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Abstract

A study on audio, visual, and audio-visual egocentric distance perception by moving participants
in virtual environments is presented. Audio-visual rendering is provided using tracked passive visual
stereoscopy and acoustic wave �eld synthesis (WFS). Distances are estimated using indirect blind-walking
(triangulation) under each rendering condition. Experimental results show that distances perceived in
the virtual environment are accurately estimated or overestimated for rendered distances closer than the
position of the audio-visual rendering system and underestimated for distances farther. Interestingly,
participants perceived each virtual object at a modality-independent distance when using the audio
modality, the visual modality, or the combination of both. Results show WFS capable of synthesizing
perceptually meaningful sound-�elds in terms of distance. Dynamic audio-visual cues were used by
participants when estimating the distances in the virtual world. Moving may have provided participants
with a better visual distance perception of close distances than if they were static. No correlation between
the feeling of presence and the visual distance underestimation has been found. To explain the observed
perceptual distance compression, it is proposed that, due to con�icting distance cues, the audio-visual
rendering system physically anchors the virtual world to the real world. Virtual objects are thus attracted
by the physical audio-visual rendering system.

Keywords

Virtual environments, large-screen immersive displays, wave �eld synthesis, spatialized audio, distance
estimation, spatial perception

1 Introduction

Virtual reality (VR) systems aim at providing participants with a virtual world where they would
behave and learn as if they were in the real world [10]. Audio-visual (AV) VR-systems that combine large
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immersive screens and many loudspeakers have been developed to provide participants with a virtual space
coherently merging holophonic spatial audio and 3D visual renderings [16, 39, 32]. The term �holophonic
spatial audio� stands here for technologies such as wave-�eld synthesis (WFS) [6], Ambisonics [18], or
others [25], that attempt to physically recreate the same sound �eld that a real sound source would have
radiated, and thus provide participants with a natural spatialized sound rendering. Such AV VR-systems
are very appealing because they are minimally intrusive (no headphones needed, only lightweight glasses)
and allow participants to move freely in the rendering area while always having a correct AV perspective.
With the emergence of these multimodal systems arises the question of the correct perception of the
virtual space by moving participants and, more speci�cally, of rendered distances within it [27, 22].

1.1 Measurement protocols for the estimation of perceived egocentric dis-
tance

Because distance perception is a cognitive task, measurement protocols are needed to estimate per-
ceived absolute egocentric distances. Existing measurement protocols can be divided into three main
classes [24, 19]: verbal estimations, perceptually directed actions, and imagined actions. In verbal esti-
mation protocols, participants assess the perceived distance in terms of familiar units, such as meters. In
perceptually directed action protocols, an object is presented to the participant who then has to perform
an action, such as blind-walking, without perceiving the object any more. In imagined action protocols,
the action is imagined instead of being performed and response times are used to infer the results of
the action. The advantage of perceptually directed actions is that they lead to distance estimations that
are more accurate and less variable than distance estimations provided by verbal reports [17, 26, 34, 2].
Moreover, using perceptually directed actions, estimated distances can be directly inferred from actions
whereas a potential systematic bias exists in distances estimated using imagined action protocols due to
the conversion of a directly measured value of time into an indirect measure of estimated distance [19].
Perceptually directed actions have thus been preferred in the present study.

Among perceptually directed actions, direct blind-walking and indirect blind-walking (triangulation)
are two possible alternatives which both lead to accurate distance estimations [17, 26]. Due to physical
spatial constraints imposed by the presence of large screens and many loudspeakers, only indirect blind
walking (triangulation) is possible in the kind of AV VR-systems under study here [24]. An advantage
of the triangulation measurement protocol is that it is applicable to the measurement of audio, visual,
and audio-visual perceived absolute egocentric distances without any need to adapt the procedure to
each di�erent modality. One disadvantage is that small errors in pointing can lead to large di�erences in
indicated distance for very distant targets. Furthermore, the error is not symmetric since one degree of
rotation in one direction can equate to a smaller change in linear distance than an equivalent rotation in
the opposite direction.

1.2 Perceived distance in the visual and auditory modalities in real or virtual
environments

In classical visual VR-systems, such as head-mounted displays (HMD), perceived visual distances have
been observed to be systematically underestimated [27, 22]. This is not the case in the real world [41]. VR-
systems based on large immersive screens were thought to o�er a better distance perception [30]. Studies
focusing on visual distance perception in virtual environments rendered by large immersive screens have
found that visual distances were underestimated using these systems, exactly as in HMD systems [3, 28,
24, 19, 1].

In the audio real world, it is well established that near-auditory distances (< 2m) are overestimated
whereas far-auditory distances (>2 m) are underestimated (see [42] for a review). Much less is known
regarding auditory distance perception in virtual auditory systems based on holophonic spatial audio.
In [11, 32], it was shown that holophonic spatial sound renderings can e�ectively be used to render
distances for static sources with moving participants and that perceived distances are compressed with
respect to rendered distances. When participants are static, [25, 23] showed that performances in an
holophonic audio virtual environment matched well with real world performances in terms of distance
perception.

