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Introduction

In 1965 Rowlinson asserted [1] that the thermodynamic properties of the fluid phases of simple substances can be conveniently mapped by considering the lines in p-V-T space along which important derivatives vanish. He exposed the experimental situation for the so-called Brown characteristic curves [START_REF] Brown | Bulletin Inst. Ind. de Froid Annexe[END_REF], namely, the Amagat (or Joule inversion), Boyle, and Charles (or Joule-Thomson inversion) lines, defined, respectively, by Equations ( 1) to (3) below:
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where RT pV Z / ≡ is the compressibility factor. Two further lines of second-order derivatives or thermodynamic response functions were mentioned: from
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one gets loci of extrema for the residual isochoric and isobaric heat capacities,
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(superscript "ig" denotes property in the ideal-gas state), along a path of constant temperature, that is, they are loci of isothermal extrema.

As it has been emphasized recently in connection with the Amagat line [START_REF] Boshkova | [END_REF], calculation of the above loci is highly demanding for equations of state (EoS). Moreover, since adequate representation of thermodynamic response functions constitutes a stringent test for EoS [4], it may not be surprising that much care must be taken when 4) and (5). Such a task was undertaken by

Stephenson [5][6][7][8][9][10][11][12][13][14], who, in addition to Brown's characteristic curves and the line defined by Equation ( 4), studied the loci of isobaric extrema of the isobaric thermal expansivity p α , given by 0
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Here we report calculations of the isothermal and isobaric lines of extrema for 
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Results, as graphically represented in the regions of the T pplane corresponding to the stable fluid phases, are found to be relevant themselves, but also with a view to extend calculations to associated fluids including the study of water at low temperatures. 
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The first two terms in Equation ( 13) correspond to the perturbed virial expansion while the last one is a small empirical correction term, is the hard sphere Helmholtz energy from Boublík and Nezbeda [19], is the packing fraction, is the temperaturedependent hard sphere diameter, Δ , is the residual second virial coefficient, and and are specific exponents. Values for the (constant) coefficients , , , , and the exponents and can be found in the original paper. Then, in 1996 Mecke et al. [17] proposed a generalized Van der Waals-type equation of state, henceforth to be referred to as VdW-LJ, which uses 32 adjustable parameters. Concretely:

∑ / / / , (18) 
where is the hard sphere Helmholtz energy due to Carnahan and Starling [20], is the packing fraction from Saager et al. [21] producing very accurate results for pressure, internal energy, second and third virial coefficients, enthalpy of vaporization and properties at vapor-liquid coexistence.

Calculation of loci of extrema

To get explicit results, we first obtain the pressure from
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, where
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)
Thermodynamic derivatives are determined using standard thermodynamic relations.

Hence, for the dimensionless isothermal compressibility * 
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The dimensionless isochoric residual heat capacity per particle 
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)
Derivatives are calculated numerically with the aid of Ridders' method [START_REF] Press | Numerical Recipes in Fortran 77[END_REF].

The procedure to calculate loci of extrema for a given thermodynamic response function is as simple as follows. For the isothermal case we fix the temperature and calculate . Then, extrema are determined from first and second-order derivatives, which are calculated using Ridders' method. Isotherms from the triple point temperature up to a sufficiently high temperature (see graphs) with small enough steps were investigated. To obtain isobaric extrema, we fixed the pressure and analyzed . Clearly, to visualize the behavior of response functions, plots of isothermal extrema [(a) panels] must be seen "vertically" whereas those of isobaric extrema [(b) panels] must be analyzed "horizontally". That is, on following, by way of example, a (super) near-critical isotherm in Figure 1a, one realizes that res V C increases with p at sufficiently high and low pressures and exhibits a maximum followed by a minimum in between; or, along a (super) near-critical isobar in Figure 1b, it is found that res V C decreases with T at sufficiently high and low temperatures and shows a minimum followed by a maximum in between. α decreases with T and p , and T κ increases with T and decreases with p . In some cases, the expected behavior at low temperatures and pressures is not seen for the stable liquid because of crystallization (see, e.g., the plot of isobaric extrema of p α ).

