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APPROXIMATING CURVES ON REAL RATIONAL SURFACES

JÁNOS KOLLÁR AND FRÉDÉRIC MANGOLTE

1. Introduction

As a generalization of the Weierstrass approximation theorem, every C∞ map
to a rational variety S1 → X can be approximated, in the C∞-topology, by an
algebraic map RP1 → X , see [Bochnak-Kucharz99] and Definition 3. In particular,
any simple closed curve on a rational surface S can be approximated by a rational
curve on S. Note that the usual result is about maps of rational curves, so the
image may have some extra isolated points. For example, consider the classical
plane cubic curve f : (u, v) −→

(

v(u2 + v2), u(u2 + v2), v3
)

. Clearly f(RP1) is a

simple closed curve in RP2 but its Zariski closure, given by zy2 − x2(x − z) = 0,
has an extra isolated real point at (0, 0, 1). If we drop this point by smoothing, the
curve becomes smooth elliptic. If we blow-up the point, the topology of the real
surface changes.

In this note we get rid of these extra points, using the methods introduced in
[Kollár-Mangolte09].

Theorem 1. Let S be the underlying topological surface of the real points of a
nonsingular rational surface and let L ⊂ S be a simple, connected, closed curve.

Then L can be approximated by a nonsingular rational curve in the C∞-topology.

Recall that a real rational surface is a real algebraic surface real birational to S2

and that by Comessatti’s theorem, such a surface is diffeomorphic to S
2, S1 × S

1 or
to a nonorientable surface. Thus we obtain the following.

Corollary 2. Let S be a closed topological surface and L ⊂ S a simple, connected,
closed curve. Assume that S is either nonorientable or of genus ≤ 1.

Then L ⊂ S is diffeomorphic to the embedding of a nonsingular rational curve
into a nonsingular rational surface.

Our proof actually goes the other way round. We prove Corollary 2 by direct
constructions and then use the main result of [Kollár-Mangolte09] to show that this
implies Theorem 1.

We also consider what kind of nonsingular rational curves can be used in these
approximations. In Theorems 10 and 11 we give necessary and sufficient topological
conditions for a simple, closed curve on a rational surface S to be approximable
by a smooth, rational curve whose (complex) self-intersection is −1 or 0. We call
these curves (−1)-curves resp. 0-curves.

Both of these have a geometric characterization. A real algebraic curve L ⊂ S
is a (−1)-curve iff there exists a birational morphism π : S → T such that π(L)
is a smooth point on T and π induces an isomorphism S \ L → T \ π(L). A real
algebraic curve L ⊂ S is a 0-curve iff there exists a morphism ρ : S → B to a curve
B such that L = ρ−1(x) for some real point x ∈ B. Thus, in the latter case, L is a
fiber of a conic bundle.
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Definition 3. Given a compact real algebraic variety X , we consider the set of
embeddings of nonsingular rational curves to be a subset of the space C∞(RP1, X)
of all C∞ maps of RP1 into X , endowed with the C∞-topology.

Let L →֒ X be an embedded circle on a real algebraic variety X , we say that
L can be approximated by a curve of a certain kind if every neighborhood of L in
C∞(RP1, X) contains a curve of that kind.

4 (Self-intersection number over C and over R). For many purposes, the behavior
of a real variety at its imaginary points is not relevant, but in this paper it is crucial
to consider that a smooth real curve is smooth at imaginary points as well.

Likewise, the intersection number of two real curves
(

C1 ·C2

)

is the intersection
number of the underlying complex curves. The intersection number of the real
parts

(

C1(R) · C2(R)
)

is only defined modulo 2 and
(

C1(R) · C2(R)
)

≡
(

C1 · C2

)

mod 2.

Note that the self-intersection number of a real algebraic curve is not invariant
by real algebraic isomorphism (here we understand real algebraic isomorphisms
as birational maps which are biregular at real points, see e.g. [Blanc-Mangolte11,
Introduction]). Indeed, let C ⊂ S be a real algebraic curve. By blowing-up a pair of
conjugated imaginary points, we get a real algebraic curve C′ ⊂ S′ real isomorphic
to C ⊂ S such that (C′ · C′) = (C · C)− 2.