In audio-visual virtual environments, perceived visual distances appear to be underestimated, near-
auditory distances to be overestimated, and far-auditory distances to be underestimated. Audio and
visual perceived distances are thus a priori inconsistent for a given rendered distance. Some e�orts have
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been done to study how audio and visual distance cues are merged together in virtual environments [14].
Obtained results suggest that static participants perceived AV distances similarly to visual distances.
However, participants are rarely static when immersed in virtual worlds. It is thus important to study
how AV distances are perceived by participants taking bene�t of static and dynamic AV distances cues
in a virtual environment.

Furthermore, to provide participants with a virtual world where they would behave as if they were in
the real world, VR-systems should be fully �transparent� to participants. Transparency is understood here
as �the extent to which the computer displays are capable of delivering an inclusive, extensive, surrounding,
and vivid illusion of reality to the senses of a human participant� [37]. AV VR-systems are however not
perfect and su�er from some drawbacks that potentially limit their transparency. It is thus important to
assess whether this limitation has an in�uence on the AV virtual space perceived by participants, and if
there exists a spatial link created by AV VR-systems between the real world and the virtual world.

1.3 Objectives

In this paper a study of audio (A), visual (V), and audio-visual (AV) egocentric distance perception in
the action space (1.5 m to 6 m) by moving participants in virtual environments is presented. AV rendering
is provided via the SMART-I2 platform (Spatial Multi-user Audio-visual Real-Time Interactive Interface)
[32, 33] using tracked passive visual stereoscopy and acoustic wave �eld synthesis (WFS). This AV VR-
system allows participants to move freely in the rendering area and maintains stable AV perspective cues
everywhere in this area. Distances are estimated by means of perceptually directed action (indirect blind
walking, triangulation) under A, V, and AV conditions. This experiment aims at studying how A, V,
and AV distances are perceived by participants taking bene�t of static and dynamic AV distance cues in
a virtual environment. A second objective is to assess whether the lack of total transparency of the AV
rendering system induces a spatial tethering between the real and virtual worlds.

2 Method

2.1 Experimental design

To study how A, V, and AV distances are perceived by participants taking bene�t of static and
dynamic AV distances cues in a virtual environment, �ve virtual objects (denoted A, B, C, D, E) placed
in the participant's action space, i.e. the space where one �moves quickly, talks, and if needed can throw
something to a compatriot or at an animal � [15], were rendered (see Fig. 1). To assess whether the
position of the AV rendering setup has an in�uence on the AV virtual space perceived by participants,
two initial or starting positions for participants were tested: Position 1 where participants stood 2.3 m
in front of the right panel of the SMART-I2, and Position 2 where they stood 3.3 m from it (see Fig. 1).
Virtual objects are at the same locations with respect to the rendering system for both starting positions.
Virtual objects were located at distances of 1.5 m, 2 m, 2.5 m, 3.5 m, and 5 m from Position 1, equating
to distances of 2.5 m, 3 m, 3.5 m, 4.5 m, and 6 m from Position 2.

A total of 40 volunteers (30 men, 10 women) between 21 and 49 years old participated in the experi-
ment with half of participants starting from Position 1 and the other half starting from Position 2. All
participants had self-reported normal vision (possibly corrected) and normal hearing. Each participant
had to estimate the distances of the �ve virtual objects four times under each rendering condition. They
performed three sessions of 20 iterations each after a training phase of two iterations under each rendering
condition. In the training phase, rendered distances were 3 m and 7 m for Position 1, and 4 m and 8 m
for Position 2. Participants took pauses between sessions and the entire experiment lasted approximately
one hour. The session order was balanced between the six possible permutations of the three rendering
conditions.

The chosen experimental design was therefore a mixed design with three factors: rendered distance
dr (�ve levels, within-participants), rendering condition (three levels, within-participants), and starting
position (two levels, between-participants). The dependent variables are perceived distance dp, time tXP
spent in the exploration phase (see Sec. 2.4), and exploration path length lXP.

3



Figure 1: Overview of the experimental setup. Virtual objects: grey disks labelled A, B, C, D or E. Start
positions: black �×�. Exploration areas are represented by the grey rectangles

2.2 Experimental setup

Experiments were conducted in the AV virtual environment produced by the SMART-I2 platform
[32, 33]. In this system, front-projection screens and loudspeakers are integrated together to form large
�at multi-channel loudspeakers also called Large Multi-Actuator Panels (LaMAPs). The rendering screens
consist of two LaMAPs (2 m× 2.6 m, each supporting 12 loudpeakers) forming a corner (see Fig. 2). The
reporting interface used in the present experiment was a wiimote.

