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Realizability algebras III : some examples

We define a preorder on Λ ⋆ Π, denoted by ≻, which is called execution ; ξ ⋆ π ≻ ξ ′ ⋆ π ′ is read as : the process ξ ⋆ π reduces to ξ ′ ⋆ π ′ . It is the smallest reflexive and transitive binary relation, such that, for any ξ, η, ζ ∈ Λ and π, ̟ ∈ Π, we have :

Introduction

The notion of realizability algebra, which was introduced in [START_REF] Krivine | Realizability algebras : a program to well order R[END_REF][START_REF] Krivine | Realizability algebras II : new models of ZF + DC[END_REF], is a tool to study the proof-program correspondence and to build new models of set theory, which we call realizability models of ZF. It is a variant of the well known notion of combinatory algebra, with a new instruction cc, and a new type for the environments. The sets of forcing conditions, in common use in set theory, are (very) particular cases of realizability algebras ; and the forcing models of ZF are very particular cases of realizability models. We show here how to extend an arbitrary realizability algebra, by means of a certain set of conditions, so that the axiom DC of dependent choice is realized. In order to avoid introducing new instructions, we use an idea of A. Miquel [19]. This technique has applications of two kinds : 1. Construction of models of ZF + DC. When the initial realizability algebra is not trivial (that is, if we are not in the case of forcing or equivalently, if the associated Boolean algebra 2ג is = {0, 1}), then we always obtain in this way a model of ZF which satisfies DC + there is no well ordering of R. By suitably choosing the realizability algebras, we can get, for instance, the relative consistency over ZF of the following two theories : i) ZF + DC + there exists an increasing function i → X i , from the countable atomless Boolean algebra B into P(R) such that : X 0 = {0} ; i = 0 ⇒ X i is uncountable ; X i ∩ X j = X i∧j ; if i ∧ j = 0 then X i∨j is equipotent with X i ×X j ; X i ×X i is equipotent with X i ; there exists a surjection from X 1 onto R ; if there exists a surjection from X j onto X i , then i ≤ j ; if i, j = 0, i ∧ j = 0, there is no surjection from X i ⊕ X j onto X i ×X j ; more generally, if A ⊂ B and if there exists a surjection from j∈A X j onto X i , then i ≤ j for some j ∈ A.
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In particular, there exists a sequence of subsets of R, the cardinals of which are not comparable, and also a sequence of subsets of R, the cardinals of which are strictly decreasing. ii) ZF + DC + there exists X ⊂ R such that : X is uncountable and there is no surjection from X onto ℵ 1 (and therefore, every well orderable subset of X is countable) ; X ×X is equipotent with X ; there exists a total order on X, every proper initial segment of which is countable ; there exists a surjection from X ×ℵ 1 onto R ; there exists an injection from ℵ 1 (thus also from X ×ℵ 1 ) into R.

Curry-Howard correspondence.

With this technique of extension of realizability algebras, we can obtain a program from a proof, in ZF + DC, of an arithmetical formula F , which is a λ c -term, that is, a λ-term containing cc, but no other new instruction. This is a notable difference with the method given in [START_REF] Krivine | Dependent choice, 'quote' and the clock[END_REF][START_REF] Krivine | Realizability in classical logic. In Interactive models of computation and program behaviour[END_REF], where we use the instruction quote and which is, on the other hand, simpler and not limited to arithmetical formulas. It is important to observe that the program we get in this way does not really depend on the given proof of DC → F in ZF, but only on the program P extracted from this proof, which is a closed λ c -term. Indeed, we obtain this program by means of an operation of compilation applied to P (look at the remark at the end of the introduction of [START_REF] Krivine | Realizability algebras : a program to well order R[END_REF]). Finally, apart from applications 1 and 2, we may notice theorem 26, which gives an interesting property of every realizability model : as soon as the Boolean algebra 2ג is not trivial (i.e. if the model is not a forcing model), there exists a non well orderable individual.

Generalities

Realizability algebras

It is a first order structure, which is defined in [START_REF] Krivine | Realizability algebras : a program to well order R[END_REF]. We recall here briefly the definition and some essential properties : A realizability algebra A is made up of three sets : Λ (the set of terms), Π (the set of stacks), Λ ⋆ Π (the set of processes) with the following operations :

(ξ, η) → (ξ)η from Λ 2 into Λ (application) ; (ξ, π) → ξ . π from Λ×Π into Π (push) ; (ξ, π) → ξ ⋆ π from Λ×Π into Λ ⋆ Π (process) ; π → k π from Π into Λ (continuation).
There are, in Λ, distinguished elements B, C, I, K, W, cc, called elementary combinators or instructions.

Notation.

The term (. . . (((ξ)η 1 )η 2 ) . . .)η n will be also written as (ξ)η 1 η 2 . . . η n or ξη 1 η 2 . . . η n . For instance : ξηζ = (ξ)ηζ = (ξη)ζ = ((ξ)η)ζ.

The result of the substitution of ξ 1 , . . . , ξ n ∈ Λ to the variables x 1 , . . . , x n in a c-term t, is a term (i.e. an element of Λ) denoted by t[ξ 1 /x 1 , . . . , ξ n /x n ] or, more briefly, t[ ξ/ x]. The inductive definition is :

a[ ξ/ x] = ξ i if a = x i (1 ≤ i ≤ n) ; a[ ξ/ x] = a if a is an atom = x 1 , . . . , x n ; (tu)[ ξ/ x] = (t[ ξ/ x])u[ ξ/ x].
Given a c-term t and a variable x, we define inductively on t, a new c-term denoted by λx t, which does not contain x. To this aim, we apply the first possible case in the following list :

1. λx t = (K)t if t does not contain x. 2. λx x = I. 3. λx tu = (C λx t)u if u does not contain x. 4. λx tx = t if t does not contain x. 5. λx tx = (W) λx t (if t contains x). 6. λx(t)(u)v = λx(B)tuv (if uv contains x).
It is easy to see that this rewriting is finite, for any given c-term t : indeed, during the rewriting, no combinator is introduced inside t, but only in front of it. Moreover, the only changes in t are : moving parentheses and erasing occurrences of x. Now, rules 1 to 5 strictly decrease, and rule 6 does not increase, the part of t which remains under λx. Moreover, rule 6 can be applied consecutively only finitely many times. Given a c-term t and a variable x, we now define the c-term λx t by setting : λx t = λx (I)t. This enables us to translate every λ-term into a c-term. In the sequel, almost all c-terms will be written as λ-terms. The fundamental property of this translation is given by theorem 2 : Theorem 2. Let t be a c-term with the only variables x 1 , . . . , x n ; let ξ 1 , . . . , ξ n ∈ Λ and

π ∈ Π. Then λx 1 . . . λx n t ⋆ ξ 1 . . . . . ξ n . π ≻ t[ξ 1 /x 1 , . . . , ξ n /x n ] ⋆ π.
Lemma 3. Let a be an atom, t = (a)t 1 . . . t k a c-term with the only variables x, y 1 , . . . , y n , and ξ, η 1 , . . . , η n ∈ Λ ; then :

( λx t)[ η/ y] ⋆ ξ . π ≻ a[ξ/x, η/ y] ⋆ t 1 [ξ/x, η/ y] . . . . . t k [ξ/x, η/ y] . π.
The proof is done by induction on the number of rules 1 to 6 used to translate the term λx t. Consider the rule used first.

• Rule 1 : we have ( λx t)[ η/ y] ⋆ ξ . π ≡ (K)t[ η/ y] ⋆ ξ . π ≻ K ⋆ t[ η/ y] . ξ . π ≻ t[ η/ y] ⋆ π ≡ t[ξ/x, η/ y] ⋆ π because x is not in t.
The result follows immediately.

• Rule 2 : we have t = x, λx t = I and the result is trivial. In rules 3, 4, 5 or 6, we have t = ut k with u = at 1 . . . t k-1 , by lemma 1.

• Rule 3 : ( λx t)[ η/ y] ⋆ ξ . π ≡ ((C λx u)t k )[ η/ y] ⋆ ξ . π ≻ C ⋆ ( λx u)[ η/ y] . t k [ η/ y] . ξ . π ≻ ( λx u)[ η/ y] ⋆ ξ . t k [ η/ y] . π ≻ a[ξ/x, η/ y] ⋆ t 1 [ξ/x, η/ y] . . . . . t k-1 [ξ/x, η/ y] . t k [ η/ y]π by the induction hypothesis ≡ a[ξ/x, η/ y] ⋆ t 1 [ξ/x, η/ y] . . . . . t k-1 [ξ/x, η/ y] . t k [ξ/x, η/ y] . π since x is not in t k .
In rules 4 and 5, we have t k = x, i.e. t = (u)x.

• Rule 4 : we have ( λx t)[ η/ y] ⋆ ξ . π ≡ u[ η/ y] ⋆ ξ . π ≡ u[ξ/x, η/ y] ⋆ ξ . π because x is not in u. Since u = at 1 . . . t k-1 and t k = x, the result follows immediately.

• Rule 5 : we have

t k = x and ( λx t)[ η/ y] ⋆ ξ . π ≡ (W λx u)[ η/ y] ⋆ ξ . π ≻ W ⋆ ( λx u)[ η/ y] . ξ . π ≻ ( λx u)[ η/ y] ⋆ ξ . ξ . π ≻ a[ξ/x, η/ y] ⋆ t 1 [ξ/x, η/ y] . . . . . t k-1 [ξ/x, η/ y] . ξ . π (by the induction hypothesis) ≡ a[ξ/x, η/ y] ⋆ t 1 [ξ/x, η/ y] . . . . . t k [ξ/x, η/ y] . π. • Rule 6 : we have t k = (v)w and ( λx t)[ η/ y] ⋆ ξ . π ≡ ( λx(B)uvw)[ η/ y] ⋆ ξ . π ≻ B ⋆ u[ξ/x, η/ y] . v[ξ/x, η/ y] . w[ξ/x, η/ y] . π (by the induction hypothesis) ≻ u[ξ/x, η/ y] ⋆ t k [ξ/x, η/ y] . π ≻ a[ξ/x, η/ y] ⋆ t 1 [ξ/x, η/ y] . . . . . t k-1 [ξ/x, η/ y] . t k [ξ/x, η/ y] . π.
q.e.d.