In some cases we can also increase the complex self-intersection number. For
instance, let S be a Hirzebruch surface and C ⊂ S a section. Let S 99K S′ be a real
elementary transformation obtained by blowing up a pair of conjugated non real
points away from C. We get C′ ⊂ S′ and (C′ · C′) = (C · C) + 2. We can iterate
this to get higher and higher self-intersection numbers. This is, however, rare and
all cases where (C · C) can be made ≥ 0 are enumerated in (16).

Thus in general the interesting question is to approximate by smooth rational
curves whose complex self-intersection number (C2) is negative but as large as
possible.

Theorem 5. Let S be a real algebraic surface birational to S2 and L ⊂ S a simple,
connected, closed curve.

(1) If the topological genus of S is g(S) > 2 then L can be approximated by
smooth rational curves whose self intersection satisfies 0 ≤ −(C2) ≤ g − 2.

(2) If g(S) ≤ 2 then L can be approximated by smooth rational curves C such
that
(a) (C2) = 0 if S is orientable along L and
(b) (C2) = −1 if S is nonorientable along L.

(As there exists at least two irreconcilable definitions for the genus of a nonori-
entable surface in the literature, it is worthwhile to state our convention. The genus
of a compact connected topological surface of Euler number e := e(S) is given by
g = 2− e if S is nonorientable and by g = 2−e

2
if S is orientable.)

Recall that a simple closed curve L on a nonorientable closed surface S is an
essential circle if it is two-sided, nonseparating and S \ L is nonorientable, see e.g.
[Korkmaz02]. If S is orientable, L is essential if and only if it is not is contractible.
The motivation for this name is that Dehn twists along essential circles are prim-
itive elements in the modular group Mod(S). We get the following corollary to
Theorem 11.
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Corollary 6. Any essential circle on a rational surface S can be approximated by
a fiber of a conic bundle structure.

7 (Approximation of curves on other surfaces). When S is a non-rational surface,
we can ask for several possible analogs of Theorem 1.

On many surfaces there are no rational curves at all, thus the best one can hope
for is approximation by higher genus curves. Even for this, there are several well
known obstructions.

First of all, given a real algebraic variety X , a necessary condition for a smooth
curve C to admit an approximation by an algebraic curve is that its fundamental
class [C] belong to the group of algebraic cycles H1

alg(X,Z/2). Now this group is gen-

erally a proper subgroup of the cohomology group H1(X,Z/2). See [Borel-Haefliger61]
and [Bochnak-Coste-Roy98, § 12.4] for details.

The structure of these groups for various real algebraic surfaces of special type is
computed in [Mangolte94], [Mangolte97], [Mangolte-van Hamel98], [Mangolte00],
[Mangolte03]. These papers contain in particular the classification of totally al-
gebraic surfaces, that is surfaces such that H1

alg(S,Z/2) = H1(S,Z/2), among K3,
Enriques, bi-elliptic, and properly elliptic surfaces. In particular, if S is a nonori-
entable surface underlying an Enriques surface or a bi-elliptic surface, then there
are simple, connected, closed curves on S with no approximation by any algebraic
curve [Mangolte-van Hamel98, Theorem 1.1] and [Mangolte03, Theorem 0.1].

If S is orientable, there can be further obstructions involving H1(S,Z).
For instance, let S ⊂ RP3 be a very general K3 surface. By the Noether–

Lefschetz theorem, the Picard group of S(C) is generated by the hyperplane class.
If S is contained in R3 then the restriction of OP3(1) to S is trivial, thus only
contractible curves can be approximated by algebraic curves.

Note also that if S is a real K3 surface, then by [Mangolte97], there is a to-
tally algebraic real K3 surface real deformation equivalent to S (at least if S is a
non-maximal surface) thus in general there is no purely topological obstruction to
approximability for real K3 surfaces.

Another interesting class to study is surfaces that are geometrically rational but
not rational. These contain many rational curves, so approximation by smooth
rational curves could be possible. Any geometrically rational surface is totally
algebraic but Lemma 13 fails for these surfaces, at least if the number of connected
components is greater than 2; see [Blanc-Mangolte11].

