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Introduction

The notion of realizability algebra, which was introduced in [17, 18], is a tool to study the
proof-program correspondence and to build models of set theory.

It is a variant of the well known notion of combinatory algebra, with a new instruction cc,
and a new type for the environments.

The sets of forcing conditions, in common use in set theory, are (very) particular cases of
realizability algebras.

We show here how to extend an arbitrary realizability algebra, by means of a certain set
of conditions, so that the axiom DC of dependent choice is realized.

In order to avoid introducing new instructions, we use an idea of A. Miquel [19].

This technique has applications of two kinds :

1. Construction of models of ZF + DC.

When the initial realizability algebra is not trivial (that is if the associated Boolean
algebra 12 is # {0, 1}, in other words, if we are not in the case of forcing), then we obtain
always a model of ZF + DC in which R is not well orderable.

We show in this way, for instance, the relative consistency over ZF, of the following two
theories :

i) ZF + DC + there exists an increasing function i — X;, from the countable atomless
Boolean algebra B into P(R) such that :

Xo={0};i# 0= X, is not countable ;

Xi/\j = Xz N Xj ;

tANj =0 = X,;is equipotent with X; x X ;

X; x X; is equipotent with Xj ;

there exists a surjection from X; onto R ;

if there exists a surjection from X; onto X;, then ¢ < j ;

more generally, if A C B and if there exists a surjection from Uje 4 X; onto X;, then
1 < j for some j € A.

ii) ZF + DC + there exists X C R such that :

X is not countable and there is no surjection from X onto ¥,

(and therefore, every well orderable subset of X is countable) ;
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X x X is equipotent with X ;

there exists a total order on X, every proper initial segment of which is countable ;
there exists a surjection from X xN; onto R ;

there exists an injection from N; (thus also from X x¥;) into R.

2. Curry-Howard correspondence.

With this technique of extension of realizability algebras, we can obtain a program from
a proof, in ZF + DC, of an arithmetical formula F', which is a A\.-term, that is, a A\-term
containing cc, but no other new instruction.

This is a notable difference with the method given in [14, 15], where we use the instruction
quote and which is, on the other hand, simpler and not limited to arithmetical formulas.

It is important to observe that the program we get in this way does not really depend on
the given proof of DC — F' in ZF, but only on the program P extracted from this proof,
which is a closed A\ .-term. We get it by means of an operation of compilation applied to P
(look at the remark at the end of the introduction of [17]).

Finally, apart from applications 1 and 2, we may notice theorem 19, which gives an
interesting property of every realizability model : as soon as the Boolean algebra J2 is
not trivial (i.e. if the model is not a forcing model), there exists a non well orderable
individual.

1 Generalities

Realizability algebras

It is a first order structure, which is defined in [17]. We recall here briefly the definition
and some essential properties :

A realizability algebra is made up of three sets : A (the set of terms), II (the set of stacks),
A % 1II (the set of processes) with the following operations :

(&,m) — (&)n from A? into A (application) ;
(&,m) — &om from AXII into I (push) ;

(&,m) = & from AXIT into A % IT (process) ;
7 — ky from IT into A (continuation).

There is, in A, distinguished elements B, C E, |, K, W, cc, called elementary combinators
or nstructions.

Notation.

The term (... (((§)m)n2) .. .)n, Will be also written (§)mn ... 70, or EMmn ... 1y.

For instance : {n¢ = (§)n¢ = (En)¢ = ((E)n)¢.

We define a preorder on A xII, denoted by >, which is called execution ;

Exm =& xn' is read as : the process & x 7 reduces to &' x 7.

It is the smallest reflexive and transitive binary relation, such that, for any &7, € A
and 7, w € II, we have :

(En*m>=Exn.m.
[x&em > Exm.



Kx&enem = Exm.

Exéenerm = (En*m.

Wx&enem=Exnen.m.

CxéeneCoem>=ExCono.

Bx&eneCom = (&)(n)¢ *m.

ccx&om > Exky o

ke *& o > ExT.

We are also given a subset I of A % II such that :

Exm=xn, xn’ el = Exme L.

Given two processes & x m, & 7/, the notation £ x 7 » £ x 1’ means :
Exmg L=+’ ¢ 1.

Given two terms &, & € A, the notation £ » £ means :

(Vrell)(xm¢ L=¢*m¢ L)
Therefore, obviously, £*x7m =& *xn' = Exm = & x7'.

Finally, we choose a set of terms QP4 C A, containing the elementary combinators :
B,C,E,I,K, W, cc and closed by application. They are called the proof-like terms of the
algebra A. We write also QP instead of QP 4 if there is no ambiguity about A.

The algebra A is called coherent if, for every proof-like term 6 € QP 4, there exists a
stack 7 such that 0 x 7w ¢ L.

c-terms and A-terms

The terms of the language of combinatory algebra, built with variables, elementary combi-

nators and the application (binary operation) will be called combinatory terms or c-terms,
in order to distinguish them from the terms of the algebra A, which are elements of A.
Each closed c-term (i.e. without variable) takes a value in the algebra A, which is a
proof-like term of A.

Given a c-term t and a variable z, we define inductively on ¢, a new c-term denoted
by Axt, which does not contain z. To this aim, we apply the first possible case in the
following list :

. Azt = (K)t if t does not contain z.

CArx =l

. Aztu = (CAx(E)t)u if u does not contain x.

. Aztx = (E)t if t does not contain .

Azt = (W)Ax(E)t (if ¢ contains ).

Az (t)(u)v = Ax(B)tuw (if uv contains ).

In [17], it is shown that this definition is correct. This allows us to translate every A-term
into a c-term. In the following, almost every c-term will be written as a A-term.

O W N~

The fundamental property of this translation is given by theorem 1, which is proved
in [17] :

Theorem 1. Let t be a c-term with the only variables x1,...,x, ; let &,...,& € A and
7 €Il Then Axy .. Axpt*x& o oo o &y om =t /21, ..., &n/an] * T



Realizability models

The language we use in order to formalise set theory is made up of the three binary
relation symbols ¢, ¢, C and of some function symbols. The only logical symbols are
1, =,V
Notations. Let A;,..., A,, A, B be some formulas. Then :
A — 1 is written —A;
A — (Ay— - — (A, — B)---) is written Ay, As,..., A, = B;
—Ay,...,mA, = L iswritten A; V...V A, ;
(A1,..., A, — L) — L iswritten A; A...ANA, ;
—Va(Ay, ..., A, — L) is written Jx{A;,..., A} ;
acbis the formula a¢b— L ;a€bisa¢ b— L.
In this language, we write the axioms of a theory named ZF., which are given in [18].
The usual set theory ZF is supposed written with the only symbols ¢, C.
Then, ZF, is a conservative extension of ZF.
Let us consider a coherent realizability algebra A , defined in a model M of ZFL, which is
called the ground model. The elements of M will be called individuals (in order to avoid
the word set, as far as possible).
We defined, in [18], a realizability model, denoted by N4 (or even N, if there is no
ambiguity about the algebra A).
It has the same domain (the same individuals) as M and the interpretation of the function
symbols is the same as in M.
Each closed formula F' of ZF, with parameters in M, has two truth values in N, which
are denoted by ||F|| CII and |F| C A. Let us give their definitions :
|F'| is defined immediately from ||F'|| as follows :

EelF| & (Vme||F|)éxme L.
We shall write & |- F' (read “¢ realizes F' 7) for & € |F)|.
| F'|| is now defined by recurrence on the length of F' :
e [ is atomic ;
then F' has one of the forms T, L, a¢b, a C b, a ¢ b where a,b are parameters in M.
We set :
ITI =05 [[LI =115 [lagbll ={r € IL; (a,7) € b}.
la C b, |la ¢ b|| are defined simultaneously by induction on (rk(a) U rk(b),rk(a) Nrk(b))
(rk(a) being the rank of @ in M).

laco|=J{g-m e mell, (en) €a, &l c b}
lagol = J{g.¢ m &€ eh mell, (em)eb l-aCe, & |- cCal.

e F=A— B;then |F||={(.7m;¢|F A, 7me|B|}.
o F=VzA:then |F|=|]JllA[a/z]].