Lemma 4. (λx t)[ η/ y] ⋆ ξ . π ≻ t[ξ/x, η/ y] ⋆ π.
Immediate by lemma 3 and the definition of λx t which is λx(I)t.

q.e.d. We can now prove theorem 2 by induction on n ; the case n = 0 is trivial.

We have λx

1 . . . λx n-1 λx n t ⋆ ξ 1 . . . . . ξ n-1 . ξ n . π ≻ (λx n t)[ξ 1 /x 1 , . . . , ξ n-1 /x n-1 ] ⋆ ξ n . π (by induction hypothesis) ≻ t[ξ 1 /x 1 , . . . , ξ n-1 /x n-1 , ξ n /x n ] ⋆ π by lemma 4.
q.e.d.

The formal system

We write formulas and proofs in the language of first order logic. This formal language consists of :

• individual variables x, y, . . . ;

• function symbols f, g, . . . of various arities ; function symbols of arity 0 are called constant symbols.

• relation symbols ; there are three binary relation symbols : ε / , / ∈, ⊂. The terms of this first order language will be called ℓ-terms ; they are built in the usual way with individual variables and function symbols.

Remark. Thus, we use four expressions with the word term : term, c-term, λ-term and ℓ-term.

The atomic formulas are the expressions ⊤, ⊥, t ε / u, t / ∈ u, t ⊂ u, where t, u are ℓ-terms. Formulas are built as usual, from atomic formulas, with the only logical symbols →, ∀ :

• each atomic formula is a formula ; • if A, B are formulas, then A → B is a formula ; • if A is a formula and x an individual variable, then ∀x A is a formula. Notations. Let A 1 , . . . , A n , A, B be formulas. Then :

A → ⊥ is written ¬A ; A 1 → (A 2 → • • • → (A n → B) • • •) is written A 1 , A 2 , . . . , A n → B ; ¬A 1 , . . . , ¬A n → ⊥ is written A 1 ∨ . . . ∨ A n ; (A 1 , . . . , A n → ⊥) → ⊥ is written A 1 ∧ . . . ∧ A n ; ¬∀x(A 1 , . . . , A n → ⊥) is written ∃x{A 1 , . . . , A n }.
The rules of natural deduction are the following (the A i 's are formulas, the x i 's are variables of c-term, t, u are c-terms, written as λ-terms) : 1.

x 1 : A 1 , . . . , x n : A n ⊢ x i : A i . 2. x 1 : A 1 , . . . , x n : A n ⊢ t : A → B, x 1 : A 1 , . . . , x n : A n ⊢ u : A ⇒ x 1 : A 1 , . . . , x n : A n ⊢ tu : B. 3. x 1 : A 1 , . . . , x n : A n , x : A ⊢ t : B ⇒ x 1 : A 1 , . . . , x n : A n ⊢ λx t : A → B. 4. x 1 : A 1 , . . . , x n : A n ⊢ t : A ⇒ x 1 : A 1 , .
. . , x n : A n ⊢ t : ∀x A where x is an individual variable which does not appear in A 1 , . . . , A n . 5. x 1 : A 1 , . . . , x n : A n ⊢ t : ∀x A ⇒ x 1 : A 1 , . . . , x n : A n ⊢ t : A[τ /x] where x is an individual variable and τ is a ℓ-term. 6.

x 1 : A 1 , . . . , x n : A n ⊢ cc : ((A → B) → A) → A (law of Peirce). 7. x 1 : A 1 , . . . , x n : A n ⊢ t : ⊥ ⇒ x 1 : A 1 , . . . , x n : A n ⊢ t : A for every formula A.

Realizability models

We formalize set theory with the first order language described above. We write, in this language, the axioms of a theory named ZF ε , which are given in [START_REF] Krivine | Realizability algebras II : new models of ZF + DC[END_REF]. The usual set theory ZF is supposed written with the only relation symbols / ∈, ⊂. Then, ZF ε is a conservative extension of ZF, which is proved in [START_REF] Krivine | Realizability algebras II : new models of ZF + DC[END_REF]. Let us consider a coherent realizability algebra A, defined in a model M of ZFL, which is called the ground model. The elements of M will be called individuals (in order to avoid the word set, as far as possible). We defined, in [START_REF] Krivine | Realizability algebras II : new models of ZF + DC[END_REF], a realizability model, denoted by N A (or even N , if there is no ambiguity about the algebra A). It has the same domain (the same individuals) as M and the interpretation of the function symbols is the same as in M. Each closed formula F of ZF ε with parameters in M, has two truth values in N , which are denoted by F (which is a subset of Π) and |F | (which is a subset of Λ).

Here are their definitions : |F | is defined immediately from F as follows :

ξ ∈ |F | ⇔ (∀π ∈ F ) ξ ⋆ π ∈ ⊥ ⊥. We shall write ξ -F (read " ξ realizes F ") for ξ ∈ |F |.
F is now defined by recurrence on the length of F :

• F is atomic ; then F has one of the forms ⊤, ⊥, a ε / b, a ⊂ b, a / ∈ b where a, b are parameters in M. We set : ⊤ = ∅ ; ⊥ = Π ; a ε / b = {π ∈ Π; (a, π) ∈ b}. a ⊂ b , a / ∈ b are defined simultaneously by induction on (rk(a) ∪ rk(b), rk(a) ∩ rk(b)) (rk(a) being the rank of a in M). a ⊂ b = c {ξ . π; ξ ∈ Λ, π ∈ Π, (c, π) ∈ a, ξ -c / ∈ b} ; a / ∈ b = c {ξ . ξ ′ . π; ξ, ξ ′ ∈ Λ, π ∈ Π, (c, π) ∈ b, ξ -a ⊂ c, ξ ′ -c ⊂ a}. • F ≡ A → B ; then F = {ξ . π ; ξ -A, π ∈ B }. • F ≡ ∀x A : then F = a A[a/x] .
The following theorem, proved in [START_REF] Krivine | Realizability algebras II : new models of ZF + DC[END_REF], is an essential tool :

Theorem 5 (Adequacy lemma).

Let A 1 , . . . , A n , A be closed formulas of ZF ε , and suppose that

x 1 : A 1 , . . . , x n : A n ⊢ t : A. If ξ 1 -A 1 , . . . , ξ n -A n then t[ξ 1 /x 1 , . . . , ξ n /x n ] -A.
In particular, if ⊢ t : A, then t -A.

Let F be a closed formula of ZF ε , with parameters in M. We say that N A realizes F or that F is realized in N A (which is written N A -F or even -F ), if there exists a proof-like term θ such that θ -F . It is shown in [START_REF] Krivine | Realizability algebras II : new models of ZF + DC[END_REF] that all the axioms of ZF ε are realized in N A , and thus also all the axioms of ZF. Definitions. Given a set of terms X ⊂ Λ and a formula F , we shall use the notation

X → F as an extended formula ; its truth value is X → F = {ξ . π ; ξ ∈ X, π ∈ F }. Two formulas F [x 1 , . . . , x n ] and G[x 1 , . . . , x n ] of ZF ε will be called interchangeable if the formula ∀x 1 . . . ∀x n (F [x 1 , . . . , x n ] ↔ G[x 1 , . . . , x n ]) is realized. That is, for instance, the case if F [a 1 , . . . , a n ] = G[a 1 , . . . , a n ] or also if F [a 1 , . . . , a n ] = ¬¬G[a 1 , . . . , a n ] for every a 1 , . . . , a n ∈ M.
The following lemma gives a useful example : Lemma 6. For every formula A, define ¬ A ⊂ Λ by ¬ A = {k π ; π ∈ A }. Then ¬A → B and ¬ A → B are interchangeable, for every formula B.

We have immediately k π -¬A for every π ∈ A . Therefore, ¬ A → B ⊂ ¬A → B and it follows that I -

(¬A → B) → ( ¬ A → B). Conversely, let ξ, η ∈ Λ, ξ -¬ A → B , η -¬B and let π ∈ A . We have ξk π -B, thus (η)(ξ)k π -⊥ and therefore (η)(ξ)k π ⋆ π ∈ ⊥ ⊥. It follows that θ ⋆ ξ . η . π ∈ ⊥ ⊥ with θ = λxλy(cc)λk(y)(x)k.
Finally, we have shown that θ -( ¬ A → B) → (¬B → A), from which the result follows.

q.e.d.

Equality and type-like sets

The formula x = y is, by definition, ∀z(x ε / z → y ε / z) (Leibniz equality). If t, u are ℓ-terms and F is a formula of ZF ε , with parameters in M, we define the formula t = u ֒→ F . When it is closed, its truth value is :

t = u ֒→ F = ⊤ = ∅ if M | = t = u ; t = u ֒→ F = F if M | = t = u. The formula t = u ֒→ ⊥ is written t = u. The formula t 1 = u 1 ֒→ (t 2 = u 2 ֒→ • • • ֒→ (t n = u n ֒→ F ) • • •) is written : t 1 = u 1 , t 2 = u 2 , . . . , t n = u n ֒→ F .
The formulas t = u → F and t = u ֒→ F are interchangeable, as is shown in the :

Lemma 7. i) C I I -∀x∀y ((x = y → F ) → (x = y ֒→ F )) ; ii) C I -∀x∀y ((x = y ֒→ F ) → (x = y → F )). i) Trivial. ii) Let a, b be individuals ; let ξ -a = b ֒→ F , η -a = b and π ∈ F .
We show that η ⋆ ξ . π ∈ ⊥ ⊥.

