
b, r(2)

b, r(1)

A1 A2 A4

Fig. 8. The successive hypothesis automata

Proof. Let A be a k-register session automaton, and B a k′-register session
automaton. Using a classical product construction for AC and BC , we obtain a
min(k, k′)-register session automaton recognizing the data language Ldata(A) ∩
Ldata(B). The language Ldata(A) ∪ Ldata(B) is recognized by the max(k, k′)-
register session automaton that we obtain as the “disjoint union” of A and B,
branching on the first transition in one of these two automata.

Finally, let us consider a symbolically deterministic k-register session automa-
ton A. Without loss of generality, by adding a sink state, we can suppose that A
is complete. Then, every well formed symbolic word over Σ×Γk has exactly one
run in A. The automaton A′ constructed from A by taking as accepting states
the non-accepting states of A verifies that Lsymb(A′) = (Σ×Γk)∗ \Lsymb(A) so
that Ldata(A′) = γ((Σ × Γk)∗) \ Ldata(A). �

Theorem 5. The inclusion problem for session automata is decidable.

Proof. Considering two session automata A and B, we can decide inclusion
Ldata(A) ⊆ Ldata(B) by considering the canonical automata AC and BC . Indeed,
Ldata(A) ⊆ Ldata(B) ⇐⇒ snf (Ldata(A)) ⊆ snf (Ldata(B)) ⇐⇒ Lsymb(AC) ⊆
Lsymb(BC). Thus, it is sufficient to check inclusion for AC and BC . �

4.2 A Logical Characterization of Session Automata

In this section, we provide a logical characterization of session automata. The
logic we consider is classical monadic second-order (MSO) logic over finite al-
phabets, which is known to be expressively equivalent to finite automata. To
deal with data values, there is an additional binary predicate, which allows us to
test two word positions for data equality. The following paragraph gives a short
account of data MSO logic (dMSO). For more background, we refer the reader
to [21, 23, 6].

We fix infinite supplies of first-order variables x, y, . . ., which are interpreted
as word positions, and second-order variables X,Y, . . ., which are taken as sets
of positions. Atomic dMSO formulas are x = y, label(x) = a (with a ∈ Σ), y =
x+ 1, and x ∈ X. They allow us to reason about word positions in the expected

13



manner: given a data word w = (a1, d1) · · · (an, dn) ∈ (Σ ×D)∗, positions i, j ∈
[n], and a set I ⊆ [n], we have w, i, j |= x = y (to be read as “w satisfies x = y
when x is interpreted as i and y as j”) if i = j; w, i |= label(x) = a if ai = a;
w, i, j |= y = x+1 if j = i+1; and w, i, I |= x ∈ X if i ∈ I. To reason about data,
there is another atomic formula, x ∼ y, which compares data values at x and y.
More precisely, w, i, j |= x ∼ y if di = dj . Finally, dMSO logic provides negation
and disjunction, as well as existential quantifiers ∃x ϕ and ∃X ϕ (with ϕ a dMSO
formula), interpreted as usual. In addition, we use abbreviations such as true,
x ≤ y, ∀x ϕ, ϕ ∧ ψ, ϕ→ ψ, etc. A sentence is a formula without free variables.
For a dMSO sentence ϕ, we set Ldata(ϕ)

def
= {w ∈ (Σ×D)∗ | w |= ϕ}. We denote

by MSO the fragment of dMSO not making use of ∼. An MSO formula can also
be interpreted over words from Σ∗, without data. For an MSO sentence ϕ, we
let Lsymb(ϕ) ⊆ Σ∗ denote the set of words w ∈ Σ∗ such that w |= ϕ.

Note that dMSO is a very expressive logic and goes beyond virtually all
automata models defined for data words [21, 6, 11]. We identify a fragment of
dMSO, called session MSO logic, that is expressively equivalent to session au-
tomata. While register automata also enjoy a logical characterization [11], we
are not aware of a logic capturing the automata model considered in [14].

Definition 3 (Session MSO Logic). A session MSO (sMSO) formula is a
dMSO sentence of the form

ϕ = ∃X1 · · · ∃Xm (α ∧ ∀x∀y (x ∼ y ↔ β))

such that α and β are MSO formulas (not containing the predicate ∼).