Given a set of terms X and a formula F', we shall use the notation X — F' as an extended
formula ; its truth value is || X — F||={{.7; £ € X, 7 € ||F||}.
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The following theorem, proved in [18], is an essential tool :

Theorem 2 (Adequacy lemma).
Let Ay, ..., A,, A be closed formulas of ZF., and suppose that x1 : Ay,...,z, : A, Ft: A.

If &Gl A&l An then t&/m, .. & /z] | A
In particular, if =t: A, then t |- A.

Let I be a closed formula of ZF., with parameters in M. We say that N4 realizes F
or that F' is realized in N4 (which is written N4 |- F or even | F), if there exists a
proof-like term 6 such that 6 |- F'.

Two formulas Fzy,...,z,] and G[z1, ..., x,] of ZF. will be called interchangeable if the
formula VY, ... Vo, (Flxy,...,x,] <> G[z1,. .., 2,)) is realized.
It is, for instance, the case if ||Flay,...,a,]|| = ||Gla1, ..., a]]]
or also if [|Flay,...,a,]|| = ||-—Glay, ..., a)l
for every aq,...,a, € M.

It is shown in [18] that all the azioms of ZF. are realized in N4, and thus also all the
axioms of ZF.

Type-like sets and equality

We set 1X = X xII for every individual X of M ; we define the quantifier V23X as follows :
V2 Fla]|| = Upex 1F[alll

Of course, we set J2'¥ Flz] = -VaX—F[z].

The quantifier V2% has the intended meaning, which is that the formulas V2'X F[z] and

Va(xelX — F[z]) are interchangeable. This is shown by the :

Lemma 3.

Cl |- Vo™X Flz] — Vo™X —=F[a] ;

cc |k Vo X ==Flz] — VaX F[z] ;

Vot —=F[a]]| = [Va(=F (2] — 2 ¢1X)].

Immediate.

Q.E.D.
Each functional f: M™ — M, defined in M by a formula of ZF with parameters, gives
a function symbol, that we denote also by f, and which has the same interpretation in
the realizability model N 4.
If f:X;x---xX, =Y is a function in M, its interpretation in N4 is also a function
fIXyx---x1X, — Y.
The formula x =y is, by definition, Vz(x¢z — y#z) (Leibniz equality).
Si t, u are terms of the language of ZF and F is a formula of ZF., with parameters in M,
we define the formula ¢t =wu — F. When it is closed, its truth value is :
lt=u—=F||=|T||=0 if MEt#u;|t=u—= F||=|F| if MEt=u.
The formula ¢t =wu — L is written t # w.
The formula t; =u; <= (o =uy = -+ = (t, = u, < F)---) is written :
ty =uq,to = usg, ..., t, = u, — F.
The formulas ¢t =u — F and t = u — F are interchangeable, as is shown in the :
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Lemma 4.
Azl |-VaVy((e=y—F) = (r=y—F)) ;
Az Ay(co)Mk(y) (k) |F VaVy ((r =y — F) —» (x =y — F)).

Immediate.
Q.E.D.

Proposition 5.

Let t,ty,... ty,u,uy,...,u, be terms which are built with variables x1, ...,z and func-
tional symbols of M.

If ME V.. Vop(ty =ug,..., tg = up =t =u), then :

I Vay .. Vaop(ty = ugy .oty = up = t = u).

If ME (Vo; € Xy)...(Vag € Xp)(th = ug, ..oyt = up — t = u), then :

I | vaiXr .‘v’xixk(tl =Up, ...t =up —t=u).

Trivial.
Q.E.D.

The set 2 = {0, 1} is equipped with the trivial boolean functions, written A, v, —.
The extension to N4 of these operations gives a structure of Boolean algebra on J2.
It will be called the characteristic Boolean algebra of the model N 4.

Conservation of well-foundedness

Theorem 6 says that every well founded relation on a set X, in the ground model M,
gives a well founded relation on JX in the realizability model .

Theorem 6. Let f: X? — 2 be such that f(x,y) =1 is a well founded relation on X, in
the ground model M. Then, for every formula F|x] of ZF. with parameters in M :

Y | Ve (VX (fy, @) = 1 = Fly]) = Flz]) = Va'* Fla]

with Y =AA and A= XaAf(f)(a)af.

Let us fix @ € X and let ¢ |- Vo™X (VX (f(y,2) = 1 < F[y]) — Flz]). We show, by
induction on a, following the well founded relation f(z,y) = 1, that Y x{ .7 € 1L for
every 7 € || Fa]||.
Thus, suppose that 7 € ||Fla]| ; since Y x&.m > & x Y., we need to show that
¢xYE.m € 1. By hypothesis, we have ¢ |- Vy*X(f(y,a) =1 < Fly]) — Fla] ; thus, it
suffices to show that :
Y¢ | f(ba) =1 — F[b] for every b € X. This is clear if f(b,a) # 1, by definition
of —.
If f(b,a) =1, we must show Y¢ | F[b], ie. Yx&.p € L for every p € ||F[b]||. But
this follows from the induction hypothesis.

Q.E.D.

Integers

Let £,n € A and n € N ; we define (£)"n € A by setting (§)’n =1n; (£)"T'n = (&)(&)™n.
For n € N, we define n = (¢)"0 with 0 =Kl and o = (BW)(B)B ;
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n is “the integer n” and o the “successor” in combinatory logic.
The essential property of 0 is: oxvelenem>=v*x&én.m.

Weset Ngy={(n,n.m); n €N, xell};itis shown below that N4 is the set of integers
of the realizability model N 4.

We define the quantifier V;Uint as follows :
Ve Fz]|| = {n.7; neN, 7 € ||F[n]|}.
that is also : '
Ve Fla]|| = Vo™ ({n} — Fln)|.

The formulas V2™ F[z] and Va(z e N4 — F[z]) are interchangeable, as is shown in the :

Lemma 7.

Az ny(y)(x)n | Ye™ Flz] — V2™ ——F[z] ;
ArAn(cc)(x)n |- Vo' ——F[z] — V2™ F[z] ;
Wz == F[a]]| = [Va(=Flz] = 2 ¢Na)|.

S e

Immediate
Q.E.D.

Lemma 8.

i) K|F Ve(rgIN — ¢ Ny).

i) Ax(2)0 - 0F N4 — L7 Aa(f)(0)r |- Vo™ (g + 1) £ Na - y ¢ Na).

iii) 1| V2™ (vy™(Fly] — Fly + 1)), F[0] — Flz]) for every formula F[x] of ZF..

i) and ii) Immediate.
iii) We show that | || Vot (Vy™(F[y] — Fly + 1]), F[i] — Flz + i]) for every i € N.
Let n €N, ¢ |F Vy™(Fly] = Fly + 1)), a |- F[i] et w € ||F[n + i]||. We must show :
n*¢.a.m € 1L, which is done by recurrence on n.
If n=0,wehave Ox¢p.a.m» a*xm € L since 7 € || F[i]].
Now, we have n+ 1o eT = 0*xNePe T > nk . pa.n. But we have o |- F[i]
and ¢ | Fi] = Fli+1]. Thus, we have ¢« | F[i+1]; but we have 7w € ||[F[n+i+1]].
It follows that nx¢.¢pa.m € 1L by the recurrence hypothesis.

Q.E.D.
Lemma 8(i) shows that N4 is a subset of IN.
But it is clear that JN contains 0 and is closed by the function n +— n + 1.
Now, by lemma 8(ii) and (iii), N4 is the smallest subset of IJN which contains 0 and is
closed by the function n — n + 1. Therefore :
N4 s the set of integers of the model N 4.

The following lemma will be used in section 3.

Lemma 9 (Storage lemma).

Let ¢,0,0 € A be such that ¢ » 0,0 % 0 and © = AfAn(n) grz(g)(f)=z.
For everyn e Nym €Il and £, ¢, € A, we have :
Oxde(S)"OelevemEx(O) ..