Let c = {(b, π)} ; by hypothesis on η, we have η -a ε / c → b ε / c. Since π ∈ b ε / c , it suffices to show that ξ -a ε / c
. This is clear if a = b, since a ε / c = ∅ in this case. If a = b, then ξ -F , by hypothesis on ξ, thus ξ ⋆ π ∈ ⊥ ⊥ ; but a ε / c = {π} in this case, and therefore ξa ε / c. q.e.d. We set גX = X×Π for every individual X of M ; we define the quantifier ∀x גX as follows :

∀x גX F [x] = a∈X F [a] . Of course, we set ∃x גX F [x] ≡ ¬∀x גX ¬F [x].
The quantifier ∀x גX has the intended meaning, which is that the formulas ∀x גX F [x] and ∀x(x ε גX → F [x]) are interchangeable. This is shown by the :

Lemma 8. C I -∀x גX F [x] → ∀x גX ¬¬F [x] ; cc -∀x גX ¬¬F [x] → ∀x גX F [x] ; ∀x גX ¬¬F [x] = ∀x(¬F [x] → x ε / גX) .

Immediate.

q.e.d. Each functional f : M n → M, defined in M by a formula of ZF with parameters, gives a function symbol, that we denote also by f , and which has the same interpretation in the realizability model N A .

Proposition 9.

Let t, t 1 , . . . , t n , u, u 1 , . . . , u n be ℓ-terms, built with variables x 1 , . . . , x k and functional symbols of M.

If M | = ∀x 1 . . . ∀x k (t 1 = u 1 , . . . , t k = u k → t = u), then : I -∀x 1 . . . ∀x k (t 1 = u 1 , . . . , t k = u k ֒→ t = u). If M | = (∀x 1 ∈ X 1 ) . . . (∀x k ∈ X k )(t 1 = u 1 , . . . , t k = u k → t = u), then : I -∀x גX 1 1 . . . ∀x גX k k (t 1 = u 1 , . . . , t k = u k ֒→ t = u). Trivial.
q.e.d.

Proposition 10. If f : X 1 ו • •×X n → Y is a function in M, its interpretation in N A is a function f : גX 1 ו • •×גX n → גY .
Indeed, let f ′ , f ′′ : M n → M be any two functionals which are extensions of the function f to the whole of M n . By proposition 9(ii), we have :

I -∀x גX 1 1 . . . ∀x גX k k (f ′ (x 1 , . . . , x k ) = f ′′ (x 1 , . . . , x k )). q.e.d.
An important example is the set 2 = {0, 1} equipped with the trivial boolean functions, written ∧, ∨, ¬. The extension to N A of these operations gives a structure of Boolean algebra on .2ג It is called the characteristic Boolean algebra of the model N A .

Conservation of well-foundedness

Theorem 11 says that every well founded relation in the ground model M, gives a well founded relation in the realizability model N .

Theorem 11. Let f : M 2 → 2 be a function defined in the ground model M such that f (x, y) = 1 is a well founded relation on M. Then, for every formula

F [x] of ZF ε with parameters in M : Y -∀y (∀x(f (x, y) = 1 ֒→ F [x]) → F [y]) → ∀y F [y] with Y = AA and A = λaλf (f )(a)af (or A = (W)(B)(BW)(C)B). Let us fix b ∈ X and let ξ -∀y (∀x(f (x, y) = 1 ֒→ F [x]) → F [y]).
We show, by induction on b, following the well founded relation f (x, y) = 1, that :

Y ⋆ ξ . π ∈ ⊥ ⊥ for every π ∈ F [b] . Thus, suppose that π ∈ F [b] ; since Y ⋆ ξ . π ≻ ξ ⋆ Yξ . π, we need to show that ξ ⋆ Yξ . π ∈ ⊥ ⊥. By hypothesis, we have ξ -∀x(f (x, b) = 1 ֒→ F [x]) → F [b] ; Thus, it suffices to show that Yξ -f (a, b) = 1 ֒→ F [a] for every a ∈ X. This is clear if f (a, b) = 1, by definition of ֒→. If f (a, b) = 1, we must show Yξ -F [a], i.e. Y ⋆ ξ . ̟ ∈ ⊥ ⊥ for every ̟ ∈ F [a] .
But this follows from the induction hypothesis.

q.e.d.

Remarks.

i) If the function f is only defined on a set X in the ground model M, we can apply theorem 11 to the extension f ′ of f defined by f ′ (x, y) = 0 if (x, y) / ∈ X 2 . This shows that, in the realizability model N , the binay relation f (x, y) = 1 is well founded on גX. ii) We can use theorem 11 to show that the axiom of foundation of ZF ε is realized in N A . Indeed, let us define f : M 2 → 2 by setting f (x, y) = 1 ⇔ ∃z((x, z) ∈ y). The binary relation f (x, y) = 1 is obviously well founded in M. Now, we have I -∀x∀y(f (x, y) = 1 → x ε / y) because π ∈ x ε / y ⇒ f (x, y) = 1. Thus, the relation x ε y is stronger than the relation f (x, y) = 1, which is well founded in N A by theorem 11.

Integers

Let φ, α ∈ Λ and n ∈ N ; we define (φ) n α ∈ Λ by setting (φ)

0 α = α ; (φ) n+1 α = (φ)(φ) n α.
For n ∈ N, we define n = (σ) n 0 with 0 = KI and σ = (BW)(B)B ; n is "the integer n" and σ the "successor" in combinatory logic.

The essential property of 0 and σ is :

0 ⋆ φ . α . π ≻ α ⋆ π ; σ ⋆ ν . φ . α . π ≻ ν ⋆ φ . φα . π.
The following lemmas 12 and 13 will be used in section 3.

Lemma 12.

Let O, ς ∈ Λ be such that :

O ⋆ φ . α . π ≻ ≻ α ⋆ π and ς ⋆ ν . φ . α . π ≻ ≻ ν ⋆ φ . φα . π for every α, ζ, ν, φ ∈ Λ and π ∈ Π. Then, for every n ∈ N, α, ζ, φ ∈ Λ and π ∈ Π : i) (ς) n O ⋆ φ . α . π ≻ ≻ (φ) n α ⋆ π ; in particular, n ⋆ φ . α . π ≻ ≻ (φ) n α ⋆ π ii) (ς) n O ⋆ CBφ . ζ . α . π ≻ ≻ ζ ⋆ (φ) n α . π.
i) Proof by recurrence on n ; this is clear if n = 0 ; if n = m + 1, we have :

ς ⋆ (ς) m O . φ . α . π ≻ ≻ (ς) m O ⋆ φ . φα . π ≻ ≻ (φ) m (φ)α ⋆ π by the recurrence hypothesis.
The particular case is O = 0, ς = σ.

ii) By (i), we have (ς

) n O ⋆ CBφ . ζ . α . π ≻ ≻ (CBφ) n ζ ⋆ α . π.
We now show, by recurrence on n, that (CBφ

) n ζ ⋆ α . π ≻ ≻ ζ ⋆ (φ) n α . π. This is clear if n = 0 ; if n = m + 1, we have : (CBφ) n ζ ⋆ α . π ≻ ≻ CBφ ⋆ (CBφ) m ζ . α . π ≻ ≻ C ⋆ B . φ . (CBφ) m ζ . α . π ≻ ≻ B ⋆ (CBφ) m ζ . φ . α . π ≻ ≻ (CBφ) m ζ ⋆ φα . π ≻ ≻ ζ ⋆ (φ) m (φ)α . π (by the recurrence hypoth- esis).
q.e.d.

Lemma 13.

Let Ω, Σ ∈ Λ be such that :

Ω ⋆ δ . φ . α . π ≻ ≻ α ⋆ π and Σ ⋆ ν . δ . φ . α . π ≻ ≻ ν ⋆ δ . φ . φα . π
for every α, δ, ν, φ ∈ Λ and π ∈ Π. For instance :

Ω = (K)(K)I ; Σ = (B)(BW)(B)B. Then, for every n ∈ N, α, δ, ζ, φ ∈ Λ and π ∈ Π : i) (Σ) n Ω ⋆ δ . φ . α . π ≻ (φ) n α ⋆ π. ii) (Σ) n Ω ⋆ δ . CBφ . ζ . α . π ≻ ζ ⋆ (φ) n α . π.
Same proof as lemma 12.

q.e.d.

We set N A = {(n, n . π) ; n ∈ N, π ∈ Π} ; it is shown below that N A is the set of integers of the realizability model N A . We define the quantifier ∀x int as follows :

∀x int F [x] = {n . π ; n ∈ N, π ∈ F [n] }.
that is also :

∀x int F [x] = ∀n גN ({n} → F [n]
) . The formulas ∀x int F [x] and ∀x(x ε N A → F [x]) are interchangeable, as is shown in the :

Lemma 14. λxλnλy(y)(x)n -∀x int F [x] → ∀x int ¬¬F [x] ; λxλn(cc)(x)n -∀x int ¬¬F [x] → ∀x int F [x] ; ∀x int ¬¬F [x] = ∀x(¬F [x] → x ε / N A ) .
Immediate q.e.d.

