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SEMI-LAGRANGIAN DISCONTINUOUS GALERKIN SCHEMES FOR SOME
FIRST- AND SECOND-ORDER PARTIAL DIFFERENTIAL EQUATIONS

Olivier Bokanowski
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and Giorevinus Simarmata
3

Abstract. Explicit, unconditionally stable, high-order schemes for the approximation of some
first- and second-order linear, time-dependent partial differential equations (PDEs) are proposed.
The schemes are based on a weak formulation of a semi-Lagrangian scheme using discontinuous
Galerkin (DG) elements. It follows the ideas of the recent works of Crouseilles et al. [N. Crouseilles,
M. Mehrenberger and F. Vecil, In CEMRACS’10 research achievements: numerical modeling of fusion.
ESAIM Proc. 32 (2011) 211–230], Rossmanith and Seal [J.A. Rossmanith and D.C. Seal, J. Comput.
Phys. 230 (2011) 6203–6232], for first-order equations, based on exact integration, quadrature rules,
and splitting techniques for the treatment of two-dimensional PDEs. For second-order PDEs the idea
of the scheme is a blending between weak Taylor approximations and projection on a DG basis. New
and sharp error estimates are obtained for the fully discrete schemes and for variable coefficients. In
particular we obtain high-order schemes, unconditionally stable and convergent, in the case of linear
first-order PDEs, or linear second-order PDEs with constant coefficients. In the case of non-constant co-
efficients, we construct, in some particular cases, “almost” unconditionally stable second-order schemes
and give precise convergence results. The schemes are tested on several academic examples.
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1. Introduction

In this paper we consider equations of the form

ut −
1
2
Tr(σσTD2u) + b · ∇u+ ru = 0, x ∈ Ω, t ∈ (0, T ), (1.1)
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where Ω ⊂ R
d is a box (with some boundary conditions on ∂Ω), σ (matrix), b (vector) and r (scalar) may be

x-dependent, at least Lipschitz continuous, together with an initial condition

u(0, x) = u0(x), x ∈ Ω, (1.2)

with u0 ∈ L2(Ω). The matrix σ may be zero or positive semidefinite. Unless otherwise stated, we will in general
assume periodic boundary conditions for (1.1) in order to avoid difficulties on the boundary. We will assume
sufficient regularity on the data in order to have existence and uniqueness of weak solutions of (1.1) and (1.2),
and so that t→ u(t, .) is in C0([0, T ], L2(Ω)).

We study and propose new semi-Lagrangian Discontinuous Galerkin schemes, also abbreviated “SLDG” in
this work, in order to approximate the solutions of (1.1) and (1.2).

The semi-Lagrangian (SL) approach (see [13], or the textbook [14]), is based on the approximation of the
“method of characteristics”. By considering a weak formulation of this principle, an explicit SLDG scheme is
obtained. In the case of first-order PDEs with constant coefficient, our approach is based on a similar method
as in the recent works of Crouseilles, Mehrenberger and Vecil [9] (for the Vlasov equation in plasma physics),
Rossmanith and Seal [34]. However our approach seems not to have been considered for variable coefficients. It is
slightly different from the work of Qiu and Shu [31] (see also Restelli et al. [32]), where first a weak formulation
of the PDE is considered, and then quadrature formulae are used (see also [33] for the original approach).
Here we will furthermore introduce new SLDG schemes for second-order PDEs for which we prove stability and
convergence results, and obtain higher-orders of accuracy when possible.

First, in Section 2, we revisit the one-dimensional first-order advection equation with non-constant advection
term b(x) (case σ = 0 in (1.1)). We give a new unconditional stability result, and convergence proof, extending
similar results of [9], [34] (or [31]) that was obtained for the case of a constant advection term. The unconditional
stability property can be interesting when compared to a standard DG approach where a restrictive CFL
condition must in general be considered [7].

Based on the operator construction for first-order advection, we then introduce, in Section 3, new schemes
for linear second-order PDEs of type (1.1), in the form of explicit high-order SLDG schemes. These schemes are
based, for the temporal discretization, on the use of “weak Taylor approximations”, see in particular the review
book by Kloeden and Platen [20] (see also Kushner [21] and the review book by Kushner and Dupuis [22],
Platen [30], Milstein [25], Talay [37], Pardoux and Talay [28], Menaldi [24], Camilli and Falcone [4], Milstein
and Tretyakov [26], [10]). Such approximations where used by Ferretti in [16] as well as in Debrabant and
Jakobsen [11] in the context of semi-Lagrangian schemes, using interpolation methods for the space variable.
The problem of coupling such approximations with a spatial grid approximation, in particular using a high-order
interpolation method, can be the stability and the convergence proof of the method. The P1 interpolation is
known to be L∞ stable, but it is only second-order accurate in space (for regular data). Some higher-order
SL approximations have been proved to be stable (and convergent) for specific equations and under large CFL
numbers (see [5,15]), or for some advection equations when the SL scheme can be reinterpreted in a weak form
(we refer in particular to Ferretti’s work [16, 17]).

The schemes of the present paper can be seen as projections of these approximation on a discontinous Galerkin
basis. We will in particular propose a second-order approximation (in time) corresponding to a Platen’s scheme
([20], Chap. 14), but higher-order approximations (in time) could be obtained in the same way. The scheme
will be proved to be also high-order in space, stable and convergent under a weak CFL condition (of the form
Δx4 ≤ λΔt for some constant λ, where Δt and Δx denote the time and mesh steps).

For the more simple case of second-order PDEs with constant coefficients, we also propose explicit and uncon-
ditionally stable schemes, high-order in space and up to third-order in time (higher-order can be obtained [2]).

In Section 4 we consider extensions to some linear two-dimensional PDEs. For first-order PDEs, we show
how to combine the scheme with higher-order splitting techniques, like Strang’s splitting, but also Ruth’s third-
order splitting [35], Forest’s fourth-order splitting [18] and Yoshida’s sixth-order splitting [40] (see also [19]
and [41]). A splitting strategy to treat general second-order PDEs with constant coefficients is explained. The
case of second-order PDEs with variable diffusion coefficients is discussed but only treated in some specific cases
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(see Rem. 4.4 as well as Examples 7 and 8 of Sect. 5). The general case will be treated in a forthcoming work
(see however Rem. 4.3).

Finally in Section 5 we show the relevance of our approach on several academic numerical examples in one
and two dimensions (using Cartesian meshes), including also a Black and Scholes PDE in mathematical finance.

The advantage of the proposed schemes is that they combine the DG framework which allows high-order
spatial accuracy and the potential of degree adaptivity, together with unconditional stability properties in the
L2 norm from the weak formulation of the semi-Lagrangian scheme.

Note that our general strategy is to use a Cartesian grid, a particular one-dimensional advection scheme, and
splitting techniques (for more standard Discontinuous Galerkin approaches, see for instance [8] or [29]).

Ongoing works using the current approach concern the construction of higher-order schemes for general
second-order PDEs [2], extensions to nonlinear PDEs arising from deterministic control [3] or from stochastic
control.

2. Advection equation

We first consider the semi-Lagrangian Discontinuous Galerkin scheme (SLDG for short) for the following
one-dimensional first-order PDE, as in [9]{

vt + b(x)vx = 0, (t, x) ∈ (0, T )×Ω

v(0, x) = v0(x), x ∈ Ω
(2.1)

where Ω = (xmin, xmax), together with periodic boundary conditions on Ω.
In order to simplify the presentation and the proofs, we will assume that Ω = (0, 1) and that b is a 1-periodic

function.
Let y = yx denote the solution of the differential equation{

ẏ(t) = b(y(t)), t ∈ R

y(0) = x.
(2.2)

We will also assume that b(·) is Lipschitz continuous.
Let N ∈ N, N ≥ 1, Δt = T

N a time step and tn = nΔt a time discretization. Let

vn(x) := v(tn, x).

By the method of characteristics, the solution of (2.1) satisfies

vn+1(x) = vn(yx(−Δt)). (2.3)

Then we aim to obtain a fully discrete scheme.
Let us consider a space discretization that is considered uniform for the sake of simplicity of presentation.

Let Δx = xmax−xmin
M for some integer M ≥ 1, xi− 1

2
:= xmin + iΔx, ∀i = 0, . . . ,M , and Ii := (xi− 1

2
, xi+ 1

2
). Let

k ∈ N. We define Vk as the space of discontinuous-Galerkin elements on Ω with polynomials of degree k, that is:

Vk = {v ∈ L2(Ω,R) : v|Ii ∈ Pk, ∀i = 0, . . . ,M − 1} (2.4)

where Pk denotes the set of polynomials of degree at most k.

Remark 2.1. In the classical semi-Lagrangian approach, looking for un(x), an approximation of v(tn, x), a
first “direct” iterative scheme for (2.3) would be

un+1(xi) = [un](yxi(−Δt)) (2.5)
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where [un](x) denotes some interpolation of the function un at point x. We could take for instance a set of k+1
values (xi

α)α=0,...,k in each interval Ii, and define the new polynomial un+1 such that un+1(xi
α) := [un](xi

α−bΔt)
for all α = 0, . . . , k. However, given the discontinuities between the intervals Ii, this may lead to instabilities
in the scheme [31]. For instance, taking xi

α to be the Gauss quadrature points on each interval Ii is in general
unstable (see Appendix A, see also [27]).

Here we consider a Lagrange–Galerkin approach by taking the weak form of (2.3): for n = 0, . . . , N − 1, find
un+1 ∈ Vk such that ∫

Ω

un+1(x)ϕ(x)dx =
∫
Ω

un(yx(−Δt))ϕ(x)dx, ∀ϕ ∈ Vk, (2.6)

and for n = 0, find u0 ∈ Vk such that:∫
Ω

u0(x)ϕ(x)dx =
∫
Ω

v0(x)ϕ(x)dx, ∀ϕ ∈ Vk. (2.7)

From now on, we rewrite (2.6) in the following abstract form:

un+1 = TbΔt(un).

In the case of a constant coefficient b, yx(−Δt) = x−bΔt, and un(x−bΔt) is a piecewise constant polynomial.
The integral

∫
Ii
un(x − bΔt)ϕ(x)dx will have in general two regular parts. Each part involves a polynomial of

degree at most 2k and the Gaussian quadrature rule with k+ 1 points is applied and is exact. At this stage the
method is the same as in [9], or [34]. Hence the new function un+1 can be computed by solving exactly (2.6).

However, if b(x) is not a constant, x → un(yx(−Δt)) is no more a piecewise polynomial. Therefore the
computing procedure for the right-hand-side (R.H.S.) of (2.6) can no more be exact.

In order to obtain an implementable scheme, a precise ODE integration for the characteristics and a quadra-
ture rule can be used. We follow an approach very similar to [31] for variable coefficients. It consists in using
Gaussian quadrature formula to approximate (2.6) in regions where the involved functions are smooth.

Remark 2.2. Indeed, in [31], an other SLDG scheme is presented, but our form is equivalent to one form of
SLDG as explained in ([31], Prop. 4.5). This may lead to different programming algorithms however.