Another obstruction arises from the genus formula. For example, let S be a
degree 2 Del Pezzo surface with Picard number ρ(S) = 1 and C ⊂ S a curve on
it. Then C ∼ −aKS for some positive integer a and so C(C + KS) = 2a(a − 1)
is divisible by 4. Thus the arithmetic genus pa(C) is odd hence every real rational
curve on S has an odd number of singular points on S(C). These can not all be
complex conjugate, thus there are no smooth rational curves on S at all.

It seems, however, that this type of parity obstruction for the genus does not
occur on any other geometrically rational surface. We hazard the conjecture that if
S is a geometrically rational surface that is not isomorphic to a degree 2 Del Pezzo
surface with Picard number 1, then every simple, connected, closed curve can be
approximated by smooth rational curves.

As another generalization, one can study such problems for singular rational
surfaces as in [Huisman-Mangolte10]. See also the series [Catanese-Mangolte08],
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[Catanese-Mangolte09] for the classification of geometrically rational surfaces with
Du Val singularities.

2. Embedded circles in surfaces

Let S be a smooth compact surface without boundary and L ⊂ S an embedded
circle, that is a simple connected closed curve. Let e(S) denote the Euler number
of S.

If S is nonorientable then g = 2 − e(S) ≥ 1 and we can choose g embedded
circles L1, . . . , Lg whose normal bundles give disjoint embedded Möbius bands and
such that L intersects each Li at most once and transversally. Then S is orientable
along L if and only if L intersects an even number of the Li.

We want to classify topologically the pair (S,L) when S is either nonorientable
or of genus ≤ 1. Let F := S \ L be the complement of L in S, F is a surface with
boundary such that e(F ) = e(S).

8 (NL|S non trivial: is L topologically a (−1)-curve on a rational surface?). Assume
that S is not orientable along L. In particular, S is a nonorientable surface. In this
case, F is connected and its boundary ∂F is connected. Cutting a Möbius band
along a non homotopically trivial simple closed curve give rise to a cylinder.

We can contract L to a point p to get a compact surface S′ of Euler characteristic
e(S′) = e(S) + 1. Thus S is the connected sum S′#RP2.

If S′ is a rational real algebraic surface and if S′ is orientable, then e(S′) ≥ 0
by Comessatti’s theorem [Comessatti14]. Hence F ∼ S′ \ {p} is a sphere with one
puncture or a torus with one puncture.

Conversely, if F is orientable and e(S′) < 0, which implies in particular that
g = 2− e(S) > 3 is odd, then L intersects each Li, 1 ≤ i ≤ g. Indeed, if F contains
one of the Li, then F contains a Möbius band, hence it is nonorientable.

In conclusion, if L ⊂ S is not topologically a (−1)-curve on a rational surface,
then L intersects each Li, 1 ≤ i ≤ g and g is odd, and g ≥ 5.

9 (NL|S trivial: is L topologically a fiber of a conic bundle?). Assume that S is
orientable along L, then ∂F has two connected components.

If F = S \ L is connected (then e(S) ≤ 0), assume that F is not a cylinder.
If F is disconnected, assume that L is not contractible. With these assumptions,
if L is isotopic to a fiber of a conic bundle, then the connected components of F
are nonorientable. Indeed, every real conic bundle is obtained from S2 or from
an S1-bundle over S1 by blowing up points. Thus, if the complement of a fiber is
orientable, then there are no real singular fibers.

Conversely, assume that L is not topologically a fiber of a conic bundle. There
are two possibilities:

(1) F is a connected orientable surface. Then as above, L intersects each Li,
1 ≤ i ≤ g and g is even, and g ≥ 4.

(2) F = F1 ⊔ F2, where F1 is connected orientable of nonzero genus and F2

is connected nonorientable. We get that L is a non homotopically trivial
simple closed curve which is homologically trivial. Furthermore, g ≥ 3.
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3. Real rational models of pairs

In this section, we prove theorems 1 and 5. Furthermore, we prove that the
necessary topological conditions for an embedded curve to be approximated by a
(−1)-curve (resp. by a fiber of a conic bundle structure) are in fact sufficient.