Example 7. For instance, ϕ1 = ∀x∀y (x ∼ y ↔ x = y) is an sMSO formula. Its
semantics Ldata(ϕ1) is the set of data words in which every data value occurs
at most once. Moreover, ϕ2 = ∀x∀y (x ∼ y ↔ true) is an sMSO formula, and
Ldata(ϕ2) is the set of data words where all data values coincide. As a last
example, let ϕ3 = ∃X ∀x∀y (x ∼ y ↔ (¬∃z ∈ X (x < z ≤ y ∨ y < z ≤ x))).
Then, Ldata(ϕ3) is the set of 1-bounded data words. Intuitively, the second-order
variable X represents the set of positions where a fresh data value is introduced.

Theorem 6. A data language is recognized by a session automaton iff it is
definable by an sMSO formula.

In [7], it was already shown (for a more powerful model) that model checking
is decidable:

Theorem 7 ([7]). Given a session automaton A and a dMSO sentence ϕ, one
can decide whether Ldata(A) ⊆ Ldata(ϕ).

5 Conclusion

In this paper, we provided a complete framework for algorithmic learning of
session automata, a special class of register automata to process data words. As
a key ingredient, we associated with every session automaton a canonical one,
which revealed close connections with classical regular languages. As a next step,
we plan to employ our setting for various verification tasks.

14



Acknowledgment. We are grateful to Thomas Schwentick for suggesting the
symbolic normal form of data words.

References

1. F. Aarts, F. Heidarian, H. Kuppens, P. Olsen, and F. W. Vaandrager. Automata
learning through counterexample guided abstraction refinement. In FM, LNCS
7436, pp. 10–27. Springer, 2012.

2. D. Angluin. Learning regular sets from queries and counterexamples. Information
and Computation, 75(2):87–106, 1987.

3. T. Berg, O. Grinchtein, B. Jonsson, M. Leucker, H. Raffelt, and B. Steffen. On
the correspondence between conformance testing and regular inference. In FASE,
LNCS 3442, pp. 175–189. Springer, 2005.

4. T. Berg and H. Raffelt. Model checking. In Model-based Testing of Reactive Sys-
tems, LNCS 3472 of LNCS. Springer, 2005.

5. H. Björklund and Th. Schwentick. On notions of regularity for data languages.
Theoretical Computer Science, 411(4-5):702–715, 2010.

6. M. Bojanczyk, C. David, A. Muscholl, T. Schwentick, and L. Segoufin. Two-
variable logic on data words. ACM Trans. Comput. Log., 12(4):27, 2011.

7. B. Bollig, A. Cyriac, P. Gastin, and K. Narayan Kumar. Model checking languages
of data words. In FoSSaCS’12, LNCS 7213, pp. 391–405. Springer, 2012.

8. B. Bollig, J.-P. Katoen, C. Kern, M. Leucker, D. Neider, and D. Piegdon. libalf: the
automata learning framework. In CAV, LNCS 6174, pp. 360–364. Springer, 2010.

9. S. Cassel, F. Howar, B. Jonsson, M. Merten, and B. Steffen. A succinct canonical
register automaton model. In ATVA, LNCS 6996, pp. 366–380. Springer, 2011.

10. J. M. Cobleigh, D. Giannakopoulou, and C. S. Pasareanu. Learning assumptions
for compositional verification. In TACAS, LNCS 2619, pp. 331–346. Springer, 2003.

11. T. Colcombet, C. Ley, and G. Puppis. On the use of guards for logics with data.
In Proceedings of MFCS’11, LNCS 6907, pp. 243–255. Springer, 2011.

12. D. Giannakopoulou and J. Magee. Fluent model checking for event-based systems.
In ESEC / SIGSOFT FSE, pp. 257–266. ACM, 2003.

13. P. Habermehl and T. Vojnar. Regular Model Checking Using Inference of Regular
Languages. In INFINITY’04, ENTCS 138, pp. 21–36. Elsevier, 2005.

14. F. Howar, B. Steffen, B. Jonsson, and S. Cassel. Inferring canonical register au-
tomata. In VMCAI, LNCS 7148, pp. 251–266. Springer, 2012.

15. B. Jonsson. Learning of automata models extended with data. In SFM, LNCS
6659, pp. 327–349. Springer, 2011.

16. M. Kaminski and N. Francez. Finite-memory automata. Theoretical Computer
Science, 134(2):329–363, 1994.

17. K. O. Kürtz, R. Küsters, and T. Wilke. Selecting theories and nonce generation
for recursive protocols. In FMSE, pp. 61–70. ACM, 2007.