Visual rendering was produced using tracked passive stereoscopy rendered at 80 frames per second
with a resolution of 1280× 960 pixels on each screen. Interocular distance for stereoscopic rendering was
�xed at 6 cm for all participants. At both starting positions (the black �×� in Figs. 1, 3(a), and 3(b)), the
horizontal �eld of view was approximately 150�and the vertical �eld of view approximately 70�. Since it
has been shown that graphical resolution [35, 19] and �eld of view [13] have no in�uence on visual distance
perception, these experimental parameters should not in�uence the obtained experimental results.

Spatial audio rendering was realized via acoustic Wave Field Synthesis (WFS) [6]. This technology
attempts to physically recreate the acoustic sound �eld corresponding to a virtual source at any given
position in the horizontal plane, without the need for tracking. Real-time audio signal processing was
achieved by a Wave 1 rendering engine provided by sonic emotion. The inter-loudspeaker distance of
21 cm corresponds to an aliasing frequency fal ' 1.1 kHz, up to which the sound �eld is correctly recon-
structed [11]. It has been demonstrated by [36] that sound �elds reconstructed by WFS are su�ciently
consistent to allow for accurate localization, even when frequencies above fal are present. In [12], it was
shown that even if not exact, azimuthal cues above the aliasing frequency fal are generally consistent
with azimuthal cues below fal when using MAPs.

Furthermore, �ne temporal and spatial calibration has been performed to ensure that the audio and
visual renderings are fully coherent.

2.3 Audio, visual, and audio-visual stimuli

The visual environment consisted of an open, grassy �eld with a forest at 50 m (Fig. 2(a), trees were
' 7 m tall). The associated audio environment consisted of the sound of wind in the trees accompanied
by some distant bird songs (overall background level of 36 dBA). The audio environment was created
by 12 plane waves equally distributed in the horizontal frontal �eld of rendering (i.e. between −70�and
70�). Environmental sound levels were adjusted to be slightly above the background noise produced by
the video-projectors (background noise level of 34 dBA).

The chosen visual target object was a footless 3D loudspeaker, approximately spherical, with a diam-
eter of ' 30 cm (Fig. 2(a)). The stand was removed to avoid window violations when the object was
displayed in front of the screen. The �oating loudspeaker was positioned at a height of 1.6 m and shadows
were displayed.

The associated audio target object was a 4 kHz low-pass �ltered white noise with a 15 Hz amplitude
modulation. Low-pass �ltered white noise has been chosen in order to have a wide spectral content and
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(a) Front view (b) Back view

Figure 2: Left : a participant and an audio-visual object in the virtual world provided by the SMART-
I2. Visual rendering is projected on the front faces of the two LaMAPs which form a corner. Right :
electro-dynamical exciters are glued on the back of each LaMAP.

to allow participants to rely on numerous audio localization cues. The white noise was modulated in
amplitude by a sine wave to produce attack transients that are also useful in sound localization [7]. No
simulated room-e�ect (i.e. ground re�ection) was included. The sound level of the omnidirectional audio
object corresponds to a monopole emitting 78 dB(SPL) at 1 m, well above the environmental sound level
at each of the tested distances.

Audio and visual objects were always displayed coherently, i.e. at the same spatial position. In
addition, their visual size and audio level decreased naturally with distance. As the experimental design
allowed participants to move within the rendering area (see Sec. 2.4), they could rely on a large number of
cues naturally available in the corresponding real environment for the estimation of distances, including
dynamic cues. In particular, motion parallax, which denotes changes in the angular direction of a point
source occasioned by the participant's translation is available. This cue has been shown to be useful for
distance estimation using the visual [5, 29] or the auditory modality [38, 31]. Another dynamic cue, the
estimated time-to-impact for a constant velocity between the moving participant and the static source
(also denoted acoustic or visual τ), can also be used [4, 31]. Available AV distance cues are summarized
in Tab. 1.

Available cue Modality Class
Object size/level A, V Relative∗

Motion parallax A, V Absolute
Time-to-impact A, V Absolute

Binocular/binaural cues A, V Absolute†

Height in the visual �eld V Relative∗

Table 1: Available audio-visual cues.

The AV background environment was kept active in all the rendering conditions. In the audio condi-
tion, the spatialized sound corresponding to the virtual object was played while no image of the virtual
object was shown. The only visual image consisted of the open, grassy �eld with a forest in the back-
ground. In the visual condition, the 3D image of the virtual object was displayed with no corresponding
sound. The only audio signal consisted of the sound of wind in the trees accompanied by some bird
songs. In the audio-visual condition, the spatialized sound of the virtual object was rendered with its
corresponding 3D image and the AV environment.
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2.4 Experimental task

Distance estimation was performed in this task in two phases: a presentation phase, see Fig. 3(a),
and a reporting phase, see Fig. 3(b). Participants began each iteration at one of the two possible start
positions, indicated by a black �×� in Figs. 1, 3(a), and 3(b).