Theorem 10. Let S be a real algebraic surface birational to S2 and L ⊂ S a smooth
connected curve. Then the following are equivalent

(1) L is homotopic to a (−1)-curve.
(2) L can be approximated by a (−1)-curve.
(3) S is not orientable along L and one of the following 3 possibilities holds

(a) S \ L is a sphere with 1 puncture
(b) S \ L is a torus with 1 puncture, or
(c) S \ L is nonorientable.

Theorem 11. Let S be a real algebraic surface birational to S2 and L ⊂ S a smooth
connected curve. Then the following are equivalent

(1) L is homotopic to a fiber of a conic bundle structure.
(2) L can be approximated by a fiber of a conic bundle structure.
(3) S is orientable along L and one of the following 3 possibilities holds

(a) L is contractible (it bounds a disc),
(b) S \ L is a cylinder, or
(c) every connected component of S \ L is nonorientable.

Corollary 12. Let S be a real algebraic surface birational to S2, and L ⊂ S be a
smooth connected curve.

(1) If e(S) ≡ 0 mod 2, then L can be approximated by a (−1)-curve if and
only if S is not orientable along L.

(2) If e(S) ≡ 1 mod 2, then L can be approximated by a fiber of a conic bundle
structure if and only if S is orientable along L and no connected component
of S \ L is orientable of positive genus.

(3) If S is diffeomorphic to one the following surfaces: S2, S1 × S1, RP2,
RP2#RP2, then L can be approximated by a fiber of a conic bundle or
a (−1)-curve according to the orientability of S along L.

Thanks to the following lemma, the proofs of theorems 1, 10, 11 and 5 are
reduced to the construction of an algebraic model for each possible topological pair
whose list is given in Section 2.

Lemma 13. Let L ⊂ S, L′ ⊂ S′ be embedded algebraic curves in real algebraic
surfaces and Φ: (L′ ⊂ S′) → (L ⊂ S) be a diffeomorphism.

If S and S′ are rational, and if L′ is the real part of a rational curve whose
self-intersection is m, then L can be approximated in the C∞-topology by rational
curves whose self-intersection is m.

Proof. The main result of [Biswas-Huisman07, Theorem 1.2] asserts that diffeo-
morphic rational surfaces are real isomorphic (see also [Huisman-Mangolte09] for
a more direct proof). Let Ψ: S′ → S be such a real algebraic isomorphism. By
[Kollár-Mangolte09], the self-diffeomorphism Φ ◦ Ψ−1 ∈ Diff(S) can be approxi-
mated in the C∞-topology by an automorphism η ∈ Aut(S).

Then Φ′ = η◦Ψ is an algebraic approximation of Φ which is a C∞-approximation
along L. Hence Φ′(L′) is the required C∞-approximation of L.
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�

14 (Proof of theorems 10 and 11). In both theorems the implication (2) ⇒ (1) is
clear and (1) ⇒ (3) is proved in Section 2.

In order to prove (3) ⇒ (2) we construct some algebraic models.
Up to diffeomorphism, all possible pairs L ⊂ S allowed by (10.3) are the follow-

ing:

(1) S = Bp1,...,pg
S2 and L = E1, the exceptional curve over p1.

(2) S = Bp(P
1 × P1) and L = E, the exceptional curve over p.

Up to diffeomorphism, all possible pairs
allowed by (11.3) are the following:

(3) (S \ L is nonconnected) For g even and 0 ≤ b ≤ g/2, blow up b points on
the sphere (x2 + y2 + z2 = 1) with negative z-coordinate and g − b points
with positive z-coordinate to get S. Let π : S → P1 be projection to the
z-axis and L = S ∩ (z = 0).

(4) (S \ L is connected) For g ≥ 2, blow up g − 2 points on the sphere (x2 +
y2 + z2 = 1) which do not lie on (z = 0) and also blow up twice (−1, 0, 0)
to get S. Let π : S → P1 be projection from the line (x + 1 = z = 0). Let
L be the birational transform of S2 ∩ (z = 0).

(5) S = P
1 × P

1, π the first projection and L any fiber.

Take now (L ⊂ S) as in (11.3) or (10.3) and choose a model (L′ ⊂ S′) as in
(14.1–5) and a diffeomorphism Φ: (L′ ⊂ S′) → (L ⊂ S). The conclusion follows
from Lemma 13.