2.1. Preliminaries

Let {xα}α=0,...,k be the set of Gauss points in the interval (−1, 1), with its corresponding weights {wα}α=0,...,k

(wα > 0), such that:

∀p ∈ P2k+1,

1∫
−1

p(x)dx =
k∑

α=0

wαp(xα). (2.8)

In particular, we get on the interval Ii,

∀p ∈ P2k+1,

x
i+1

2∫
x

i− 1
2

p(x)dx =
k∑

α=0

wi
αp(x

i
α), (2.9)

where xi
α := xi + xαΔx ≡ xi− 1

2
+ 1

2 (1 + xα)Δx and wi
α := Δx

2 wα.
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To each set of Gauss points {xi
α}α=0,...,k in Ii, we can associate the corresponding Lagrange polynomials

(dual basis) {ϕi
α}α=0,...,k defined by

ϕi
α(x) := 1Ii(x)

∏
0≤β≤k

β �=α

x− xβ

xα − xβ
· (2.10)

For any un ∈ Vk, there exist coefficients (un
α,i)

i=0,...,M−1
α=0,...,k ∈ R such that:

un(x) =
M−1∑
i=0

k∑
α=0

un
α,iϕ

i
α(x). (2.11)

In particular, the left-hand side of (2.6) for ϕ = ϕi
α becomes∫

Ω

un+1(x)ϕi
α(x)dx =

∫
Ii

un+1(x)ϕi
α(x)dx = un+1

α,i w
i
α.

2.2. Definition of the scheme in the general case

Due to the discontinuities of un, we separate the right-hand side of (2.6) into several integral parts involving
only regular functions: the R.H.S. of (2.6) is approximated by the Gaussian quadrature rule on each sub-interval
where un(yx(−Δt)) is a regular function.

For a given mesh cell Ii, we first consider the points (xi,q)1≤q≤pi (in finite number) of the interval (xi− 1
2
, xi+ 1

2
),

such that for 1 ≤ q ≤ pi, yxi,q(−Δt) = x�i,q− 1
2

for some 	i,q ∈ Z, and xi,0 := xi− 1
2
, xi,pi+1 := xi+ 1

2
(see Fig. 1).

Then we apply the Gaussian quadrature rule on each interval Ji,q = (xi,q , xi,q+1) and obtain the following
quadrature rule, for any polynomial ϕ ∈ Vk:∫

Ii

un(yx(−Δt))ϕ(x)dx =
pi∑

q=0

xi,q+1∫
xi,q

un(yx(−Δt))ϕ(x)dx (2.12)



pi∑

q=0

k∑
α=0

w̃i
q,αu

n(yx̃i
q,α

(−Δt))ϕ(x̃i
q,α), (2.13)

with w̃i
q,α := wα

2 (xi,q+1 − xi,q) and x̃i
q,α := xi,q + 1

2 (1 + xα)(xi,q+1 − xi,q) ≡ xi,q+xi,q+1
2 + xα(xi,q+1−xi,q

2 )·

Definition of the scheme (operator T̃b,Δt): un+1 is the unique element of Vk satisfying for all ϕ ∈ Vk,∫
Ω

un+1(x)ϕ(x)dx =
M−1∑
i=0

pi∑
q=0

k∑
α=0

w̃i
q,αu

n
(
yx̃i

q,α
(−Δt)

)
ϕ(x̃i

q,α). (2.14)

The scheme is made explicit by using formula (2.14) on each ϕ = ϕj
β . The scheme equivalently defines an

operator T̃b,Δt such that
un+1 = T̃b,Δt u

n.

In particular, if b is constant, then T̃b,Δt = Tb,Δt, and this is no more true if b is non-constant.

Definition 2.3. For further analysis, let us introduce the following scalar product on Vk (where the index “G”
stands for the use of the Gaussian quadrature rule):

(ϕ, ψ)G :=
M−1∑
i=0

pi∑
q=0

k∑
α=0

w̃i
q,α ϕ(x̃i

q,α) ψ(x̃i
q,α). (2.15)
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xi,1 xi,2

yxi,1 (−Δt) yxi,2 (−Δt)

xi,0 := xi−1/2 xi,3 := xi+1/2

yxi+1/2 (−Δt)yxi−1/2 (−Δt)

Figure 1. Determination of the point of discontinuity of the data.

Then the scheme (2.14) is equivalently defined by

(un+1, ϕ) = (un(y·(−Δt)), ϕ)G, ∀ϕ ∈ Vk.

2.3. Stability and error estimate for constant drift coefficient

The weak form (2.6) gives the stability of the scheme in the L2 norm, at least in the case when b = const.
Indeed, taking ϕ = un+1 in (2.6) we get

‖un+1‖2
L2 = (un(· − bΔt), un+1) ≤ ‖un(· − bΔt)‖L2 ‖un+1‖L2,

where ‖ · ‖L2 denotes the L2 norm on Ω and ( ., .) is the associated scalar product. Then, by the periodic
boundary condition, ‖un(· − bΔt)‖L2 = ‖un‖L2 and therefore

‖un+1‖L2 ≤ ‖un‖L2 . (2.16)

This proof works only for b constant, however.
For any w ∈ L2, we denote its projection on Vk by Πw, corresponding to the unique element of Vk such that

‖w −Πw‖L2 = inf
f∈Vk

‖w − f‖L2. (2.17)

Remark 2.4. The function un+1 defined by (2.6) corresponds to the projection of the function x →
un(yx(−Δt)) on the space Vk:

un+1 = Π(un(y·(−Δt)),

and, in the same way, we have u0 = Πv0.

We now recall a simple estimate for the L2 projection on Vk.

Lemma 2.5 (Projection error). Let k ≥ 0 and 	 ≤ k. If w ∈ C�+1, then

‖w −Πw‖L2 ≤ |Ω|1/2C�(w) Δx�+1

where C�(w) := 1
2�+1(�+1)!

‖w(�+1)‖L∞.

Proof. Let us write w = P + R where P is the element of Vk corresponding, on each interval Ii, to the Taylor
expansion of w centered at xi and of degree 	. We have ‖w −Πw‖L2 ≤ ‖w − P‖L2 = ‖R‖L2 ≤ |Ω|1/2‖R‖L∞.
By the definition of R and usual Taylor estimates, we have ‖R‖L∞ ≤ C�Δx

�+1. �



SLDG SCHEME FOR FIRST- AND SECOND-ORDER PDES 1705

Let vn(x) := v(tn, x) where v denotes the exact solution of (2.1). Using the L2-stability of the projection, it
is straightforward to show that ‖un+1−Πvn+1‖L2 = ‖Π(un(·− bΔt)− vn(·− bΔt)‖L2 ≤ ‖un − vn‖L2, therefore
we have

‖un+1 − vn+1‖L2 ≤ ‖un − vn‖L2 + ‖vn+1 −Πvn+1‖L2.

By using Lemma 2.5, this leads to the following known convergence result [31].

Theorem 2.6. Let k ≥ 0 and b be a constant. Assume the initial condition v0 is 1-periodic and in Ck+1. Then,
the following estimate holds:

‖un − vn‖L2 ≤ ‖u0 − v0‖L2 + CT
Δxk+1

Δt
, ∀n ≤ N, (2.18)

where the constant C depends only of |Ω| and k.

Remark 2.7. By taking Δt = Δx this leads to an error estimate in O(Δxk). However the examples (such as
in Example 1) will show a numerical behavior in O(Δxk+1) (as already remarked also in [31]). We refer to the
recent work in [36] for more insight about this gap.

2.4. Non-constant b: preliminary results

For u ∈ Vk, the following approximation result is central. It controls the error between the desired formula (2.6)
and the implementable scheme (2.14).

Proposition 2.8 (Gauss quadrature errors). Let k ≥ 0 and let b be of class C2k+2 and 1-periodic. Then:

(i) For all u ∈ Vk, ∣∣∣∣(u(y·(−Δt)), ϕ)G − (u(y·(−Δt)), ϕ)
∣∣∣∣ ≤ CΔtΔx2‖u‖L2‖ϕ‖L2, ∀ϕ ∈ Vk.

where C ≥ 0 is a constant. In particular, we have, in the L2-norm:

T̃b,Δtu
n ≡ un+1 = Tb,Δtu

n +O(ΔtΔx2‖un‖L2), ∀n ≥ 0. (2.19)

(ii) For all u ∈ Vk, for any ψ in Ck+1, 1-periodic,∣∣∣∣(u(y·(−Δt)) − ψ(y·(−Δt)), ϕ)G − (u(y·(−Δt)) − ψ(y·(−Δt)), ϕ)
∣∣∣∣

≤ CΔtΔx2‖u− ψ‖L2‖ϕ‖L2 + CMk+1(ψ)Δxk+1‖ϕ‖L2 , ∀ϕ ∈ Vk, (2.20)

where C ≥ 0 is a constant which depends only of k, and

Mp(ψ) := max
0≤r≤p

‖ψ(r)‖L∞ . (2.21)

(iii) For any regular ψ ∈ Ck+1, for any ϕ ∈ Vk,

(ψ, ϕ)G = (ψ, ϕ) +O(Mk+1(ψ)Δxk+1‖ϕ‖L2). (2.22)

(iv) Furthermore, ∃C ≥ 0, for any ψ ∈ Ck+1, 1-periodic,

‖T̃b,Δtψ − Tb,Δtψ‖L2 ≤ CMk+1(ψ)Δxk+1. (2.23)
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Remark 2.9. Some assumptions can be weakened, for instance (i) and (ii) are still valid using that b(2k+1) is
in L∞, then in the error bounds (2.19) and (2.20) the ΔtΔx2 term should be replaced by ΔtΔx. However these
bounds will be used in Section 3 and the form (2.19) and (2.20) is preferred. Also, it is possible to prove that
the error term O(Mk+1(ψ)Δxk+1) in (ii), (iii) and (iv) can be improved to O(M2k+1(ψ)Δxk+2) provided that
ψ ∈ C2k+1.

Proof of Proposition 2.8. Notice that the estimates of (i) and (iii) are a consequence of (ii) (either by choosing
ψ ≡ 0 to obtain (i), or by choosing Δt ≡ 0 and u ≡ 0 to obtain (iii)). Then (iv) is deduced from (iii) when
applied to the regular function ψ1(x) := ψ(yx(−Δt)). �

The plan is first to prove (i), and then to generalize to (ii). Precise estimates for the (2k+ 2)nd derivative of
x → u(yx(−Δt)) will be needed in order to estimate the error when using a Gaussian quadrature formula. In
the following, we first bound the derivatives of x→ yx(−t).

Lemma 2.10. Assume that b ∈ Ck, for some k ≥ 1, and 1-periodic. Let L := ‖b′‖L∞ and let t ∈ R. Then
x→ y ≡ yx(−t) is of class Ck, 1-periodic, and⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

‖y‖L∞(0,1) ≤ 1 + ‖b‖L∞|t|,
‖ ∂

∂xy‖L∞(0,1) ≤ eL|t|,

and, if k ≥ 2,
∥∥∥∥ ∂q

∂xq
y

∥∥∥∥
L∞(0,1)

≤ C |t|q−1 eL|t|, ∀q ∈ {2, . . . , k},
(2.24)

for some constant C ≥ 0. In particular, all the previous derivatives are bounded on a fixed time interval t ∈ [0, T ].

Proof. We consider y as a function of the time t and of x. We can assume that x ∈ [0, 1] since we have
yk+x(t) = k + yx(t) for all k ∈ Z and t, x ∈ R. We denote by y(k) ≡ ∂k

∂xk y the kth derivative of y with respect
to x.

Firstly, y(t, x) = x+
∫ t

0
b(y(s, x))ds and therefore, for x ∈ (0, 1), |y(t, x)| ≤ 1 + ‖b‖L∞|t|.

