
HAL Id: hal-00743041
https://hal.science/hal-00743041

Submitted on 18 Oct 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Foundations and Tools for End-User Architecting
David Garlan, Vishal Dwivedi, Ivan Ruchkin, Bradley Schmerl

To cite this version:
David Garlan, Vishal Dwivedi, Ivan Ruchkin, Bradley Schmerl. Foundations and Tools for End-User
Architecting. 17th Monterey Workshop 2012 on Large-Scale Complex IT Systems: Development,
Operation and Management., Mar 2012, Oxford, United Kingdom. pp.157-182, �10.1007/978-3-642-
34059-8_9�. �hal-00743041�

https://hal.science/hal-00743041
https://hal.archives-ouvertes.fr

Foundations and Tools for End-User Architecting

David Garlan, Vishal Dwivedi, Ivan Ruchkin, and Bradley Schmerl

School of Computer Science

Carnegie Mellon University

Pittsburgh, USA.

{garlan,vdwivedi,iruchkin,schmerl}@cs.cmu.edu

Abstract. Within an increasing number of domains an important emerging need

is the ability for technically naı̈ve users to compose computational elements into

novel configurations. Examples include astronomers who create new analysis

pipelines to process telescopic data, intelligence analysts who must process di-

verse sources of unstructured text to discover socio-technical trends, and medical

researchers who have to process brain image data in new ways to understand

disease pathways. Creating such compositions today typically requires low-level

technical expertise, limiting the use of computational methods and increasing the

cost of using them. In this paper we describe an approach — which we term

end-user architecting — that exploits the similarity between such compositional

activities and those of software architects. Drawing on the rich heritage of soft-

ware architecture languages, methods, and tools, we show how those techniques

can be adapted to support end users in composing rich computational systems

through domain-specific compositional paradigms and component repositories,

without requiring that they have knowledge of the low-level implementation de-

tails of the components or the compositional infrastructure. Further, we outline a

set of open research challenges that the area of end-user architecting raises.

Keywords: end-user architecture, end-user architecting, software architecture,

end-user programming, software composition, software development tools.

1 Introduction

Increasingly users rely on computation to support their professional activities. In some

cases turnkey applications and services are sufficient to carry out computational tasks.

However, in many situations users must adapt computing to their specific needs. These

adaptations can take many forms: from setting preferences in applications, to “program-

ming” spreadsheets, to creating orchestrations of services in support of some business

process. This situation has given rise to an interest in end-user programming [40], and,

more generally, end-user software engineering [28] or end-user computing [23]. This

emerging field attempts to find ways to better support users who, unlike professional

programmers, do not have deep technical knowledge, but must somehow find ways to

harness the power of computation to support their tasks.

One important subclass of end-user computation arises in domains where users must

compose existing computational elements into novel configurations. Examples include

e-science (e.g., astronomers who create new analysis pipelines to process telescopic

2 End-User Architecting

data), intelligence analysis (e.g., policy planners who process diverse sources of un-

structured text to discover socio-technical trends), and medicine (e.g., researchers who

process repositories of brain imaging data to discover new disease pathways).

In these domains professionals typically have access to a large number of existing

applications and data sets, which must be composed in novel ways to gain insight, carry

out “what if” experiments, generate reports and research findings, etc. For example, in

the field of brain imaging, scientists study samples of brain images and neural activity

to diagnose disease patterns. Innovative research in this domain requires that scientists

compose a large number of tools and apply them to brain-imaging data sets to diagnose

problems, such as malformations and structural or functional deformities. There also

exist dozens (if not hundreds) of brain image processing tools for image recognition,

image alignment, filtering, volumetric analytics, mapping, etc. Figure 1 illustrates a

popular neuroscience tool suite, called FSL, that is used to create scripts for analyzing

FMRI [43] data.

A large script file

that contains

program calls

Fig. 1: Compositions in the neuroscience domain.

Unfortunately, assembling such elements into coherent compositions is a non-trivial

matter. In many cases users must have detailed low-level knowledge of things like ap-

plication parameter settings, application invocation idiosyncrasies, file locations and

naming conventions, data formats and encodings, ordering restrictions, and scripting

languages. In Figure 1, for example, users must create and execute detailed scripts il-

lustrated at the bottom of the figure.

Further, it may be difficult for end users to determine whether a set of components

can be composed at all, and, if not, what to do about it. For example, differences in data

encodings may make direct component composition infeasible without the inclusion

of one or more format converters. Even when a legal composition can be achieved, it

may not have the performance (or other quality attributes) critical to the needs of the

end user. And, even when a suitably performing composition can be created, it may be

difficult to share it with peers or reuse it in similar but different settings.

End-User Architecting 3

In this paper we advocate an approach to these problems that exploits the similar-

ity between such compositions and software architecture, and attempts to leverage the

considerable advances made within that field over the past two decades. The key idea

is to view the activities of these end users as engaging in architectural design within

a domain-specific style and to represent those architectures explicitly. As we will see,

such explicit representation allows one to raise the level of abstraction for composition,

provide criteria for evaluating the soundness and quality of a composition, support reuse

and parametrization, and establish a platform for a host of task-enhancing services such

as program synthesis, analysis, compilation, execution, and debugging.

By approaching the problem in this way we identify a new field of concern, which

we term end-user architecting. Similar to end-user programming [40], it recognizes up

front that the key issue is bridging the gap between available computational resources

and the skill set of the users who must harness them — users who typically have weak

or non-existent programming skills. But unlike end-user programming, it seeks to find

higher-level abstractions that leverage the considerable advances in software architec-

ture languages, methods, and tools to support component composition, analysis and

execution.

In Section 2 we revisit the problem, highlighting the cross-cutting similarities in

computing needs for composition-based domains such as those mentioned above, and

we outline the challenges for solving the problems of users in these domains. Section 3

makes the case for taking an architectural perspective on the problem, and outlines an

approach in which software architecture tools and techniques can be incorporated into

environments that support end-user architecting. Section 4 illustrates how this approach

can be applied by considering three case studies. Section 5 considers related work, and

Section 6 explores some of the open research challenges in this area.

2 The Problem

As noted above, an increasing number of domains are evolving to depend on composing

existing components to support their tasks. Table 1 lists examples of these domains,

including e-science, business processing, social science research, and electronic music

synthesis.

While very different in their specific tasks and goals, the use of computation within

these communities shares a number of common properties. First, it relies on compo-

sitions of existing components to accomplish computational tasks. For example, there

exist large repositories of reusable components such as BioCatalogue [54] for life sci-

ence web services, the BIRN Data Repository [4] for neuroscience data and analysis

tools, and myExperiment [39] for scientific workflows.

Second, in many cases those compositions are complex, involving dozens of com-

ponents, possibly running on many hosts. Thus, creating new compositions becomes a

non-trivial task, often taking weeks to develop, test, and execute.

Third, quality attributes matter. While the specific quality attributes of concern vary

from domain to domain, they typically include things like performance (time to com-

plete a task), resource requirements (numbers of processors, storage requirements),

availability (likelihood of crashing), privacy and security (protection of data). For ex-

4 End-User Architecting

Type Compositions

Astronomy electromagnetic image processing tasks [11]

Bioinformatics biological data-analysis services [30]

Digital music production audio sequencing and editing [32]

Environmental Science spatio-temporal experiments [56]

Geospatial Analysis interactive visualization of geographical data [37]

Home Automation home devices and services [29]

Neuroscience brain-image processing libraries [12]

Scientific computing transformational workflows [48]

Socio-technical Analysis dynamic network creation, analysis, reporting and simulation [47]

Table 1: Domains involving end user compositions.

ample, a brain imaging composition may be of little use to a neuroscience researcher if

it takes a week to execute, fails frequently, or compromises the privacy of the data.