It suffices to show that (¢)"O x AgAz(g)(¢)z+ & e em = & * ()"« m, which is done by
recurrence on n. For n = 0, we have :



O*xAgAz(g)(@)ze e em = 0% AgA2(g)(P)z e E e em > Exvu .
Now, we have :
()OO * AgAz(g)(@)z e E v em = 0% (6)"O e AgA2(g)(P)z Evare

7= ()"0 % AgA2(9)(9)z « (AgAz(9)(9)2)E e v e
= (AgAz(9)(9)2)€ * (@)™« ™ Dby the recurrence hypothesis
= & x (¢) ()"« ™ which is € ()" M. .

Q.E.D.

2 The characteristic Boolean algebra ]2

Function symbols

Let us now define the principal function symbols commonly used in the sequel :
e The projections pro: X xY — X and pr;: XxY — Y defined by :
pro(z,y) =z, pri(z,y) =y
give, in N4 a bijection from J(X xY") onto IX x Y.
e The function app : Y*¥xX — Y (read application) defined in M by app(f,z) = f(x)
gives, in Ny, an injection from J(YX) into (JY)?X. Indeed, we have :
| - VAV (Ve (app(f, ) = app(g, 7)) — f = g).
We shall write f(z) for app(f,x).
e Let sp: M — {0,1} (read support) the unary function symbol defined by :
sp(0) =0 ; sp(z) = 1if z # 0.
In the realizability model N4, we have sp : N'— J2.
e Let P:{0,1} x M — M (read projection) the binary function symbol defined by :
P(0,2)=0;P(l,z) ==
In the realizability model N4, we have P :J2xN — N.
We shall write P;(z) instead of P(i, x).
When ¢, u are terms with values in J2, we write ¢t < u for tru = t.

Proposition 10.

i) 1| ViV (P(Py(x)) = Piny(2)).

i) ||~ Vi¥?Ve(Pi(z) =2 = sp(x) <1i).

i) If ) € E, then | |- Yo BV (Py(x) e IE).

w) If f: M™ —= M is a function symbol such that f(0,...,0) =0, then :
I VitsVey Ve, (P(f (2, 2n) = f(Pi(21), -, Pi(n))).

Trivial.
Q.E.D.

Because of property (iv), we shall define, as far as possible, each function symbol f in M,
so that to have f((,...,0)=0.

e Thus the ordered pair (z,y) is changed by setting (0, 0) = (. Then, we have :
||l ViVavy (Pi((x,y)) = (Pi(x), Pi(y))).
e We define the binary function symbol U : M? — M by setting : alUb=aUb.

Remark. The extension to A/ of this operation is not the union U.
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The operation J;

Let £ € M be such that ) € E. In M, we define J;F for i € 2 by setting :
JE =30} ={0}x11; ;;F =JF = ExIL
In this way, we have now defined J;E in N, for every i J2.

Proposition 11.

i) | |- Vit?YaVy(Pi(x Uy) = Pi(x) U Pi(y)).
i) | |- Vi2Vi2Va (P (r) = Pi(x) U Pi(7)).
iii) | | ViV j2VaVyVz(inj = 0,2 = Pi(z) U P;(y) = Pi(2) = Pi(7))
I |- ViV 2YavyVz(ing = 0,2 = P;(z) U Pi(y) — Pj(z) = P;(y))
w) || ViV By Bz (inj = 0, 2 = Pi(2) U Pj(y) = zeJi; E)
Trivial.
Q.E.D.

Proposition 12.

If 0 € E, F', the following formulas are realized :

i) 1;E increases with i. In particular, J;E C JE.

ii) The e-elements of J;E are the Pi(x) for xelE.

iii) The e-elements of J;E are those of JE such that sp(x) < i

iv) The only e-element common to L E and 3;_;E is ().

v) If inj =0, then the application x — (P;i(x), P;(x)) is a bijection from J;;E
onto L ExJ;E. The inverse function is (x,y) — x Uy.

’UZ) JZ(EXE,) = JZEXJZE,

We check immediately i), ii), iii), iv) below :
i) | |- Vi?YiRVa(ing =i — (2L E — 2 ¢ LE)).
i) | |- ViV B (Py(2) ¢ E — L) ;| |- Vi?Va?B(Py(x) # 2 — o ¢ LE).
i) 1 | VYT (2 £ — sp(a)i £ sp(e)) ; | |- VS (sp(a)i £ sp(a) = o £ LE)
iv) || VilVa Py (Pi(x) = Pioi(y) = Pi(z) = 0).
v) By proposition 10(iv), we have | | Vi*2VaVy(Pi((z,v)) = (Pi(z), Pi(y))).
By proposition 11(iii,iv), if 2,y e JE, there exists ze],V]E such that :
Pi(2) = Pi(x),P;(2) = Pj(y), namely z = P;(x) LUP;(y).
vi) By proposition 11(ii), we have P;(z) UP;(x) = Py (x) =z if el E
Q.E.D.

Proposition 13. Let E,E' € M be such that ) € E,E" and E is equipotent with E'.
Then |- Vi?(3,E is equipotent with 1, E').

Let ¢ be, in M, a bijection from E onto E’, such that ¢(#) = (. Then ¢ is, in N, a
bijection from JE onto JE'. But we have immediately : | |- Vi*2Va'¥(p(P;z) = P; ¢(2)).
This shows that ¢ is a bijection from J;E onto J;F’.

Q.E.D.



Some general theorems

Theorems 14 to 22, which are shown in this section, are valid in every realizability model.

In the ground model M, which satisfies ZFL, we denote by k the cardinal of A UITUN
(which we shall also call the cardinal of A) and by k, = P(k) the power set of k.

Theorem 14.

LetViVy F[%,y] be a closed formula of ZF. with parameters in M (where ¥ =(x1,...,x,)).
Then, there exists in M, a functional fr : kX M"™ — M such that :

i) If d,be M and & | Fld,b], then there exists a € k such that & | Fld, fr(a,d)].
i) Cl |- V&vy (F[Z,y] = I F[Z, fr(v, 2)]).

i) Let £ — a¢ be an injection from A into . Using the principle of choice in M (which
satisfies V' = L), we can define a functional fr : kX M™ — M such that, in M, we
have : VIvy(V¢ € A) (€ |- FlZ,yl = £ |- FIZ, fr(ag, D).
ii) Let ¢ |- Fla,b], n |- Yv™=Fa, fr(v,d)] and 7 € II.
Thus, we have 7 |- —Fla, fr(ae, a)] ; by definition of fr, we have & |- Fld, fr(ae, @)].
Therefore nx&.me 1L, and Clx&enem e L.

Q.E.D.

Subsets of Jk

Theorem 15. Let VaVyVz Flx,y, 2] be a closed formula of ZF., with parameters in M.
Then, there exists, in M, a functional [r: M — ki such that :
Wik Vz (VaVyVy' (Flz,y, 2], Flz,y', 2] =y = ¢)

— ViV (F[z, Pi(Br(2)), 2] = sp(z) > i)).
In particular, for i =1, we have :
W vz (Ya¥yy (Flo,y, 2], Flo,y', 2] = y = of) > Ya(Flz, Be(2), 2] > sp(a) = 1).

By theorem 14(i), there exists, in M, a functional g¢: xx M? — M such that :
(¥) Fora,b,c € M and ¢ || Fla,b, c], there exists « € k such that ¢ [ Fla, g(«, a, ), c].
Using the principle of choice in M, we define a functional 8r : M — K, such that :
for every o € k and ¢ € M, we have fr(c) # g(a, 0, c).
This is possible since k, is of cardinal > k.
Now let : a,ce M, i €{0,1}, ¢ |- VaVyvy'(Flz,y,c], Flz,y, .y #y' = 1),
€I Fla,Pi(Be(c)),cl, 0 | spl(a)i £ and 7 € 0
We must show that Wx¢.&eneme I, thatis ¢ox&e&eneme A
We set b =P;(Sr(c)) and therefore, we have & | Fla,b,c].
Thus, by (%), we have ¢ | Fla, g(a,a, ), c] for some «a € k.
Let us show that ||b # g(a, a,c)|| C ||sp(a)i # i|| ; there are three possible cases :
If i = 0, then ||sp(a)i # || = ||0 # 0]] = II, hence the result.
If i =1 and a # 0, then ||sp(a)i # i|| = |1 # 1|| = II, hence the result.
If i=1and a =0, then :
1o # gle,a, o)l = [Pi(Br(c)) # gla,a,0)ll = [IBr(c) # g(e,0,0)| = [Tl = 0, by

definition of S, hence the result.
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It follows that 7 | b # g(a, a,c). Now, we have seen that :

€I Flab,d and € |- Fla,g(oac),dl.