Lemma 15. i) K -∀x(x ε / גN → x ε / N A ). ii) λx(x)0 -0 ε / N A → ⊥ ; λf λx(f )(σ)x -∀y גN ((y + 1) ε / N A → y ε / N A ). iii) I -∀x int ∀y גN (F [y] → F [y + 1]), F [0] → F [x] for every formula F [x] of ZF ε . i) and ii) Immediate. iii) Let n ∈ N, φ -∀y גN (F [y] → F [y + 1]), α -F [0] et π ∈ F [n] . We must show : n ⋆ φ . α . π ∈ ⊥ ⊥ i.e., by lemma 12, (φ) n α ⋆ π ∈ ⊥ ⊥.
But it is clear, by recurrence on n, that (φ) n α -F [n] for every n ∈ N.

q.e.d. Lemma 15(i) shows that N A is a subset of גN. But it is clear that גN contains 0 and is closed by the function n → n + 1. Now, by lemma 15(ii) and (iii), N A is the smallest subset of גN which contains 0 and is closed by the function n → n + 1. Therefore : N A is the set of integers of the model N A .

The characteristic Boolean algebra 2ג

Function symbols

Let us now define the principal function symbols commonly used in the sequel :

• The projections pr 0 : X ×Y → X and pr 1 : X ×Y → Y defined by : pr 0 (x, y) = x, pr 1 (x, y) = y give, in N A , a bijection from (גX ×Y ) onto גX ×גY .

• We define, in M, the function app : Y X ×X → Y (read application) by setting : app(f, x) = f (x) for f ∈ Y X and x ∈ X. This gives, in N A , an application app : (גY X )×גX → גY . We shall write f (x) for app(f, x).

Theorem 16.

If X = ∅, the function app gives an injection from (גY X ) into (גY ) גX . Indeed, we have :

I -∀f (גY X ) ∀g (גY X ) ∀x גX (app(f, x) = app(g, x)) → f = g . Let f, g ∈ Y X , ξ -∀x גX (app(f, x) = app(g, x) → ⊥) and π ∈ f = g → ⊥ . We must show ξ ⋆ π ∈ ⊥ ⊥. We choose a ∈ X ; then ξ -(f (a) = g(a) → ⊥). If f = g, we have f (a) = g(a) → ⊥ = f = g → ⊥ = ⊥ → ⊥ . Hence the result. If f = g, we could choose a such that f (a) = g(a). Then, f (a) = g(a) → ⊥ = f = g → ⊥ = ⊤ → ⊥ . Hence the result.
q.e.d. • Let sp : M → {0, 1} (read support) the unary function symbol defined by : sp(∅) = 0 ; sp(x) = 1 if x = ∅. In the realizability model N A , we have sp : N → .2ג • Let P : {0, 1}×M → M (read projection) the binary function symbol defined by : P(0, x) = ∅ ; P(1, x) = x. In the realizability model N A , we have P : ×2גN → N . In the following, we shall write ix instead of P(i, x). When t, u are ℓ-terms with values in ,2ג we write t ≤ u for t∧u = t.

Proposition 17. i) I -∀i 2ג ∀x(i(jx) = (i∧j)x). ii) I -∀i 2ג ∀x(ix = x ⇋ sp(x) ≤ i). iii) If ∅ ∈ E, then I -∀i 2ג ∀x גE (ix ε גE). iv) If f : M n → M is a function symbol such that f (∅, . . . , ∅) = ∅, then : I -∀j 2ג ∀x 1 . . . ∀x n (jf (x 1 , . . . , x n ) = f (jx 1 , . . . , jx n )). v) I -∀i 2ג ∀x (i = 1 → ∀y(y ε / ix)) and therefore K 2 I -∀i 2ג ∀x (i = 1 → ∀y(y / ∈ ix)).

Trivial.

q.e.d. Because of property (iv), we shall define, as far as possible, each function symbol f in M, so that to have f (∅, . . . , ∅) = ∅.

• Thus, let us change the ordered pair (x, y) by setting (∅, ∅) = ∅. Then, we have : I -∀i 2ג ∀x∀y (i(x, y) = (ix, iy)).

• We define the binary function symbol ⊔ : M 2 → M by setting : a ⊔ b = a ∪ b.

Remark. The extension to N of this operation is not the union ∪.

The operation ג i

Let E ∈ M be such that ∅ ∈ E. In M, we define ג i E for i ∈ 2 by setting :

ג 0 E = }∅{ג = {∅}×Π ; ג 1 E = גE = E ×Π.
In this way, we have now defined ג i E in N , for every i ε .2ג

Proposition 18. i) I -∀i 2ג ∀x∀y(i(x ⊔ y) = ix ⊔ iy).

ii) I -∀i 2ג ∀j 2ג ∀x((i∨j)x = ix ⊔ jx).

iii) I -∀i 2ג ∀j 2ג ∀x∀y∀z(i∧j = 0, z = ix ⊔ jy ֒→ iz = ix). I -∀i 2ג ∀j 2ג ∀x∀y∀z(i∧j = 0, z = ix ⊔ jy ֒→ jz = jy). iv) I -∀i 2ג ∀j 2ג ∀x גE ∀y גE ∀z (i∧j = 0, z = ix ⊔ jy ֒→ z ε ג i∨j E).

Trivial.

q.e.d.

Proposition 19.

If ∅ ∈ E, E ′ , the following formulas are realized : i) ג i E increases with i. In particular, ג i E ⊂ גE.

ii) The ε-elements of ג i E are the ix for x ε גE.

iii) The ε-elements of ג i E are those of גE such that sp(x) ≤ i.

iv) The only ε-element common to

ג i E and ג 1-i E is ∅. v) If i∧j = 0, then the application x → (ix, jx) is a bijection from ג i∨j E onto ג i E ג× j E. The inverse function is (x, y) → x ⊔ y. vi) ג i (E ×E ′ ) = ג i E ג× i E ′ .
We check immediately i), ii), iii), iv) below : i)

I -∀i 2ג ∀j 2ג ∀x(i∧j = i ֒→ (x ε / ג j E → x ε / ג i E)). ii) I -∀i 2ג ∀x גE (ix ε ג i E) ; I -∀i 2ג ∀x גE (ix = x → x ε / ג i E). iii) I -∀i 2ג ∀x גE (x ε / ג i E → sp(x)i = sp(x)) ; I -∀i 2ג ∀x גE (sp(x)i = sp(x) → x ε / ג i E) ; iv) I -∀i 2ג ∀x גE ∀y גE (ix = (1 -i)y ֒→ ix = ∅). v) By proposition 18(ii), we have ix ⊔ jx = (i ∨ j)x = x if x ε ג i∨j E.
By proposition 18(iii,iv), if x, y ε גE, there exists z ε ג i∨j E such that iz = ix, jz = jy, namely z = ix ⊔ jy. vi) By proposition 17(iv), we have I -∀i 2ג ∀x∀y(i(x, y) = (ix, iy)).

q.e.d.

Proposition 20. Let E, E ′ ∈ M be such that ∅ ∈ E, E ′ and E is equipotent with E ′ . Then : -∀i 2ג ג( i E is equipotent with ג i E ′ ).
Let φ be, in M, a bijection from E onto E ′ , such that φ(∅) = ∅. Then φ is, in N , a bijection from גE onto גE ′ . But we have immediately :

I -∀i 2ג ∀x גE (φ(ix) = iφ(x)).
This shows that φ is a bijection from ג i E onto ג i E ′ . q.e.d.

Some general theorems

Theorems 21 to 29, which are shown in this section, are valid in every realizability model.

In the ground model M, which satisfies ZFL, we denote by κ the cardinal of Λ ∪ Π ∪ N (which we shall also call the cardinal of the algebra A) and by κ + = P(κ) the power set of κ.

Theorem 21.

Let ∀ x∀y F [ x, y] be a closed formula of ZF ε with parameters in M (where x = (x 1 , . . . , x n )).

Then, there exists in M, a functional f F :

κ×M n → M such that : i) If a, b ∈ M and ξ -F [ a, b], then there exists α ∈ κ such that ξ -F [ a, f F (α, a)]. ii) C I -∀ x∀y F [ x, y] → ∃ν גκ F [ x, f F (ν, x)] .
i) Let ξ → α ξ be an injection from Λ into κ. Using the principle of choice in M (which satisfies V = L ), we can define a functional f F : κ×M n → M such that, in M, we have :

∀ x∀y(∀ξ ∈ Λ) (ξ -F [ x, y] ⇒ ξ -F [ x, f F (α ξ , x)]). ii) Let ξ -F [ a, b], η -∀ν גκ ¬F [ a, f F (ν, a)] and π ∈ Π. Thus, we have η -¬F [ a, f F (α ξ , a)] ; by definition of f F , we have ξ -F [ a, f F (α ξ , a)].
Therefore η ⋆ ξ . π ∈ ⊥ ⊥, and C I ⋆ ξ . η . π ∈ ⊥ ⊥.

q.e.d.

Subsets of גκ +

Theorem 22. Let ∀x∀y∀z F [x, y, z] be a closed formula of ZF ε , with parameters in M.

Then, there exists, in M, a functional β F : M → κ + such that :

W -∀z ∀x∀y∀y ′ (F [x, y, z], F [x, y ′ , z] → y = y ′ ) → ∀i 2ג ∀x(F [x, iβ F (z), z] → sp(x) ≥ i) .
By theorem 21(i), there exists, in M, a functional g : κ×M 2 → M such that : ( * ) For a, b, c ∈ M and ξ -F [a, b, c], there exists α ∈ κ such that ξ -F [a, g(α, a, c), c].

Using the principle of choice in M, we define a functional β F : M → κ + such that : for every α ∈ κ and c ∈ M, we have β

F (c) = g(α, ∅, c). This is possible since κ + is of cardinal > κ. Now let : a, c ∈ M, i ∈ {0, 1}, φ -∀x∀y∀y ′ (F [x, y, c], F [x, y ′ , c], y = y ′ → ⊥), ξ -F [a, iβ F (c), c], η -sp(a)i = i and π ∈ Π. We must show that W ⋆ φ . ξ . η . π ∈ ⊥ ⊥, that is φ ⋆ ξ . ξ . η . π ∈ ⊥ ⊥.
We Therefore, by hypothesis on φ, we have φ ⋆ ξ . ξ . η . π ∈ ⊥ ⊥.

q.e.d.