For k = 1 and b ∈ C1, we have ∂
∂t

∂
∂xy = b′(y) ∂

∂xy and ∂
∂xy(0) = 1, therefore | ∂

∂xy(t)| = exp
( ∫ t

0 b
′(y(s))ds

)
≤

eL|t|.
For k ≥ 2, we have

∂

∂t
y(k) = (b′(y)y(1))(k−1)

= b′(y)y(k) +
k−1∑
�=1

C�
k−1(b

′(y))(�)y(k−�).

Then we use a recursion argument for 	 = 1, . . . , k. Let us assume that the spatial derivatives y(�) are bounded
for 1 ≤ 	 ≤ k−1, with ‖y(�)‖L∞(0,1) ≤ C�|t|�−1eL|t|. Then for k ≥ 2, the function f :=

∑k−1
�=1 C

�
k−1(b

′(y))(�)y(k−�)

is bounded, with a bound of the form ‖f(., t)‖L∞(0,1) ≤ C|t|k−2eL|t|, for some constant C. By using the formula,
for a given and fixed x,

y(k)(t) = e
∫ t
0 b′(y(s))dsy(k)(0) +

∫ t

0

e
∫ t

s
b′(y(θ))dθf(s)ds,

the fact that y(k)(0) = 0 for k ≥ 2 and for s ∈ [0, t] (or s ∈ [t, 0] if t ≤ 0):

|e
∫

t
s

b′(y(θ))dθf(s)| ≤ CeL|t−s| |s|k−2eL|s|

≤ C|t|k−2 eL|t|

we conclude that |y(k)(t)| ≤ C|t|k−1 eL|t|. �
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Lemma 2.11. Assume q ≥ k + 1, and u ∈ Vk. On any interval J where u is regular,

‖ dq

dxq
(u(y))‖L∞(J) ≤ CΔt

k∑
p=1

‖u(p)‖L∞(y(J)).

Proof. We first recall an expression for the qth derivative of the composite function u(y), also known as “Faà
di Bruno’s formula” [12]:

1
q!

dq

dxq
(u(y(x))) =

k∑
p=1

u(p)(y(x))

⎛⎝ ∑
(αj),

∑
j αj=p,

∑
j jαj=q

(y(1)/1!)α1 · · · (y(q)/q!)αq

α1! · · ·αq!

⎞⎠ · (2.25)

Here the sum is limited to p ≤ k (instead of p ≤ q) since u ∈ Vk.
Therefore, together with Lemma 2.10, we obtain the bound

‖ d
q

dxq
(u(y))‖L∞(J) ≤ C

k∑
p=1

‖u(p)‖L∞(y(J))

⎛⎝ ∑
(αj),

∑ q
j=1 αj=p,

∑ q
j=1 jαj=q

Δtα2+···+αq

⎞⎠ .

The case when α2 = · · · = αq = 0 happens only if α1 = p = q. Since q ≥ k + 1, and p ≤ k, this case never
occurs. Therefore, the power of Δt is at least 1, which concludes the proof. �

Proof of Proposition 2.8(i). Let ε be the error term, defined by

ε :=
∫ 1

0

u(yx(−Δt))ϕ(x)dx −
M−1∑
i=0

pi∑
q=0

k∑
α=0

w̃i
q,αu(yx̃i

q,α
(−Δt))ϕ(x̃i

q,α).

We have ε =
∑

i

∑pi

q=0 εi,q where

εi,q :=
∫

Ji,q

u
(
yx(−Δt)

)
ϕ(x) dx −

k∑
α=0

w̃i
q,αu

(
yx̃i

q,α
(−Δt)

)
ϕ(x̃i

q,α) (2.26)

and with Ji,q := (xi,q, xi,q+1).
Let u(y) be the function x→ u(yx(−Δt)). Since u(y) is C2k+2 regular on Ji,q for each fixed i, q ∈ {0, . . . , pi},

and that the R.H.S. of (2.26) corresponds to the Gaussian quadrature rule on Ji,q, then we have in particular

|εi,q| ≤ CΔx2k+3
i,q ‖[u(y)ϕ](2k+2)‖L∞(Ji,q),

where Δxi,q := xi,q+1 − xi,q.
On the other hand, since ϕ ∈ Vk,

‖[u(y)ϕ](2k+2)‖L∞(Ji,q) ≤ C

k∑
r=0

‖ϕ(r)‖L∞(Ji,q)‖[u(y)](2k+2−r)‖L∞(Ji,q).

For all r ∈ {0, . . . , k} we have 2k + 2− r ≥ k + 2 ≥ k + 1, hence we can use Lemma 2.11 and obtain the bound

‖[u(y)ϕ](2k+2)‖L∞(Ji,q) ≤ C

(
k∑

r=0

‖ϕ(r)‖L∞(Ji,q)

)
Δt

(
k∑

p=1

‖u(p)‖L∞(y(Ji,q))

)
.
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In particular, ∑
i,q

|εi,q| ≤ C

k∑
r=0

k∑
p=1

∑
i

pi∑
q=0

ΔtΔx2k+3
i,q ‖ϕ(r)‖L∞(Ji,q)‖u(p)‖L∞(y(Ji,q))

By a scaling argument [6, 23], and using that ϕ ∈ Vk for fixed k, we have, ∀0 ≤ r ≤ k,

‖ϕ(r)‖L∞(Ji,q) ≤
C

Δx
r+1/2
i,q

‖ϕ‖L2(Ji,q) ≤
C

Δx
k+1/2
i,q

‖ϕ‖L2(Ji,q), (2.27)

for some constant C, assuming also Δxi,q ≤ 1 (the idea is to use the fact that for polynomials of degree k, by
using norm equivalences, ‖ϕ(r)‖L∞(0,1) ≤ C‖ϕ‖L2(0,1) for some constant C independent of ϕ, and then to use a
scaling argument from (0, 1) to Ji,q to obtain the desired inequality).

Denoting by |J | the length of any interval J , we have also

|Ji,q|e−LΔt ≤ |y(Ji,q)| ≤ |Ji,q|eLΔt, L := ‖b′‖L∞ ,

where |Ji,q| = Δxi,q. Hence, for r ≤ k and p ≤ k,

Δx2k+3
i,q

∑
i,q

‖ϕ(r)‖L∞(Ji,q)‖u(p)‖L∞(y(Ji,q)) ≤ CΔx2k+3
i,q

∑
i,q

‖ϕ‖L2(Ji,q)

Δx
r+1/2
i,q

‖u‖L2(y(Ji,q))

|y(Ji,q)|p+1/2

≤ CΔx2
i,q

∑
i,q

‖ϕ‖L2(Ji,q)‖u‖L2(y(Ji,q)).

Finally, by the Cauchy–Schwarz inequality,∑
i,q

‖ϕ‖L2(Ji,q)‖u‖L2(y(Ji,q)) ≤
(∑

i,q

‖ϕ‖2
L2(Ji,q)

)1/2(∑
i,q

‖u‖2
L2(y(Ji,q))

)1/2

≤ ‖ϕ‖L2‖u‖L2.

since
⋃

i,q Ji,q is a covering of [0, 1]. Hence we obtain∑
i,q

|εi,q| ≤ CΔtΔx2‖ϕ‖L2‖u‖L2,

which concludes the proof of (i). �

Proof of Proposition 2.8(ii). Let us write ψ = P + R where P ∈ Vk is defined as the Taylor expansion of ψ on
each Ji,q = (xi,q, xi,q+1), around xi,q . We consider the decomposition

u(y·(−Δt)) − ψ(y·(−Δt)) ≡ (u− P )(y·(−Δt)) −R(y·(−Δt)) (2.28)

Then by Proposition 2.8(i), for any ϕ ∈ Vk,

|((u − P )(y·(−Δt)), ϕ)G − ((u− P )(y·(−Δt)), ϕ)| ≤ CΔtΔx2‖u− P‖L2‖ϕ‖L2 .

Using the fact that ‖R‖L2 ≤ C‖R‖L∞ ≤ CMk+1(ψ)Δxk+1, we obtain the bound

|((u − P )(y·(−Δt)), ϕ)G − ((u− P )(y·(−Δt)), ϕ)|
≤ CΔtΔx2‖u− ψ‖L2‖ϕ‖L2 + CMk+1(ψ)ΔtΔxk+3‖ϕ‖L2 . (2.29)

There remains to bound the error

(R(y·(−Δt)), ϕ)G − (R(y·(−Δt)), ϕ).

This is easily bounded by C‖R‖∞‖ϕ‖L2 = O(Δxk+1‖ϕ‖L2). Combined with (2.28) and (2.29), we obtain the
desired bound. �
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2.5. Non-constant b: stability and error analysis

We now turn on the stability and convergence analysis. The following result shows the unconditional stability
of the scheme, for any k ≥ 1.

Proposition 2.12 (Stability). Let k ≥ 0 and let b be Lipschitz continuous and 1-periodic. Then:

(i) for any u ∈ L2, and ũ(x) := u(yx(−t)), it holds:

‖ũ‖L2 ≤ e
1
2 L|t| ‖u‖L2, where L := ‖b′‖L∞. (2.30)

(ii) If furthermore b is of class C2k+2, there exists a constant C1 ≥ 0 such that, ∀u ∈ Vk,

‖T̃b,Δtu‖L2 ≤ eC1Δt‖u‖L2 ∀u ∈ Vk.

(iii) In particular for the scheme un+1 = T̃b,Δtu
n,

‖un‖L2 ≤ eC1tn‖u0‖L2 , ∀n ≥ 0,

where tn = nΔt.

Proof.

(i) We make use of the change of variable x → z := yx(−t), with periodic boundary conditions for the
integrands. Therefore we have x = yz(t) and

∂x

∂z
(t) = exp

(∫ t

0

b′(yz(s))ds
)

≤ eL|t|.

We then obtain ∫
Ω

|u(yx(−t))|2dx =
∫

Ω

|u(z)|2
∣∣∣∣∂x∂z (t)

∣∣∣∣ dz ≤ eL|t|
∫

Ω

|u(z)|2dz.

(ii) By using (2.19), we have

‖T̃b,Δtu‖L2 ≤ ‖u(y·(−Δt))‖L2 + CΔtΔx2‖u‖L2. (2.31)

Together with (2.30) we get a stability constant

e
L
2 Δt + CΔtΔx2 ≤ e

L
2 Δt(1 + CΔtΔx2) ≤ e

L
2 ΔteCΔtΔx2

,

hence the desired result for any C1 ≥ 0 such that C1 ≥ 1
2L+ CΔx2.

�

We now state a first convergence result. It generalizes the error estimate of Theorem 2.6 established in the
case when b is constant, to the non-constant case.

Theorem 2.13 (Convergence). Let k ≥ 0. Assume the initial condition v0 is 1-periodic and of class Ck+1. Let
b be 1-periodic and of class C2k+2. There exist constants C1 ≥ 0, C ≥ 0 such that

‖un − vn‖L2 ≤ eC1T

(
‖v0 − u0‖L2 + CT

Δxk+1

Δt

)
, ∀n ≤ N. (2.32)



1710 O. BOKANOWSKI AND G. SIMARMATA

Proof of Theorem 2.13. By using the regularity of vn+1 and Proposition 2.8(iv) we have

Πvn+1 = Tb,Δtv
n = T̃b,Δtv

n +O(Δxk+1). (2.33)

Because of the projection error ‖vn+1−Πvn+1‖ = O(Δxk+1), then we obtain the following consistency estimate:

vn+1 = T̃b,Δtv
n +O(Δxk+1). (2.34)

Therefore

un+1 − vn+1 = T̃b,Δt(un − vn) +O(Δxk+1). (2.35)

By the stability bound of Proposition 2.12(ii),

‖un+1 − vn+1‖L2 ≤ eC1Δt‖un − vn‖L2 + CΔxk+1.