Fourth, the socio-technical ecosystem within which these computations are used is

complex, involving many roles and incentives [25]. For example, researchers care that

their compositions produce credible outputs and that they can share their computations

with their peers; component providers care that they are given credit for the use of

their components; regulators and funders care that the provenance of all results is fully

documented.

Today these end-user communities are not well served by existing technology and

development platforms. In particular, we can identify five critical barriers.

1. Excessive technical detail: Creating compositions today often requires knowledge

of myriad low-level technical details, such as data formats, parameter settings, file

locations, ordering constraints, execution conventions, scripting languages, etc. As

Figure 1 illustrates, brain imaging research using FSL tools requires a user to under-

stand and create detailed execution scripts that specify how to configure each of the

constituent tools, which may have dozens of configuration parameters. As another

example, in the domain of intelligence analysis (cf. Section 4) a typical composition

that involves two logical steps, but is executed in the context of a service-oriented

architecture (SOA), requires the end user to specify a Business Processing Event

Language (BPEL) script shown in Figure 2 [47]. The script requires the user to

explicitly specify low-level details that handle control flow, variable assignment,

exception handling, and other programming constructs.

2. Inappropriate computational models: The computational models provided by

typical execution platforms, such as SOA, may require end users to map their tasks

into a computational vocabulary that is quite different from the natural way of de-

composing the task in that domain. For example, tasks that are logically repre-

sented in the end user’s mind as a workflow may have to be translated into the

very-different vocabulary of service invocations executing on a SOA, as illustrated

in Figure 2.

3. Inability to analyze compositions: There may be many restrictions on legal ways

to combine elements, dictated by things like format compatibility, domain-specific

End-User Architecting 5

processing requirements, ordering constraints, and access rights to data and ap-

plications. Today, discovering whether a composition satisfies these restrictions is

largely a matter of trial and error, since there are few tools to automate such checks.

Moreover, even when a composition does satisfy the composition constraints, its

extra-functional properties — or quality attributes — may be uncertain. For exam-

ple, determining how long a given computation will take to produce results on a

given data set can often be determined only by time-consuming experimentation.
4. Lack of support for reuse: An important requirement in many communities is the

ability for professionals to share their compositions with others in those communi-

ties. For instance, brain researchers may want to replicate the analyses of others, or

to adapt an existing analysis to a different setting (e.g., executed on different data

sets). Packaging such compositions in a reusable and adaptable form is difficult,

given the low-level nature of their encodings, and the brittleness of the specifica-

tions.
5. Impoverished support for execution. The execution environment for composi-

tions is often impoverished. Compared to the capabilities of modern programming

environments, end users have relatively few tools for things like compilation into

efficient deployments, interactive testing and debugging (e.g., setting breakpoints,

monitoring intermediate results, etc.), history tracking, and graceful handling of

run-time errors. This follows in part from the fact that in many cases compositions

are executed in a distributed environment using middleware that is not geared to-

wards interactive use and exploration by technically naive users.

(b)

...

Assign

While

Sequence

Wait

Invoke

Catch

Throw

Sequence

Assign

Assign

Invoke

Reply

Sequence

Invoke

Invoke

Fig. 2: A segment of BPEL orchestration of a socio-cultural analysis workflow.

This gap between the needs of end users and today’s technology has a number of se-

rious consequences. The cost of producing effective compositions is excessive because

end users must become experts in implementation details not relevant to their primary

task. The quality is low because compositions tend to be brittle and in many cases fail

to meet their extra-functional requirements. Compositions are difficult to reuse, modify,

and maintain, leading to gratuitous reinvention.

6 End-User Architecting

Recognizing these problems, a number of research- and practitioner-based efforts

have produced platforms that provide end-user tools for composition, reuse and exe-

cution within specific domains. As described in more detail in Section 5, this is typ-

ically done through the creation of component repositories, and composition environ-

ments that support computational models appropriate to the domain, such as workflow

execution, widget composition, data exploration or music synthesis and composition.

Examples include Taverna for life sciences, the Ozone Widget Framework (OWF) for

geospatial analysis, VisTrails for data exploration and visualization, Steinberg’s Virtual

Studio Technology (VST) for composing music effects, etc.

While many of these platforms have been quite successful, and several are in wide-

spread use, they are typically handcrafted for specific communities and domains —

often at great cost in development time and effort. What is needed, we would argue, is

a foundational understanding of the problem and a general approach to a solution that

gets at the heart of the mismatch between end user needs and technologies that must be

exploited. Such foundations would ideally lead to a systematic approach to developing

tools that surmount the barriers outlined earlier. In the next section we outline such an

approach.

3 End-User Architecture

The key to solving the problems outlined above is to recognize that the computational

design activities performed by those communities are fundamentally architectural in

nature. Recognizing that, one can then explore how modern techniques and tools in

support of software architecture can be applied to this new area of end-user architecting.

Software architecture emerged as a subfield of software engineering in the 1990s as

a way to tackle the increasing complexity of software systems design. While there are

many definitions of software architecture, a typical one is [8]:

The software architecture of a computing system is the set of structures

needed to reason about the system, which comprises software elements, rela-

tionships among them, and properties of both.

Definitions aside, the principle idea behind software architecture is to allow soft-

ware engineers to treat system design at a high-level of abstraction, representing a

system as a composition of interacting components. Properties of those components

and their compositions can then be specified in a way that allows designers to ana-

lyze systemic quality attributes and tradeoffs, such as performance, reliability, security,

availability, maintainability, and so on [49].

Since its emergence there has been substantial development of foundations, tools,

and techniques to aid software architects. These include formal and semi-formal archi-

tecture description languages (ADLs) [33], architecture-based analyses [19], architec-

ture reconstruction tools [46], architecture evaluation methods [9], architecture hand-

books [6], architecture style definition and enforcement [17], and many others.

With respect to the theme of this paper, a number of salient features of software

architecture are particularly important:

End-User Architecting 7

– Component composition: Software architecture represents a system as a composi-

tion of components, supporting a high-level view of the system and bringing to the

forefront issues of assignment of function to components, component compatibil-

ity, protocols of interaction between components, and ways to package component

compositions for reuse.

– Domain-specific computation models: Software architecture allows developers

to represent a system using compositional models that are not restricted by the

implementation platform or programming language, but can be chosen to match

the intuition of designers. Specifically, software architecture allows one to define

architectural styles, where each style denotes a family of systems that shares a

common vocabulary of composition, conforms to rules for combining components,

and identifies analyses that can be applied to systems in that family [49]. Styles

may represent generic computational models such as publish-subscribe, pipe-filter,

and client-server. Or, they may be specialized for particular domains [34, 35].

– Analysis: Software architecture allows developers to perform analysis of quality

attributes at a systems level. This is typically done by exposing key properties of

the components and their interactions, and then using those properties in support

of calculations to determine expected component compatibility, performance, reli-

ability, security, and so on [19]. This in turn allows developers to make engineering

tradeoffs, for example balancing attributes like fidelity, performance, and cost of

deployment to match the particular business context. Additionally, in some cases

it is possible to build analytic tools that not only detect problems, but also suggest

possible solutions [51].

– Reuse: Software architecture supports several kinds of reuse. First, architectural

styles provide a basis for sharing components that fit within that style [34, 35].

Modern examples of this include platforms like JEE and frameworks like Eclipse.

Second, software architectures permit the definition of reusable patterns that can be

used to solve specific problems [2, 6]. Third, most architectural models support hi-

erarchical description, whereby a component can be treated as a primitive building

block at one level of composition, but refined to reveal its own sub-architecture.