Corollary 23. The following formulas are realized : i) ∀E∀i 2ג (there is no surjection from

ג{ j E ; j ε ,2ג j ≥ i} onto ג i κ + ). ii) ∀E∀i 2ג ∀j 2ג (if there exists a surjection from ג j E onto ג i κ + then j ≥ i). iii) ∀i 2ג ∀j 2ג (i, j = 0, i∧j = 0 → (there is no surjection from ג i κ + ⊕ ג j κ + onto ג i κ + ג× j κ + )).
Remark. The notation ג{ j E ; j ε ,2ג j ≥ i} denotes any individual X of N such that :

N | = ∀x(x ε X ↔ ∃j 2ג (j ≥ i ∧ x ε ג j E)).
i) We apply theorem 22, with the formula F [x, y, z] ≡ (x, y) ε z.

In the realizabiblity model N , we have β F : N → גκ + . Let z 0 be, in N , a surjective function onto ג i κ + . We have β F (z 0 ) ε גκ + , and therefore iβ F (z 0 ) ε ג i κ + . If x 0 is such that (x 0 , iβ F (z 0 )) ε z 0 , then sp(x 0 ) ≥ i by theorem 22. Therefore, for any individual E, we have x 0 ε ג j E ⇒ j ≥ i, by proposition 19(iii).

ii) It is a trivial consequence of (i).

iii) We take E = κ + ; since i, j = 0, i∧j = 0, we have i, j ≥ i∨j ; by (i), there is no surjection from

ג i κ + ∪ ג j κ + onto ג i∨j κ + . Now, since i∧j = 0, ג i∨j κ + is equipotent with ג i κ + ג× j κ + by proposition 19(v).
Moreover, ∅ is the only ε-element common to ג i κ + and ג j κ + by proposition19(iv). But these sets contain a countable subset by theorem 25. It follows that

ג i κ + ∪ ג j κ + is equipotent with ג i κ + ⊕ ג j κ + .
q.e.d.

Theorem 24. The formula : (there exists a surjection from גκ + onto 2 גκ ) is realized.

In the ground model M, there exists a bijection from κ + = 2 κ onto 2 κ×Π . Therefore, in N , there exists a bijection from גκ + onto 2ג κ×Π .

We now need a surjection from 2ג κ×Π onto 2 גκ . Let φ : M → 2 κ×Π be the unary function symbol defined by φ(x) = x ∩ (κ×Π).

In N , we have φ : N → 2ג κ×Π . Now, we check immediately that : i)

I -∀ν∀x 2ג κ×Π (ν ε / גκ → ν ε / x) because ν ε / a ⊂ ν ε / גκ for all a ∈ P(κ×Π). ii) I -∀x∀ν גκ (ν ε / x ⇋ ν ε / φ(x)) because ν ε / a = ν ε / φ(a)
for all ν ∈ κ. From (i), it follows that 2ג κ×Π is, in N , a set of subsets of גκ ; from (ii), it follows that it contains at least one representative for each equivalence class of extensionality. Thus, the desired surjection simply associates, with each ε-element of 2ג κ×Π , its equivalence class of extensionality.

q.e.d.

Theorem 25. Let E ∈ M be infinite and such that ∅ ∈ E. Then we have :

-∀i 2ג (i = 0 → there exists an injection from N into ג i E).

In M, let φ : N → (E \ {∅}) be injective. In N , we have φ : גN → גE.

The desired function is n → iφ(n). Indeed, we have :

I -∀i 2ג ∀m גN ∀n גN (i = 0 → iφ(m + n + 1) = iφ(m)).
This shows that the restriction of this function to N A (the set of integers of N A ) is injective. q.e.d.

Theorem 26. -∀i 2ג (i = 0, i = 1 → (גκ + cannot be well ordered )).

Let i ∈ ,2ג i = 0, 1 ; then, ג i κ + and ג 1-i κ + are infinite (theorem 25) and ⊂ גκ + by proposition 19(i). But there exists no surjection from ג i κ + onto ג 1-i κ + , neither from ג 1-i κ + onto ג i κ + , by corollary 23. q.e.d.

Remark. By theorem 26, if the Boolean algebra 2ג is not trivial, then גκ + is not well orderable. On the other hand, it can be shown that, if this Boolean algebra is trivial, then the realizability model N is an extension by forcing of the ground model M. In this case, N itself can be well ordered, since we suppose that the ground model M satisfies ZFL.

A strict order on גκ + A binary relation < on X is a strict order if it is transitive (x < y, y < z ⇒ x < z) and antireflexive (x < x). This strict order is called total if we have : x < y or y < x or x = y. If (X 0 , < 0 ), (X 1 , < 1 ) are two strictly ordered sets, then the strict order product < on X 0 ×X 1 is defined by : (x 0 , x 1 ) < (y 0 , y 1 ) ⇔ x 0 < y 0 and x 1 < y 1 .

Lemma 27. The strict order product of < 0 , < 1 is well founded if and only if one of the strict orders < 0 , < 1 is well founded.

Proof of ⇒ : by contradiction ; if < 0 and < 1 are not well founded, we have :

∀y 0 (∀x 0 (x 0 < 0 y 0 → F 0 [x 0 ]) → F 0 [y 0 ]) ; ¬F 0 [b 0 ] ; ∀y 1 (∀x 1 (x 1 < 1 y 1 → F 1 [x 1 ]) → F 1 [y 1 ]) ; ¬F 1 [b 1 ] ;
for some formulas F 0 , F 1 and some individuals b 0 , b 1 . It follows that :

∀y 0 ∀y 1 (∀x 0 ∀x 1 (x 0 < 0 y 0 , x 1 < 1 y 1 → G[x 0 , x 1 ]) → G[y 0 , y 1 ]) ; ¬G[b 0 , b 1 ] where G[x 0 , x 1 ] ≡ F 0 [x 0 ] ∨ F 1 [x 1 ].
Proof of ⇐ : suppose that < 0 is well founded and let G[x 0 , x 1 ] be any formula.

Let F [x 0 ] ≡ ∀x 1 G[x 0 , x 1 ]. We have to prove ∀y 0 ∀y 1 G[y 0 , y 1 ], i.e. ∀y 0 F [y 0 ] with the hypothesis ∀y 0 ∀y 1 (∀x 0 ∀x 1 (x 0 < 0 y 0 , x

1 < 1 y 1 → G[x 0 , x 1 ]) → G[y 0 , y 1 ]
). But this implies : ∀y 0 (∀x 0 (x 0 < 0 y 0 → F [x 0 ]) → F [y 0 ]) and the result follows, because < 0 is well founded. q.e.d. We denote by ⊳ a strict well ordering on κ + , in M ; we suppose that its least element is ∅ and that the cardinal of each proper initial segment is ≤ κ. This gives a binary function from κ 2 + into {0, 1}, denoted by (x ⊳ y), which is defined as follows : (x ⊳ y) = 1 ⇔ x ⊳ y. We can extend it to the realizability model N A , which gives a function from (גκ + ) 2 into .2ג Lemma 28. The following propositions are realized : If i ε ,2ג i = 0, then (x ⊳ y) = i is a strict ordering of ג i κ + , which we denote by ⊳ i . If i is an atom of the Boolean algebra ,2ג then this ordering is total.

We have immediately : i) I -∀x גκ + ∀y גκ + ∀z גκ + ((x ⊳ y)∧(y ⊳ z) ≤ (x ⊳ z)) ; I -∀x גκ + ((x ⊳ x) = 0). ii) I -∀i 2ג ∀x גκ + ∀y גκ + ((ix ⊳ iy) ≤ i). iii) I -∀x גκ + ∀y גκ + ((x ⊳ y) = 0, (y ⊳ x) = 0 ֒→ x = y). It follows from (i) that, if i = 0, then (x ⊳ y) ≥ i is a strict ordering relation on גκ + . It follows from (ii), that this relation, restricted to ג i κ + , is equivalent to (x ⊳ y) = i. Finally, it follows from (iii), that the relation (x ⊳ y) = i, restricted to ג i κ + , is total when i is an atom of .2ג

q.e.d.

Lemma 29. The following propositions are realized : i) ∀i 2ג (the application x → (ix, (1i)x) is an isomorphism of strictly ordered sets from (גκ + ,⊳) onto ג( i κ + , ⊳ i ג(×) 1-i κ + , ⊳ 1-i )). ii) ∀i 2ג (either ג i κ + or ג 1-i κ + is a well founded ordered set).

i) It follows from proposition 19(v), that the application x → (ix, (1i)x) is a bijection from גκ + onto ג i κ + ג× 1-i κ + . In fact, it is an isomorphism of ordered sets, since we have :

I -∀i 2ג ∀x גκ + ∀y גκ + ((x ⊳ y) = (ix ⊳ iy)∨((1 -i)x ⊳ (1 -i)y)) and therefore : -∀i 2ג ∀x גκ + ∀y גκ + ((x ⊳ y) = 1 ↔ (ix ⊳ iy) = i ∧ ((1 -i)x ⊳ (1 -i)y) = 1 -i).
ii) By theorem 11, the relation (x ⊳ y) = 1 is well founded on גκ + . Thus, the result follows immediately from (i) and lemma 27.

q.e.d.

גκ countable

In this section, we consider some consequences of the hypothesis : (גκ is countable).