Therefore, by hypothesis on ¢, we have ¢px&.&en.m e L.
Q.E.D.

Corollary 16. The following formulas are realized :

VEVi*V 32 (if there exists a surjection from 1;E onto Jik, then j > 1).
More generally :

VEVi*2(there exists no surjection from \J{J,;E ; j€32,5 %4} onto Jik,).
In particular, with 1 =1 :

VE(there exists no surjection from \J{I,E ; je12,5 # 1} onto Ir,).

Remark. The notation | J{1;E ; j€J2,j # i} denotes any individual X of A/ such that :
Vo(ze X < 3j2(j #iNze ] E)).
We apply theorem 15, with the formula Flx,y, z] = (z,y) ¢ 2.
In the realizabiblity model N/, we have Sr: N — Jk,.
Let 29 be, in NV, a surjective function onto J;k,.
We have [p(z9)€ K, and therefore P;(8r(20)) € ik
If z is such that (xg, P;(Br(20))) € 20, then sp(zg) > ¢ by theorem 15. Therefore, for any
individual E, we have xoe1;E = j > i.
Q.E.D.

Theorem 17. The formula : (there exists a surjection from Jky onto 2%%) is realized.

In the ground model M, there exists a bijection from x, = 2" onto 2®!!. Therefore, in A/,
there exists a bijection from Jx, onto J2%IL,

We now need a surjection from J2° onto 2%

Let ¢ : M — 271 be the unary function symbol defined by ¢(x) = 2 N (kx1II).

In NV, we have ¢ : N — 12 Now, we check immediately that :

i) 1| Vova (v ¢ Ik — vi#ax) (because |[v#all C ||v# x| for all a € P(kxII)).
i) | |- Vavot (véz = vid(z)) (because ||vfall = ||vé ¢(a)| for all v € k).
From (i), it follows that 12 is in A/, a set of subsets of Jx ;
from (ii), it follows that it contains at least one representative for each equivalence class
of extensionality.
Thus the desired surjection simply associates, with each e-element of J2°U | its equivalence
class of extensionality.
Q.E.D.

Theorem 18. Let E € M be infinite and such that ) € E. Then we have :
- Vit2(i # 0 — there exists an injection from N into 1, E).

In M, let ¢ : N — (E\ {0}) be injective. In N/, we have ¢ : IN — JE. The desired

function is n — P(i, ¢(n)). Indeed, we have :

I - Va2Vm™NnN(i £ 0 — Pi(¢(m +n + 1)) # Pi(éd(m))).

This shows that the restriction of this function to N4 (the set of integers of N 4) is injective.
Q.E.D.

11



Theorem 19. |- Vi* (i #0,i # 1 — (I, cannot be well ordered)).

Let ¢ € 12,4 # 0,1 ; then, J;x, and J;_;k, are infinite (theorem 18) and C Jxk, by
proposition 12(i). But there exists no surjection from J;x, onto J;_;xy, neither from
Ji_iky onto J;k,, by corollary 16.
Q.E.D.

Remark. By theorem 19, if the Boolean algebra ]2 is not trivial, then Jx is not well orderable.
On the other hand, it can be shown that, if this Boolean algebra is trivial, then the realizability
model A is an extension by forcing of the ground model M. In this case, N itself can be well
ordered, since we suppose that the ground model M satisfies ZFL.

A strict order on Jx,

A binary relation < on X is a strict order if it is transitive (z < y,y < z = x < z) and
antireflexive (x £ x). This strict order is called total if we have : z < yory < x or x = y.

If (Xo, <o), (X1,<1) are two strictly ordered sets, then the strict order product < on
Xox X is defined by : (z¢,21) < (Y0,¥1) < 2o < Yo and 1 < Y.

Lemma 20. If the strict order product of (Xo, <o), (X1,<1) is well founded, then one of
the strict orders <o, <1 is well founded.

Proof by contradiction : if Fy C X, F; C X; are non void and have no minimal e-element,
then Fyx E; C Xy x X; has the same properties.
Q.E.D.

We denote by < a strict well ordering on ., in M ; we suppose that its least element is ()
and that every proper initial segment is of cardinal .

This gives a binary function from % into {0,1}, denoted by (z <y), which is defined as
follows : (x<y) =1 zay.
We can extend it to the realizability model N4, which gives a function from (I, )? into J2.

Lemma 21. The following propositions are realized :
Ifie32, then (x<y) =1 is a strict ordering of J;k,, which we denote by <;.
If i is an atom of the Boolean algebra 12, then this ordering is total.

We have immediately :
i) || Vot (2 ay)(y<z) < (w<2)); |- Vo ((z<z) = 0).
i) | |- Vit2Voie vy (P < Py) < i
i) | || Vet ((zay) =0, (y <z
It follows from (i) that, if i # 0, then (x <y) > i is a strict ordering relation on Jk,.
It follows from (ii), that this relation, restricted to J;x, is equivalent to (z <y) = i.
Finally, it follows from (iii), that the relation (z<y) = i, restricted to J;x, is total when
i is an atom of J2.

Q.E.D.

=0—=x=y).

=

Lemma 22. The following propositions are realized :

i) Vi (the application x — (Pix, Pi_;x) is an isomorphism of strictly ordered sets
from (Jky, <) onto (Jiky, <) X (J_iky, <_)).

i) Vi*(either Jik, or Ji_iky is a well founded ordered set).

12



i) It follows from proposition 12(v), that the application = +— (P;x,P;_;z) is a bijection
from Jky onto Jiky X1k
In fact, it is an isomorphism of ordered sets, since we have :
| |- Vi?Var vyt ((z ay) = (Pyr < Piy)v(Py_sz < Py_sy)) and therefore :
- ViRVt (may) = 14 (P aPiy) =i A (P1jx aP_y) = 1 —1).
ii) By theorem 6, the relation (z<y) =1 is well founded on Jk. Thus, the result follows
immediately from (i) and lemma 20.
Q.E.D.

Jk countable

In this section, we consider the consequences of the hypothesis : (Jx is countable).

Non extensional and dependent choice

The formula Vz(z ¢y — 2 ¢ x) will be written x C y.

The formula VaVyVy' ((z,y) e f, (z,y") e f — y = ') will be written Func(f) (read : f is
a function).

The formula Vz3f (f C 2z A Func(f) AVaVy3y' ((z,y) ez — (z,y') e f))

is called the non extensional axiom of choice and denoted by NEAC.

It is easily shown [18] that ZF.4+ NEAC F DC (axiom of dependent choice). On the other
hand, we have built, in [18], a model of ZF. + NEAC + —AC ; and other such models
will be given in the present paper. In all these models, R is not well orderable.

Theorem 23.
There ezists a closed c-term H such that H | (Ik is countable) — NEAC.

We apply theorem 14(ii) to the formula (x,y)e 2. We get a function symbol g such that
Cl |- VavVyVz((x,y) e 2 — I (x, g(v, z, 2)) € 2).
Therefore, it suffices to prove NEAC in ZF., by means of this formula and the additional
hypothesis : (Jx is countable). Now, from this hypothesis, it follows that there exists a
strict well ordering < on Jx. Then, we can define the desired function f by means of the
comprehension scheme :
(z,y)e [ (z,y) ez AI* (y = g(v,z,2) AVa (o < v = (z,9(a,z,2)) £ 2).
Intuitively, f(z) = g(v, x, z) for the least v e Jk such that (z,g(v,x, 2)) € 2.

Q.E.D.