– Execution support: For some architectural styles tools can generate implemen-

tations. Typically this is done by using a repository of components that conform

to the style, and then compiling the system description into executable code [18].

Additionally, software architectures can be used for run-time monitoring and de-

bugging [57].

These properties suggest that if applied appropriately, software architecture princi-

ples, tools, and practices could directly address the five challenges outlined in Section 2.

Specifically:

1. Excessive technical detail: Architectural models provide a way to develop, ana-

lyze, and execute compositional models at a high level of abstraction, suppressing

details of implementation.

2. Inappropriate computational models: Architectural models can define domain-

specific compositional styles to match the computational intuition of end users.

3. Inability to analyze compositions: Architectural models, suitably represented and

formalized, can be analyzed by tools to gain insight into a system’s expected qual-

8 End-User Architecting

ity attributes and to evaluate tradeoffs between alternative designs based on their

support for relevant qualities.
4. Lack of support for reuse: Architectural models support reuse of components,

patterns, styles, and encapsulated subsystems.
5. Impoverished support for execution. Architectures can, in principle, be used as a

basis for compilation, deployment, execution, and debugging.

How can these potential benefits be realized? We would argue that the key to doing

this is to use an approach in which there is an explicit architectural representation of

the compositions created by end users. For a given domain the architectures that could

be created would be associated with a domain-specific architectural style correspond-

ing to natural computational models for the domain (such as some variant on workflow,

publish-subscribe, or data-centric styles). Further, associated with the style and corre-

sponding infrastructure, there would be a set of architecture services that could support

analysis, execution, etc. Finally, all of these features would be made available to users

through a graphical front end that supports access to component repositories, architec-

ture construction, system execution, and various additional support services.

This leads to a general framework of system organization in support of end-user

architecting, as illustrated in Figure 3. Part (a) of the figure shows the current state

of affairs: users must translate their tasks into the computational model of the execu-

tion platform, and become familiar with the low-level details of that platform and the

primitive computational elements (applications, services, files, etc.) — leading to the

problems outlined in Section 2. Part (b) illustrates the new approach. Here, end-user

architectures are explicitly represented as architectural models defined in a domain-

specific architectural style. These models and the supporting infrastructure can then

support a host of auxiliary services, including checking for style conformance, qual-

ity attribute analysis, compilation into efficient deployments, execution and debugging

mechanisms, and automated repair — as shown in part (c).

���

��

������	ABCDEF��A��

D�	�	�	���

����	�������C

���E�C�AB�A��FB�� �BFE��	�

������	AB �A��	EF�	AB ���F	�

��� ���

����	�������C

������	ABCDEF��A��

D�	�	�	���

��

Fig. 3: End-user Architecting Approach

4 Case Studies

To investigate the potential of this approach we instantiated the general framework de-

scribed above in three domains: dynamic network analysis, brain imaging, and geospa-

tial analysis. For each we describe the nature of the domain and the forms of composi-

tion that are required within the community of use. We then consider how we adapted

End-User Architecting 9

the end-user architecting framework to this domain in terms of (a) architecture rep-

resentation, (b) architecture style, (c) architectural analysis, (d) execution support, (e)

additional services, (f) reuse, and (g) user interface.

4.1 Dynamic Network Analysis

Dynamic Network Analysis (DNA) is a domain of computation that focuses on the

analysis of network models, which represent entities, relations, and their properties.

DNA is increasingly being used in a variety of fields, including anthropology, sociology,

business planning, law enforcement, and national security, where networks capture the

relationships between people, knowledge, tasks, locations, etc. [7].

End users in these fields are typically analysts who extract entities and relations

from unstructured text (such as web sites, blogs, twitter feeds, email, etc.) to create net-

work models, and who then use those models to gain insight into social, organizational,

and cultural phenomena through analysis and simulation.

For example, an analyst interested in understanding disaster relief after the Haiti

earthquake in 2010 [58] might build a network from open source news data provided

through a source such as LexisNexis [?]. This unstructured textual data needs to be

processed into a usable form, or “cleaned,” to filter out headers, remove noise, and

normalize concepts. From this processed data a dynamic network can be generated rep-

resenting associations between people, places, resources, knowledge, tasks, and events.

Using network analysis algorithms, insights can then be gained. For example, analysis

can determine things like the primary organizations and people involved in the relief ef-

fort, how information about food and medical supplies propagated through the network,

and how these evolved over time.

Similar kinds of analyses are routinely carried out in law enforcement (where ana-

lysts use crime reports and statistics to determine drug-related gang activities), health-

care and disease control (where analysts use medical reports from hospitals and phar-

macies to understand disease vectors), and anthropology (where social scientists can

understand belief systems and how they relate to demographics).

Within this broad domain of dynamic network analysis, analysts typically engage in

a process of composing a variety of existing tools to extract networks, analyze them, and

display results. Figure 4 illustrates a typical toolset used for such analyses consisting of

the following: AutoMap for extracting networks from natural language texts, ORA for

analyzing and visualizing networks, and Construct for “what-if” reasoning about the

networks using simulation [47].

Conceptually the computations that analysts create can be viewed as workflows,

where each step in the workflow requires the invocation of some data transformation

step that consumes the data from previous steps and produces results for the next step.

However, traditionally, to achieve this kind of composition analysts would need to un-

derstand the idiosyncracies of each of tool, manually invoke them on data stored in

various file locations using a variety of file naming schemes and data formats, and pre-

serve the results of the analysis in some location that they would have to keep track of,

before invoking another tool to carry out the next step.

More recently coarse-grained tools like AutoMap, ORA, and Construct have been

reengineered to expose a set of services that can be composed within a SOA frame-

10 End-User Architecting

Fig. 4: Typical tools for socio-cultural analysis.

work. While the use of services reduces the burden of learning to use specific tools,

and opens up the possibility of novel compositions, unfortunately the use of SOA re-

quires end users to translate their workflow intuitions into the low-level encodings and

scripting required by SOA orchestration languages such as BPEL. Figure 2 illustrated

the resulting complexity of such encodings.

To apply the proposed end-user architecting approach to this domain, we adapted

the end-user architecting framework of Figure 3 by creating an environment, called

SORASCS (Service ORiented Architecture for Socio-Cultural Systems), for dynamic

network analysis [16, 47], and illustrated in Figure 5. Key features of this environment

are as follows:

a. Architecture representation: Architectures are explicitly represented in a system

layer, called the socio-cultural analysis layer. This layer stores compositions as

workflows. It also provides a repository of data transformers, which act as com-

ponent building blocks for creation of new workflows.

b. Architecture style: Compositions are defined using a formal workflow architec-

tural style, which specifies the vocabulary of element types and constraints on

compositions [12]. Element types include data transformers, data sources, and data

sinks. Constraints of the workflow style prohibit the introduction of cycles, dan-

gling connectors, unattached interfaces, and mismatched communication channels

(where the data produced by one component is incompatible with the data con-

sumed by a successor component).

c. Analysis: The SORASCS workflow style supports a number of analyses including

(a) data privacy analysis, which identifies potential privacy issues in the informa-

tion flows, (b) ordering analysis, which uses machine-learning to evaluate whether

the ordering of transformation steps is consistent with previously constructed work-

flows, and (c) performance analysis, which estimates the amount of time that will

be taken to complete an analysis of a specified data set.