Non extensional and dependent choice

The formula ∀z(z ε / y → z ε / x) will be written x ⊆ y. The formula ∀x∀y∀y ′ ((x, y) ε f, (x, y ′ ) ε f → y = y ′ ) will be written Func(f ) (read : f is a function). The formula ∀z∃f (f ⊆ z ∧ Func(f ) ∧ ∀x∀y∃y ′ ((x, y) ε z → (x, y ′ ) ε f )) is called the non extensional axiom of choice and denoted by NEAC. It is easily shown [START_REF] Krivine | Realizability algebras II : new models of ZF + DC[END_REF] that ZF ε + NEAC ⊢ DC (axiom of dependent choice). On the other hand, we have built, in [START_REF] Krivine | Realizability algebras II : new models of ZF + DC[END_REF], a model of ZF ε + NEAC + ¬AC ; and other such models will be given in the present paper. In all these models, R is not well orderable.

Theorem 30.

There exists a closed c-term H such that H -(גκ is countable) → NEAC.

We apply theorem 21(ii) to the formula (x, y) ε z. We get a function symbol g such that C I -∀x∀y∀z((x, y) ε z → ∃ν גκ (x, g(ν, x, z)) ε z). Therefore, it suffices to prove NEAC in ZF ε , by means of this formula and the additional hypothesis : (גκ is countable). Now, from this hypothesis, it follows that there exists a strict well ordering < on גκ. Then, we can define the desired function f by means of the comprehension scheme : (x, y) ε f ↔ (x, y) ε z ∧ ∃ν גκ y = g(ν, x, z) ∧ ∀α גκ (α < ν → (x, g(α, x, z)) ε / z . Intuitively, f (x) = g(ν, x, z) for the least ν ε גκ such that (x, g(ν, x, z)) ε z.

q.e.d.

Subsets of R

Theorem 31. -(גκ is countable) → every bounded above subset of the ordered set (גκ + , ⊳) is countable.

Every proper initial segment of the well ordering ⊳ on κ + is of cardinal κ. Thus, there exists a function φ : κ × κ + → κ + such that, for each x ∈ κ + , x = ∅, the function α → φ(α, x) is a surjection from κ onto {y ∈ κ + ; y ⊳ x}. Then, we have immediately : I -∀x גκ + ∀y גκ + (y ⊳ x) = 1 ֒→ (∀α גκ (y = φ(α, x)) → ⊥) . This shows that, in N , there exists a surjection from גκ, onto every subset of גκ + which is bounded from above for the strict ordering ⊳. Thus, all these subsets of גκ + are countable, since גκ is. q.e.d.

Theorem 32. -(גκ is countable ) → there exists an injection from גκ + into R.

We have obviously -(גκ is countable → 2ג is countable), and therefore : -(גκ is countable → )2ג( גκ is equipotent to R). Now, by theorem 16, we have : -(there is an injection from גκ + = 2(ג κ ) into )2ג( גκ ). q.e.d.

Theorem 33. The following formula is realized : (גκ is countable ) → there exists an application i → X i from the countable Boolean algebra

2ג into P(R) such that : i) X 0 = {∅} ; i = 0 → X i is uncountably infinite ; ii) X i ×X i is equipotent with X i ; iii) X i ∩ X j = X i∧j and therefore i ≤ j → X i ⊂ X j ; iv) i∧j = 0 → X i∨j is equipotent with X i ×X j ; v) there exists a surjection from X 1 onto R. vi) if
A is a subset of 2ג and if there is a surjection from jεA X j onto X i , then i ≤ j for some j ε A. vii) if there is a surjection from X j onto X i , then i ≤ j ; viii) if i, j = 0, i∧j = 0, then there is no surjection from X i ⊕ X j onto X i ×X j .

For each i ε ,2ג let us denote by X i the image of ג i κ + by the injection from גκ + into R, given by theorem 32. i) The fact that X i is infinite for i = 0 is a consequence of theorem 25. If i = 1, X i is uncountable by (vi). If i = 0, 1 and X i is countable, then X 1-i is infinite and thus, there exists a surjection from X 1-i onto X i . This contradicts corollary 23. ii) by proposition 19(vi), ג i κ + ג× i κ + is equipotent with ג i (κ 2 + ), thus also with ג i κ + by proposition 20. iii) If a ε ג i κ + and a ε ג j κ + , then ia = a, and therefore (i∧j)a = ja = a. iv) This is proposition 19(v). v) Application of theorem 24. vi), vii), viii) Applications of corollary 23.

q.e.d. Theorem 33 is interesting only if the countable Boolean algebra 2ג is not trivial. In this case, R cannot be well ordered, by theorems 26 and 32. In section 3 below, given an arbitrary realizability algebra A, we build a new algebra B such that :

• N B realizes the formula : (גκ is countable).

• The (countable) Boolean algebra 2ג of the model N B is elementarily equivalent to the algebra 2ג of N A . In the sequel, we shall consider two interesting cases : 2ג is atomless ; 2ג has four ε-elements.

Collapsing גκ

Extending a realizability algebra

In the ground model M, we consider a realizability algebra A, the elementary combinators of which are denoted by B, C, I, K, W, cc and the continuations k π for π ∈ Π. We define the combinators B * , C * , I * , K * , W * , cc * , and the continuations k * π as follows : (reminder : the notation ξ ⋆ π ≻ ≻ ξ ′ ⋆ π ′ means ξ ⋆ π / ∈ ⊥ ⊥ ⇒ ξ ′ ⋆ π ′ / ∈ ⊥ ⊥). Let κ be an infinite cardinal of M, κ ≥ card(Λ ∪ Π) ; we consider the tree (usually called κ <ω ) of functions, the domain of which is an integer, with values in κ. Let P be the ordered set obtained by adding a least element O to this tree. P is an inf-semi-lattice, the greatest element 1 of which is the function ∅. The greatest lower bound of p, q ∈ P , denoted by pq, is p (resp. q) if p, q = O and q ⊂ p (resp. p ⊂ q). It is O in every other case.

Remark. P \ {O} = κ <ω is the ordered set used, in the method of forcing, to collapse (i.e. make countable) the cardinal κ.

Remark. For instance :

• If the Boolean algebra 2ג has four ε-elements or if it is atomless, in the model N A , the same goes for the model N B .

• Arithmetical formulas are elementary. Therefore, by theorem 39, the models N A and N B realize the same arithmetical formulas. In fact, this was already known, because they are the same as the arithmetical formulas which are true in M [START_REF] Krivine | Realizability in classical logic. In Interactive models of computation and program behaviour[END_REF][START_REF] Krivine | Realizability : a machine for Analysis and set theory[END_REF].

Arithmetical formulas and dependent choice

In this section, we obtain, by means of the previous results, a technique to transform into a program, a given proof, in ZF + DC, of an arithmetical formula F . We notice that this program is a closed c-term, written with the elementary combinators B, C, I, K, W, cc without any other instruction. Thus, let us consider a proof of ZF ε ⊢ NEAC → F . It gives us a closed c-term Φ 0 such that Φ 0 -NEAC → F , in every realizability algebra. We now describe a rewriting on closed c-terms, which will transform Φ 0 into a closed c-term Φ such that Φ -F in every realizability algebra A. By theorem 30, we have Φ 1 -(גκ is countable) → F with Φ 1 = λx(Φ 0 )(H)x. We apply this result in the algebra B, which gives : (Φ * 1 , 1) ||| -(גκ is countable) → F . Now, theorem 34 gives a closed c-term ∆ such that (∆, 1) ||| -(גκ is countable). It follows that (Φ * 1 , 1)(∆, 1) ||| -F , i.e. (Ψ, 1) ||| -F , with Ψ = CΦ * 1 ∆. Since F is an arithmetical formula, it is an elementary formula. Therefore, by lemma 36, we have Ψ -F 1 . Now, by lemma 37(iv), we have : τ 1 F -∀p גP ∀n int ((p ≪ n) = 1 ֒→ (F p → F )). We set p = 1 and n = 0, and we obtain τ 1 F 0 -F 1 → F . Finally, by setting Φ = (τ 1 F )0Ψ, we have Φ -F .

A relative consistency result

In [START_REF] Krivine | Realizability algebras II : new models of ZF + DC[END_REF], we have defined a countable realizability algebra A such that the characteristic Boolean algebra 2ג of the model N A is atomless (in this example, we have κ = N).

If we apply the technique of section 3, in order to collapse גκ, we obtain a realizability algebra B and a model N B , the characteristic Boolean algebra of which is also atomless. Indeed, the property : 2ג( is atomless) is expressed by an elementary formula. But now 2ג is the countable atomless Boolean algebra (they are all isomorphic). Therefore, by applying theorems 30 and 33, we obtain the relative consistency result (i) announced in the introduction.

Remark. Proposition 17

 17 (v) shows that, in the realizability model N , every non empty individual has support 1.

  set b = iβ F (c) and therefore, we have ξ -F [a, b, c]. Thus, by ( * ), we have ξ -F [a, g(α, a, c), c] for some α ∈ κ. Let us show that b = g(α, a, c) ⊂ sp(a)i = i ; there are three possible cases : If i = 0, then sp(a)i = i = 0 = 0 = Π, hence the result. If i = 1 and a = ∅, then sp(a)i = i = 1 = 1 = Π, hence the result. If i = 1 and a = ∅, then : b = g(α, a, c) = iβ F (c) = g(α, a, c) = β F (c) = g(α, ∅, c) = ⊤ = ∅, by definition of β F , hence the result. It follows that ηb = g(α, a, c). Now, we have seen that : ξ -F [a, b, c] and ξ -F [a, g(α, a, c), c].