(a) Presentation phase (b) Reporting phase

Figure 3: Presentation and reporting phases. Start position: �×�. Virtual object : black disk placed
at a rendered distance dr from the start position. In Fig. 3(a), the exploration area is represented by
the grey rectangle and the dotted grey line indicates a typical exploration trajectory performed by the
participant. In Fig. 3(b), the guide is shown as a thick plain black line. The dotted grey line indicates
a typical trajectory performed by the participant. Perceived object : grey disk placed at the estimated
perceived distance dp from the start position.

Before starting the presentation phase, participants had to indicate that they were ready to perform
this phase by pressing a wiimote button. In the presentation phase, participants moved around in the
exploration area which was a rectangle of 1.0×0.8 m2. Participants were instructed to move in the explo-
ration area in order to acquire �a good mental representation of the virtual object and its environment.�
A typical path followed by a participant during the presentation phase is depicted in Fig. 3(a).

Once a �a good mental representation� has been acquired, participants pressed a button indicating
that they were ready for the reporting phase. At this point, the target stimuli was stopped, and the
procedure for distance estimation by means of triangulated blind walking began, as depicted in Fig. 3(b).
Participants closed their eyes, made a 40�right-turn to a handrail guide which was included to help
during blind-walking, and walked blindly for an imposed distance of ' 2 m, following the handrail to the
end. Participants stopped at the end of the guide, turned in the direction where they thought the object
was, and took a step forward in the direction of the source position. Participants had been instructed that
the perceived distance was to be calculated according to this step. They then indicated that they had
completed the reporting phase by again pressing a button. Afterwards, they could open their eyes and
return to their initial start position for the next trial. The experimental protocol was fully automated,
with the participants being observed remotely so as not to disturb the sense of presence.

2.5 Post-session questionnaire

In the present experiment, participants were asked to complete a 7-item questionnaire at the end of
each of the three experimental sessions (A, V, AV). The goal of this questionnaire was to evaluate the
feeling of presence that participants experienced during each session. This questionnaire was built by
adapting statements taken from [8] and [3], translated into French. Statements were rated on a 7-point
Likert scale ranging from −3 to 3 with two anchors. The statements are provided in Tab. 2.

3 Analysis of results

3.1 Extraction of the dependent variables

This section explains how the di�erent dependent variables (dr, tXP, lXP) were derived from the
experimental data. The position of the head of the participant (central point between the eyes) is
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Q1†: I had the feeling of locating a real object.
Q2†: I had the feeling of looking at a TV instead of really being in an outdoor environment.
Q3†: The virtual environment became real for me and I forgot the real environment.
Q4†: I remember the virtual environment more as a place where I have been than as

a computer generated image I have seen.
Q5∗: I had the impression that I could touch the virtual objects.
Q6∗: I felt present in the virtual world.
Q7†: I felt surrounded by the virtual world.

Table 2: Post-session questionnaire.. †: Statements adapted from [8]. ∗:Statements adapted from [3].

recorded for each iteration during both the presentation and reporting phases at 100 Hz.
The duration of the presentation phase tXP was obtained by measuring the time between the par-

ticipant's button presses for ready for a new trial and for ready for the reporting phase, as explained in
Sec. 2.4. The exploration path length lXP was calculated by using the head position recorded during tXP.

The exploration path length walked during the exploration phase lXP can be separated into the
component walked parallel to the direction of the source lP

XP
and the component walked in the orthogonal

direction lO
XP

. To be comparable, these two paths were normalized by the maximum physical path lengths
in each direction, which are here the sides of the exploration area (i.e. sO = 1 m and sP = 0.8 m). The
dependent variable P = lP

XP
/sP (respectively O = lO

XP
/sO) denotes the number of times the participant

walked the length of the exploration area parallel (respectively orthogonal) to the source direction.
Perceived distances dp were estimated from the triangulation trajectory as follows: a line (y = ax+ b)

was �tted to the trajectory points during the forward step (118 ± 67 points have been used for the �t).
The estimated perceived distance is given by Eq. (1):

dp = − b
a

(1)

The relative 95%-con�dence intervals on the estimated distance are deduced from the 95%-con�dence
intervals of the linear �t regression coe�cients a and b for each iteration (regress function in Matlab).
Accross all iterations, participants, and distances, the 95%-con�dence intervals for the relative distances,
i.e. for dp/dr, estimated using the triangulation trajectory is ±8.5%. The triangulation procedure and
the associated data treatement thus provide a reliable estimation of the perceived distances.

3.2 Presentation phase

In this section, the in�uence of the rendered distance dr and of the condition (A,V,AV) on the time
tXP and on the path length lXP respectively spent and walked during the presentation phase are analyzed.
Data collected for Position 1 and Position 2 are pooled together as a one-way ANOVA performed on
the exploration time tXP with factor starting position showing no signi�cant di�erence (F = 1.94 and
p < 0.17). Results of the analysis are shown in Figs. 4.