End-User Architecting 11

Wrappers

Tools

Legend

Tools

Services

Layer

Socio-

cultural

analysis

Layer

User-

Interface

Layer

SWIFT

Data

Transformers

SORASCS

Workflows
History Intelligence

Data Services

Registry Orchestration Engine Data

Services

Bridging Component

SORASCS Invocation API

Component Interface

Local Call

Webservice Call

Data Call

Configuration Port

Fig. 5: SORASCS Organization.

d. Execution support: Workflows are compiled into BPEL scripts, which are run

within the Services Layer using standard SOA infrastructure. The compilation pro-

cess attempts to optimize performance by parallelizing workflow execution. Addi-

tionally, there is execution support for long-duration transformations and graceful

error handling — typically not provided by baseline SOA infrastructure. Further, it

is possible for a user to set breakpoints, execute the workflow one transformation

at a time, and preserve intermediate data for later inspection.

e. Services: The SORASCS platform provides services for examining history and

for repeating previously executed activities in the history list. The platform also

provides data services for organizing data into projects and categories, and catego-

rizing the data in ways that are informative to analysts. Access control is provided

to check that users have appropriate rights to use data sets and transformations.

f. Reuse: Workflows can be encapsulated as parameterized components for later reuse

and adaptation. These are stored in a repository of available data transformers,

which may be used as primitives, or “opened” to reveal their substructure and pos-

sibly edited for new usage contexts.

12 End-User Architecting

g. User Interface: A web-based graphical interface, called SWiFT [20], is provided

for workflow construction, analysis, and execution. Further, the interface provides

access to the set of available data transformers, organized hierarchically according

to community-based ontologies.

To illustrate how SORASCS works, Figure 6 shows a workflow that analyzes a

user’s emails to generate a social network of his/her contacts. Table 2 lists the computa-

tional elements that are used for this workflow. The Mail Extractor workflow step

acquires security credentials to connect to a remote mail server in order to gain access

to the user’s emails. The composition then transmits the user’s email data to Filter

Text, followed by Delete, which in combination remove irrelevant words and sym-

bols. This data is then passed to Generate Meta-Network, which generates a

social-network of the people and concepts referred to in the email text. HotTopics

then creates a report listing important keywords in this social network. The workflow

also uses two data sources that provide the inputs to the text processing steps.

Fig. 6: A DNA Workflow with a Security Flaw.

When a security analysis is run on this workflow, SORASCS detects a security prob-

lem. In this case, data security requirements mandate the use of ‘token-based authenti-

cation’ by all services. However the above workflow includes the Mail Extractor

service, which uses ‘password-based authentication’ — indicating a security violation.

The analysis flags this as a problematic workflow by highlighting the inappropriate ser-

vice in red.

Once analysis is complete and the errors have been corrected, the user can compile

the workflow into the BPEL script illustrated in Figure 6, which can then be executed.

Although not illustrated here, as execution proceeds, the user is given feedback through

the SORASCS user interface to show which workflow step is currently being executed.

4.2 Neuroscience

Functional magnetic resonance imaging (fMRI) is a common form of analysis per-

formed by neuroscientists in the brain-imaging domain to understand the behavior of

the human brain [43]. A typical fMRI analysis consists of sequences of computations

End-User Architecting 13

Operation Description

Mail

Extractor

Extracts email from a server to a text file

Filter Text Removes undesirable information from text files

Delete Removes a set of common keywords using a stan-

dard dictionary (such as: a, an, the, etc) from a text

file

Generate

Meta-Network

Creates a dynamic network based on the informa-

tion in the text file

Hot Topics Creates a report about important keywords in a so-

cial network

Table 2: DNA operations used in the workflow of Figure 6.

over brain image data to support hypotheses or interpretations, such as assessing the

evolution of cognitive deficits in neurodegenerative diseases [13]. Figure 7 illustrates a

typical image translation process.

Neuroscientists have at their disposal large repositories of brain imaging data, such

as the BIRN Data Repository [4] and the Portuguese Brain Imaging Network Project [53].

Neuroscientists also have access to a large variety of processing tools, which perform

functions such as those listed in Table 3.

(a) Raw Image (b) Aligned (c) Spatial Filtering (d) Registered

Fig. 7: Brain image data viewed after individual pre-processing steps.

Professional neuroscientists can easily identify the steps required for processing

brain imaging data, but because of a proliferation of possible tool implementations for

each step and their idiosyncratic parameterization requirements, they find it difficult to

choose and assemble tools to implement these steps. Furthermore, while these experts

can debug a processing script by examining the outputs, novices are typically unable to

do this. As an example of the complexity introduced by tool parameterization, Figure 1

illustrates a part of a typical script in which a single logical processing step requires the

specification of 9 parameters1.

Additional complexity arises because of implicit sequencing constraints. For exam-

ple, a mandatory step in fMRI analysis is to perform pre-processing operations on brain

image data to remove or control some aspects that can affect the overall analysis [52]

(such as aligning one brain volume to another using linear transformations operations

1 In practice, the number of parameters ranges from 5 to 25.

14 End-User Architecting

Operation Description Tool name

Align Alignment of an fMRI sequence based on a refer-

ence volume (i.e. motion correction, direction cor-

rectness)

fslmaths,

fslroi,

mcflirt

Segmentation Segmentation of a brain mask from the fMRI se-

quence

bet2,

fslmaths,

fslstats

Spatial Filtering Compute spatial density estimates for neuroscience

images, and filter the volumes accordingly

fslmaths,

susan

Temporal Filtering Blur the moving parts of images, while leaving the

static parts.

fslmaths

Normalize Translating, rotating, scaling, and may be wrapping

the image to match a standard image template

flirt

Register Align one brain volume to another using linear

transformation operations (such as rotation, trans-

lations, etc.) or non-linear transformations (such as

warping, local distortions, etc.)

flirt, fnirt

Table 3: Some tools for brain-imaging processing.

like rotation, translation, etc.). While experts may learn these constraints through trial

and error, there are no tools to guide less-expert end users.

There are many possible ways to encode image data and analysis results, and neu-

roscientists must ensure that encodings match between steps. This further complicates

composition because neuroscientists must be aware of these formats and carefully select

compatible steps or manually locate transducers that can bridge mismatches.

�����	A�B�	C�DEFD�F	A�E	����	A���	�

��E�����E�C�DEFD�F�	A��D�	���E����C�DEFD�F���D��

A��C�	����D���	AF��	��	ACBD�����	A��	��	A

CBD���� 	A��	��	ACBD����!	A��	��	A�E�B��	

�����EBD�

��"#B���	$C�D�B"��%���&��'�$	()�#

��"#B���	$C�D�B"��%'&��'�$	()�#

�C��D��	����	A)���	�����	A�	A�DC	�DC*	��+�

�C��D��	����	A*B�EB�	,D�CC	��C�,�D�	A��BDE	��-�

)B��	����	��.�	A�	��'�	AE	A�

�B�/��B	0���B�BE�D���E 1

	

Fig. 8: A problematic neuroscience workflow that misses ‘alignment’ of data before

‘temporal filtering’.