�

15 (Proof of theorems 1 and 5). Let R be a nonorientable topological surface
of genus g. Up to diffeomorphism, the remaining topological pairs to prove the
theorems are the following:

(6) Let again S2 := (x2 + y2 + z2 = 1) ⊂ R3 be the usual sphere and S =
Bp1,...,pg

S2 be the real algebraic model of R obtained from S2 by blowing-
up g points. Let L = S∩(z = 0) be the birational transform of a great circle.
Let g′ be any natural integer such that 0 ≤ g′ ≤ g, choose g′ points on the
great circle C := S

2 ∩ (z = 0) and g − g′ points in S
2 \ C. By blowing-up

the g points we get a nonsingular rational curve such that L · L = 2− g′.
If 0 < g′, then the surface S \ L is connected. If g′ < g or if g ≤ 2, we

use the models (1)–(5) to get that L can be approximated by a (−1)-curve
or the fiber of a conic bundle depending on the nontriviality of its normal
bundle. If g′ = g > 2, then L has self-intersections 2 − g. By Lemma 13,
we get the conclusion of theorems 1 and 5 for all topological pairs up to
one kind.

(7) Let m be a positive integer and let L1 be a high odd degree plane rational
curve with no real singular point. Then wiggle L1 to get L2 intersecting
it 2m+ 1 times transversally in P2(R). We have L1, L2 braid around each
other. By Brusotti’s theorem, we can smooth one of the real nodes away
such that we have just one irreducible curve that goes around twice and
self-intersects 2m times. This resulting nodal rational curve has 2m real
nodes p1, . . . , p2m. After resolution of these real nodes, the birational trans-
form L of the nodal curve cut the surface Bp1,...,p2m

RP2 in two connected
components: a Möbius band and an orientable surface of genus m.
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Blow-up g−2m−1 points on the Möbius band, we get the real algebraic
model S = Bp1,...,pg−1

RP2 of R and S \ L = F1 ⊔ F2, where F1 is con-
nected orientable of genus m and F2 is connected nonorientable. Thanks
to Lemma 13, this ends the proof of Theorem 1.

To see that Theorem 5 is true also for this kind of topological pairs,
blow-up pairs of conjugated imaginary points to provide that the birational
transform L of C is a 0-curve on S.

�

4. Minimal pairs

The previous results suggest that it is of interest to understand pairs (S,C)
where S is a nonsingular projective surface and C a nonsingular curve. Here we
are mainly interested in the real case, but the problem makes sense over any field.
Given a pair (S,C) and a point p ∈ S by blowing up we get a new pair (BpS,C

′)
where C′ ⊂ BpS is the birational transform of C.

As in the theory of smooth surfaces, a pair (S,C) is called classically minimal
if it can not be obtained from another pair by blowing-up. In the real case this
means that

(1) there is no real (−1)-curve E whose intersection number with C is ≤ 1 and
(2) there is no conjugate pair of disjoint (−1)-curves E,E′ such that (E ·C) =

(E′ · C) ≤ 1.

(The terminology “classically minimal” was chosen to distinguish it from being
“minimal” in the sense of Mori’s program; see [Kollár-Mori98] for an introduction.
The two are closely related; the differences are discussed below.)

If the Kodaira dimension of S is ≥ 0 then the study of pairs (S,C) is essentially
equivalent to the study of the minimal model Smin of S and of the singularities of
the image of C on Smin.

By contrast, when S is a geometrically rational surface and C is a smooth rational
curve, the question of understanding pairs (S,C) is especially interesting and quite
difficult. We have been unable to make much progress on it, thus this section is
devoted to some preliminary remarks and examples.

16 (Basic numerical restrictions). Let S be a smooth surface over a field k and
C ⊂ S a smooth, rational curve.

Then (C · (KS +C)) = −2, thus KS +C is not nef. Hence there is a (KS +C)-
extremal contraction π : S → T . There are 3 possibilities.

(Del Pezzo) If dimT = 0 then S has Picard number 1, thus −KS is ample, hence
S is a Del Pezzo surface of Picard number 1. It contains a smooth, rational curve,
thus S is either P2 or a quadric. (This holds over any field.)

(Conic bundle) If dimT = 1 then S has Picard number 2 and the fibers of π are
conics. C can be either a fiber or a section. In the latter case π is a P1-bundle.