We conclude by induction. �

2.6. Stability to perturbations

We conclude by a stability result with respect to the error of the position of the characteristics.

Proposition 2.14. Let w1(x) := yx(−Δt) and w2(x) := ȳx(−Δt) be some approximation of yx(−Δt) such that
max
i=1,2

|wi(x)− x| ≤ c0Δt for some constant c0 > 0. Assume that Δt
Δx ≤ K for some constant K > 0. Then for all

u, ϕ ∈ Vk, it holds∣∣∣∣ ∫ 1

0

u(w2(x))ϕ(x)dx −
∫ 1

0

u(w1(x))ϕ(x)dx
∣∣∣∣ ≤ C

‖w2 − w1‖L∞

Δx
‖u‖L2‖ϕ‖L2 (2.36)

for some constant C ≥ 0 independent of Δt,Δx.

Proof. We first notice that |yx(−Δt) − x| ≤ c0Δt ≤ c0
Δt
ΔxΔx ≤ qΔx for some integer q ≥ 1, as well as

|ȳx(−Δt) − x| ≤ qΔx. For a given interval I, let Iq := I + [−q, q]Δx. It holds:

‖u(w2) − u(w1)‖L2(I) ≤ ‖u′‖L∞(Iq)‖w2 − w1‖L∞Δx1/2

≤ c1
‖u‖L2(Iq)

Δx3/2
‖w2 − w1‖L∞Δx1/2 ≤ c1‖u‖L2(Iq)

‖w2 − w1‖L∞

Δx

for some constant c1 > 0 (we have used a scaling argument as before). We remark that ‖u‖2
L2(Iq) =∑

j=−q,...,q ‖u‖2
L2(I+qΔx) where J = I + qΔx is also another interval of same length as I. Hence

∑
I ‖u‖2

L2(Iq) =
(2q + 1)‖u‖2

L2, and

‖u(w2) − u(w1)‖L2 ≤ c1
√

2q + 1‖u‖L2
‖w2 − w1‖L∞

Δx
·

The result (2.36) follows by using a Cauchy–Schwarz inequality. �

Corollary 2.15. We consider that an error is made in the computation of the characteristic yx(−Δt), such
that

|ȳx(−Δt) − yx(−Δt)| ≤ ε (2.37)

for some constant C ≥ 0 and ε > 0. Then the error estimate of order CT Δxk+1

Δt in Theorem 2.13 must be
replaced by

CT
Δxk+1

Δt
+ CT

ε

ΔxΔt
·
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Sketch of proof. At each time step an error of order ε = ‖w2 − w1‖L∞ is made in the computation of the
characteristics. By the previous Lemma this results in a supplementary error term of order ε

Δx . Hence after
N = T

Δt time steps the error coming from the computations of the integrals will be bounded by TO( ε
ΔxΔt ). �

We remark that in practice, this approximation error is not seen in the numerical tests because the char-
acteristics are computed using an analytical formula or a machine precision fixed point method when needed.
A high-order approximation method would also lead to ε := CΔtq+1 in (2.37) which can be made arbitrarily
small in particular because we deal only with one-dimensional approximations of characteristics in the proposed
method.

3. Second-order PDEs

This section deals with SLDG schemes for second-order PDEs. We will first deal with a simple diffusion
problem with constant coefficients, for which specific schemes can be obtained, and then we consider the more
general case of advection-diffusion problems with variable coefficients.

3.1. Case of a diffusion equation with constant coefficient

We first consider a diffusion equation with a constant coefficient σ ∈ R:

vt −
σ2

2
vxx = 0, x ∈ Ω, t ∈ (0, T ), (3.1)

v(0, x) = v0(x), x ∈ Ω, (3.2)

and aim to construct simple schemes in this particular setting. Following Kushner and Dupuis [22], a first
scheme, in semi-discrete form, is

un+1(x) =
1
2

(
un(x− σ

√
Δt) + un(x + σ

√
Δt)

)
≡ S0

Δtu
n (x). (3.3)

It is easy to see that, taking vn(x) := v(tn, x) where v is the solution of (3.1) and is assumed sufficiently regular,
the following consistency error estimate holds:∥∥∥∥vn+1 − S0

Δtv
n

Δt

∥∥∥∥
L2

= O(Δt).

The basic SLDG scheme (also called hereafter SLDG-1) is based on the weak formulation of (3.3).
SLDG-1 scheme: Define recursively un+1 in Vk such that∫

un+1(x)ϕ(x)dx =
∫

1
2

(
un(x− σ

√
Δt) + un(x+ σ

√
Δt)

)
ϕ(x) dx, ∀ϕ ∈ Vk

(the initialization of u0 is done as before). The scheme will be also written in abstract form as follows:

un+1 = SΔt(un),

where

SΔt := ΠS0
Δt ≡

1
2

(
T−σ

√
Δt + Tσ

√
Δt

)
.

Before doing the numerical analysis, our aim is first to improve the accuracy with respect to the time
discretization. The technique proposed here is to use a convex combination of u, SΔt, SΔtSΔt, . . . It will work
only for the constant coefficient case (σ constant).
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Using Taylor expansions, for u sufficiently regular, we have, for Δt small,

S0
Δtu = u+

σ2

2
uxxΔt+

σ4

24
u(4)

x Δt2 +O(Δt3), (3.4)

S0
ΔtS

0
Δtu = u+ σ2uxxΔt+

σ4

3
u(4)

x Δt2 +O(Δt3), (3.5)

where u(q)
x denotes the qth derivative of u w.r.t. x.

On the other hand, if vn = v(tn, x) where v is the exact solution of vt = σ2

2 vxx, we have

vn+1 = vn + vtΔt+
1
2
vttΔt

2 +O(Δt3) (3.6)

= vn +
σ2

2
vn

xxΔt+
σ4

8
vn,(4)Δt2 +O(Δt3). (3.7)

Now, looking for coefficients a, b, c such that avn + bS0
Δtv

n + cS0
ΔtS

0
Δtv

n is equal to vn+1 up to O(Δt3),
using (3.4) and (3.5), we obtain the system ⎧⎪⎪⎨⎪⎪⎩

a + b + c = 1
b
2 + c = 1

2

b
24 + c

3 = 1
8

(3.8)

and we find that a = b = c = 1
3 . Therefore, a second-order scheme (for constant coefficient) is now given by

SLDG-2 scheme:

un+1 = S2
Δtu

n :=
1
3
(un + SΔtu

n + SΔtSΔtu
n). (3.9)

Remark 3.1. A variant of this scheme can be

un+1 = Π
1
3
(
un + S0

Δtu
n + S0

ΔtS
0
Δtu

n
)
. (3.10)

This is in general slightly different from (3.9) because SΔtSΔt = ΠS0
ΔtΠS

0
Δt may differ from ΠS0

ΔtS
0
Δt. Never-

theless, the difference between the two will be of the order of the projection error O(Δxk+1) when applied to a
regular data.

In order to obtain a third-order scheme, we can proceed in a similar way. First, we obtain the following
expansions:

S0
Δtu = u+

σ2

2
uxxΔt+

σ4

24
u(4)

x Δt2 +
σ6

6!
u(6)

x Δt3 +O(Δt4),

S0
ΔtS

0
Δtu = u+ σ2uxxΔt+

σ4

3
u(4)

x Δt2 +
2
45
σ6u(6)

x Δt3 +O(Δt4),

S0
ΔtS

0
ΔtS

0
Δtu = u+

3
2
σ2uxxΔt+

7
8
σ4u(4)

x Δt2 +
61
240

σ6u(6)
x Δt3 +O(Δt4).

Looking for coefficients a, b, c, d such that avn + S0
Δtv

n + S0
ΔtS

0
Δtv

n + S0
ΔtS

0
ΔtS

0
Δtv

n is equal to vn+1 up to
O(Δt4), we find the system ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

a + b + c + d = 1
b
2 + c + 3

2d = 1
2

b
24 + c

3 + 7
8d = 1

8

b
6! + 2

45c + 61
240d = 1

48

(3.11)
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and its solution
(a, b, c, d) :=

1
45

(13, 21, 9, 2).

Thus, the following scheme is of 3rd-order in time:
SLDG-3 scheme:

un+1 = S3
Δtu

n :=
13
45
un +

7
15
SΔtu

n +
1
5
SΔtSΔtu

n +
2
45
SΔtSΔtSΔtu

n.

As in Remark 3.1, a variant of the scheme can be

un+1 = Π

(
13
45
un +

7
15
S0

Δtu
n +

1
5
S0

ΔtS
0
Δtu

n +
2
45
S0

ΔtS
0
ΔtS

0
Δtu

n

)
. (3.12)

Since we are using a convex combination of stable schemes (SΔt, SΔtSΔt or SΔtSΔtSΔt), the schemes SLDG-1,
SLDG-2 and SLDG-3 are all stable in the L2 norm.

Remark 3.2. Up to 5th-order schemes – in time – can also be obtained (see [2]), using convex combinations
of the form un+1 =

∑p
i=0 ai(S0

Δt)
iun.

We now state a convergence result for (3.1).

Theorem 3.3. Let k ≥ 0 and let σ be a constant, and assume that the exact solution v of (3.1) has bounded
derivative ∂qv

∂xq for q = max(k + 2, 2p+ 2). We consider the SLDG-p schemes with p = 1, 2 or 3. Then

‖vn − un‖L2 ≤ ‖v0 − u0‖L2 + CT

(
Δxk+1

Δt
+Δtp

)
, ∀n ≤ N. (3.13)

Furthermore the same results hold for the variants (3.10), (3.12) for p = 2, 3.

