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Abstract 

We perform accurate tight binding simulations to design type-II short-period CdSe/ZnTe 
superlattices suited for photovoltaic applications. Absorption calculations demonstrate a very 
good agreement with optical results with threshold strongly depending on the chemical 
species near interfaces. 
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Background 

A photovoltaic cell is typically built onto three parts: a light absorber surrounded by an n-
type and a p-type layer to separate and collect the photo-generated charge carriers (Figure 1). 
In an ideal case, the n-type layer conduction band shall be aligned with the conduction band 
of the absorber while forming a barrier for holes in the valence band. Respectively, the p-type 
layer valence band shall be aligned with the valence band of the absorber while forming a 
barrier for electrons in the conduction band. Such a three-material system does not exist for 
semiconductors, and we propose here to mimic it by using a type-II short-period superlattice 
(SL) made of two materials with a type-II band alignment. The material with the lowest 
conduction band will then be used as the n-doped contact and the other one as the p-doped 
contact. Type-II material systems built with III-V semiconductors are already available and 
mainly known for mid-infrared detectors (for a review see [1]). CdSe and ZnTe bulks have 
been chosen to this scope because they are almost lattice-matched and exhibit a type-II 
interface. Furthermore, this SL first optical transition value can be designed to emphasize the 
solar spectrum absorption. In this letter, we propose atomistic modeling of the optical 
absorption of type-II CdSe/ZnTe superlattices. The ZnTe and CdSe layer thicknesses are 
optimized to maximize absorption in the solar spectrum and threshold is studied as function 
of the interface-related properties. 

Figure 1 Schematic band alignment of a p-i-n structure for photovoltaic application 

Methods 

Tight-binding simulation of bulk materials 

We consider the extended-basis sp3d5s* tight-binding (TB) model which has proved to 
provide a band structure description with a sub-milli -electron volt precision throughout the 
Brillouin zone of binary III-V semiconductors [2] including quantum heterostructures [3] and 
surfaces [4]. We model CdSe, CdTe, ZnSe, and ZnTe in a cubic phase by fitting both the 
experimental band parameters and the first-principle electronic structures in the GW 
approximation. Strain effects are taken into account in the same way of smaller TB models 
using a recent generalization of Harrison’s d2 law for hopping integrals known to be reliable 
for strained III-V quantum well structures [5]. The valence band offset (VBO) between the 
material constituents are taken from our own experimental measurements for the CdSe/ZnTe 
interface [6] and from ab initio modeling for the interfacial bonds [7]. Finally, the optical 
dipole matrix elements are derived from the TB Hamiltonian [8]. 



Superlattice absorption calculation 

We have performed TB calculations to design the most suited type-II CdTe/ZnSe [001] 
configuration which fully maximizes the absorption in the solar spectrum. Associated SL 
band structures are found very sensitive to the VBO between CdTe and ZnSe. As knowledge 
of this VBO is scanty, we have performed photoluminescence measurements on a simple 
ZnTe/CdSe interface as a function of incident power. The extracted value is of 0.74 ± 0.02 
eV, which is slightly different from the experimental result of 0.64 eV [9], but in agreement 
with the ab initio calculations [7]. We have used a mesh of 1,200 points to sample the 
reduced Brillouin zone near the ī-point. The discrete transitions are dressed with a Gaussian 
broadening of 0.005 eV to get smooth spectral functions. As CdTe and ZnSe do not share any 
common atom, three configurations have been simulated: CdTe-like or ZnSe-like 
terminations (symmetric D2d SL) and the CdSe/ZnTe interfaces (non-symmetric C2v SL). 

Results and discussion 

We first test our TB model by calculating the electronic properties of non-symmetric 
(CdSe)7/(ZnTe)7 superlattices and found a strong in-plane anisotropy of the optical spectrum. 
The energy subbands are calculated at the ī-point and labeled according to their dominant 
bulk-state component: conduction (e), heavy-hole (hh), and light-hole (lh). 