Subsets of R

Theorem 24. | (Ix is countable) —
every bounded above subset of the ordered set (Jk,,<) is countable.

Every proper initial segment of the well ordering < on x, is of cardinal x. Thus, there
exists a function ¢ : kX ky — Kk such that, for = # ), the function o — ¢(x, ) is a
surjection from k onto {y € ky ; y<x}. Then, we have immediately :

| [l Vateovytes ((y<a) = 1= (Yo (y # oz, a)) — 1)).
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This shows that, in NV, there exists a surjection from Jx, onto every subset of Jx, which
is bounded from above for the strict ordering <.
Thus, all these subsets of Jx are countable, since Jx is.

Q.E.D.

Theorem 25. | (Jk is countable) — there exists an injection from Ik, into R.

The natural injection from Js, = J(2%) into (J2)* gives an injection from Jk, into
NN = R, since Jx, and thus also J2, is countable.
Q.E.D.

Theorem 26. The following formula is realized :  (Jk is countable) —

there exists an application i — X; from the countable Boolean algebra 12 into P(R) such
that :

i) Xo=A{0};i#0 — X, is uncountably infinite ;

it) X;x X, is equipotent with X; ;

iii) X;NX; = Xin; and therefore i <j — X; C X, ;

i) inj =0 — X,y is equipotent with X; x X ;

v) if there is a surjection from X; onto X;, then i < j ;

more generally, if A is a subset of 12 and if there is a surjection from UjEA X, onto X,
then © < j for some je A.

vi) there exists a surjection from Xy onto R.

For each i¢J2, let us denote by X; the image of J;x, by the injection from Jx, into R,
given by theorem 25.
i) The fact that X; is infinite for ¢ # 0 is a consequence of theorem 18.
If i =1, X; is uncountable by (vi). If i # 0,1 and X; is countable, then X;_; is infinite
and thus, there exists a surjection from X;_; onto X;. This contradicts corollary 16.
ii) by proposition 12(vi), J;k4 x J;k4 is equipotent with J;(k2), thus also with Jix; by
proposition 13.
iii) If aeJ;ky and aedjky, then P;a = a, and therefore P;y;a = Pja = a.
iv) This is proposition 12(v).
v) Application of corollary 16.
vi) Application of theorem 17.
Q.E.D.
Theorem 26 is interesting only if the countable Boolean algebra J2 is not trivial. In this
case, R cannot be well ordered, by theorems 19 and 25.
In the following section, given an arbitrary realizability algebra A, we build an algebra B
such that :
e N realizes the formula : (Jk is countable).
e The (countable) Boolean algebra J2 of the model Np is elementarily equivalent to the
algebra 12 of N 4.
In the sequel, we shall consider two interesting cases :
J2 is atomless ; J2 has four e-elements.
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3 Collapsing Jx

In the ground model M, we consider a realizability algebra A, the elementary combinators
of which are denoted by B, C,E, |, K, W, cc and the continuations k, for = € II.

We define the combinators B*, C*, E*, I, K*, W* cc*, and the continuations k as follows :
B* = AnAxAyAz(((C)x)(C)y)zn ;

C" = Mn\xAyAz(z)nzy ;

E* = Mz y(C)ayn ;

I = AnAz(x)n ;

K* = AnAzAy(z)n ;

W* = AndzAy(x)nyy ;

k' = Andz(k,)(z)n ;

cc* = Andx(cc) \k(zn)AnAz(k)(x)n.

Therefore, we have :

B xv.e&eneCom» (CO(C)Cxvam;

CrveleneCem=ExveCener;

E'xveéenem = Cnpxv.erm;

Frxvelem=Exvaem;

K'xvelenem = Exvaem;

Wisxvelenems>=Exvenen.m;

Kikvelew = Exvem;

P velem=Exvakl o

(reminder : the notation &+ > & x7n’ means {xm ¢ L =+’ ¢ 1).

Let x be an infinite cardinal of M, k > card(AUII) ; we consider the tree (usually called
k<¥) of functions, the domain of which is an integer, with values in .

Let P be the ordered set obtained by adding a least element O to this tree.

P is an inf-semi-lattice, the greatest element 1 of which is the function (.

The greatest lower bound of p, ¢ € P, denoted by pq, is p (resp. q) if p,q # @ and ¢ C p
(resp. p C q). It is O in every other case.

Remark. P\ {O} = k<% is the ordered set used, in the method of forcing, to collapse (i.e.
make countable) the cardinal .

We define a new realizability algebra B by setting :

A=AXP;II=1IxP; AxII=(AxI)x P ;

(&;p)« (mq) = (o7, pq) 5 (§,p)* (m,q) = (Exm,pq) 5 (&p)(n,9) = (C&n, pq).
B=B"1);C=(C,1);E=(E,1);I=(01); K=(K,1); W= (W"1);

CC = (CC*, 1) ; k(mp) = (k;,p).

We define, in M, a function symbol from PxN into {0, 1}, denoted by (p <« n), by setting :
(p<n) =1< p+# O and the domain of p is an integer < n.

We define 1 g, that we shall denote also by 1L, as follows :

(Exmp) el & (VneN)((p«n)=1=¢*xn.t€ L) forpe P, € A and 7 €l
In particular, we have ({ x 7, Q) € Il for any £ € A, 7 €Il

We check now that B is a realizability algebra.
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d (fap)(%CJ)* (7'(',7") ¢ A = (gap)* (’r]aQ) * (7T,T) ¢ AL -
Suppose that (§xn ., pgr) € 1L ; we must show (Cénxm,pgr) € L ie. Cin*xn.m e 1L

for (pgr «<mn) = 1. Now, we have C&n*n.m » {*n.n.nw which is in 1L by hypothesis.
o (B *(En) . (0.0)+ () (m5) ¢ I = (6,0)) (1,0) (C7) % (m, ) & L :
Suppose that ((C&)(Cn)¢ *m,pgrs) € AL ; we must show :

(B*x&eneCompgrs) € Il ie. B*'xn.en.Ceme L for (pgrs<n)=1.

Now, we have B**n.&.n.C.m» (C{)(Cn)¢ xn.+m which is in I by hypothesis.
o (C1)%(6p) - (a)+ (Cor) e (m5) € L = (€,p) % (Co) + () « (m5) & AL :
Suppose that (§x(.n.m, pgrs) € 1L ; we must show :

(C'*x&eneCompgrs) € UL ie. C'xnefen.C.me L for (pgrs<n)=1.

Now, we have C*'xn.fenelem > Exne(n.m whichisin I by hypothesis.

o (E1)x(&p)e(nq)«(mr) & I = (&p)(n,q)+(mr) ¢l :

Suppose that (C&n*m,pgrs) € 1L ; we must show :

(E*x&enempgr) € I ie. E'*n.fenpeme L for (pgr<n)=1.

Now, we have E**xn.&.n.m» C{nxn.n which is in I by hypothesis.

o (cc 1) *(&p)«(mq) ¢ U = (§p)*(kzq)« (m,q) & AL -

Suppose that (£ *k> .7, pg) € I ; we must show :

(cc**&em,pg) € UL ie. cc**n.E.me L for (pg<n)=1.

Now, we have cc**n.&.m » {xn.kl .7 which is in L by hypothesis.

o (Kp)*(&q)(w,r) ¢ I = (§q)x(m,p) ¢ I

Suppose that (&7, pg) € 1L ; we must show :

(kix&ewm,pgr) € 1L ie. kixn.é.we L for (pgr<n)=1.

Now, we have kIl *xn.&.w » {*n.n which is in 1L by hypothesis.

For each closed c-term 7 (built with the elementary combinators and the application), we
define 7* by recurrence :

this is already done if 7 is an elementary combinator ; we set (tu)* = Ct*u*.

In the algebra B, the value of the combinator 7 is 753 = (77, 1).

In particular, the integer n of the algebra B is ngz = (n*,1).

We have 05z = (0*,1) = (K*,1)(I*,1) ; therefore : 0" = CK™I".