18. M. Leucker. Learning meets verification. LNCS 4709, pp. 127–151. Springer, 2007.
19. T. Margaria, H. Raffelt, B. Steffen, and M. Leucker. The LearnLib in FMICS-

jETI. In The Twelfth IEEE International Conference on Engineering of Complex
Computer Systems (ICECCS), pp. 340–352. IEEE Computer Society Press, 2007.

20. R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes, Parts I and
II. Information and Computation, 100:1–77, Sept. 1992.

21. F. Neven, Th. Schwentick, and V. Vianu. Finite state machines for strings over
infinite alphabets. ACM Transactions on Computational Logic, 5(3):403–435, 2004.

15



22. R. Rivest and R. Schapire. Inference of finite automata using homing sequences.
Information and Computation, 103:299–347, 1993.

23. L. Segoufin. Automata and logics for words and trees over an infinite alphabet. In
Z. Ésik, editor, CSL 2006, LNCS 4207, pp. 41–57. Springer, 2006.

24. N. Tzevelekos. Fresh-register automata. In T. Ball and M. Sagiv, editors, POPL,
pp. 295–306. ACM, 2011.

Appendix

A Proof for Section 2

Theorem 1. Session automata are strictly more expressive than data determin-
istic session automata.

Proof. We show that the data language NF2 presented in Example 4 can-
not be recognized by a data deterministic session automaton. Indeed, suppose
that such an automaton exists, with k registers. Then, consider the word w =
(a, 1)(a, 2)(a, 3) · · · (a, k + 1) ∈ NF2, where every data value is fresh. By data
determinism, there is a unique run accepting w. Along this run, let i < j be two
positions such that their two fresh data values have been stored in the same reg-
ister r (such a pair must exist since the automaton has only k registers). Without
loss of generality, we can consider the greatest position j verifying this condi-
tion, and then the greatest position i associated with j. This means that register
r is used for the last time when reading j, and has not been used in-between
positions i and j. Now, the word (a, 1)(a, 2)(a, 3) · · · (a, k + 1)(a, i) ∈ NF2 must
be recognized by the automaton, but cannot since data value i appearing on
the last position is not fresh anymore, and yet not stored in one of the registers
(since register r was reused at j). �

B Proof for Section 4

Theorem 6. A data language is recognized by a session automaton iff it is
definable by an sMSO formula.

The construction of an sMSO formula ∃X1 · · · ∃Xm (α ∧ ∀x∀y (x ∼ y ↔ β))
from a session automaton A was implicitly shown in [7] (with a different goal,
though). The idea is that the existential second-order variables X1, . . . , Xm are
used to guess an assignment of transitions to positions. In α, it is verified that
the assignment corresponds to a run of A. Moreover, β checks if data equality
corresponds to the data flow as enforced by the transition labels from Γk.

Let us turn to the converse direction, from logic to automata. Fix an sMSO
formula ϕ = ∃X1 · · · ∃Xm (α ∧ ∀x∀y (x ∼ y ↔ β)). Then, β is a formula
whose free variables are among x, y,X1, . . . , Xm. As, moreover, β is an MSO

16



formula, which does not contain ∼, we can consider words over the finite al-
phabet Σ × {0, 1}m+2 as models of β. The idea is to interpret a position car-
rying letter (a, 1, b, b1, . . . , bm) as x, and a position labeled (a, b, 1, b1, . . . , bm)
as y, while membership in Xi is indicated by bi. Words where x and y are not
uniquely determined, are disregarded. We can represent such models as tuples
(w, i, j, I1, . . . , Im) where w ∈ Σ∗, i denotes the position of the 1-entry in the
unique first component, and j denotes the position of the 1-entry in the second
component. As Lsymb(β) ⊆ (Σ ×{0, 1}m+2)∗ is MSO definable, it is, by Büchi’s
theorem, recognized by some minimal deterministic finite automaton Aβ . Sup-
pose that Aβ has kβ ≥ 1 states. We fix this kβ for the remainder of the section.

Proposition 1. The data language Ldata(ϕ) is kβ-bounded.