End-User Architecting 15

To address these problems we adapted the end-user architecting framework to this

domain as follows:

a. Architecture representation: Similar to dynamic network analysis, architectures

are explicitly represented in a system layer that stores compositions as workflows

and provides a repository of processing steps and transducers. The main compo-

nents made available in this prototype were derived from the FSL tool suite (e.g.,

bet2, fslmath, flirt) [14].

b. Architecture style: Compositions are defined using a formal workflow architec-

tural style, which is similar to the one used for dynamic network analysis.2 The

neuroscience style differs in two respects: (a) it defines computational elements

specific to the neuroscience domain, and (b) it provides additional properties and

domain-specific constraints (such as checking ports for different data encodings and

other content of brain-image data) that allow the correct construction of workflows

within the neuroscience domain.

c. Analysis: Similar to dynamic network analysis, the properties of the style elements

are used for designing various domain-specific analyses for the brain imaging do-

main. An example is data mismatch analysis to support the detection of data mis-

matches in the neuroscience compositions and to suggest repairs that can resolve

these mismatches based on an end user’s quality of service requirements [55].

d. Execution support: Workflows are compiled into BPEL scripts, which are exe-

cuted on a service-oriented platform, identical to SORASCS, providing the similar

feedback and debugging facilities.

e. Services: Similar to dynamic network analysis, the brain imaging platform pro-

vides services to end users tracking the history of operations performed and access

to brain imaging data sets.

f. Reuse: Like dynamic network analysis, workflows can be encapsulated as param-

eterized components for later reuse and adaptation.

g. User Interface: A web-based graphical interface is provided for workflow con-

struction, analysis, and execution.

Figure 8 illustrates a typical application that analyzes brain image data using some

of the transformation operations listed in Table 3. To the right of the workflow the figure

indicates the invocation and parameter settings that are used to invoke individual tools.

In this example analysis reveals an error in the workflow located in the Temporal

Filtering component and its corresponding interface. The error occurs because be-

fore doing temporal filtering on brain-imaging data, it is necessary to align it. There-

fore any workflow is required to have the Align component before the Temporal

Filtering component. This is an example of a typical semantic problem that cannot

be easily identified from scripts or BPEL-like compositions.

2 In fact, using the formal architectural description language of Acme[36], we have defined

a common root style for both the dynamic network analysis domain and the neuroscience

domain [12].

16 End-User Architecting

4.3 Geospatial Analysis

Geospatial analysis tools allow analysts to explore location-based data using graphi-

cal representations such as maps and charts [50]. Examples of such data include data

about infrastructure (e.g., an electrical grid), population distribution (e.g., census data),

or dynamic network data that has location information associated with it (e.g., crime

activities associated with a criminal network derived from police reports). End users in

this field typically want to display information on one or more maps, drill down into

more detail in certain views, and receive updates when information changes. In contrast

to dynamic network analysis and neuroscience analysis, which is largely sequential

and transformational, end users doing geospacial analysis typically explore information

through a set of concurrent tools that exchange dynamically-changing data to update

multiple concurrent views.

The Ozone Widget Framework (OWF) [44] – or just Ozone – is a web platform

for integrating web-based tools in this domain. Web applications are represented as

lightweight visual applications, called widgets, and OWF allows end users to open and

compose a set of widgets through a web “dashboard” in their browser. Users interact

with widgets, which communicate among each other using the OWF framework.

An example of an Ozone dashboard is shown in Figure 9. The right-most window

is the launch menu from which end users can add widgets to their dashboard. There

are four widgets displayed on the dashboard, displaying information of different types,

some in chart form, others (in the background) on maps. These widgets may pass in-

formation between each other to ensure that they are focused on the same map region,

for example, or to display updated information as it becomes available from a database

or data stream. This dashboard and the arrangement of widgets can be shared between

developers by exchanging textual configuration files.

Ozone widgets interact in a publish-subscribe style [8]: widgets can publish events

to channels and subscribe to channels to receive events.3 All widgets that have sub-

scribed to a channel receive data published to that channel by any other widget. Widget

developers who wish to integrate with other developers must agree on the names of

channels to publish to, and the format of the data that is published. To offer additional

control over communication, Ozone also allows end users to restrict potential commu-

nication between widgets by indicating pairs that are allowed to communicate, thereby

implicitly restricting other widgets from participating in those communications.

While end users are free to choose which widgets appear in their dashboard, consid-

erable care must be taken to ensure sensible configurations. In particular, it is important

to make sure that widgets both publish and subscribe to the appropriate channels, and

that the type of data published is consistent with that expected by subscribers.

Unfortunately, today it is difficult to do this because the interconnection topology is

largely implicit. Specifically, to determine the interconnection structure between wid-

gets an end user needs to either examine widget source code, or perform experiments.

This problem is compounded by the use of restriction lines, because they can radically

change the communication topology indicated in the code by prohibiting interactions

that would otherwise be allowed.

3 Events in Ozone are plain-text strings or JSON objects.

End-User Architecting 17

Fig. 9: An Ozone dashboard example from [24].

The existence of complex interconnection rules and behavior lead naturally to the

use of architectural modeling of widget compositions, which could support the end-

user architecting process through automated constraint checking. For example, a widget

topology can be checked to conform to a privacy constraint that widgets containing

private data do not communicate it to third-party untrusted widgets. Another application

is widget topology generation: a user would specify what pairs of widgets should and

should not interact, and a set of topologies would be generated.

Key features of our end-user architecting approach to this domain are:

a. Architecture Representation: Ozone widget configurations are represented as ex-

plicit architectural models, that indicate which widgets are involved in a composi-

tion and the communication topology.

b. Architectural Style: Compositions are defined using a variant of a publish-subscribe

style that takes into account the idea of restrictions. Element types include Widgets,

which have publish and subscribe interfaces, and two types of connectors represent-

ing public channels and private (restricted) channels.

c. Analysis: We are building analyses to provide insight into the widget compositions,

such as which widgets are communicating, whether there are data mismatches over

publish-subscribe channels, how to restrict communication to minimize event mes-

saging, whether information is lost (e.g., because there is no widget subscribed to

information on a particular channel).

d. Reuse: Dashboard setups (i.e., configurations) can already be shared between ana-

lysts as textual configuration files. Embellishing this with architectural representa-

18 End-User Architecting

tions allows end users to check whether adaptations to existing compositions retain

prior communication channels, and whether it is feasible to substitute one widget

for another.

e. Services: Similar to dynamic network analysis,we expect to be able to provide

automated data mismatch detection and repair.

f. Execution support: We are building support for debugging in the form of channel

monitoring and execution histories.

g. User interface: An explicit architectural model enhances the current Ozone user

interface by providing information to the end user about which widgets are sharing

information with other widgets, which widgets are restricted from communicating,

and so on.

5 Related Work

Three primary areas of related research have influenced the formulation and direction

of this work: (a) end-user software engineering, (b) software architecture design, and

(c) tools and frameworks for end users.

End-user software engineering

End-user software engineering is a research area at the intersection of computer science

and human-computer interaction. It aims to empower users who do not have deep tech-

nical expertise to harness the power of computers in support of tasks within their profes-

sion [28]. Although such users do not have (or want to have) the skills of professional

software developers, often they face many of the same software engineering challenges:

understanding requirements, carrying out design activities, supporting reuse, quality as-

surance, etc. In fact, studies have shown that across many domains, such end users spend

about 40% of their time doing programming-related activities [25], but employ few of

the tools and techniques used by modern software engineering. As as result, creating

computations often leads to systems that are brittle, contain numerous bugs, have poor

performance, cannot be easily reused or shared, and lead to a proliferation of idiosyn-

cratic solutions to similar problems within a domain [5].

To date, most of the research in end-user software engineering has focused on end-

user programming, where novel forms of programming languages have been devel-

oped for enhanced usability within a domain. These include visual programming lan-

guages [38], programming-by-demonstration [10], direct manipulation programming

languages [26], and domain-specific languages [15].

In contrast, this paper focuses on domains in which component composition is the

primary form of end-user system construction, an activity that we have termed end-user

architecting. For such domains, we have argued, it makes sense to explore ways to adapt

the tools and techniques of software architecture, rather than software programming.