B

  * = λnλxλyλz(xn)(C)yz = ( ((C)(BC)(C)(B)(BB)B) )C ; C * = λnλxλyλz(x)nzy = (C)(B)C ; I * = λnλx(x)n = C I ; K * = λnλxλy(x)n = (C)(B)K ; W * = λnλxλy(x)nyy = (C)(B)W ; k * π = λnλx(k π )(x)n = (C)(B)k π ; cc * = λnλx(cc)λk(xn)λnλx(k)(x)n = ( ((C)( ((C)( ((B)( ((B)(B)C) )C) )(C)(B)( ((B)(B)( ((B)(B)cc) )B) )B) )C) )B.

  Therefore, we have :B * ⋆ ν . ξ . η . ζ . π ≻ ≻ ξ ⋆ ν . Cηζ . π ; C * ⋆ ν . ξ . η . ζ . π ≻ ≻ ξ ⋆ ν . ζ . η . π ; I * ⋆ ν . ξ . π ≻ ≻ ξ ⋆ ν . π ; K * ⋆ ν . ξ . η . π ≻ ≻ ξ ⋆ ν . π ; W * ⋆ ν . ξ . η . π ≻ ≻ ξ ⋆ ν . η . η . π ; k * π ⋆ ν . ξ . ̟ ≻ ≻ ξ ⋆ ν . π ; cc * ⋆ ν . ξ . π ≻ ≻ ξ ⋆ ν . k * π . π.

(ξ)η ⋆ π ≻ ξ ⋆ η . π. I ⋆ ξ . π ≻ ξ ⋆ π. K ⋆ ξ . η . π ≻ ξ ⋆ π. W ⋆ ξ . η . π ≻ ξ ⋆ η . η . π. C ⋆ ξ . η . ζ . π ≻ ξ ⋆ ζ . η . π. B ⋆ ξ . η . ζ . π ≻ ξ ⋆ (η)ζ . π.

Remark. We note that this method applies to every realizability algebra such that we have : -2ג( is an atomless Boolean algebra).

Then, we can apply theorem 33, to the sets X i 0 , X i 1 which are the images of ג i 0 R, ג i 1 R by the injection from גκ + into R, which is given by theorem 32. By setting X = X i 1 , we obtain exactly the result (ii) of relative consistency announced in the introduction.

We define a new realizability algebra B by setting : Λ = Λ×P ; Π = Π×P ; Λ ⋆ Π = (Λ ⋆ Π)×P ;

(ξ, p) . (π, q) = (ξ . π, pq) ; (ξ, p) ⋆ (π, q) = (ξ ⋆ π, pq) ; (ξ, p)(η, q) = (Cξη, pq). B = (B * , 1) ; C = (C * , 1) ; I = (I * , 1) ; K = (K * , 1) ; W = (W * , 1) ; cc = (cc * , 1) ; k (π,p) = (k * π , p). We define, in M, a function symbol from P×N into {0, 1}, denoted by (p ≪ n), by setting : (p ≪ n) = 1 ⇔ p = O and the domain of p is an integer ≤ n. We define ⊥ ⊥ B , that we shall denote also by ⊥ ⊥ ⊥, as follows :

(ξ ⋆ π, p) ∈ ⊥ ⊥ ⊥ ⇔ (∀n ∈ N)((p ≪ n) = 1 ⇒ ξ ⋆ n . π ∈ ⊥ ⊥) for p ∈ P , ξ ∈ Λ and π ∈ Π.

In particular, we have (ξ ⋆ π, O) ∈ ⊥ ⊥ ⊥ for any ξ ∈ Λ, π ∈ Π. We check now that B is a realizability algebra.

• (ξ, p)(η, q) ⋆ (π, r) / ∈ ⊥ ⊥ ⊥ ⇒ (ξ, p) ⋆ (η, q) . (π, r) / ∈ ⊥ ⊥ ⊥ : Suppose that (ξ ⋆ η . π, pqr) ∈ ⊥ ⊥ ⊥ ; we must show (Cξη ⋆ π, pqr) ∈ ⊥ ⊥ ⊥ i.e. Cξη ⋆ n . π ∈ ⊥ ⊥ for (pqr ≪ n) = 1. Now, we have Cξη ⋆ n . π ≻ ≻ ξ ⋆ n . η . π which is in ⊥ ⊥ by hypothesis.

• (B * , 1) ⋆ (ξ, p) . (η, q) . (ζ, r) .(π, s) / ∈ ⊥ ⊥ ⊥ ⇒ (ξ, p) ⋆ (η, q)(ζ, r) .(π, s) / ∈ ⊥ ⊥ ⊥ :

Suppose that (ξ, p) ⋆ (η, q)(ζ, r) .(π, s) ∈ ⊥ ⊥ ⊥ i.e. (ξ ⋆ Cηζ . π, pqrs) ∈ ⊥ ⊥ ⊥.

We must show : • (I * , 1) ⋆ (ξ, p) . (π, q) / ∈ ⊥ ⊥ ⊥ ⇒ (ξ, p) ⋆ (π, q) / ∈ ⊥ ⊥ ⊥ : Suppose that (ξ ⋆ π, pq) ∈ ⊥ ⊥ ⊥ ; we must show :

(I * ⋆ ξ . π, pq) ∈ ⊥ ⊥ ⊥ i.e. I * ⋆ n . ξ . π ∈ ⊥ ⊥ for (pq ≪ n) = 1. Now, we have :

∈ ⊥ ⊥ ⊥ : Suppose that (ξ ⋆ π, pr) ∈ ⊥ ⊥ ⊥ ; we must show :

For each closed c-term τ (built with the elementary combinators and the application), we define τ * by recurrence, as follows : if τ is an elementary combinator, τ * is already defined ; we set (tu) * = Ct * u * . In the algebra B, the value of the combinator τ is τ B = (τ * A , 1). In particular, the integer n of the algebra B is n B = (n * , 1). We have 0 B = (0 * , 1) = (K * , 1)(I * , 1) ; therefore : 0 * = CK * I * . We have (n + 1) B = ((n + 1) * , 1) = (σ * , 1)(n * , 1) ; therefore : (n + 1) * = Cσ * n * . Thus, we have, for every n ∈ N : n * = (Cσ * ) n 0 * . We define the proof-like terms of the algebra B as terms of the form (θ, 1) where θ is a proof-like term of the algebra A. The condition of coherence for B is therefore :

Notations.

The realizability models associated with the algebras A and B are denoted respectively by N A and N B . The truth value of a formula F in the realizability model N B will be denoted by F B or also |||F |||. We write (ξ, p) -B F or (ξ, p) |||-F to say that (ξ, p) realizes the formula F in the realizability model N B .

The collapsing function

We now define G ∈ M in the following way : G = {((m, α), (π, p)) ; m ∈ N, α ∈ κ, π ∈ Π, p ∈ P \ {O}, p(m) is defined and p(m) = α}.

Theorem 34. The formula (G is a surjection from N onto גκ) is realized in the model N B . More precisely, we have :

By lemma 6, we can replace the formula (m, α) ε G, which is ¬((m, α) ε / G), with the set of terms ¬ ((m, α) ε / G) which is {k (π,p) ; (π, p) ∈ |||(m, α) ε / G|||}. Therefore, we have to show that :

This is obvious if pp ′ q = O. Otherwise, p and p ′ are compatible, thus α = α ′ .

Let n be such that (pp

Now, we have (ξ, q) ||| -⊥ by hypothesis on (ξ, q), thus (ξ, q) ⋆ (π ′ , 1) ∈ ⊥ ⊥ ⊥.

Since (q

By lemma 12(ii), in which we

But we have (η, p 0 ) ||| -{(n * , 1)} → (n, α) ε / G by hypothesis on η. Since (p 0 q 0 ≪ n) = 1, we can define q ∈ P with domain n + 1 such that q ⊃ p 0 q 0 and q(n) = α. Then, we have (̟, q) ∈ |||(n, α) ε / G||| by definition of G.

We have thus (η,

But we have p 0 q = q, and therefore (η

q.e.d. Corollary 35. N B realizes the non extensional axiom of choice and thus also DC.

Indeed, by theorem 34, the model N B realizes the formula : (גκ is countable). But we have κ = card(Λ ∪ Π ∪ N), since κ ≥ card(Λ ∪ Π ∪ N) and κ = card(P ). Therefore N B realizes NEAC, by theorem 30.

q.e.d.

Remark. Intuitively, the model N B is an extension of the model N A obtained by forcing, by collapsing גκ. We cannot apply directly the usual theory of forcing, because גκ is not defined in ZF.

Elementary formulas

Elementary formulas are defined as follows, where t, u are ℓ-terms, i.e. terms built with variables, individuals, and function symbols defined in M:

• ⊤, ⊥ are elementary formulas ;

• if U is an elementary formula, then t = u ֒→ U and ∀x U are too ;

• if U, V are elementary formulas, then U → V too ;

• if U is an elementary formula, then ∀n int U too.

Remark. t = u is an elementary formula, and also t ε / גu (which can be written f (t, u) = 1 where f is the function symbol defined in M by :

For each elementary formula U, we define two formulas U p and U p , with one additional free variable p, by the conditions below. Condition 1 defines U p by means of U p ; conditions 2 to 5 define U p by recurrence :

), in other words :

Lemma 36. For each closed elementary formula U, we have :

Proof by recurrence on the length of the formula U. 1. We have (ξ, p) ||| -U ⇔ (ξ, p) ⋆ (π, q) ∈ ⊥ ⊥ ⊥ for (π, q) ∈ |||U|||, that is : (ξ ⋆ π, pq) ∈ ⊥ ⊥ ⊥ for every π ∈ U q , by the recurrence hypothesis, or also :

2 and 3. Obvious.

4. Any element of |||U → V ||| has the form (ξ, q) . (π, r), i.e. (ξ . π, p), with p = qr, (ξ, q) ||| -U and (π, r) ∈ |||V ||| ; by the recurrence hypothesis, this is equivalent to ξ . π ∈ U q → V r .