(Birational contraction) If dimT = 2 then π is birational and it contracts a
curve E ⊂ S to a point. If E 6= C then E is a conjugate set of disjoint (−1)-curves
E = ∪iEi. Since ((KS + C) · Ei) < 0, the Ei are disjoint from C and so (S,C) is
not classically minimal.

The main difference between the two notions of minimality arises when E = C.
This is allowed by Mori’s program but not by our notion of classically minimal.
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Note that (C2) < 0 since C is contracted. One can try to classify these cases by
considering the different values of (C2) separately.

From now on we concentrate on the case when S is geometrically rational.

17 (Case (C2) = −1). Since S is a geometrically rational surface, it can be obtained
as a sequence of blow-ups

S = Sm → Sm−1 → · · · → S0

where S0 is either a Del Pezzo surface of Picard number 1 or a minimal conic bundle.
Since (S,C) is classically minimal, S does not contain disjoint (−1)-curves, hence
each Si+1 → Si is obtained by blowing up a point on the exceptional curve of
Si → Si−1.

The latter condition is not sufficient to ensure that S be classically minimal, but
it is easy to write down series of examples.

For example, start with S0 = P2. a line L ⊂ S0 and a point p ∈ L. Blow up p
repeatedly to obtain Sm with Cm ⊂ Sm the last exceptional curve. We claim that
Cm is the only (−1)-curve on Sm for m ≥ 3, thus (Sm, Cm) is classically minimal.

We can fix coordinates on S0 such that L = (y = 0) and p = (0 : 0 : 1). Then the
(C∗)2-action (x : y : z) 7→ (λx : µy : z) lifts to Sm, hence the only possible curves
with negative self-intersection on Sm are the preimages of the coordinate axes and
the exceptional curves of Sm → S0. These are easy to compute explicitly. Their
dual graph is a cycle of rational curves

(−2) · · · · · · (−2)

(−1) (1−m) (1) (0)

where (r) denotes a curve of self-intersection r, each curve intersects only the two
neighbors connected to it by a solid line and there are m − 1 curves with self-
intersection −2 in the top row. Thus Cm is the only (−1)-curve for m ≥ 3.

There are probably many more series of such surfaces.

18 (Case (C2) = −2). To our surprise this case behaves quite differently and a
complete enumeration is possible.

Lemma 19. Let S be a smooth, geometrically rational surface and C ⊂ S a smooth,
rational curve. Assume that the pair (S,C) is classically minimal and (C2) = −2.

Then there is a degree 2 Del Pezzo surface S1 with Picard number 1 and a rational
curve C1 ∈ | −KS1

| with a unique singular point p1 ∈ C1 such that S = Bp1
S1 and

C is the birational transform of C1. In particular, S is not rational.

Proof. Let π : S → T be the contraction of C. Then T has an ordinary node q ∈ T .
The special feature of the (C2) = −2 case is that KS ∼ π∗KT , thus KT is not nef.
So there is an extremal contraction τ : T → T1.

There are 3 possibilities for τ .
Case 1: τ is birational with exceptional curve E ⊂ T .
If q does not lie on E then E gives a (−1)-curve on S which is disjoint from C,

a contradiction. If q lies on E then E is irreducible and T1 is smooth. Indeed, on
a surface with DuVal singularities, every extremal contraction results in a smooth
point, see [Morrison85].
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Thus the composite τ ◦ π : S → T1 consist of two smooth blow ups. This again
shows that (S,C) is not classically minimal.

Case 2: τ : T → T1 is a conic bundle. Then τ ◦ π : S → T1 is a nonminimal conic
bundle hence it contains a (−1)-curve E contained in a fiber. C is also contained
in a fiber thus (E ·C) ≤ 1 since any 2 irreducible curves in a fiber of a conic bundle
intersect in at most 1 point.

Case 3: T is a Del Pezzo surface of Picard number 1.
In this case S itself is a weak Del Pezzo surface (that is −KS is nef) of Picard

number 2. Thus S has another extremal ray giving a contraction ρ : S → S1 and
S1 is a Del Pezzo surface of Picard number 1.