A two-way repeated-measures analysis of variance (ANOVA) performed on the exploration time tXP
with condition (A,V,AV) and rendered distance dr as within-participant factors shows that condition is
highly signi�cant (F (2, 64) = 7.87 and p < 0.008), that rendered distance is signi�cant (F (4, 64) = 3.19
and p < 0.015), and that there is no interaction e�ect between condition and rendered distance dr
(F (8, 64) = 0.52 and p < 0.84). Post-hoc tests, computed in terms of medians are shown for condition
in Fig. 4(a). They reveal that exploration times for each condition are signi�cantly di�erent. Post-hoc
tests for rendered distances shown in Fig. 4(b) revealed that exploration times for the virtual object C
are slightly, but signi�cantly, lower than those obtained for the virtual object A. Participants spent
more time in the exploration phase when estimating distances using the audio modality than when using
the audio-visual modality. Furthermore, participants spent more time in the exploration phase when
estimating distances using the audio-visual modality than when using only the visual modality.

Normalized exploration path lengths in the direction of the virtual object (P ) and in the orthogonal
direction (O) are compared in Fig. 4(c). The analysis reveals that P is slightly, but signi�cantly, longer
than O. Given a certain exploration area, participants walked 1.06 times longer in the direction parallel
to the virtual object than in the direction perpendicular to the virtual object during the exploration
phase.
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Figure 4: Exploration time (tXP) as a function of (a) the condition and (b) virtual objects, and (c)
comparison of the normalized exploration path lengths in the direction of the virtual object (P ) and in
the perpendicular direction (O). On each box, the central mark is the median, the edges of the box are the
25th and 75th percentiles, the whiskers extend to the most extreme data points (outliers not considered).
Points are drawn as outliers if they are greater than q3 + 1.5(q3 − q1) or less than than q1 − 1.5(q3 − q1),
where q1 and q3 are the 25th and 75th percentiles, respectively. Notches denote comparison intervals. Two
medians are signi�cantly di�erent at the 5% signi�cance level if their intervals do not overlap. Interval
endpoints are the extremes of the notches.

3.3 Reporting phase

In this section, the in�uence of the rendered distance dr and of the rendering condition (A,V,AV)
on the perceived distances dp is analysed for each starting position. Means and standard deviations of
perceived distances for participants starting from Position 1 are shown in Fig. 5(a) and for participants
starting from Position 2 in Fig. 5(b).

1 2 3 4 5 6
1

1.5

2

2.5

3

3.5

4

4.5

5

A

B

C

D

E

Rendered distance dr (m)

P
er
ce
iv
ed

d
is
ta
n
ce

d
p
(m

)

 

 

Audio
Visual
Audio−visual
Identity
AV setup

(a) Position 1

1 2 3 4 5 6
1

1.5

2

2.5

3

3.5

4

4.5

5

A
B

C

D

E

Rendered distance dr (m)

P
er
ce
iv
ed

d
is
ta
n
ce

d
p
(m

)

 

 

Audio
Visual
Audio−visual
Identity
AV setup

(b) Position 2

Figure 5: Mean and standard deviation of perceived distances dp as a function of rendered distance dr
for each rendering condition and each starting position. Vertical lines represent one standard deviation.

For Position 1, the perceived distances dp were analysed using a repeated-measures two-way ANOVA
with rendered distance dr and rendering condition (A,V,AV) as factors. Rendered distance dr is signi�cant
at the 5% level with F (4, 64) = 52.93 and p < 10−6. Rendering condition is not signi�cant at the 5%
level as F (2, 64) = 2.23 and p < 0.12. No interaction between rendered distance dr and condition has
been found since F (8, 64) = 0.95 and p < 0.47. As post-hoc tests, a series of Bonferroni corrected t-tests
have been performed and all the rendered distance pairs have been found to be signi�cantly di�erent.

For Position 2, the perceived distances dp were analysed similarly. Rendered distance dr is signi�cant
at the 5% level with F (4, 64) = 48.79 and p < 10−6. Rendering condition is not signi�cant at the 5%
level as F (2, 64) = 1.84 and p < 0.17. A signi�cant interaction is found between rendered distance dr and
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condition as F (8, 64) = 8.95 and p < 10−6. The virtual object A is perceived signi�cantly farther in the
A condition than in the V or AV conditions. The virtual object E is perceived signi�cantly closer in the A
condition than in the V or AV conditions. As post-hoc tests, a series of Bonferroni corrected t-tests have
been performed and all the rendered distance combinations have been found to be signi�cantly di�erent.

For both starting positions, the di�erent distances dr are thus correctly ordered and well recognized by
participants, independently of the rendering condition. Interestingly, participants perceived each virtual
object at a modality-independent distance when using the audio modality, the visual modality, or the
combination of both. The audio-visual spatial rendering provided by the SMART-I2 is, in this sense,
fully coherent in distance. By comparing Figs. 5(a) and 5(b), it can furthemore be seen that the starting
position has a direct impact on distance perception. This aspect of the results will be discussed in details
in Sec. 4.