We have |||∀n

q.e.d.

Lemma 37.

For each elementary formula U, there exist two proof-like terms θ 0 U , θ 1 U , such that : i)

We first show (iii) and (iv) from (i) and (ii).

(i)⇒(iii) Let p ∈ P and n ∈ N be such that (p ≪ n) = 1 ; let ξ -U and π ∈ U p . We have to show : λnλxλm(θ 0

Now, by the definition (1) of U p , there exist q ∈ P , m ∈ N and ̟ ∈ U q such that (pq ≪ m) = 1 and π = m . ̟. Therefore, we have (q ≪ m) = 1 and, by (i) :

We have to show : λnλx(θ

But, by the definition (1) of U p , in which we set q = p, we have ξn -U p ; therefore, the desired result follows from (ii). We now show (i) and (ii) by recurrence on the length of U.

then, by the recurrence hypothesis, we have :

r . Thus, by (4), we obtain θ 0 U = λnλxλy(θ 0 W n)(x)(τ 1 V n)y. Now, let ξ -V q → W r ; then, by the recurrence hypothesis, we have :

we first prove :

Lemma 38. There exist two proof-like terms T 0 , T 1 such that, for every closed formula

iii) For every elementary formula V [n], we have :

i) We apply lemma 12(ii) to the realizability algebra A, with : ς = σ, O = 0, φ = Cσ * and α = 0 * . For every n ∈ N, ζ ∈ Λ and π ∈ Π, we obtain :

Thus, we have T

ii) We apply now lemma 12(i) to the realizability algebra B, with : ς = σ B , O = 0 B , φ = (CΣ, 1) α = (Ω, 1) and Ω = λdλf λa a ; Σ = λnλdλf λa(ndf )(f )a. Since n B = (σ B ) n 0 B = (n * , 1), we get, by setting Σ 2 = (C) 2 Σ :

(n * , 1) ⋆ (CΣ, 1) . (Ω, 1) . (̟, 1) ≻ ≻ ((Σ 2 ) n Ω, 1) ⋆ (̟, 1) because ((CΣ, 1)) n (Ω, 1) = ((Σ 2 ) n Ω, 1). We write this as :

Now, we apply lemma 13(ii), with φ = σ and α = 0 (note that Σ 2 = (C) 2 Σ satisfies the hypothesis of lemma 13).

We obtain

Finally, if we set T 1 = λf λn((((n0)(C)Σ)Ω)(C)Bσ)f 0, we have :

iii) This follows immediately from (i) and (ii), by definition of (∀n int V [n]) p .

q.e.d. We can now finish the proof of lemma 37, considering the last case which is :

, hence the result. q.e.d.

Theorem 39.

The same closed elementary formulas, with parameters in M, are realized in the models N A and N B .

Let U be a closed elementary formula, which is realized in N A and let θ be a proof-like term such that θ -U. Then, we have (τ 0 U )nθ -U p for (p ≪ n) = 1, by lemma 37(iii) ; therefore, setting p = ∅ = 1, we have ((τ 0 U )0θ, 1) ||| -U by lemma 36. Therefore, the formula U is also realized in the model N B . Conversely, if (θ, 1) ||| -U with θ ∈ QP, we have θ -U 1 , by lemma 36. Thus τ 1 U 0 θ -U by lemma 37(iv).

q.e.d.

A two threads model 2ג( with four elements)

In this section, we suppose that A is a standard realisability algebra [START_REF] Krivine | Realizability algebras II : new models of ZF + DC[END_REF]. This means, by definition, that the terms and the stacks are finite sequences, built with : the alphabet B, C, I, K, W, cc, k, . , (, ), [, ] a countable set of term constants (also called instructions), a countable set of stack constants and that they are defined by the following rules : B, C, I, K, W, cc and all the term constants are terms ; if t, u are terms, the sequence (t)u is a term ; if π is a stack, the sequence k[π] is a term (denoted by k π ) ; each stack constant is a stack ; if t is a term and π is a stack, then t . π is a stack.

If t is a term and π is a stack, then the ordered pair (t, π) is a process, denoted by t ⋆ π.

A proof-like term of A is a term which does not contain the symbol k ; or, which is the same, a term which does not contain any stack constant.

We now build a realizability model in which 2ג has exactly 4 elements. We suppose that there are exactly two stack constants π 0 , π 1 and one term constant d.

For i ∈ {0, 1}, let Λ i (resp. Π i ) be the set of terms (resp. stacks) which contain the only stack constant π i . For i, j ∈ {0, 1}, define ⊥ ⊥ i j as the least set P ⊂ Λ i ⋆ Π i of processes such that :

If at least two out of three processes ξ⋆π, η⋆π, ζ ⋆π are in P , then d⋆2 . ξ . η . ζ . π ∈ P .

Remarks.

The preorder ≻ on Λ ⋆ Π was defined at the beginning of section 1. We express condition 2 by saying that P is saturated in

Following this definition of ≻, the constant d is a halting instruction. Indeed, we have :

We define ⊥ ⊥ by : Λ

We may suppose that : ( * )

Therefore ξ ′ 0 ⋆ π ′ 0 ∈ ⊥ ⊥ i j , which is false. q.e.d.

3. Suppose that two out of the processes ξ⋆π, η⋆π, ζ⋆π are in ⊥ ⊥ i

Theorem 42. This realizability algebra is coherent.

Let θ ∈ QP be such that θ ⋆ π 0 ∈ ⊥ ⊥ 0 0 and θ ⋆ π 1 ∈ ⊥ ⊥ 1 1 . Then θ ⋆ π 0 ∈ ⊥ ⊥ 0 0 ∩ ⊥ ⊥ 0 1 which contradicts lemma 41.

q.e.d.

Lemma 43. d 2 -(the boolean algebra 2ג has at most four ε-elements).

We show that d 2 -∀x 2ג ∀y 2ג (x = 0, y = 1, x = y → x∧y = x). Let i, j ∈ {0, 1}, ξi = 0, ηj = 1, ζi = j and π ∈ i∧j = i . Since i∧j = i = ∅, we have i ≤ j. Thus, there are three possibilities for (i, j) : i = j = 0 ; i = j = 1 ; i = 0, j = 1.

In each case, two out of the terms ξ, η, ζ realize ⊥. Thus, we have

q.e.d.

Remark. If π ∈ Π \ (Π 0 ∪ Π 1 ), then ξ ⋆ π ∈ ⊥ ⊥ for every term ξ. Thus, we can remove these stacks and consider only Π 0 ∪ Π 1 .

We define two individuals in this realizability model :

It follows that γ 0 , γ 1 are not ε-empty and that every ε-element of γ 0 , γ 1 is = 0, 1. Therefore :

The Boolean algebra 2ג has exactly four ε-elements.

We have ξ -∀x 2ג (x ε γ 0 , x ε γ 1 → ⊥) for every term ξ : Indeed, let i, j ∈ {0, 1} ; using lemma 6, we replace the formula i ε γ j , i.e. ¬(i ε / γ j ), with ¬ (i ε / γ j ) which is {k π ; π ∈ Π i+j }. Therefore, we have to check :

In the same way, we get : λxλyλz z -∀x∀y(x ε γ i , y ε γ i , x = y → ⊥).

It follows that γ 0 , γ 1 are singletons and that their ε-elements are the two atoms of .2ג

2ג has four ε-elements and גκ is countable

We now apply to the algebra A the technique expounded in section 3, in order to make גκ countable ; this gives a realizability algebra B.

In this case, we have κ = N, and therefore κ + = P(κ) = R. Now, there is an elementary formula which express that the Boolean algebra 2ג has four ε-elements, for instance : ∃x 2ג {x = 0, x = 1} ∧ ∀x 2ג ∀y 2ג (x = 1, y = 1, x = y → xy = 0). Therefore, the realizability model N B realizes the following two formulas : 2ג( has four ε-elements) ; (גκ is countable) ; and therefore also NEAC by theorem 30. Let us denote by i 0 , i 1 the two atoms of 2ג ; thus, we have i 1 = 1i 0 .

We suppose that M |= V = L ; thus, there exists on κ + = P(N) = R a strict well ordering ⊳ of type ℵ 1 . This gives a function from R 2 into {0, 1}, denoted by (x ⊳ y), which is defined as follows : (x ⊳ y) = 1 ⇔ x ⊳ y. We can extend it to N A and N B , which gives a function from (גR) 2 into .2ג From lemmas 28 and 29, we get : For i = i 0 or i 1 , the relation (x ⊳ y) = i is a strict total ordering on ג i R and one of these two relations is a well ordering ; in order to fix the ideas, we shall suppose that it is for i = i 0 . The relation (x ⊳ y) = 1 is a strict order relation on גR, which is well founded. The application x → (i 0 x, i 1 x) from גR onto ג i 0 R×ג i 1 R is an isomorphism of strictly ordered sets. It follows from theorem 25, that each of the sets ג i 0 R, ג i 1 R contain a countable subset. By corollary 23, there is no surjection from each one of the sets ג i 0 R, ג i 1 R onto the other. Thus, there is no surjection from N onto ג i 0 R or onto ג i 1 R. Therefore, the well ordering on ג i 0 R has, at least, the order type ℵ 1 in N B . Now, by theorem 31, every subset of גR, which is bounded from above for the ordering ⊳, is countable ; thus, the same goes for the proper initial segments of ג i 0 R and ג i 1 R, since these sets are totally ordered and גR is isomorphic to ג i 0 R×ג i 1 R. It follows that the well ordering on ג i 0 R is at most ℵ 1 , and therefore exactly ℵ 1 .

Moreover, there exists, on ג i 1 R, a total ordering, every proper initial segment of which is countable.