We have (n+1)g = ((n+1)*,1) = (¢%,1)(n*, 1) ; therefore : (n+1)* = Co*n*.
Thus, we have n* = (Co*)"0* for every n € N.

We define the proof-like terms of the algebra B as terms of the form (6,1) where 6 is a
proof-like term of the algebra A. The condition of coherence for B is therefore :

If 0 is a proof-like term of A, there exists n € N and 7 € Il such that O xn.nw ¢ L.

If A is coherent, so is B : indeed, if # is a proof-like term of A, then so is #0 ; this gives
a stack 7 such that 0 7 ¢ L.

The truth value of a formula F' in the algebra B will be denoted by || F'||s or also |||F||.
The realizability models associated with the algebras A and B are denoted respectively
by N4 and Np.

We now define X € M by setting :

X ={((m,a),(m,p)) ; mell;pe P\{0},p(m) is defined and p(m) = a}.

Theorem 27.
The formula (X is a surjection from N onto Ik) is realized in the model Np.
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More precisely, we have :

i) (0o, 1) [ YavyVy' ((z,y)e X,y #y — (2,9) £ X) with 0y = AnAkAx(x)n ;

i) (61, 1) = Yy Vo™ ((x,y) ¢ X) = L] with 61 = Az (((((©)(C)o")n)(C)z)0%)(o)n,
© = Afin(n)Agrz(g)(f)z and o = (BW)(B)B (successor).

i) Let m € N, a, ' € , (m,p) € [|(m, ) ¢ X, (,") € [[(m, ') ¢ X]|
and (¢, q) |- a # o',

Thus, we have m € dom(p), m € dom(p’),p(m) = a and p'(m) = .
We show that : (6o, 1) % kerpy « (£, 9) « (7, 9") € L.

We have to show that (6y*xk & .n',pp'q) € AL ; this is obvious if pp'q = Q.

Otherwise, p and p’ are compatible, thus «a = «'.

Let n be such that (pp'g<n) = 1 ; we must show that fyrn.kl .&.n" € 1L ie.
Exn.n’ € L.

Now, we have (&,q) |- L by hypothesis on (&, q), thus (£, ¢) * (7/,1) € L.

Since (g« n) =1, it follows that {xn.n’ € 1.

ii) Let us first show that ¢y xn.n.w»>n*n+1l.n*.w

for each n € Ny € A and w € IL.

We have ¢y xn.n.w»> 0%Co*en.Cn.0"en+1.w.

By lemma 9, in which we set ¢ = Cn, ¢ = Co*,a=0"¢=0,0 =0and r =n+1.w,
we obtain :

hrxnenew»>Cnpxn*en+1l.w (since n* = (Co*)"0%)

=nxn+l.n".w.

We prove now that (6y,1) |- Vy*[Va™ ((z,y) # X) — 1].
Let a € k, (1,po) |- V& ((z,0) ¢ X) and (@, ) € IIx P ;
we show that (61,1) % (1, po) « (w, qo) € L.
This is trivial if ppgo = O ; otherwise, let n € N be such that (pogo < n) = 1.
We must show that ¢y xn.n.wée€ 1L, thatis nxn+1.n*cw e 1.
But we have (n,po) |- {(»n*,1)} = (n,a)#X by hypothesis on 7.
Since (pogo<n) = 1, we can define ¢ € P with domain n + 1 such that ¢ D pygy and
q(n) = a. Then, we have (w,q) € ||(n,a) ¢ X|| by definition of X"
We have thus (1, pg) *x (n*,1) . (ww,¢) € I that is (n*n*.w,peq) € L.
But we have pog = ¢, and therefore (n*n*.w,q) € 1.
Since (g<mn+1) =1, it follows that nxn+1.n*.w € L.
Q.E.D.

Corollary 28. Nj realizes the non extensional axiom of choice and thus also DC.

Indeed, by theorem 27, the model Np realizes the formula : (Jx is countable).
But we have k = card(A UITUN), since x > card(A UIIUN) and xk = card(P).
Therefore Np realizes NEAC, by theorem 23.

Q.E.D.

Remark. Intuitively, the model N is an extension of the model N4 obtained by forcing, by
collapsing Jx. We cannot apply directly the usual theory of forcing, because Jx is not defined
in ZF.
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Elementary formulas

Elementary formulas are defined as follows, where ¢, u are terms of the language of ZF.
(built with variables, individuals, and function symbols defined in M) :

T, L are elementary formulas ;

if U is an elementary formula, then ¢t = v — U and Vx U are too ;
if U,V are elementary formulas, then U — V too ;

if U is an elementary formula, then V™ U too.

Remark. ¢ # u is an elementary formula, and also ¢#Ju (which can be written f(¢,u) # 1
where f is the function symbol defined in M by : f(a,b) =1 iff a € b).
If U is an elementary formula, then Va3U is too : indeed, it is written Vz(f(z,t) =1 < U).

For each elementary formula U, we define, by recurrence, two formulas U, and U?, with
one additional free variable p :

1. UP =YgV ((pg<n) =1 U,) ;
l,=land T, =T;

t=u—=U),=(t=u—=U,); VeUlz]), =Y U,z ;
(U = V), =V (p=qr — (UT = V) ;
(VnirftU[n])p = VN ({n*} — U,[n]), in other words :
I(¢n™ Un])pll = {n*« 7 n € N, 7 € |Up[n]||}-

Ok

Lemma 29. For each closed elementary formula U, we have :
(m,p) € Ul = 7 € U]l s (&,p) IF U &&= U

Proof by recurrence on the length of the formula U.

1. We have (&,p) |- U < (&,p)* (7,q) € AL for (m,q) € [|U]||, that is :

(Exm,pq) € UL for every € ||U,||, by the recurrence hypothesis, or also :

(Vg e P)(Vm € |U,|)(¥n € N)((pg<«n) =1=Exn.m € L) which is equivalent to :
€ V&Pvn™ (pg<n) =1 U,) thatis & |- UP.

2 and 3. Obvious.

4. Any element of |||[U — V|| has the form (&, q).(m,7), i.e. (£.m, p), with p = ¢r,
(&, 9) I U and (7, 7) € [V ;
by the recurrence hypothesis, this is equivalent to & .m € ||[U? — V.||
5. We have [|[Vn™U[n]|| = V™ ({(n*, 1)} — Uln])||
={(@" 1)« (mp); neN,(mp) € [|UR]]} = {(n".7,p); n €N, (7 p) € [[UR]][}.
Thus, by the recurrence hypothesis, it is {(n*.7,p); n € N,7 € ||U,[n]]|}.

Q.E.D.

Lemma 30. For each elementary formula U, there exist proof-like terms 0%,0};, such
that :

i) 0 | vty (p<n) = 1= (U = U,)) ;
i) 0L |+ VPR ™ ((p<n) =1 < (U, = U)) ;
1) 5 |- VYR (p<n) =1 — (U — UP)) ;
i) b YprPYn ™ (p<n) = 1< (UP = U)) ;

with 70 = AnAzAm(0))mx  and 7} = Andx(0}n)(x)n.

18



We first show (iii) and (iv) from (i) and (ii).

(i)=(iii)

Let p € P and n € N be such that (p<n) =1;let £ |- U and 7 € ||U?]].

We have to show : AnAzAm (0% )mz*xn.&.m e L.

Now, by the definition (1) of UP, there exist ¢ € P, m € N and w € ||U,]| such that
(pg<m) =1 and m = m .w. Therefore, we have (g<m) = 1 and, by (i) :

0% xm.&.w € L, hence AnAzAm(0))mr*n.&.m.w e L.

(i))=(iv)

Let pe P,ne N,£ € A and 7 € ||U|| such that (p<n) =1and & |- UP.

We have to show : AnAz(0in)(z)nxn..m € Lie O, xn.ln.me L.

But, by the definition (1) of U?, in which we set ¢ = p, we have {n |- U, ; therefore, the
desired result follows from (ii).

We now show (i) and (ii) by recurrence on the length of U.

o IfUis L or T, we take 6, = 6}, = An\z .

e fU=(t=u—V)orU=VYr"V, then 6, = 69 and 6}, = 6}, by (3).

o fU=V - W,let q,r € Nand p = gr ; let n € N such that (p<n) =1. We have :
onlF V=V walVisV, Onl-W oW, 0hn|- W, —W.