Proof. We will consider the proof in the case of the SLDG-2 scheme, with p = 2, the other cases being similar. By
using the regularity of the exact solution (∂3v

∂t3 and vn,(6)
x bounded), we have the following consistency estimate:

vn+1 = a0v
n + a1S

0
Δtv

n + a2S
0
ΔtS

0
Δtv

n +O(Δt3), (3.14)

where a0 = a1 = a2 = 1
3 , and the bound O(Δt3) is in the norm ‖.‖L2. Since ΠS0

Δtψ = ΠS0
ΔtΠψ + O(Δxk+1)

for regular data ψ, we have also S2
Δtv

n = Π(S0
Δt)

2vn +O(Δxk+1), and thus

vn+1 = a0v
n + a1SΔtv

n + a2SΔtSΔtv
n +O(Δt3) +O(Δxk+1). (3.15)

By the definition of the scheme we have

un+1 =
2∑

i=0

ai(SΔt)iun. (3.16)

We deduce, using the consistency estimate (3.14),

‖un+1 − vn+1‖L2 ≤ ‖
∑
i≤2

ai(SΔt)i(un − vn)‖L2 + CΔt3 + CΔxk+1

≤
∑
i≤2

ai‖(SΔt)i(un − vn)‖L2 + CΔt3 + CΔxk+1

≤ ‖un − vn‖L2 + CΔt3 + CΔxk+1,

(since ai ≥ 0 and
∑

i ai = 1). The result follows by induction. �
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3.2. Advection-diffusion with variable coefficients

We recall that for the following PDE:

−vt −
σ(t, x)2

2
vxx − b(t, x)vx + r(t, x)v = f(t, x), x ∈ Ω, t ∈ (0, T ), (3.17)

with Ω = R and terminal condition v(T, x) := w(T, x), introducing a probability space (Q,F,P) with a filtra-
tion {Ft}t≥0, and a one-dimensional Brownian motion (Wt)t≥0, and the solution Xs = Xt,x

s of the stochastic
differential equation

dXs = b(s,Xs)ds+ σ(s,Xs)dWs, s ≥ t,

Xt = x,

and if v is a regular solution of the PDE (3.17) on (t, T ) (assuming that the partial derivatives ∂tv and ∂xxv
exist and are continuous) then the following equivalent expectation, or “Feynman–Kac” formula, holds:

v(t, x) = E

[
e−

∫ T
t

r(θ,Xθ)dθw(T,Xt,x
T ) +

∫ T

t

e−
∫ s

t
r(θ,Xθ)dθf(s,Xt,x

s ) ds
∣∣ Ft

]
. (3.18)

To simplify, we shall focus here on the case when b and σ do not depend of time, and r is constant. We
consider the forward PDE:

ut − σ(x)2

2
uxx − b(x)ux + ru = f(t, x), x ∈ Ω, t ∈ (0, T ). (3.19)

In that case the Feynman–Kac formula gives, with h = Δt, T = t+ h and un(x) := u(tn, x):

un+1(x) = E

[
e−rhun(X0,x

h )
∣∣ Ft

]
+ w(h, x) (3.20)

with

w(h, x) := E

[ ∫ h

0

e−rsf(tn + h− s,X0,x
s ) ds

∣∣ Ft

]
. (3.21)

Let Aw := σ(x)2

2 wxx + b(x)wx − rw. The term w(h, x) is also the solution at time s = h of the linear problem
wt(s, x) = (Aw)(s, x)+ f̄ (s, x) with initial condition w(0, x) = 0, and with f̄(s, x) := f(tn +s, x). Assuming that
the source term f is regular and that we can use its derivatives, we can approximate it with an error O(hq+1)
by using a Taylor expansion: w(h, x) 


∑q
j=1

hj

j! wjt(0, x) (where wjt denotes the jth derivative with respect
to time). In particular, wt(0, x) = f̄(0, x) = f(tn, x), and wtt = (Aw + f̄)t = Awt + f̄t = A(Aw + f̄) + f̄t, so
wtt(0, x) = (Af)(tn, x) + ft(tn, x). Hence in order to devise a second-order scheme we approximate (3.21) by

w(h, x) = hf(tn, x) +
h2

2
(Af + ft)(tn, x) +O(h3). (3.22)

The modification of the scheme is obtained, therefore, by adding at each time step the following correction term
at Gauss quadrature points

hf(tn, x) +
h2

2
(Af + ft)(tn, x). (3.23)

For the approximation of the expectation in (3.20), we aim to use a higher-order semi-discrete approximation
also called “weak Taylor approximations” in the stochastic setting, see in particular Kloeden and Platen ([20],
Chap. 15). General semi-discrete (and fully-discrete) approximations can be found in [22].
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We will focus on first- and second-order weak Taylor approximations. Some of these approximation may
use the derivatives of b and σ (Milstein [25], Talay [37], Pardoux and Talay [28]). In our case we shall use a
derivative-free formula of Platen [30] (explicit second- and third-order derivative-free formula can be found in
Kloeden and Platen [20], as well as multidimensional extensions).

Let us denote b = b(x), σ = σ(x) as well as γq
Δt = γq

Δt(x):

γq
Δt(x) := x+ b(x)Δt + qσ(x)

√
Δt. (3.24)

Our SLDG-1 scheme, corresponding to a first-order (weak Euler scheme), is defined by

un+1 ≡ S
(1)
Δtu

n := Π

( ∑
q=±1

αqu
n(yq

Δt(·))
)

(3.25)

with weights α−1 = α1 = 1
2 and characteristics yq

h = γq
h.

Our SLDG-2 scheme, corresponding to the second-order Platen’s scheme, is defined by

un+1 ≡ S
(2)
Δtu

n := Π

⎛⎝ ∑
−1≤q≤1

αqu
n(yq

Δt(·))

⎞⎠ (3.26)

with weights α−1 = α1 = 1
6 and α0 = 2

3 and characteristics yq
h = yq

h(x) defined by:

yq
h(x) = x+

1
2

(
b
(
γ
√

3q
h

)
+ b

)
h (3.27)

+
1
4

[(
σ(γ1

h) + σ(γ−1
h ) + 2σ

)√
3 q +

(
σ(γ1

h) − σ(γ−1
h )

)
(3q2 − 1)

]√
h.

Remark 3.4. In the constant coefficient case σ(x) ≡ σ, the scheme becomes

un+1 ≡ S
(2)
Δtu

n := Π

(
1
6
un(x− σ

√
3Δt) +

2
3
un(x) +

1
6
un(x+ σ

√
3Δt)

)
. (3.28)

Remark 3.5. Higher-order weak Taylor schemes can be found in [20] and could be used with DG to devise
fully discrete schemes in the same way.

The above SLDG-1/2 schemes are no more exactly implementable because b(x) and σ(x) are not constant.
So, as in the advection case, we consider the use of a Gaussian quadrature rule on each interval of regularity of
the data.

Remark 3.6. Notice that if h is small enough such that

‖hb′ +
√
hσ′‖L∞ < 1, (3.29)

then for each q = ±1 the function x → γq
h(x) is a one-to-one and onto function. Furthermore, its inverse can

be easily and rapidly computed by using a fixed point method or Newton’s algorithm. Details are left to the
reader.

In the same way, for h small enough such that, for instance,

h‖b′‖L∞ + 3
√
h‖σ′‖L∞ < 1, (3.30)

then x→ yq
h(x) as defined in (3.27) is one-to-one and onto function.
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SLDG-1 scheme (fully discrete): For each given η = ±1, we consider a partition of Ii into intervals Jη
i,q such

that all yη(Jη
i,q) are subintervals of some Ij . We then define Gauss points x̃i,η

q,α and the bilinear product (a, b)Gη

in a similar way as in (2.15), that is, using the Gaussian quadrature rule on each Jη
i,q. Hence we define S̃(1)

Δtu
n

in Vk such that

(
S̃

(1)
Δtu

n, ϕ
)

=
1
2

∑
η=±

(un(yη), ϕ)Gη , ∀ϕ ∈ Vk. (3.31)

Formula (3.31) involves two different quadrature rules, because the discontinuity points of un(y+(x)) and
un(y−(x)) are not the same. It differs from the definition of S(1)

Δtu, which satisfies(
S

(1)
Δtu, ϕ

)
=

1
2

∑
η=±

(u(yη), ϕ), ∀ϕ ∈ Vk. (3.32)

SLDG-2 scheme (fully discrete): In a similar way, we define S̃(2)
Δtu

n in Vk by:(
S̃

(2)
Δtu

n, ϕ
)

=
∑

−1≤η≤1

αη(un(yη
Δt), ϕ)Gη , ∀ϕ ∈ Vk. (3.33)

3.3. Stability and convergence

We first state some useful estimates for the operators S̃Δt ∈ {S̃(1)
Δt , S̃

(2)
Δt }. The proof is similar to the one of

Proposition 2.8.

Proposition 3.7. Let k ≥ 0 and let σ be of class C2k+2 and 1-periodic. Then:

(i) there exists a constant C ≥ 0 such that, for any yq
Δt, for all u ∈ Vk,∣∣∣∣(u(yq

Δt), ϕ)Gη − (u(yq
Δt), ϕ)

∣∣∣∣ ≤ C
√
ΔtΔx2‖u‖L2‖ϕ‖L2 ∀ϕ ∈ Vk.

In particular, for any u ∈ Vk,

S̃Δtu = SΔtu+O
(√

ΔtΔx2‖u‖L2

)
. (3.34)

(ii) For all u ∈ Vk, for any ψ in Ck+1, 1-periodic,

S̃Δt(u− ψ) = SΔt(u− ψ) +O(
√
ΔtΔx2‖u− ψ‖L2) +O(Mk+1(ψ)Δxk+1), (3.35)

where C ≥ 0 is a constant.

(iii) For any regular ψ ∈ Ck+1, 1-periodic, we have in the L2 norm

S̃Δtψ = SΔtψ +O(Mk+1(ψ)Δxk+1). (3.36)

We now establish stability properties.

Proposition 3.8. Let k ≥ 0, and assume that h is small enough in order that (3.29) (resp. (3.30)) holds.

(i) (Stability with exact integration as in (3.25)). For any u ∈ Vk,

‖SΔtu‖L2 ≤ (1 + CΔt)‖u‖L2,

where C ≥ 0 is a constant.
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(ii) (Stability with Gaussian quadrature rule as in (3.31)). For any u ∈ Vk,

‖S̃Δtu‖L2 ≤ (1 + CΔt+ C
√
ΔtΔx2)‖u‖L2.

(iii) In particular the fully discrete schemes SLDG-1 and -2 are L2 stable under the “weak” CFL condition

Δx4 ≤ λΔt, for some λ > 0. (3.37)

Proof.

(i) By making use of the convexity of x → x2, the change of variable formula x → yq
Δt(x) (and denoting also

z → xq
Δt(z) the inverse function of yq

Δt), we have

‖SΔtu‖2
L2 =

∫ ∣∣∣∣∑
q

αqu(x+ b(x)Δt+ qσ(x)
√
Δt)

∣∣∣∣2dx
≤

∫ ∑
q

αq

∣∣∣∣u(x+ b(x)Δt+ qσ(x)
√
Δt)

∣∣∣∣2dx
=

∫ ∑
q

αq

1 + b′(xq(z))Δt+ qσ′(xq(z))
√
Δt

|u(z)|2dz.

Then we remark that xq
Δt(z) = x+O(

√
Δt), so 1+ b′(xq(z))Δt+ qσ′(xq(z))

√
Δt = 1+ qσ′(x)

√
Δt+O(Δt),

and for Δt small enough 0 ≤ (1+b′(xq(z))Δt+qσ′(xq(z))
√
Δt)−1 ≤ 1−qσ′(x)

√
Δt+CΔt for some constant

C ≥ 0. Hence

‖SΔtu‖2
L2 ≤

∫ ∑
q

αq(1 − qσ′(x)
√
Δt+ CΔt)|u(z)|2dz

≤ (1 + CΔt)
∫

|u(z)|2dz

where we have used that
∑
αq = 1, and

∑
q qαq = 0. The desired result follows.

(ii) This is a consequence of (i) and of the bound (3.34) of Proposition 3.7. �

The convergence result for the approximation of (3.19) is the following.

Theorem 3.9. Let k ≥ 0 and let σ be a 1-periodic function, of class C2k+2. We consider the schemes SLDG-p
for p = 1, 2 (implementable version).
Assume the exact solution v has a bounded derivative ∂qv

∂xq for q = max(2p + 2, k + 1), and that the weak CFL
condition (3.37) is satisfied, then

‖un − vn‖L2 ≤ eL1T

(
‖u0 − v0‖2 + CT

(
Δxk+1

Δt
+Δtp

))
, ∀n ≤ N, (3.38)

for some constant L1 ≥ 0.