Results and discussion
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The pattern of behavior in the close-packed-fluid limit has been observed for molecular liquids at high pressures (primarily for ) , ( p T p α data [25]) and ionic liquids at room temperature and atmospheric pressure [26][27][28]. That ionic liquids display wide liquid ranges with high critical temperatures [29] explains the observation of negative all loci converge at the so-called Widom line (namely, the line of maxima of the correlation length), which has received considerable attention recently in connection with water's hypothetical second (liquid-liquid) critical point [30]. It is important to note, however, that maxima in thermodynamic response functions do not necessarily mark the proximity of criticality. Simulations on systems with no critical points, like onedimensional fluids interacting via short-range pairwise interactions (including Lennard-Jones intermolecular potentials), reveal maxima in res V C [31]. As discussed previously [31,32], in going from the close-packed-fluid limit to the ideal-gas limit, energy fluctuations ⎯which according to statistical mechanics contribute positively to res

V C ⎯ inevitably result in ) (T C res V and ) ( p C res V maxima.

Further remarks and outlook

We have shown that the analysis of loci of extrema of thermodynamic response funcions in the T pplane is an adequate way of studying the global behavior of such properties. Results for the Lennard-Jones fluid may serve as a reference point: in view of what is known from experiments, we are led to think that it also qualitatively represents the behavior of many nonassociated molecular organic fluids, in accord with what Troncoso et al. [25] have recently found from their study for loci of extrema of p α . Water represents a case of study of extreme complexity because of its anomalous thermodynamics at low temperatures, down to the deeply supercooled regime [40]. The hypothetical existence of a liquid-liquid critical point in such region [40] may result in heat-capacity and T κ maxima as well as in p α minima (since p α is expected to diverge to ∞ -at that critical point). Even in the so-called singularity-free scenario [41], where anomalies are explained without any appeal to a second critical point, loci of extrema are present [41,42] 
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  defined by Equations (
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 7 Kolafa and Nezbeda's EoS, termed PVE/hBH, can be employed from the triple point up to c It provides very accurate predictions for compressibility, internal energy, chemical potential, second virial coefficient, and properties at vapor-liquid coexistence.
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  [26]. Understandably, fluids of markedly different physicochemical nature behave similarly near close packing. The present results therefore cover behaviors beyond the LJ fluid.In the liquid range, say, at subcritical pressures and temperatures not very far from the critical one so that fluctuations are non-negligible, res V C , res p C , p α , and T κ increase with T and decrease with p . Even in the case that temperature is far below c T are increasing functions of T that usually dominate over the residual contribution.

  or supercritical isotherms all properties show maxima that belong to loci emanating from the vapor-liquid critical point, where res V C , res p C , p α , and T κ diverge. In fact, though not shown here explicitly, asymptotically close to criticality
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 2 Figure 2. Loci of extrema for the residual isobaric heat capacity res p C of the Lennard-
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 3 Figure 3. Loci of extrema for the isobaric thermal expansivity p α of the Lennard-Jones
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 4 Figure 4. Loci of extrema for the isothermal compressibility T κ of the Lennard-Jones

  

  

  

  

Equations of state for the Lennard-Jones fluid

  

	2. The three equations of state employed provide an expression for the residual 1 ,
	Helmholtz energy res A as a function of temperature T and number density	ρ	≡	N /	V	(
	is the number of particles). For convenience, variables will be made dimensionless:
	o r 3 * ρ ρσ ≡ , p ≡ * characteristic parameters (well depth and atomic diameter) while ε / * B Tk T ≡ , ε σ / 3 p , and / , where and are the LJ is the Boltzmann constant. F o r
	P In 1993 Johnson et al. [15] presented a comprehensive set of simulation data for P
	e e r e the LJ fluid and used them to improve a modified Benedict-Webb-Rubin (MBWR) equation of state, previously used by Nicolas et al. [18]. The corresponding residual e r
	R Helmholtz energy for this MBWR EoS, which has 33 adjustable parameters, is given by: R
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	w paper. This equation provides an accurate correlation of pressure and internal energy w
	O n l T denotes the critical temperature). (where c A year later, in 1994, Kolafa and Nezbeda [16] developed a 20-parameter EoS from the triple point to c T 5 . 4 based on a perturbed virial expansion (PVE) with a theoretically defined reference hard O n l
	y sphere term. They employed the hybrid Barker-Henderson (hBH) perturbation theory, y
	giving rise to the following expression for the residual Helmholtz energy:
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	where						
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  (seeRefs. 17 and 22). This EoS covers the whole fluid region up to the highest densities from the triple point up to 10,

	and	are the dimensionless critical temperature and density, respectively, and	,
	, ,	and		are adjustable parameters
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					correlation (	0.1617 /	0.689
	0.311 /	.	),	is the Helmholtz energy of the attractive dispersive forces,

  . Certainly, tracing out loci of extrema for water's EoS should reveal the richest phenomenology among common organic fluids.
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