Proof. Let w = (a1, d1) · · · (an, dn) ∈ Ldata(ϕ). There exists a tuple I =
(I1, . . . , Im) of subsets of [n] such that, for all i, j ∈ [n],

di = dj ⇐⇒ (a1 · · · an, i, j, I) ∈ Lsymb(β) . (∗)

Suppose, towards a contradiction, that w is not kβ-bounded. Then, there
are k > kβ and a position i ∈ [n] such that i is contained in distinct sessions
S1, . . . , Sk. For l ∈ {1, . . . , k}, let il = min(Sl) and jl = max(Sl). Note that
the il are pairwise distinct, and so are the jl. For every l ∈ {1, . . . , k}, we have
wl = (a1 · · · an, il, jl, I) ∈ Lsymb(β). Thus, for every such word wl, there is a
unique accepting run of Aβ , say, being in state ql after executing position i. As
Aβ has only kβ states, there are l 6= l′ such that ql = ql′ . Thus, there is an
accepting run of Aβ on (a1 · · · an, il, jl′ , I). This contradicts (∗), since Il and Il′

are distinct sessions. �

Next, we construct a (data-free) MSO sentence ϕ′ over the alphabet Σ ×
Γkβ (recall that Γkβ = {f, r} × [kβ ]) such that γ(Lsymb(ϕ′)) = Ldata(ϕ). We
will need some additional macro MSO formulas over Σ × Γkβ × {0, 1}m+2.
For a first-order variable x and r ∈ {1, . . . , kβ}, we let freshr(x) stand for∨
a,b label(x) = (a, f(r), b). Moreover, we let reg(x) = r be an abbreviation for

freshr(x) ∨
∨
a,b label(x) = (a, r(r), b). Now, we define

ϕ′ = ∃X1 · · · ∃Xm (α′ ∧ ∀x∀y (equal(x, y)↔ β′))

where

equal(x, y) =
∨

r∈[kβ ]

(
reg(x) = r ∧ reg(y) = r
∧ ¬∃z

(
freshr(z) ∧min(x, y) < z ≤ max(x, y) < z

))

and α′ and β′ are obtained from α and β, respectively, by replacing label(x) = a
with

∨
t,b label(x) = (a, t, b), with b ranging over {0, 1}m in α′ and over {0, 1}m+2

in β′.

Proposition 2. We have γ(Lsymb(ϕ′)) = Ldata(ϕ).

17



Proof. Let u = (a1, t1) · · · (an, tn) ∈ Lsymb(ϕ′) be a well formed word, and
let w = (a1, d1) · · · (an, dn) ∈ γ(u). We will show w |= ϕ. There is a tuple
I = (I1, . . . , Im) of subsets of [n] such that u, I |= α′ ∧ ∀x∀y (equal(x, y)↔ β′).
This already implies w, I |= α. Now take two positions i, j ∈ [n]. By the definition
of equal(x, y) and γ, we have di = dj iff u, i, j, I |= equal(x, y) iff u, i, j, I |= β′

iff w, i, j, I |= β. We conclude w |= ϕ = ∃X1 · · · ∃Xm (α ∧ ∀x∀y (x ∼ y ↔ β)).
For the converse direction, suppose w = (a1, d1) · · · (an, dn) ∈ Ldata(ϕ).

There is a tuple I = (I1, . . . , Im) of subsets of [n] such that w, I |= α ∧ ∀x∀y (x ∼
y ↔ β). Therefore, it already holds u, I |= α′. By Proposition 1, w is kβ-bounded.
Let u = snf (w) = (a1, t1) · · · (an, tn). We have w ∈ γ(u) and, according to Re-
mark 2, u ∈ (Σ×Γkβ )∗. It remains to prove that u, I |= ∀x∀y (equal(x, y)↔ β′).

Take any two positions i, j ∈ [n]. We have u, i, j, I |= equal(x, y) iff di = dj .
The latter is the case iff w, i, j, I |= β (since w ∈ Ldata(ϕ)), which holds iff
u, i, j, I |= β′. Thus, u |= ϕ′. �

By Büchi’s theorem, we can translate ϕ′ into a finite automaton A recogniz-
ing the models of ϕ′, which form a language over Σ × Γkβ . By Proposition 2,
interpreting A as a session automaton, we obtain Ldata(A) = Ldata(ϕ).

18