In particular for Δt = λΔx for any λ > 0, and k = p ∈ {1, 2}, the SLDG-p schemes are fully discrete schemes
and of order O(Δxp).

Proof of Theorem 3.9. We first consider the SLDG-1 scheme un+1 = S̃Δtu
n. By making use of the consistency

error estimate, we have

vn+1 = ΠS0
Δtv

n +O(Δt2) +O(Δxk+1) = SΔtv
n +O(Δt2) +O(Δxk+1). (3.39)
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Furthermore, by proposition 3.7(iii),

‖S̃Δtv
n − SΔtv

n‖L2 ≤ CMk+1(vn)Δxk+1. (3.40)

Hence

vn+1 = S̃Δtv
n +O(Δt2) +O(Δxk+1), (3.41)

and by difference with the scheme un+1 = S̃Δtu
n:

‖un+1 − vn+1‖ = ‖S̃Δtu
n − S̃Δtv

n‖L2 + C(Δt2 +Δxk+1) (3.42)
≤ eCΔt‖un − vn‖L2 + C(Δt2 +Δxk+1), (3.43)

for some constant C ≥ 0, where we have made use of the stability estimate for S̃Δt. Therefore we obtain the
desired error bound.

For the SLDG-2 scheme, the estimates are similar, using the fact Platen’s scheme is second-order to get the
consistency estimate vn+1 = S

(2)
Δt v

n +O(Δt3) +O(Δxk+1). The conclusion follows. �

4. Extension to two-dimensional PDEs and splitting strategies

4.1. First-order PDEs – two-dimensional case

We aim to extend the previous scheme to treat two-dimensional PDEs, by using splitting strategies and
one-dimensional solvers of the previous section for advection in the direction of the coordinate axes.

Let Ω be a square box domain Ω = [x1,min, x1,max] × [x2,min, x2,max] with periodic boundary conditions. Let
us consider a spatial discretization of Ω into cells Ii,j := Ii × Jj where Ii (resp. Jj) is a cell discretization
of [x1,min, x1,max] (resp. [x2,min, x2,max]) as in the one-dimensional case using M1 (resp. M2) points. We define
the corresponding space of 2d discontinuous Galerkin elements by using the Qk basis (v ∈ Qk if v(x) =∑

i,j≤k vijx
i
1x

j
2):

V
(2)
k :=

{
v ∈ L2(Ω,R), v|Ii,j ∈ Qk, ∀(i, j)

}
. (4.1)

We consider the case of

ut + b1(x1, x2)ux1 + b2(x1, x2)ux2 = 0, (x1, x2) ∈ Ω. (4.2)

The idea, already proposed in [34] or [9] is to split the equation into

ut + b1(x1, x2)ux1 = 0, (x1, x2) ∈ Ω (4.3)

and

ut + b2(x1, x2)ux2 = 0, (x1, x2) ∈ Ω. (4.4)

Let the corresponding characteristics Xq
(x1,x2)

(t) be defined by :

• for q = 1: X1
(x1,x2)

(t) = (y1(t), x2) where

y1(t) is the solution of ẏ1(t) = b1(y1(t), x2) with y1(0) = x1,

• for q = 2: X2
(x1,x2)

(t) = (x1, y2(t)) where

y2(t) is the solution of ẏ2(t) = b2(x1, y2(t)) with y2(0) = x2.



SLDG SCHEME FOR FIRST- AND SECOND-ORDER PDES 1719

Let Eq
t be the corresponding exact evolution operator in the direction of xq. The exact solution of (4.3), with

q = 1 (resp. (4.4), with q = 2) satisfies

vn+1(x1, x2) = vn(Xq
(x1,x2)

(−Δt)) = Eq
Δt(v

n)(x1, x2).

We define the discrete evolution operator for (4.3), denoted T̃ 1
b1,Δt, so that for each fixed Gauss points x2 = xi

α

the one-dimensional scheme is used for the evolution in the direction x1. We define in the same way the operator
T̃ 2

b2,Δt for the approximation of (4.4).

Remark 4.1. In the case of (4.3) we do not try to compute precisely the 2d integrals∫
Ii×Jj

un(X1
(x1,x2)

(−Δt))ϕ1(x1)ϕ2(x2)dx1dx2, (4.5)

where ϕ1 and ϕ2 are polynomial basis functions. The discontinuities of the integrand are no longer well localized
and it would not be possible to obtain easily an accurate approximation for (4.5). Rather, the discrete scheme
computes a high-order approximation of the following integrals on a full band [0, 1] × Jj∫

[0,1]×Jj

un(X1
(x1,x2)

(−Δt))ϕ1(x1)ϕ2(x2)dx1dx2, (4.6)

and this is all what is needed.

Now, the results of Section 2, in particular Propositions 2.8 and 2.12, can be extended to the operators T̃ q
bq ,Δt,

q = 1, 2. The difference is now that the consistency estimates are typically as follows, for q = 1, 2:

‖Eq
Δtϕ− T̃ q

bq ,Δtϕ‖L2 ≤ CΔt2Δxk+1
q ‖ϕ‖L2, ∀ϕ ∈ V

(2)
k ,

and
‖Eq

Δtψ − T̃ q
bq,Δtψ‖L2 ≤ C(ψ)Δxk+1

q , ∀ψ ∈ Ck+1.

Let furthermore Et be the evolution operator for the initial advection problem (4.2). In the case when
b = (b1, b2) is constant we have

EΔt = E2
ΔtE1

Δt

and we can therefore approximate the exact evolution EΔtv
n by T 2

b2,ΔtT 1
b1,Δtu

n with no error coming from the
splitting.

In the following, when there is no ambiguity, we furthermore denote

T q
Δt = T q

bq ,Δt q = 1, 2.

In the case when b = (b1, b2) is non-constant, we recall the following approximations of the exponential
e(A+B)Δt for A and B matrices and for small Δt:

e(A+B)Δt = eBΔteAΔt +O(Δt2) (Trotter spitting), (4.7)

e(A+B)Δt = eB Δt
2 eAΔteB Δt

2 +O(Δt3) (Strang’s spitting). (4.8)

leading us to consider the following splitting approximations

TbΔt 
 T 2
ΔtT 1

Δt (Trotter) (4.9)

TbΔt 
 T 1
Δt
2
T 2

ΔtT 1
Δt
2

(Strang) (4.10)
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of expected consistency error O(Δt) and O(Δt2) respectively.4 These last two splitting schemes are similar to
the ones used in [31].

Following [34], we shall also consider a 3rd-order splitting scheme of Ruth [35], a 4th-order splitting scheme
of Forest [18] (see also Forest and Ruth [19]), as well as a 6th-order splitting of Yoshida [41]).

Ruth’s 3rd-order splitting:

TbΔt 
 T 1
c1ΔtT 2

d1ΔtT 1
c2ΔtT 2

d2ΔtT 1
c3ΔtT 2

d3Δt, (4.11)

with
c1 = 7/24, c2 = 3/4, c3 = −1/24 and d1 = 2/3, d2 = −2/3, d3 = 1.

Forest’s 4th-order splitting:

TbΔt 
 T 1
γ1

Δt
2
T 2

γ2ΔtT 1
(γ1+γ2)

Δt
2
T 2

γ2ΔtT 1
(γ1+γ2)

Δt
2
T 2

γ2ΔtT 1
γ1

Δt
2
, (4.12)

with

γ1 :=
1

2 − 21/3
and γ2 = − 21/3

2 − 21/3
·

Yoshida’s 6th-order splitting:

TbΔt 
 T 4th
y1ΔtT 4th

y2ΔtT 4th
y1Δt, (4.13)

where T 4th
Δt denotes the previous Forest’s 4th-order approximation method,

y1 :=
1

2 − 21/5
and y2 := − 21/5

2 − 21/5
·

Remark 4.2. Stability in the L2-norm is then easily obtained. Indeed, we have the L2-stability of the one-
directional advection operators T k

Δt, that is, for variable coefficients

‖T k
Δtu‖L2 ≤ ecΔt‖u‖L2 (4.14)

for some constant c. Then, for instance for the Trotter splitting, we have ‖T 1
ΔtT 2

Δtu‖L2 ≤ e2cΔt‖u‖L2, which
gives the L2 stability result

‖(T 1
ΔtT 2

Δt)
nu‖L2 ≤ e2ctn‖u‖L2. (4.15)

In the same way any finite product of operators of the form of T k
αkΔt (or any convex combination of such

products) would lead to stable schemes.

Hence the results of Section 2 can be extended: for α = 1, 2, 3, 4 and 6 corresponding to the splittings (4.9)–
(4.13) respectively, for regular solutions, the one time step error will be of order

O(Δtα+1) +O(Δxk+1), (4.16)

and the convergence error bound after N time steps will be of order

O(Δtα) +O

(
Δxk+1

Δt

)
· (4.17)

4Denoting τ = T/N for N ≥ 1, and q ≥ 0, if linear operators Aτ and Bτ on a normed vector space satisfy Aτ = Bτ + O(τq+1),
with ‖An

τ ‖, ‖Bn
τ ‖ ≤ C for all 0 ≤ n ≤ N , then AN

τ = BN
τ + O(τq).
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4.2. Second-order PDEs – two-dimensional case

We consider the case of

ut −
1
2
Tr(σ(x)σ(x)TD2u) + b(x) · ∇u = f(t, x), x ∈ Ω, t ∈ (0, T )

(4.18)

(with initial condition u(0, x) = u0(x)), where σ(x) ∈ R
2×2 and Tr(A) denotes the trace of the matrix A.

We introduce the following decomposition into the direction of diffusions represented by the column vectors
of the matrix σ (similar decompositions have been used by Kushner and Dupuis [22], Menaldi [24], Camilli and
Falcone [4], Debrabant and Jakobsen [11], etc.):

σσT =
2∑

q=1

σqσ
T
q , where σq :=

(
σ1,q

σ2,q

)
.

Setting B1 =
(
b1
0

)
and B2 =

(
0
b2

)
, we write (4.18) as follows:

ut +
∑

q=1,2

(
− 1

2
Tr(σqσ

T
q D

2u) +Bq · ∇u
)

= f(t, x). (4.19)

Let us first consider the one-directional problem (one direction of diffusion):

ut −
1
2
Tr(σqσ

T
q D

2u) +Bq · ∇u = 0. (4.20)

For this subproblem we consider weak Taylor schemes exactly as for the one-dimensional SLDG-1 and SLDG-2
schemes (3.24) and (3.25) and (3.26) and (3.27). Indeed these approximations are known to be also of order 1
and 2 in time for (4.20) in any dimension [20].

It remains to give the definition of a scheme, of sufficient order, for the approximation in two dimensions for
terms of the form

Π(un(yq
Δt(·))) (4.21)

where Π is the projection on V (2)
k and yq

Δt(x) is now a vector of R
2.

Remark 4.3. In view of the definition of the characteristics (3.24) or (3.27), a typical problem is to compute
accurately the projection on V (2)

k of a function of the form

(x1, x2) → un(f1(h, x1, x2), f2(h, x1, x2)), (4.22)

with h =
√
Δt, where f1 and f2 are regular functions with known expressions, and such that

f1(0, x1, x2) = x1 and f2(0, x1, x2) = x2. (4.23)

A high-order approximation of the term (4.21), or (4.22) in the general case can be obtained by using the PDE
satisfied by v(s, x1, x2) := un(f1(s, x1, x2), f2(s, x1, x2)).