A very small in�uence of the presentation order has been observed: participants presented with the
audio condition in third position made slightly larger errors than participants presented with the audio
condition in the �rst position. However, this e�ect remains small. The possibility of any learning e�ect
that could have occurred during the 60 trials of the experiment has been checked by comparing groups of
10 successive trials. No signi�cant di�erences between the relative errors made by the participants among
the di�erent groups of trials have been found. Thus, no learning e�ect appeared during the experiment.

3.4 Post-session questionnaires

At the end of each session (A, V, and AV), participants rated 7 statements on a 7-point Likert scale
with two anchors (see Tab. 2). As di�erences between the di�erent sessions are to be analyzed for each
statement, any bias due to participants has been removed using the following procedure: the rating Ain(k)
of the nth participant for the kth statements during session i (i = A,V,AV) has been transformed into
Ain(k) = Ain(k)−Mn(k), withMn(k) the mean over the three sessions of the ratings of the nth participant
for the kth statements. The presence-score has been built as the mean of the unbiased ratings Ain(k).
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Figure 6: Presence-score for each of the rendering condition. For explanation regarding boxplots, see the
caption of Fig. 4.

Results shown in Fig. 6 reveal that the scores of the A condition are signi�cantly lower than the scores
of the others conditions (V and AV) and that the V and AV conditions are not signi�cantly di�erent.
Thus, presence is rated signi�cantly lower in the A condition than in the V and AV ones. Moreover,
presence is rated statistically equivalently for the V and AV rendering conditions.
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4 In�uence of the presence of the AV VR-system on the perceived

virtual space

4.1 Potential con�ictual audio-visual spatial cues

Like the vast majority of virtual and augmented reality systems, the SMART-I2 system is not perfect
and potentially provides con�icting audio-visual spatial cues. As speci�ed in Sec. 2.3, no room e�ect
was synthesized in order to recreate acoustical conditions that were as close as possible to open free-
�eld conditions. Nevertheless, even though the experimental room had been acoustically treated, there
were still traces of a room e�ect, with a mid-frequency mean reverberation time T60(500 Hz to 1 kHz)
of 0.45 s. The ratio of the energies of the direct and reverberated components of the sound, which is an
audio distance cue [9], speci�es to the participant a distance corresponding to the physical setup rather
than the distance to the virtual object.

The technology used to provide the 3D visual rendering is not perfect either. To estimate the distance
of the virtual visual object, participants use two binocular cues. Focus cues (accommodation and blur
in the retinal image) specify the distance at which the screen, instead of the virtual object, is seen.
Vergence cues correspond to the distance at which the optical axes of the two eyes cross one another,
i.e. the virtual object. In a 3D visual rendering setup based on large immersive screens, focus cues are
then almost always in con�ict with vergence cues [21] which can a�ect depth perception [40, 20]. Finally,
shadows projected on the virtual ground �oor were visible only for the virtual objects D and E but not
for the nearer ones A, B, and C. For close distances, the lack of shadow is thus also in con�ict with other
spatial cues.

4.2 Anchor hypothesis

The possible presence of con�ictual audio-visual cues can potentially have an e�ect on distance per-
ception. If participants are experiencing audio-visual cues specifying two di�erent distances, it is expected
that the virtual object will be perceived somewhere between these two distances. Furthermore, the only
distance at which all cues are in agreement corresponds to the physical location of the AV VR-system.
Distance perception is thus expected to be correct at that position. To test for the possible existence
of such an e�ect, two starting positions (Position 1 and Position 2 ) i.e. two physical locations of the
AV VR-system, have been included in the experimental design (see Sec. 2.1). In the results presented
in Figs. 5(a) and 5(b), virtual objects rendered in front of the LaMAP (i.e. A and B) appear to be
pushed toward the LaMAP whereas virtual objects rendered behind the LaMAP (i.e. C, D, and E) seem
to be pulled toward it. Furthermore, the distance at which the perceived distance equals the rendered
distance corresponds roughly to the distance between the participants and the physical location of the
AV VR-system (i.e. DP1

s = 2.3 m for Position 1 and DP2
s = 3.3 m for Position 2 ). It is hypothesized

that, because some audio-visual cues specify the distance to the physical setup instead of the distance of
the virtual object, participants tend to bind their perceptual distance estimation to the actual rendering
system setup. In that sense, the AV VR-system thus physically anchors the virtual world to the real
world. At this point, it must be noted that two distances must be considered during the experiment: the
distance that must be evaluated by the participant, which is de�ned explicitly as the distance between
the object and the initial position (P1 or P2) of the participant, and the distance between the object
and the participant, which is varying during the exploration phase. The latter is used by the participant
to evaluate the former. It is also hypothesized that anchoring, if such an e�ect exists, pertains to the
average of this latter distance, which is experienced by the participant during the exploration phase.