Software architecture

As we discussed in Section 3, there exists a large body of foundational work on software

architecture that has paved the way for architecture to be used as a model to reason about

End-User Architecting 19

a software system. In this paper we build directly on that heritage. Key influences have

been architecture description languages [33], the use of architectural styles [49, 36], and

architecture-based analyses [19].

In this paper we have argued that these techniques have direct relevance and can

be effective in solving many of the problems of end-user architecting. However, as we

elaborate in Section 6, there also remain a number of gaps and challenges that require

additional research and adaptation of those techniques to the needs of end users.

Tools and frameworks for end-user composition

The primary motivation for this paper is the fact that a large number of domains require

technically-naive users to compose computational elements into novel configurations,

such as workflows and scripts for experiments and analyses. Such users often form large

communities that share a common set of tasks, vocabulary, and computational needs.

These communities include astronomy [11], bioinformatics [30], environmental sci-

ences [56], intelligence analysis [47], neuroscience [41], and scientific computing [48].

In such communities simple turnkey or parameterized implementations are inadequate,

since it is impossible to anticipate all possible configurations — hence the need for tools

that can help users in creating, executing, and sharing compositions.

As a consequence, a number of powerful composition environments have been cre-

ated for particular problem domains. Examples include: Loni-pipeline [45] for brain-

imaging compositions; Galaxy [21] for genomics; and Vistrails [3] for data-exploration

and visualization for scientific applications. Other more generic composition environ-

ments, such as Taverna [42], Kepler [31], WINGS [22], and Ozone [37], can be used

across several domains, but typically only support a specific computation model — such

as workflow or publish-subscribe.

In contrast to these efforts, this paper attempts to lay the foundation for viewing

this class of tools and frameworks as supporting architecture design, and argues that

there are considerable benefits in taking this point of view. Among those benefits are

the ability to formally define and reason about compositional models as instances of

domain-specific architectural styles, create cross-domain analyses, provide systematic

support for reuse and adaptation, support powerful auxiliary services (e.g., mismatch

repair), and support execution, testing, and debugging.

6 Discussion

Having described an approach to end-user architecting and illustrated it through three

case studies, we now consider some of the aspects of that approach in more detail and

outline some of the challenges and open problems.

The centerpiece of an end-user architecting approach is the explicit representation

of a composition of computational elements as an architecture, expressed within an ap-

propriate architectural style for the domain at hand. In the case of dynamic network

analysis and neuroscience we used variations on a dataflow style. In the case of geospa-

tial analysis we used a publish-subscribe style.

20 End-User Architecting

But where does that style come from? In our own experience, we have found that

it is often non-trivial to determine this. For example, in the case of dynamic network

analysis we found that in some compositions, users wanted to include interactive tools

as components in their workflows, in addition to data transformers. This led to a hybrid

style that was not purely transformational (as would be the case for a pure dataflow

style), but rather permitted a user to interrupt a data transformation workflow, and inter-

actively explore data using applications running on the desktop, before continuing with

successive data transformation. Formally, we had to introduce into the style a new type

of component — an interactive tool component — and create execution infrastructure

to permit those components to work smoothly with data transformation executing on a

SOA (see [47] for details).

Similarly, we were initially unsure how to model the communication restrictions

present in the Ozone Widget Framework. After exploring a number of options we

eventually decided on a variant of a publish-subscribe style that includes two publish-

subscribe connector types: public and private pub-sub channels.

The problem of defining an appropriate end-user architecting style is further com-

plicated by the fact that end users may have different compositional needs at different

times. For instance, in many analytical domains (including all three domains that we

studied), it is the case that in early stages of development end users want to do ex-

ploratory investigation using highly interactive, manually-controlled tools. But once it

is clear what kinds of computation need to be done, a more streamlined composition

can be constructed that provides better performance and is easier for others to use as a

packaged computation. This suggests that end users may have several modes of com-

position, with different architectural modeling needs.

Thankfully, today there are a number of tools that allow one to experiment with

different styles. For instance, in our own work we used Acme and its supporting Acme

Studio toolset [17]. Acme supports rapid design and experimentation with styles. In

particular, styles can be defined using a declarative language, which can then be directly

compiled into an environment for constructing systems in that style and for checking

conformance with the constraints of the style. Acme Studio also provides an analysis

plug-in framework that allows one to rapidly develop analyses appropriate for a given

style [19].

Moreover, Acme has a rich set of base styles (client-server, publish-subscribe, etc.),

which can be used as a starting point defining domain-specific styles for end-user archi-

tecting communities. For instance, both the dynamic network analysis style and neuro-

science style were developed by specializing a common inherited dataflow style. Fur-

ther, since Acme styles are formally defined they may also be formally analyzed as

specifications in their own right to determine, for example, whether a style has the

properties that one expects, or to detect inconsistencies when multiple styles are com-

bined [27].

Another technique that helps address this problem is construction of support ser-

vices that bridge the gap between different modes of composition. In SORASCS, for

example, we provided tools to transition between interactive exploration and workflow.

Specifically, an end user can manually and interactively invoke operations on data sets.

SORASCS keeps track of the history of these invocations. Once users are happy with

End-User Architecting 21

the results, they can use the history to generate a workflow that captures the overall

transformation that they want to package as a workflow.

A second concern that must be addressed when pursuing an end-user architecting

approach is the issue of managing large component repositories. As we indicated earlier,

for many domains there may be hundreds of possible elements that can be combined

to produce compositions. In SORASCS, for example, there are over 100 data transfor-

mations that are available for dynamic network creation, analysis, visualization, sim-

ulation, and report generation. Thus any effective tool for end-user architecting will

need to provide scalable ways to search repositories. We have experimented with sev-

eral schemes for this. For example, we can use community-based ontologies to organize

services into categories familiar to end users. We can provide a set of standard filters

that can be used to extract components with appropriate properties along several dimen-

sions. We can also use machine learning to recommend possible component selections,

based on prior compositions. However, this remains an open problem, as few software

architecture tools have addressed the problem of rich component repositories.

A third concern is whether we have raised the level of abstraction sufficiently high.

While end-user architecting is a huge improvement over today’s programming-based

systems, it still requires end users to consider carefully how their computations are

composed from the available components. For some users — particularly novice users,

or users who are simply reusing existing compositions — this may still require too

much expertise.

This suggests that in many cases it may make sense to provide another level above

that of architecture representation that more directly supports user tasks. For instance,

there might be simple domain-specific languages that can be used to define some com-

putation task. Or, there may be simplified interfaces that automatically construct the

architectures through various menus or “wizards”. For example, with SORASCS we

demonstrated the ability to do this by connecting it to a front-end tool, called VIBES [1],

that provides a specialized interface for constructing belief network analyses.

More generally, the presence of an intermediate level of architecture simplifies the

problem of providing task assistance to end users, since the gap between a task and

an architecture that supports it is usually much smaller than the gap between a task

and its executable. However, task-level support for end users seems a particularly rich

area for future research, and many questions remain open. For example, is it possible to

learn compositions by watching experts solve certain tasks? Can automated synthesis

be used to achieve a computational goal based on a high-level description of the inputs

and desired outputs?

A fourth concern is the engineering cost for creating end-user architecting environ-

ments. Ideally it should be possible to generate large parts of the N-tiered framework

that we illustrated in Figure 3. This remains an open and active area of research.

Finally, as we noted in Section 2, one of the common elements of end-user architect-

ing communities is that they often involve complex ecosystems. In this paper we have

primarily addressed only one role within these ecosystems – the end-user architect. But

there are also other roles, such as component developers, data set providers, regulatory

bodies, funding agencies, etc.