Let £ |- V — W ; then, by the recurrence hypothesis, we have :

(0%n)of |-V — W, and (6% n)ofo(rin) |- VI — W,.

Thus, by (4), we obtain 6% = AnAxAy(69,n)(z)(rin)y.

Now, let & | V9 — W, ; then, by the recurrence hypothesis, we have :

(Oiyn)ol |- VI — W and (Ofyn)ofo(rin) |- V — W.

Thus, by (4), we obtain 6}, = AnzAy(0iyn)(z)(on)y.

o If U = Vn™V[n], we first prove :

Lemma 31.

There exist two proof-like terms Ty, T1 such that, for every closed formula F' of ZF, :
i) To |- Vo™ ({2} = F) = ({n} = F)).

i) Ti |- Vo™ (({n} = F) = ({2*} = F)).

iii) For every elementary formula V[n], we have :

To |- (¥n™V[n]), — ¥n"™V,[n] and Ty |- Yn™V,[n] — (Yn"™V[n]),.

i) We apply lemma 9 to the realizability algebra A, with :

¢=0,0=0,¢0=Co" and o = 0" ; we have © = AfAn(n)A\gAz(g)(f)z.

For every n € N, & € A and 7 € I1, we obtain :

OxCo*en 0" em>=Exn*em forneN e Amell, since n* = (Co*)"0".
Therefore, if we set Ty = AfAn((0)(C)o*)nf0*, we have Th*Een.m > Exn' o m.
Thus, we have Ty |- Vo™ (({n*} = F) = ({n} — F)).

ii) We apply now lemma 9, to the realizability algebra B, with :

¢ =05,0=04z0=(Co,1) and a = (0,1).

Since Op = (0*,1),n, = (05)"05 = (n*, 1), we get, by setting oy = (C)%0 :
(0*,1) % (Co,1) o (1)« (£,1)« (0,1) o (m,1) » (£,1) x((02)"0,1) « (7, 1)

since ((Ce,1))"(0,1) = (((C)%0)"0,1). We write this as :
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(O *xCoen*e&e0em 1) > (X (09)"0.m,1).

It follows that ©* x0.Coen*e&e0em = Exm. (09)"0 .7 for some m € N.

Now, we set & = (K)(T)n, with T'= AfAn(©)onf0. Thus, we have :

O %0.Coen e (K)(T)NeQem =T xne(02)"Qem > O*0.(02)"0en.0.m7.

We apply now lemma 9, to the realizability algebra A, with :

¢ =09,0=0,¢ =0 and a = 0. Thus, we obtain :

Ox0e(02)"0eneQem>=nrn.n forevery n € Nype A and 7 € I1.

Finally, if we set 77 = AfAn((((©*0)(C)o)n)(K)(T)f)0, we have :

Ti*nen*om % n*n.t and therefore T} |- ¥n™N(({n} = F) = ({n*} = F)).

iii) This follows immediately from (i) and (ii), by definition of (¥n™V[n]),.
Q.E.D.

We can now finish the proof of lemma 30, considering the last case which is :

o U =VYm™V|m).

We show that 6% = AnAz(Ty) Am(6%n)(x)m.

By the recurrence hypothesis, we have 6% |- Vp'vn™((p<n) = 1 < (V[m] = V,[m])).

Let p € P,n € N, € € A be such that (p<n) =1 and € |- Ym™V [m).

Then, for every m € N, we have Em |- V[m] ; thus (0y,n)(&)m | V,[m] and therefore

Am(0%n)(§)m - ¥YmiitV,[m]. By lemma 31(iii), we get (T3)Am(0%n)(€)m - (vmiBV [m]),

and therefore : A\z(Ty)Am(0%n)(z)m |- Vm™V [m] — (Ym™V[m]),. Finally :

ARz (T) A (09n) (z)m |- VPV (p<n) = 1 < (Ym™V[m] — (Ym™V[m]),)).

We show now that 6{; = AnAzAm(6in)(Ty)xm.

By the recurrence hypothesis, we have 6}, |- Vp'vn™ ((p<n) =1 < (V,[m] = V[m])) ;

Let p € P,n € N, £ € A be such that (p<n) =1 and € |- (VYm™V[m]),.

By lemma 31(iii), we have Tpé |- Vm™V,[m], thus Toem |- V,[m).

Therefore (85n)(Tp)ém |- V[m], and dm(8Ln)(Tp)ém |- Ym™V [m], hence the result.
Q.E.D.

Theorem 32.
The same closed elementary formulas, with parameters in M, are realized in the models

NA and NB.

Let U be a closed elementary formula, which is realized in A4 and let 6 be a proof-like
term such that 6 | U. Then, we have (70)nf | U? for (p<n) =1, by lemma 30(iii) ;
therefore, setting p =0 = 1, we have ((7)060,1) | U by lemma 29.
Therefore, the formula U is also realized in the model Ng.
Conversely, if (6,1) || U with § € QP, we have 6 |- U, by lemma 29. Thus 7500 |- U
by lemma 30(iv).

Q.E.D.
Remark. For instance :
e If the Boolean algebra J2 has four s-elements or if it is atomless, in the model NV 4, it is the
same in the model N3.
e Arithmetical formulas are elementary. Therefore, by theorem 32, the models N4 and Nz
realize the same arithmetical formulas. In fact, this was already known, because they are the
same as the arithmetical formulas which are true in M [15, 16].
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Arithmetical formulas and dependent choice

In this section, we obtain, by means of the previous results, a technique to transform into
a program, a given proof, in ZF + DC, of an arithmetical formula F'.

We notice that this program is a closed c-term, written with the elementary combinators
B,C E, I, K, W, cc without any other instruction.

Thus, let us consider a proof of ZF. F NEAC — F. It gives us a closed c-term ®q such
that ®¢ [ NEAC — F, in every realizability algebra.

We now describe a rewriting on closed c-terms, which will transform @, into a closed
c-term @ such that ® | F in every realizability algebra A.

By theorem 23, we have ®; |- (Jk is countable) — F' with ®; = Az (Dy)(H)z.
We apply this result in the algebra B, which gives :

(®1,1) || (Ix is countable) — F.

Now, theorem 27 gives a closed c-term A such that (A, 1) || (3x is countable).
It follows that (®7,1)(A,1) |- F,ie. (V,1) | F, with & = COTA.

Since F' is an arithmetical formula, it is an elementary formula.

Therefore, by lemma 29, we have ¥ |- F'. Now, by lemma 30(iv), we have :
mh | VPR (p<n) = 1 = (FP — F)).

We set p=1 and n = 0, and we obtain 70 | F' — F.

Finally, by setting ® = (75)0%, we have @ |- F.

A relative consistency result

In [18], we have defined a countable realizability algebra A such that the characteristic
Boolean algebra 12 of the model N4 is atomless (in this example, we have x = N).

If we apply the technique of section 3, in order to collapse Jx, we obtain a realizability
algebra B and a model N3, the characteristic Boolean algebra of which is also atomless.
Indeed, the property : (J2 is atomless) is expressed by an elementary formula.

But now 12 is the countable atomless Boolean algebra (they are all isomorphic). Therefore,
by applying theorems 23 and 26, we obtain the relative consistency result (i) announced
in the introduction.

Remark. We note that this method applies to every realizability algebra such that we have :
I (32 is an atomless Boolean algebra).

4 A two threads model (J2 with four elements)

In this section, we suppose that A is a standard realisability algebra [18].
This means, by definition, that the terms and the stacks are finite sequences, built with :

the alphabet B, C, E, I, K, W, cc, k, «, (,), [, ]
a countable set of term constants (also called instructions),
a countable set of stack constants

and that they are defined by the following rules :

B, C, E, I, K, W, cc and all the term constants are terms ;
if ¢, u are terms, the sequence (t)u is a term ;

21



if 7 is a stack, the sequence k[r] is a term (denoted by k) ;

each stack constant is a stack ;

if ¢ is a term and 7 is a stack, then ¢ .7 is a stack.