More precisely, assuming that un is a regular function, we observe that ∂sv = 〈∂sf, ∇un(f1, f2)〉 and ∇v =
DfT ∇un(f1, f2) (where Df := ( ∂fi

∂xj
) and ∇u = ( ∂u

∂xi
)). Therefore ∂sv = 〈∂sf, (DfT )−1∇v〉 = 〈Df−1∂sf, ∇v〉

and v is solution of the PDE

∂sv − 〈Df−1∂sf, ∇v〉 = 0, s > 0, (4.24a)
v(0, x1, x2) = un(x1, x2) (4.24b)



1722 O. BOKANOWSKI AND G. SIMARMATA

(the matrix inverse Df(s, x1, x2)−1 is well defined for small s ≥ 0 since by the assumptions (4.23) we have
Df(0, x1, x2) = Id). Then we have a problem of the form (4.2) and we can apply the splitting approaches of
Section 4.1 to obtain a high-order approximation of (4.22) on a DG basis.

Remark 4.4. In the present work we will consider only numerical examples involving terms of the form
Πun(f1(h, x1, x2), x2) or Πun(x1, f2(h, x1, x2)) (i.e. f2(h, x1, x2) ≡ x2, or f1(h, x1, x2) ≡ x1), or of the form
Πun(f1(h, x1), f2(h, x2)) with regular functions f1 and f2 and h =

√
Δt. For such cases, the one-dimensional

discretization can be extended to two dimensions by straightforward splitting.

Finally, for the general case of (4.18), we define the scheme by using Strang’s splitting of the one time-step
evolution operators for (4.20) and by adding the correction (3.23) for the source term.

5. Numerical examples

The first three examples are devoted to advection problems, while the other examples concern second-order
equations.

We recall that N is the number of time steps (and Δt = T/N), and M is the number of spatial mesh points
in the one-dimensional case (resp. M1,M2 for two-dimensional cases).

Unless otherwise specified, the characteristics are one-dimensional and are always computed exactly (see
added sentence in Sect. 5 before the first example).

Computations were performed on a DELL Latitude E6220, Intel Core i5, 2.50GHz, 4GO RAM, with Linux
OS, 32-bit, using GNU C++.

Example 1. We consider an advection equation with non-constant advection term

vt + b(x)vx = 0, x ∈ (0, 1), t ∈ (0, T ), (5.1)
v(0, x) = sin(2πx), x ∈ (0, 1), (5.2)

and

b (x) := C0 + C1 sin(2πx), with C0 = 1 and C1 := 0.8 (5.3)

together with periodic boundary conditions on (0, 1). The exact solution is given by v(t, x) = sin(2πyx(−t)),
where

yx(−t) =
1
π

atan
(
− r + tan

(
atan(

tan(πx) + r

a
) − C0πat

))
with r := C1

C0
and a :=

√
1 − r2.

The results are given in Table 1 for Δt ∼ Δx with fixed CFL= 1.8 and terminal time T = 1.3. (Here the CFL
corresponds to ‖b‖∞ Δt

Δx .) The numerical error behaves approximatively one order better than the expected one
when Δt = λΔx, that is of the order of O(Δxk+1

Δt ) ≡ O(Δxk). Super-convergence results can be explained in
some cases for other DG methods [39].

Example 2 (2D advection with non-constant coefficients). We consider the following rotation example of a
“bump”:

ut + 2π(−x2, x1) · ∇u = 0, x = (x1, x2) ∈ Ω, t ∈ (0, T ),

u(0, x) = 1 − e−20((x1−1)2+x2
2−r2

0),

with Ω := (−2, 2)2, r0 = 0.25 and terminal time T = 0.9. Since b(x1, x2) = 2π(−x2, x1) is non-constant,
Trotter’s splitting is no longer exact.
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Table 1. (Example 1) non-constant advection, Δt ∼ Δx and CFL= 1.8, T = 1.3.

L2 error k = 1 k = 2 k = 3 k = 4
M N error order error order error order error order
10 10 1.95E-01 – 3.45E-02 – 1.45E-02 – 7.83E-03 –
20 20 2.67E-02 1.93 6.06E-03 2.50 1.38E-03 3.39 2.33E-04 5.07
40 40 7.80E-03 1.77 6.39E-04 3.24 3.22E-05 5.42 4.31E-06 5.75
80 80 1.47E-03 2.40 3.62E-05 4.13 1.52E-06 4.40 7.74E-08 5.80
160 160 2.27E-04 2.69 3.31E-06 3.45 7.13E-08 4.41 2.48E-09 4.96
320 320 3.92E-05 2.53 4.03E-07 3.04 3.92E-09 4.18 8.03E-11 4.95

Table 2. (Example 2), 2D rotation, L2 errors at time T = 0.9, using M ×M grid points and
splittings of order 2, 4 and 6.

L2 error Strang (with k = 2) Forest (with k = 4) Yoshida (with k = 6)
N M error order cpu(s) error order cpu(s) error order cpu(s)
10 10 2.91E-01 – 0.004 1.66E-01 – 0.01 1.81E-02 – 0.07
20 20 6.62E-02 2.13 0.012 1.01E-02 4.04 0.03 2.45E-04 6.21 0.26
40 40 1.60E-02 2.05 0.032 6.24E-04 4.01 0.22 3.64E-06 6.07 1.65
80 80 3.99E-03 2.01 0.272 3.89E-05 4.00 2.04 5.61E-08 6.02 15.06
160 160 9.96E-04 2.00 2.844 2.43E-06 4.00 18.25 1.03E-09 5.77 120.98

In Table 2, we test and compare the splitting algorithms as described in Section 2.3, from order 2 to 6
(Strang’s splitting, Forest’s 4th-order splitting and Yoshida’s 6th-order splittings, tested with k = 2, 4, and
k = 6 respectively), using M1 = M2 = M spatial mesh points. Trotter’s splitting error, not represented in
Table 2, is of order 1. We have avoided taking the particular case of T = 1 (full turn) because it gives better
numerical results but prevents proper understanding of the order of the method.

In this example, the initial datum is sufficiently close to 1 outside a ball of radius 1.5, so that the error coming
from the boundary treatment is negligible.

Example 3 (2D deformation with non-constant coefficients). In this example, close to the one in for instance
Qiu and Shu ([31], Example 5), the advection term is non-constant

ut −
(
g(t) cos(

x2

2
) sin(y)

)
ux +

(
g(t) cos(

y2

2
) sin(x)

)
uy = 0,

(x, y) ∈ Ω, t ∈ (0, T ),

with Ω := (−2, 2)2, T = 1 and same initial datum as in Example 4. Here we furthermore consider g(t) := 1 for
t ∈ [0, T

2 ] and then g(t) := −1 for t ∈]T
2 , T ], so that the exact solution after time T is u(T, x, y) = u0(x, y).

In Table 3, we test and compare the splitting algorithms of orders 2,4 and 6 (Strang’s, Forest’s and Yoshida’s
splittings), using polynomials of degree k = 2, 4 and 6 respectively. The cpu times are also given in seconds.
Example 4 (1D convection diffusion). Now, we consider the diffusion equation

vt −
1
2
σ2vxx + bvx = 0, ∀x ∈ Ω, t ∈ (0, T ) (5.4)

v(0, x) = cos(2πx) +
1
2

cos(4πx), x ∈ Ω (5.5)

together with periodic boundary conditions on Ω = (0, 1), with constants σ = 0.1, b = 0.3, and T = 0.2. The
exact solution is given by

v(t, x) =
∑

k=1,2

ck exp(−2σ2k2π2t) cos(2kπ(x− bt)),

with c1 = 1 and c2 = 1
2 .
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Table 3. (Example 3) 2D deformation, L2 errors at time T = 1, using M ×M grid points
and splittings of orders 2, 4 and 6.

L2 error Strang (with k = 2) Forest (with k = 4) Yoshida (with k = 6)
N M error order cpu(s) error order cpu(s) error order cpu(s)
10 10 1.28E-01 – 0.005 7.82E-03 – 0.08 7.70E-04 – 0.85
20 20 1.45E-02 3.14 0.034 2.78E-04 4.81 0.36 6.60E-06 6.87 3.65
40 40 1.44E-03 3.33 0.104 9.06E-06 4.94 1.58 3.32E-08 7.64 16.20
80 80 1.66E-04 3.12 0.620 3.30E-07 4.78 7.73 2.71E-10 6.94 140.41

Table 4. Example 4 (1D diffusion), SLDG-RKp schemes with Δt ∼ Δx.

L2 error SLDG-RK1 (P1) SLDG-RK2 (P2) SLDG-RK3 (P3)
M N error order error order error order
10 10 9.94E-03 – 1.37E-03 – 8.66E-05 –
20 20 1.39E-03 2.84 1.08E-04 3.67 3.70E-06 4.55
40 40 2.93E-04 2.25 3.63E-06 4.90 1.03E-07 5.17
80 80 8.02E-05 1.87 6.28E-07 2.53 9.81E-09 3.39
160 160 2.35E-05 1.77 9.72E-08 2.69 7.00E-10 3.81
320 320 8.22E-06 1.52 2.60E-08 1.90 5.79E-11 3.60
640 640 4.06E-06 1.02 6.17E-09 2.08 5.81E-12 3.32

Table 5. Example 4 (1D diffusion), SLDG-RKp with large time steps Δt� Δx.

L2 error SLDG-RK1 (P1) SLDG-RK2 (P2) SLDG-RK3 (P3)
M N error error error
20 10 1.37E-03 4.34E-05 1.79E-06
40 15 5.13E-04 6.87E-06 1.41E-07
80 20 1.39E-04 1.40E-06 1.11E-08
160 25 1.05E-04 1.83E-07 5.20E-10
320 30 8.49E-05 6.14E-08 3.09E-11
640 35 7.26E-05 4.35E-08 1.15E-11
1280 40 6.35E-05 3.31E-08 7.02E-12

Since the operators 1
2σ

2∂2
x and b∂x commute, we use the simple scheme

un+1 = Sσ
ΔtTbΔtu

n.

In Table 4 we study the orders of the SLDG-RKp schemes when Δt ∼ Δx and p ∈ {1, 2, 3}. The orders are
as expected.

We also give in Table 5 the errors when taking larger time steps (Δt � Δx), still showing good behavior,
while the ratio Δt

Δx varies from 0.40 to 6.40.

We have numerically also tested the case when b = 0 (pure diffusion); the numerical results are very close to
the present case.

Example 5 (1D Black and Scholes and boundary conditions). This example deals with the one-dimensional
Black-Scholes (B&S) PDE for the pricing of a European put option with one asset [38]. After a change of variable
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in logarithmic coordinates5, the equation for the European put option becomes on Ω := (xmin, xmax):⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

ut − 1
2σ

2uxx + bux + ru = 0, x ∈ Ω, t ∈ (0, T ),

u(0, x) = u0(x) = Kmax(1 − ex, 0) x ∈ Ω,

u(t, x) = u�(t) ≡ Ke−rt −Kex t ∈ (0, T ), x ≤ xmin,

u(t, x) = ur(t) ≡ 0 t ∈ (0, T ), x ≥ xmax,

(5.6)

with b := −(r − 1
2σ

2) and where xmin < 0 and xmax > 0, and we have imposed boundary conditions outside of
Ω. Numerically, the initial datum exhibits singular behavior at x = 0 (as it is only Lipschitz regular).