22 End-User Architecting

We have found that when following the end-user architecting approach advocated

in this paper, it is also critical that these other roles be considered. For instance, what

incentives are there for people to contribute reusable components to an end-user archi-

tecting platform? If none are in place, it is unlikely that there will be a sufficiently large

base of parts for end users to assemble. Has the platform been constructed in such a

way that it can be certified for use in deployment environments where there may be

significant privacy or security requirements? If not, the end-user architecting tools may

not be usable in the target context. How can an analyst who has created a composition

get credit for that design if it is used by others? In many communities people are re-

luctant to make their tools available or share their analyses unless they receive some

professional recognition for doing this.

While the approach we have advocated above does not by itself address the entire

ecosystem, it can, however, help address some of the concerns such as those mentioned.

For instance, analytical outputs of some computation can be formally linked to the com-

position that produced those results, providing a way to acknowledge the developers of

the individual components and the composition itself. Additionally, as we have indi-

cated, style-based analyses can guarantee certain properties of a composition — such

as security or privacy. Tools can enforce that such analyses are successfully completed

before permitting execution of a composition. Further, the decoupling of the architec-

ture from the execution infrastructure on which it runs allows one to select an execution

platform that satisfies regulatory concerns.4 That said, the understanding of ecosystems

for end-user architecting communities remains a largely unexplored area, and a rich

subject for future research.

7 Conclusion

We have argued that the computational activities of end users in many domains are

analogous to that of software architects, and that rather than forcing end users to be-

come programmers, we should instead provide architecture-based tools and techniques

to support their tasks.

To make this concrete, we outlined six elements of an approach: (a) explicit rep-

resentation of compositions as architectures, (b) use of domain-specific architectural

styles to provide appropriate computational models, (c) the ability to analyze end-user

architectures for properties such as performance, reliability, security, etc., (d) support

for execution and debugging, (e) support for reuse, and (f) possibly additional services

that leverage the architectural representation. We then illustrated how this approach

can be used in three end-user architecting domains: dynamic network analysis, neuro-

science, and geospatial analysis.

We believe that the recognition of the value of architectural modeling for end users

in certain domains is an important first step towards improving the ability for myriad

disciplines to leverage the power of computation without requiring its participants to

become programmers. However, we also acknowledge that there is much more to be

4 For instance, there are certain pre-approved infrastructures for the US military. By using these,

one limits the amount of certification that must be done to the parts that are built on top of it.

End-User Architecting 23

done to make this a reality, and we outlined some of the possible future directions in

Section 6.

Acknowledgments

This work was supported in part by the Office of Naval Research grant ONR-N000140811223,

and the Center for Computational Analysis of Social and Organizational Systems (CA-

SOS). The views and conclusions contained herein are those of the authors and should

not be interpreted as representing the official policies, either expressed or implied, of

the Office of Naval Research, or the U.S. government. The authors would like to thank

Perla Velasco Elizondo, Jose Maria Fernandes, Diego Estrada Jimenez, Aparup Baner-

jee, Laura Gledenning, Mai Nakayama, Nina Patel, and Hector Rosas for their contri-

butions to various aspects of this work.

References

1. Alion MA&D Operation. VIBES. http://www.maad.com/index.pl/visualization of belief systems,

May 2012.

2. L. Bass, P. Clements, and R. Kazman. Software Architecture in Practice, Second Edition.

Addison Wesley, 2007. ISBN 0-201-19930-0.

3. Louis Bavoil, Steven P. Callahan, Carlos Eduardo Scheidegger, Huy T. Vo, Patricia Crossno,

Cláudio T. Silva, and Juliana Freire. Vistrails: Enabling interactive multiple-view visualiza-

tions. In IEEE Visualization, page 18, 2005.

4. Biomedical Informatics Research Network. (BIRN). http://www.birncommunity.

org.

5. Joel Brandt, Philip J. Guo, Joel Lewenstein, Mira Dontcheva, and Scott R. Klemmer. Two

studies of opportunistic programming: interleaving web foraging, learning, and writing code.

In CHI, pages 1589–1598, 2009.

6. Frank Buschmann, Regine Meunier, Hans Rohnert, Peter Sommerlad, and Michael Stal. Pat-

tern Oriented Software Architecture: A System of Patterns. John Wiley & Sons, 1996.

7. K.M. Carley. A dynamic network approach to the assessment of terrorist groups and the

impact of alternative courses of action. Visualizing Network Information Meeting, RTO-MP-

IST-06, France, 2006.

8. Paul Clements, Felix Bachmann, Len Bass, David Garlan, James Ivers, Reed Little, Paulo

Merson, Robert Nord, and Judith Stafford. Documenting Software Architectures: Views and

Beyond, Second Edition. Addison-Wesley Professional, 2 edition, October 2010.

9. Paul Clements, Rick Kazman, and Mark Klein. Evaluating Software Architectures: Methods

and Case Studies. Addison Wesley, 2001.

10. Allen Cypher, editor. Watch What I Do – Programming by Demonstration. MIT Press,

Cambridge, MA, USA, 1993.

11. Ewa Deelman, Gurmeet Singh, Mei-Hui Su, James Blythe, Yolanda Gil, Carl Kesselman,

Gaurang Mehta, Karan Vahi, G. Bruce Berriman, John Good, Anastasia C. Laity, Joseph C.

Jacob, and Daniel S. Katz. Pegasus: A framework for mapping complex scientific workflows

onto distributed systems. Scientific Programming, 13(3):219–237, 2005.

12. Vishal Dwivedi, Perla Velasco Elizondo, José Maria Fernandes, David Garlan, and

Bradley R. Schmerl. An architectural approach to end user orchestrations. In The Euro-

pean Conference on Software Architecture (ECSA), pages 370–378, 2011.

24 End-User Architecting

13. D. Eidelberg. Metabolic brain networks in neurodegenerative disorders: A functional imag-

ing approach. Trends Neurosci, 32:548–557, 2009.

14. FMRIB Software Library. (fsl). http://www.fmrib.ox.ac.uk/fsl/.

15. Martin J. Fowler. Domain-Specific Languages. Addison-Wesley, 2011.

16. David Garlan, Kathleen M. Carley, Bradley Schmerl, Michael Bigrigg, and Orieta Ce-

liku. Using service-oriented architectures for socio-cultural analysis. In Proceedings of

the 21st International Conference on Software Engineering and Knowledge Engineering

(SEKE2009), Boston, USA, 1-3 July 2009.

17. David Garlan, Robert T. Monroe, and David Wile. Acme: Architectural description of

component-based systems. In Gary T. Leavens and Murali Sitaraman, editors, Foundations

of Component-Based Systems, page 47. Cambridge University Press, 2000.

18. David Garlan, William K. Reinholtz, Bradley Schmerl, Nicholas Sherman, and Tony Tseng.

Bridging the gap between systems design and space systems software. In Proceedings of the

29th Annual IEEE/NASA Software Engineering Workshop (SEW-29), Greenbelt, MD, 6-7

April 2005.

19. David Garlan and Bradley Schmerl. Architecture-driven modelling and analysis. In Tony

Cant, editor, Proceedings of the 11th Australian Workshop on Safety Related Programmable

Systems (SCS’06), volume 69 of Conferences in Research and Practice in Information Tech-

nology, Melbourne, Australia, 2006.

20. David Garlan, Bradley Schmerl, Vishal Dwivedi, Aparup Banerjee, Laura Glendenning, Mai

Nakayama, and Nina Patel. Swift: A tool for constructing workflows for dynamic network

analysis. http://acme.able.cs.cmu.edu/pubs/show.php?id=333, 2011.