If ¢t is a term and 7 is a stack, then the ordered pair (¢, ) is a process, denoted by ¢ 7.
A proof-like term of A is a term which does not contain the symbol k.

We now build a realizability model in which J2 has exactly 4 elements.

We suppose that there are exactly two stack constants 7°, 7! and one term constant d.

For i € {0,1}, let A* (resp. IT%) be the set of terms (resp. stacks)

which contain the only stack constant 7.

For i,j € {0,1}, define I’ as the least set P C A" xII" of processes such that :

. dxj.me P forevery w e II°.

2. Exm e N KT, Exn' €P, éxm =& xn' = ExTEP

3. If at least two out of three processes Exm, nxm, (xmarein P, thendx2.£.n.( .7 € P.

Remarks.

The preorder = on A *II was defined at the beginning of section 1.

We express condition 2 by saying that P is saturated in A* % IT%.

Following this definition of >, the constant d is a halting instruction. Indeed, we have :
dx7m>=Exw & Exw=dx*m.

We define 1L by : AXTI\ AL = (A% T10\ L) U (AL %TII1\ AL}
In other words, a process is in 1L if and only if
either it is in 1Ly U 1] or it contains both stack constants 7%, 7.

Lemma 33. If Exme L) and {47 =& +7' then & xn' € L} (closure by reduction,).

Suppose that &y *mo = &+, , & * Mo € JL;'» and &) * ) ¢ JL; We may suppose that :
(%) Eo * mo > & * ), in exactly one step of reduction.

Let us show that il_;'- \ {& * 7o} has properties 1,2,3 defining JI_§ ., which will contradict
the definition of 1L} :

L If&xmp=dxj.m withm € II', then dxj.m > *m, thus §H+n)=d*j.m.
Therefore &y %7y € A%, which is false.

2. Suppose Exm € ANHIT, Exm = &xm’ € A%, &' %' # Eoxmp. Then Exm e UL, by (2).
If €*xm =& ~mp, then & *my = & * 7' ; since & * 71" # & x mp, it follows from (x) that
§ox = &' x ' and therefore &  my € ALY, which is false.

3. Suppose that two out of the processes & x m, n x w, ( x ™ are in il.; \ {& * 7o}, but
d*2.&.n.C.mis not. From (3), it follows that d*2.&.n.(«m = & * .

Thus, dx2.&.n.(.m > &) * 7, and therefore {xm)=d*x2.&.n.( ..

Therefore &  my € I, which is false.

Q.E.D.
Lemma 34. 1LjnN 1L, =0.
We prove that (A*xII*\ 1Y) D 1} by showing that A?%II°\ I} has properties 1, 2, 3
which define 1L{.
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1.d*0.m ¢ 1% because I} \ {d*0.7} has properties 1, 2, 3 defining IL{.
2. Follows from lemma 33.
3. Suppose & * Mo, o * mo & 1LY ; we show that dx2.& «emg« o« & L} by showing
that 1L\ {d*2.& «mno.«Co.mo} has properties 1, 2, 3 defining L.
1. Clearly, dx1.7" € (Li\{d*2.& «my«Co.mo}) for every n’ € II.
2. Suppose that Exm € ATxII%, Exm = &>’ € L, &>’ #Ad*2.& « 1y« (o« o and
that {xm & (L7 \{dx2.8 7m0+ o« 70})
From (2), it follows that Exm = dx2 . &y« 1o « (o » o Which contradicts Exm = &' x7'.
3. Suppose that two out of the processes &xm, nxm, (xmarein 1Li\{d*2« &« 19« (o« 0}
but that dx2.&.n.( .7 is not.
It follows from (3) that dx2.&ene(em=d*2.& « Mo+ (oo T, i-€.
&E=¢&),n=n0,( = and m = my. But this contradicts the hypothesis :
§o * o, Mo xmo & L.
Q.E.D.

Theorem 35. This realizability algebra is coherent.

Let 6 € QP be such that §x7° € 1) and #*7' € IL{. Then *7° € 1IN LY which
contradicts lemma 34.
Q.E.D.

Lemma 36. d2 { (the boolean algebra 32 has at most four e-elements).

We show that d2 |- VaVy?(z # 0,y # 1,2 #y — zry # ).

Let i, € {0,1}, € |- i 0,7 | G £ 1C |- i#j and 7 € [inf £ il

Since |linj # i|| # 0, we have i < j. Thus, there are three possibilities for (i, j) :

i=j=0;i=j=1;i=0j=1

In each case, two out of the terms &, n,  realize L. Thus, we have dx2.¢.n.(.7m€ L.
Q.E.D.

Remark. If 7 € II'\ (IIp UII;), then £ ¥ € L for every term £. Thus, we can remove these
stacks and consider only IT° U IT'.

We define two individuals in this realizability model :

20 = ({0} X ) U ({1} x 1) 5 5 = ({1}  T%) U ({0} x IT").

Obviously, 70,71 € 32 = {0, 1} xII. Now we have :

V232 (x ¢ v0)|| = TP UTT* = || L|| and therefore | |- =Va*2(z #7o).

d0 |- 0¢~0 and d1 [ 1£7.

It follows that 79,7, are not e-empty and that every e-element of vy, v, is # 0, 1.
Therefore :

The Boolean algebra 12 has exactly four e-elements.

We have € |- Va2 (z g, 291 — L) for every term & :

Indeed, |ieo| = {ks; m € II'} for i = 0,1 and & ¥k, « k,, « 7 € 1L if p; € II".

In the same way, we get :

AEAYAz z | YaVy(zey,yey, v £y — 1).

It follows that 7,7, are singletons and that their e-elements are the two atoms of J2.
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J2 has four s-elements and Jk is countable

We now apply to the algebra A the technique expounded in section 3, in order to make
Jk countable ; this gives a realizability algebra B.
In this case, we have x = N, and therefore k; = P(k) =R.

Now, there is an elementary formula which express that the Boolean algebra J2 has four
e-elements, for instance : Jaz¥2{x # 0,2 # 1} AV2?VyR2(x £ L,y # 1,0 £y — zy = 0).
Therefore, the realizability model Nz realizes the following two formulas :

(32 has four e-elements) ; (Jx is countable).

Let us denote by iy, 4; the two atoms of J2 ; thus, we have i1 = 1 — 1.

We suppose that M |= V = L ; thus, there exists on k;, = P(N) = R a strict well
ordering < of type R;. This gives a function from R? into {0, 1}, denoted by (x<y), which
is defined as follows : (z<y) =1 zay.

We can extend it to N4 and N, which gives a function from (JR)? into J2.

From lemmas 21 and 22, we get :

For i = ig or iy, the relation (x <y) =1 is a strict total ordering on J;R and one of these
two relations is a well ordering ;

in order to fix the ideas, we shall suppose that it is for ¢ = 4.

The relation (z<y) =1 is a strict order relation on JR, which is well founded.

The application z — (P;,z,P;;x) from IR onto J;)RxJ;,R is an isomorphism of strictly
ordered sets.

It follows from theorem 18, that each of the sets 1, R, J;, R contain a countable subset.
By corollary 16, there is no surjection from each one of the sets 1, R, J;, R onto the other.
Thus, there is no surjection from N onto J;,R or onto J;;R.

Therefore, the well ordering on J;,R has, at least, the order type R; in Np.

Now, by theorem 24, every subset of JR, which is bounded from above for the ordering <,
is countable ; thus, it is the same for the proper initial segments of J;, R and J;, R, since
these sets are totally ordered and JR is isomorphic to J;, R xJ; R.

It follows that the well ordering on J; R is at most Ny, and therefore exactly N;.
Moreover, there exists, on J;;R, a total ordering, every proper initial segment of which is
countable.

Then, we can apply theorem 26, to the sets X;,, X;, which are the images of J; R, J;,; R by
the injection from Jk, into R, which is given by theorem 25. By setting X = X;,, we
obtain exactly the result (ii) of relative consistency announced in the introduction.
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