For this PDE the scheme reads
un+1 = e−rΔtSσ

ΔtT b
Δtu

n.

The following financial parameters are used: K = 100 (strike price), r = 0.10 (interest rate), σ = 0.2
(volatility), and T = 0.25 (maturity). Since the interesting part of the solution lies in a neighborhood of x = 0
(notice that ϕ has a singularity at x = 0), for the computational domain we consider

Ω = (xmin, xmax) = (−2, 2).

In principle the PDE should be considered with |xmin|, |xmax| >> 1, but here it can be numerically observed
that the solution doesn’t really change for |xmin|, |xmax| ≥ 2.

Results are reported in Table 6 for the L2 errors, where Δt is chosen of the same order as Δx, and the
SLDG-RK1 SLDG-RK2 and SLDG-RK3 schemes are compared, together with a P4 polynomial basis (k = 4).
We used a P4 basis so that the error from the spatial approximation is in principle negligible with respect to
the time discretisation error. We numerically observe the expected order 1 (resp. 2) for the SLDG-RK1 (resp.
SLDG-RK2) scheme, and approximatly order 3 for the SLDG-RK3 scheme (of expected theoretical order 3).

Remark 5.1 (Boundary treatment). For semi-Lagrangian schemes, the knowledge of u(t, x) for x ≤ xmin or
x ≥ xmax can be used if it is available. Here, “out-of-bound” values are needed for computing S0vn, S0S0vn

and S0S0S0vn for vn = T b
Δtu

n. In particular, the values un(x + kσ
√
Δt − bΔt) for |k| ≤ 3 are used when

y := x + kσ
√
Δt − bΔt lies outside of (xmin, xmax). In that case, we simply directly use the “out-of-bounds”

values u�(tn, y) when y ≤ xmin or ur(tn, y) when y ≥ xmax.
It is clear that this will not work for a general PDE posed on a given domain with given boundary condi-

tions. (See however [1] for an example of a semi-Lagrangian scheme applied to a PDE with Neuman boundary
conditions.)

Example 6 (1D diffusion with non-constant σ(x)). Now, we consider the following diffusion equation

vt −
1
2
σ2(x)vxx = f(t, x), x ∈ (0, 1), t ∈ (0, T ) (5.7)

v(0, x) = 0 x ∈ (0, 1), (5.8)

with periodic boundary conditions,
σ(x) := sin(2πx),

5 The classical B&S PDE for the put option reads

vt − 1

2
σ2s2vss − bsvs + rv = 0, s ∈ (0,∞), t ∈ (0, T ),

(where b = r − 1
2
σ2), with initial condition v(0, s) = ϕ(s) ≡ max(K − s, 0). Then using the change of variable x = log(s/K) and

u(t, x) := v(t, s), we obtain the PDE (5.6) on x ∈ R.
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Table 6. Example 5(1D Black and Scholes PDE). Error table with Δt ∼ Δx, using SLDG-
RK1, SLDG-RK2 and SLDG-RK3 methods with P4 polynomials (k = 4).

L2 error SLDG-RK1 SLDG-RK2 SLDG-RK3
M N error order cpu(s) error order cpu(s) error order cpu(s)
10 10 6.30E-02 – 0.001 3.84E-02 – 0.001 4.17E-02 – 0.004
20 20 6.63E-03 3.25 0.008 2.27E-03 4.08 0.004 2.49E-03 4.07 0.004
40 40 2.54E-03 1.39 0.012 1.00E-04 4.50 0.016 1.24E-04 4.32 0.016
80 80 1.26E-03 1.01 0.028 4.11E-06 4.61 0.036 4.58E-06 4.76 0.040
160 160 6.28E-04 1.00 0.124 7.85E-07 2.39 0.124 1.13E-07 5.34 0.152
320 320 3.14E-04 1.00 0.424 1.94E-07 2.01 0.464 1.17E-08 3.27 0.528
640 640 1.57E-04 1.00 1.668 4.84E-08 2.00 1.805 1.23E-09 3.25 2.128

Table 7. Example 6 (1D diffusion with non-constant coefficient), with fixed spatial mesh
(M = 100 and P4 polynomials) and varying time steps N .

L2 error SLDG-1 SLDG-2
N error order error order
100 1.19E-03 – 1.89E-04 2.05
200 5.95E-04 1.01 4.57E-05 1.97
400 2.96E-04 1.01 1.16E-05 1.93
800 1.48E-04 1.00 3.07E-06 1.91
1600 7.40E-05 1.00 8.17E-07 1.92

Table 8. Example 6 (1D diffusion with non-constant coefficient), with Δt ∼ Δx.

L2 error SLDG-1 (with P1) SLDG-2 (with P2)
M N error order error order
10 10 8.60E-02 – 4.13E-02 –
20 20 3.52E-02 1.29 7.30E-03 2.50
40 40 1.59E-02 1.15 1.39E-03 2.39
80 80 7.54E-03 1.08 3.03E-04 2.20
160 160 3.67E-03 1.04 7.17E-05 2.08
320 320 1.81E-03 1.02 1.80E-05 1.99

and, for testing purposes, f(t, x) := v̄t(t, x) − 1
2σ

2(x)v̄xx(t, x) where v̄(t, x) := sin(2πt) cos(2π(x − t)), which is
therefore the exact solution (v ≡ v̄).

In this case, in order to get higher than first-order accuracy in time, we use the SLDG-2 scheme corresponding
to a Platen’s weak Taylor scheme. The correction for the source term f(t, x) is treated by adding the term (3.23)
at Gauss quadrature points, at each time step.

In Table 7 we first check the accuracy with respect to time discretization, with fixed spatial mesh size so that
only the time discretization error appears.

Then, in Table 8 the errors are given for varying mesh sizes such that Δt ≡ Δx and with P1 or P2 elements
(k = 1 or k = 2). We find the expected orders for the schemes SLDG-1/2.

Remark 5.2. Notice that there is no need for an assumption that the diffusion coefficient is non-vanishing in
the proposed method.
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Table 9. Example 7 (2D diffusion equation), error table with Δt ∼ Δx using Qk polynomials.

L2 error SLDG-RK1 (Q1) SLDG-RK2 (Q2) SLDG-RK3 (Q3)
M1 = M2 N error order error order error order

10 10 6.66E-03 – 1.86E-04 – 2.20E-06 –
20 20 3.26E-03 1.02 4.52E-05 2.04 3.10E-07 2.83
40 40 1.61E-03 1.01 1.08E-05 2.06 3.20E-08 3.27
80 80 8.04E-04 1.00 2.69E-06 2.01 4.34E-09 2.88
160 160 4.01E-04 1.00 6.66E-07 2.01 4.90E-10 3.14

Example 7 (2D diffusion). We consider the following two-dimensional diffusion equation:

ut −
1
2
(5uxx − 4uxy + uyy) = 0, x ∈ Ω, t ∈ (0, T ), (5.9)

u(0, x) = u0(x), x ∈ Ω (5.10)

set on Ω = (0, 1)2 with periodic boundary conditions, and T = 0.2. The initial datum is given by u0(x) =
u01(x + 2y) + u02(−y) and u0i(ξ) :=

∑
q=1,2 c

i
q cos(2πqξ) with the constant ciq = 1

i+q . The exact solution is
known6.

In order to define the numerical scheme, we use the fact that

A :=
[

5 −2
−2 1

]
=

∑
k=1,2

σkσ
T
k , with σ1 :=

(
1
0

)
, σ2 :=

(
2
−1

)
.

The results are given in Table 9, where we consider variable time steps and mesh steps Δt ∼ Δx, p = k, and
expect a global error of order O(Δtp) +O(Δxk+1

Δt ) ≡ O(Δxk).
In this example involving constant diffusion coefficients, we test up to third-order schemes.

Example 8 (2D diffusion with non-constant coefficients). We consider the following two-dimensional diffusion
equation:

ut −
1
2
Tr(σσTD2u) = f(t, x), x ∈ Ω, t ∈ (0, T ), (5.11)

u(0, x, y) = u0(x, y), (x, y) ∈ Ω (5.12)

set on Ω = (−π, π)2 with periodic boundary conditions, T = 1.0. The diffusion matrix A = σσT is defined by

σ(x, y) :=
(

cos(x) cos(2x)
0 sin(y)

)
.

In this test we have chosen u(t, x, y) := cos(t) sin(2x) sin(x + y) and the source term f(t, x) such that (5.11)
holds. (The initial datum is therefore u0(x, y) = u(0, x, y)).

The scheme is defined here by using either

• the weak Euler scheme for the diffusion part, combined with Trotter’s splitting (and with Q1 polynomials)
and a first-order correction for the source tem (as in (3.22)).

• the weak Platen scheme for the diffusion part, combined with Strang’s splitting (and with Q2 polynomials)
and a second-order correction for the source term (3.22), as explained in Section 4.2.

6 Making the change of variable ξ = (ξ1, ξ2) such that ξ1 = x + 2y and ξ2 = −y we find that v(t, ξ) = u(t, x) satisfies

vt − 1
2
(vξ1ξ1 + vξ2ξ2 ) = 0 and v(0, ξ) = u01(ξ1) + u02(ξ2) and therefore the exact solution is given by u(t, x) = v(t, ξ) =

u1(t, ξ1) + u2(t, ξ2) where ui(t, ξ) =
∑

q=1,2 ci
qe−(2πq)2t/2 cos(2πqξ).
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Table 10. Example 8 (2D diffusion equation with variable coefficients).

L2 error Euler/Trotter (with Q1) Platen/Strang (with Q2)
M1 = M2 N error order cpu(s) error order cpu(s)

5 10 1.50E+00 – 0.01 2.96E-01 – 0.020
10 20 4.98E-01 1.59 0.02 3.14E-02 3.24 0.088
20 40 9.63E-02 2.37 0.11 3.40E-03 3.21 0.432
40 80 2.87E-02 1.75 0.74 7.10E-04 2.26 2.564
80 160 1.07E-02 1.43 5.44 1.66E-04 2.09 16.621

The results for L2 errors are given in Table 10, where we consider variable time steps and mesh stepsΔt ∼ Δx.
(see Sect. 4.1). The schemes are numerically roughly of the expected orders 1 and 2.

As mentioned in Remark 5.2, there is no need to assume strict positivity of the diffusion matrix in this
approach.

Appendix A. Instability of the direct scheme

Here we consider the “direct scheme”, which defines naively at each time iteration a new piecewise polynomial
un+1 ∈ Vk such that,

un+1,i
α := un(xi

α − bΔt), for all Gauss points xi
α.

In Figure A.1, we consider again vt + vx = 0 with periodic boundary conditions on (0, 1), and with the initial
data v0(x) = sin(2πx). We have depicted two graphs with different choices of the parameter N . In each graph
we plotted the result of the direct scheme (green line) and of the SLDG scheme (red line) at time T = 1, with
piecewise P1 elements (k = 1) and fixed spatial mesh using M = 46 mesh steps. In the left graph, N = 80 time
steps and both curves are confounded; in the right graph, N = 320, and the direct scheme becomes unstable
(we have found that the error behaves as cNΔxk+1 where c > 1, when using Pk elements.)

(a) N = 80 (b) N = 320

Figure A.1. Results for N = 80 (left) and N = 320 (right), using P1 elements with M = 46
in both cases. Instability appears on the right figure.
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