Table 1 reports on the dipole matrix elements squared (EP in electron volt) between the first 
ī-like valence and conduction band states for transverse electric polarization in the 
CdSe/ZnTe superlattices. In a non-symmetric C2v configuration, interfaces are characterized 
by forward and backward bonds lying in the (110) (or x-) and (−110) (or y-)planes 
respectively, giving the definition of optical axes here considered: [110] (x), [−110] (y), and 
[001] (z). In addition the growth sequence in the simulation is as follows: Se-Cd=Se-
Cd=Se….Cd=Te-Zn=Te…where ‘-’ and ‘=’ indicate chemical bonds in the x- and y-planes, 
respectively. For the associated superlattice, we found for the fundamental transition a 

polarization degree 
PxPy

PxPy

EE

EE
 of 17% (canceled for symmetric SL in agreement with point 

group D2d), and this is consistent with photoluminescence measurements [10]. As seen in 
Table 1, the e1-hh1 transition strongly depends on the chemical species at SL terminations, 
which underlines that relevant active states are mainly located in the surrounding of 
interfaces. Very interestingly, the CdTe-like terminations allow for a lower absorption 
threshold due to the very small VBO between CdTe and ZnTe. This explanation can be 
illustrated from the calculation of the charge densities as shown in Figure 2. Obviously, the 
ground-state wave function is maximized in CdTe layers compared to ZnSe. The CdTe 
termination mimics larger ZnTe layers increasing the energy level of hh1. This type of 
interface allows for a stronger overlap between the valence and conduction subbands, which 
enhances the optical matrix elements of the band edge. 

Table 1 Valence and conduction energy levels at ī-point and dipole matrix element in 
transverse electromagnetic polarization 
 LH 1 (eV) HH 1 (eV) E1 (eV) ǻE (eV) EPx (eV) Polarization 
Non-symmetric SL −0.212 −0.062 1.340 1.402 3.08 17.5% 
ZnSe termination −0.255 −0.101 1.330 1.430 2.56 - 
CdTe termination −0.195 −0.048 1.292 1.339 3.24 - 



The zero level is taken at the bulk CdSe valence band 

Figure 2 Schematic diagram of the band alignment for the (CdSe)7/(ZnTe)7 SL and 
electronic wave functions. Schematic diagram of the band alignment for the 
(CdSe)7/(ZnTe)7 SL (a) and electronic wave functions of the upper valence miniband and the 
lower conduction miniband in three interfaces cases: (b) non-symmetric case, (c) ZnSe 
interfaces, and (d) CdTe interfaces. Envelope functions are plotted along the [001] axis 
(molecular average between the charge densities on cation and anion sites) for clarity reasons 
and to better evidence the location of electronic states in the structure. 

Figure 3 shows the absorption coefficient calculated for each type of superlattice. In the 
simulation, we considered six conduction and 12 valence subbands. Consequently, the 
calculated spectral function is valid near the center of the reduced Brillouin zone up to 2 eV 
above the valence band maximum. In the same way of optical transitions, the absorption 
threshold is found strongly dependent on the chemistry at interfaces. According to these 
calculations, the CdTe interfaces should be favored to increase absorption in the solar 
spectrum. However, they are very difficult to control during the sample growth by molecular 
beam epitaxy (MBE). The major steps correspond to the different conduction minibands. The 
peaks around 1.52 and 1.83 eV for CdTe terminations, and around 1.9 eV for the non-
symmetric SL, correspond to the curvature inversion observed in the valence miniband 
around −0.6 eV for the non-symmetric SL as shown in Figure 4. Absorption measurements 
have not yet been performed on such samples but photoluminescence measurements at 4 K 
for the same SL grown by MBE show a maximum value around 1.42 eV, in good agreement 
with the simulated absorption thresholds (Figure 5). 

Figure 3 Absorption coefficient of the (CdSe)7/(ZnTe)7 SL for three types of interface, as 
a function of energy 

Figure 4 Band diagram of the CdSe/ZnTe SL with non-symmetric interfaces. Band 
diagram (black lines) of the CdSe/ZnTe SL with non-symmetric interfaces in the reduced 
Brillouin zone along the [001] and [110] directions 

Figure 5 Photoluminescence spectra of (CdSe)7/(ZnTe)7 SL grown by MBE 

Conclusions 

In conclusion, we have studied the optical properties of ultra thin II-VI quantum well 
structures suited for solar application and shown that a strong and stable optical process can 
occur at wavelengths of 885 nm. Further engineering of the electronic structure could be 
achieved by considering the different well thicknesses and alloyed materials in the 
superlattices. Our results show the usefulness of II-VI semiconductors to implement type-II 
band alignment in photovoltaic-based systems. 
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