21. B Giardine, C Riemer, R C Hardison, R Burhans, L Elnitski, P Shah, Y Zhang, D Blanken-

berg, I Albert, J Taylor, W Miller, W J Kent, and A Nekrutenko. Galaxy: a platform for

interactive large-scale genome analysis. Genome Res, 15(10):1451–1455, October 2005.

22. Yolanda Gil, Varun Ratnakar, Ewa Deelman, Gaurang Mehta, and Jihie Kim. Wings for

Pegasus: Creating large-scale scientific applications using semantic representations of com-

putational workflows. In AAAI, pages 1767–1774, 2007.

23. Howie Goodell. End-user computing. In CHI ’97 extended abstracts on Human factors in

computing systems: looking to the future, CHI EA ’97, pages 132–132, New York, NY, USA,

1997. ACM.

24. David B. Hellar and Laurian C. Vega. The Ozone Widget Framework: towards modularity

for C2 human interfaces. In Proceedings of SPIE conference on Defense Transformation and

Net-Centric Systems, Baltimore, Maryland, 2012.

25. James Howison and James D. Herbsleb. Scientific software production: incentives and col-

laboration. In CSCW, pages 513–522, 2011.

26. Edwin L. Hutchins, James D. Hollan, and Donald A. Norman. Direct manipulation inter-

faces. HumanComputer Interaction, 1(4):311–338, 1985.

27. Jung Soo Kim and David Garlan. Analyzing architectural styles. Journal of Software and

Systems, 83(7):1216–1235, 2010.

28. Andrew J. Ko, Robin Abraham, Laura Beckwith, Alan F. Blackwell, Margaret M. Burnett,

Martin Erwig, Christopher Scaffidi, Joseph Lawrance, Henry Lieberman, Brad A. Myers,

Mary Beth Rosson, Gregg Rothermel, Mary Shaw, and Susan Wiedenbeck. The state of the

art in end-user software engineering. ACM Comput. Surv., 43(3):21, 2011.

29. Choonhwa Lee, David Nordstedt, and Sumi Helal. Enabling smart spaces with osgi. IEEE

Pervasive Computing, 2:89–94, 2003.

30. Catherine Letondal. Participatory programming: Developing programmable bioinformatics

tools for end-users. H. Lieberman and F. Paterno and V. Wulf, End-User Development, pages

207–242, 2005.

End-User Architecting 25

31. Bertram Ludäscher, Ilkay Altintas, Chad Berkley, Dan Higgins, Efrat Jaeger, Matthew B.

Jones, Edward A. Lee, Jing Tao, and Yang Zhao. Scientific workflow management and

the Kepler system. Concurrency and Computation: Practice and Experience, 18(10):1039–

1065, 2006.

32. Amber Lynn McConahy and James D. Herbsleb. Platform design strategies: Contrasting

case studies of two audio production systems. In FutureCSD Workshop at CSCW, 2011.

33. Nenad Medvidovic and Richard N. Taylor. A framework for classifying and comparing

architecture description languages. In ESEC / SIGSOFT FSE, pages 60–76, 1997.

34. Robert T. Monroe. Rapid Develpomentof Custom Software Design Environments. PhD the-

sis, Carnegie Mellon University, School of Computer Science, July 1999.

35. Robert T. Monroe and David Garlan. Style-based reuse for software architectures. In Pro-

ceedings of the Fourth International Conference on Software Reuse, April 1996.

36. Robert T. Monroe, Andrew Kompanek, Ralph E. Melton, and David Garlan. Architectural

styles, design patterns, and objects. IEEE Software, 14(1):43–52, 1997.

37. David M. Moore, Portia Crowe, and Robert Cloutier. Driving major change: The balance

between methods and people. SOFTWARE TECHNOLOGY SUPPORT CENTER HILL AFB

UT, 2011.

38. Brad A. Myers. Taxonomies of visual programming and program visualization. J. Vis. Lang.

Comput., 1(1):97–123, 1990.

39. myExperiment. http://www.myexperiment.org/.

40. Bonnie A. Nardi. A small matter of programming: perspectives on end user computing. MIT

Press, 1993.

41. neuGRID CNRS. N4u - neugrid for you. http://neugrid4you.eu.

42. Thomas M. Oinn, R. Mark Greenwood, Matthew Addis, M. Nedim Alpdemir, Justin Ferris,

Kevin Glover, Carole A. Goble, Antoon Goderis, Duncan Hull, Darren Marvin, Peter Li,

Phillip W. Lord, Matthew R. Pocock, Martin Senger, Robert Stevens, Anil Wipat, and Chris

Wroe. Taverna: lessons in creating a workflow environment for the life sciences. Concur-

rency and Computation: Practice and Experience, 18(10):1067–1100, 2006.

43. J.J. Pekar. A brief introduction to functional MRI. IEEE Engineering in Medicine and

Biology Magazine, 25(2):2426, 2006.

44. Potomac Fusion. Ozone/Synapse download portal.

http://widget.potomacfusion.com/main/home, 2012.

45. D.E. Rex, J.Q. Ma, and A.W. Toga. The LONI Pipeline Processing Environment. Neuroim-

age, 19:1033–1048, 2003.

46. Bradley Schmerl, Jonathan Aldrich, David Garlan, Rick Kazman, and Hong Yan. Discover-

ing architectures from running systems. IEEE Transactions on Software Engineering, 32(7),

July 2006. Also available from IEEE. Appendix A, Appendix B.

47. Bradley R. Schmerl, David Garlan, Vishal Dwivedi, Michael W. Bigrigg, and Kathleen M.

Carley. SORASCS: a case study in SOA-based platform design for socio-cultural analysis.

48. Judith Segal. Some problems of professional end user developers. In VL/HCC, pages 111–

118, 2007.

49. Mary Shaw and David Garlan. Software architecture - perspectives on an emerging disci-

pline. Prentice Hall, 1996.

50. Michael J de Smith, Michael F Goodchild, and Paul A Longley. Geospatial Analysis: A

Comprehensive Guide to Principles, Techniques and Software Tools. Troubador Publishing

Ltd, 2nd edition, December 2007.

51. Bridget Spitznagel and David Garlan. A compositional formalization of connector wrappers.

In The 2003 International Conference on Software Engineering (ICSE’03), 2003.

52. Stephen C. Strother. Evaluating fMRI preprocessing pipelines. IEEE Engineering in

Medicine and Biology Magazine, 25(2):2741, 2006.

26 End-User Architecting

53. The Portuguese Brain Imaging Network Grid - IEETA. (BING). http://www.

brainimaging.pt.

54. The University of Manchester and the European Bioinformatics Institute (EMBL-EBI). Bio-

Catalogue. The Life Science Web Services Registry. http://www.biocatalogue.

org/.

55. Perla Velasco Elizondo, Vishal Dwivedi, David Garlan, Bradley Schmerl, and Jose

Maria Fernandes. Resolving data mismatches in end-user compositions. Submitted for pub-

lication, 2012.

56. Ferdinando Villa, Ioannis N. Athanasiadis, and Andrea Emilio Rizzoli. Modelling with

knowledge: A review of emerging semantic approaches to environmental modelling. En-

vironmental Modelling and Software, 24(5):577–587, 2009.

57. Hong Yan, David Garlan, Bradley Schmerl, Jonathan Aldrich, and Rick Kazman. DiscoTect:

A system for discovering architectures from running systems. In Proceedings of the 26th

International Conference on Software Engineering, Edinburgh, Scotland, 23-28 May 2004.

58. Ying Zhao, Shelley P. Gallup, and Douglas J. MacKinnon. Lexical link analysis for the haiti

earthquake relief operation using open data sources. In International Command and Control,

Research and Technology Symposium, Qubec City, Canada, June 2123 2011.