Moreover, since | −KS | has dimension ≥ 1 and (C ·KS) = 0, we see that there
is a divisor D ∈ | −KS| whose support contains C.

Thus C1 := ρ(C) is singular and is contained in a member of |−KS1
|. A general

member of | − KS1
| is smooth, elliptic; special members are either irreducible,

rational with a single node or cusp or reducible with smooth rational components.
Thus C1 is a member of | −KS1

| and has a node or cusp at a point p1.
From −2 = (C2) = (C2

1 ), we obtain that S1 is a smooth Del Pezzo surface of
degree 2. We obtain S by blowing up the singular point of C1.

Finally note that a Del Pezzo surface of degree 2 and of Picard number 1 is never
rational over the ground field k by the Segre–Manin theorem; see [Segre51, Manin66]
or [Kollár-Smith-Corti04, Chap.2] for an introduction to these results. �

20 (Case (C2) = −3). We know very little about these surfaces.
Starting with a degree 1 Del Pezzo surface S1 in Lemma 19 gives classically

minimal examples with (C2) = −3. We do not have other examples.

21 (Case (C2) ≤ −4). As we see below, there are 3 types of such pairs. Two of
them fit into the earlier patterns. The most interesting case is (22.1) but we know
very little about it.

Lemma 22. Let S be a smooth, projective surface and C ⊂ S a smooth rational
curve such that (C2) ≤ −4 and (S,C) is classically minimal. Let π : S → T be the
contraction of C. Then one of the following holds.

(1) KT is nef.
(2) S is a minimal ruled surface and C ⊂ S is the (unique) negative section.
(3) S is a minimal conic bundle and C ⊂ S is the (unique) negative double

section.

Proof. Set m := −(C2). By direct computation

π∗KT ∼Q KS +
(

1− 2
m

)

C.

Thus if KT is not nef then KS +
(

1− 2
m

)

C is also not nef and there is a KS +
(

1− 2
m

)

C-extremal contraction τ : S → S1.

Since C is not an extremal ray for KS +
(

1 − 2
m

)

C, τ is also a KS-extremal
contraction.

S can not be a Del Pezzo surface with Picard number 1 since every curve on S
would have ≥ 0 self-intersection.

If τ : S → S1 is a conic bundle then C is either a section, so τ : S → S1 is a
P1-bundle and C ⊂ S is the unique negative section, or C is a double section.

Since the Picard number of S is 2, its cone of curves has 2 extremal rays. The
fibers of the conic bundle generate one of the extremal rays and any curve with
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negative self-intersection has to generate the other. In particular, such a curve is
unique.

We are left with the case when τ : S → S1 is birational and contracts a conjugate
set of (−1)-curves Ei. By assumption

(KS ·Ei) = 1 and
(

(

KS +
(

1− 2
m

)

C
)

· Ei

)

< 0.

By assumption m ≥ 4, thus 1− 2
m

≥ 1
2
and these imply that (C · Ei) ≤ 1. This

is impossible if (S,C) is classically minimal. �

In case (22.1) the surface T is rational with a unique singular point but KT is
nef. Uniqueness of the minimal models (in the sense of Mori’s program) of a pair
(S,C) implies that in case (22.1), the classically minimal pair (S,C) is unique up
to isomorphism. We can not say much more about these cases, but here is a series
of examples where S is rational.

Example 23. Let C̄d ⊂ P2 be a rational curve of degree d whose singularities are
nodes. Thus we have

(

d−1
2

)

nodes forming a set Nd. Let pd : Sd := BdP
2 → P2

denote the blow-up of all the nodes with exceptional curves Ed and Cd ⊂ Sd the
birational transform of C̄d. We compute that

(

C2
d

)

= d2 − 4
(

d−1
2

)

and

KSd
+ 3

d
Cd −

(

1− 6
d

)

Ed ∼Q p∗d
(

KP2 + 3
d
C̄d

)

∼Q 0.

If d ≥ 6 then
(

C2
d

)

< 0; let π : Sd → Td be its contraction. Then

KTd
∼Q

(

1− 6
d

)

π∗Ed

is trivial for d = 6 and ample for d ≥ 7.
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gendrée par des cycles algébriques, C. R. Acad. Sci. Paris Sér. I Math. 318 (1994),
343–346.
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