Following [42] for the audio modality and [41] for the visual modality, it is assumed that a compressive
model in the form dp = k × (dr)

a relates the perceived distance dp to the rendered distance dr. The
coe�cient a denotes the global perceptual compression and is not expected to be in�uenced by the starting
or exploring position of the participants. However, the value of amay di�er between the di�erent rendering
conditions. If participants are located at a distance Da from the rendering device, the anchor hypothesis
predicts the value of k, and the relation between dp and dr should be:

dp = Da ×
(
dr
Da

)a
(2)

10



The anchor hypothesis thus predicts for each starting position that:

Position 1 → DP1
a = DP1

s + < lP
XP

> with DP1
s = 2.3 m, and aP1 = a (3)

Position 2 → DP2
a = DP2

s + < lP
XP

> with DP2
s = 3.3 m, and aP2 = a (4)

where < lP
XP

> is the average of the algebraic walking displacement of the participant in the direction
of the source during the exploration phase. If no correlation is observed between the couple of crossing
distances between curves in Fig. 5 (for Position 1 and Position 2) and the physical distances to the screen,
the anchor hypothesis does not stand.

4.3 Experimental evidence of the anchor e�ect

For the two starting positions that have been tested, the values of Da and a for each participant
and for each rendering condition have been estimated by �tting the compressive model of Eq. (2) to
the collected data. Among all �ts, a mean R2 = 75.3 % is obtained, highlighting the high quality of
the model. The estimated and predicted anchoring distances Da and the compression coe�cients a are
plotted versus the rendering condition (A, V, AV) and the starting position (Position 1, Position 2 ) in
Figs. 7.
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Figure 7: Anchoring distance Da and compression coe�cient a versus starting position (Position 1,
Position 2 ) and rendering condition (A, V, AV). For explanation regarding boxplots, see the caption of
Fig. 4.

From Fig. 7(a), it can be observed that the anchoring distances Da corresponding to each rendering
condition are not signi�cantly di�erent for a given starting position. Moreover, for all rendering conditions
the anchoring distances Da are signi�cantly larger for Position 2 than for Position 1. For the audio
condition, median values of DP1

a = 2.24 m and DP2
a = 2.91 m are obtained while Eqs. (3) and(4) predict

2.02 m and 2.90 m respectively, see Fig. 7(a). For the visual condition, median values of DP1
a = 1.96 m

and DP2
a = 2.73 m are obtained (vs. predicted values of 2.09 m and 2.99 m respectively). For the

audio-visual condition, median values of DP1
a = 2.09 m and DP2

a = 2.92 m are obtained (vs. predicted
values of 2.08 m and 2.96 m respectively). From Fig. 7(b), it can be observed that the compression
coe�cient a corresponding to each rendering condition is not signi�cantly di�erent for any rendering
condition between Position 1 and Position 2. A median value of a = 0.31 is obtained for the audio
condition, with a = 0.48 for the visual condition, and a = 0.45 for the audio-visual condition.

The anchor hypothesis predicts, according to Eqs. 3 and 4, that the anchoring distance Da should
be at the positions indicated by the black dots in Fig. 7(a). The quantitative agreement between these
predictions and the experimental anchoring distances is excellent, speci�cally for the AV condition. The
anchor hypothesis furthermore predicts that the compression coe�cient a should not be di�erent between
Position 1 and Position 2. This is e�ectively the case, as shown by Fig. 7(b). This experimental evidence
thus argues in favor of the anchor hypothesis proposed in Sec. 4.2.
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(a) Visual modality (b) Audio modality

Figure 8: Comparison of results obtained for visual and audio modalities with some results from the
literature. For the visual modality, [24] studied, using triangulation, egocentric distance perception in
an open grassy �eld, in the real world and in a virtual world rendered by LSID. For the audio modality,
[42] proposed a psychophysical curve relating perceived distance to real distance from a review covering
84 experiments. The shadowed zone denotes the standard deviation associated with the results from the
84 experiments.

5 General discussion

5.1 Perceived distance in visual large screens immersive displays (LSID)

[24] have studied, using triangulation, visual egocentric distance perception in an open grassy �eld,
in both the real world and rendered via LSID in a virtual world. Their results can thus be directly
compared to the results obtained here for the visual modality. The main di�erences in protocol between
the two experiments is that during the presentation phase, participants were static and at 1.22 m from
the screen in [24] whereas they were allowed to move in the exploration area and at 2.3 m or 3.3 m from
the screen in the present experiment, see Fig. 3(a). Results for the visual modality and the results of [24]
obtained in the real and virtual worlds are plotted in Fig. 8(a). From this �gure, it can be seen that for
Position 1, the results of the present experiment closely follow the real world results of [24] for dr < 3 m
and tend toward those for the virtual world when dr > 3 m. For Position 2, the results of the present
experiment closely follow real world results of [24] up to dr = 4.5 m, before decreasing slightly. It can
thus be concluded that moving during the presentation phase may have provided participants with a
better visual distance perception for close distances. One can also notice that in the virtual world results
taken from [24] the anchoring distance Da (estimated here as the distance for which dr = dp) is around
1.4 m, and is close to 1.22 m, the distance between the participants and the screen. This also constitutes
additional experimental evidence arguing in favor of the anchor hypothesis proposed in Sec. 4.2.

5.2 Perceived distance in audio VR-systems based on holophonic sound ren-
dering

As discussed in Sec. 4.2, a compressive curve in the form of dp = k(dr)
a has been shown to be a good

model for the psychophysical function that relates estimates of perceived distance to physical source
distance for the audio modality [42]. A review among 84 experiments is presented in [42] with a mean
value of a = 0.54 obtained for the compression coe�cient when �tting a compressive model to all the
available data. It has also been observed that experimental protocols [26] (verbal report, perceptually
directed action ...) and listening conditions [38] (static or moving) have very little in�uence on the
obtained values of a.

Results from Sec. 3.2 for the audio condition are compared to this compressive model in Fig. 8(b). By
�tting such a model to the perceived audio distances collected for Position 1, values of a = 0.41±0.03 and
k = 1.62 ± 0.09 are found, with R2 = 98% of the variance observed in the experimental data explained
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by the compressive model. The �t for Position 2 gives values of a = 0.29 ± 0.07 and k = 2.13 ± 0.31,
with R2 = 84%. The model dp = k(dr)

a thus �ts very well to the experimental data for both starting
positions. The perception of auditory distance seems to be slightly more compressed in the virtual
world than predicted in the real world using the average compressive model. However, a more rigorous
experimental protocol, which compares directly real world and virtual world distance perception using
the same distances and reporting method (as done in [23] for example), is needed to assess this point.
It can nevertheless be concluded that WFS is able to synthesise sound-�elds which are perceptually
meaningful in terms of distance for moving participants and static virtual sources placed in the action
space, apparently exhibiting slightly more compression than in the real world.

5.3 Utility of dynamic distance cues

It is important to notice that, as shown in Sec. 3.2, all of the participants spontaneously walked
during the exploration phase and that the exploration durations tXP were di�erent among the di�erent
modalities, with tXP (A) > tXP (AV ) > tXP (V ). Participants thus attempted to gain information from
the AV dynamic cues and seemed to proceed di�erently depending on the available modality. Moreover,
they walked slightly more in the direction parallel to the virtual object than in the direction perpendicular
to the virtual object during the presentation phase. This highlights the importance of dynamic cues in
virtual audio-visual environments and provides some information concerning how perceptual cues may
be weighted.

5.4 Feeling of presence and visual distance underestimation

The major problem related to the observed presence feeling is that it is participant-dependent. For
some participants, presence was higher in the AV condition than in the V condition. For others, the
opposite was true. This is potentially a consequence of the chosen audio stimulus (low pass �ltered
white noise, see Sec. 2.3) which was reported as unpleasant by some participants, and thus may have
decreased their feeling of presence. This may also explain why no signi�cant di�erences were found for
the presence-score between the V condition and the AV conditions (see Fig. 6).

Furthermore, it has been suggested that because AV VR-systems provide a higher degree of presence
than visual-only VR-systems, they potentially lead to less visual distance underestimation [22]. The
correlation between the feeling of presence and visual distance underestimation is studied here. For
each participant, the presence variation ∆P induced by the addition of the spatialized audio stimuli
is calculated as the di�erence between the presence-score of that participant in the AV condition and
the presence-score of that participant in the V condition (see Sec. 3.4). Similarly, the linear visual
underestimation factor variation ∆α induced by the addition of the spatialized audio stimuli is calculated
as the di�erence between the linear underestimation factor of that participant in the AV condition and
the linear underestimation factor of that participant in the V condition. The linear underestimation
factor is computed as the linear slope of the psychophysical curve relating dp and dr. As a result ∆α and
∆P are not found to be correlated (correlation coe�cient of Γ = −0.12 and p < 0.45). Thus, this does
not allow one to conclude that a higher degree of presence leads to less visual distance underestimation
and illustrates the limited e�ciency of post-session questionnaires as a tool to measure �ne variations of
presence.

6 Conclusion

In this paper a study of audio, visual, and audio-visual egocentric distance perception by moving
participants in virtual environments is presented. Audio-visual rendering was provided by tracked passive
visual stereoscopy and acoustic wave �eld synthesis (WFS). For each rendering condition, the estimation
of perceived distances was based on a perceptually directed action using the method of indirect blind-
walking. Distances perceived in the virtual environment were accurately estimated or overestimated
for rendered distances closer than the audio-visual rendering system and underestimated for distances
farther. Interestingly, participants perceived each virtual object at a modality-independent distance
when using the audio modality, the visual modality, or the combination of both. Regarding the audio
modality, WFS was able to synthesize perceptually meaningful sound-�elds in terms of distance. Dynamic
audio-visual cues are used by participants when estimating the distance of virtual objects. Moving may
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have provided participants with a better visual distance perception of close distances than if they were
static. No correlation between the feeling of presence and visual distance underestimation has been found.
Finally, to explain the observed perceptual distance compression, it is proposed that, due to con�icting
distance cues, the audio-visual rendering system physically anchors the virtual world to the real world,
by attracting the virtual objects to it.
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