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Abstract 

One of the challenges of the proteomic analysis by 2D-gel is to visualize the low abundance 

proteins, particularly those localized in organelles. An additional problem with nuclear 

proteins lies in their strong interaction with nuclear acids. Several experimental procedures 

have been tested to increase, in the nuclear extract, the ratio of nuclear proteins compared 

to contaminant proteins, and also to obtain reproducible conditions compatible with 2D-gel 

electrophoresis. The NaCl procedure has been chosen. To test the interest of this procedure, 

the nuclear protein expression profiles of macrophages and dendritic cells have been 

compared with a proteomic approach by 2D-gel electrophoresis. Delta 2D software and 

mass spectrometry analyses have allowed pointing out some proteins of interest. We have 

chosen some of them, involved in transcriptional regulation and/or chromatin structure for 

further validations. The immunoblotting experiments have shown that most of observed 

changes are due to post-translational modifications, thereby a exemplifying the interest of 

the 2D gel approach. Finally, this approach allowed us to reach not only high abundance 

nuclear proteins but also lower abundance proteins, such as the HP1 proteins and reinforces 

the interest of using 2DE-gel in proteomics because of its ability to visualize intact proteins 

with their modifications. 
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Introduction 

2D-gel technology is a powerful proteomic tool to visualize the expressed proteins of a cell at 

a defined time and in a defined condition. One way of study is the comparison of proteins 

differentially expressed in two extracts resulting of the modification of one parameter, e.g. 

stress condition compared to physiological condition of growth or two stages of differentiation 

of a cell lineage. Such comparisons may lead to some bias in the proteins highlighted. In 

point of fact, one of the crucial points in 2D-gel based proteomics is the solubilization of 

proteins, which has to be adapted to the 2D-gel constraints on one hand, and yet allow to 

observe a maximum of proteins in an experiment on the other hand. The combination of both 

conditions leads to the "loss" of certain categories of proteins (e.g. poorly soluble proteins) 

and the highlighting of some other ones (e.g. most abundant proteins and "Déjà vu" 

metabolism). In eukaryotic cells, the most abundant and soluble proteins are particularly 

predominant because of the high number of proteins potentially expressed and above all the 

compartmentalization of the cell, which prevents the solubilization of certain proteins. This 

compartmentalization may also be an advantage because it may be a good way to visualize 

the low abundant proteins presenting a high dynamic range of concentration, or the proteins 

specific of a metabolism localized in an organelle. Several experimental procedures are now 

available to specifically separate each type of organelle from the rest of the cell using 

subcellular fractionation. But it is also well known that these procedures are not perfect and 

that proteins from other compartments always contaminate an organelle preparation. We are 

particularly interested to the nuclear proteome to better understand and identify transcription 

factors and protein regulators that control eukaryotic gene expression involved in cell 

differentiation. The nuclear proteomes of several eukaryotic organisms, mammary epithelial 

cells [1], yeast [2] or amniotic epithelial cells [3] have already been studied by 2D-gel. In 

most cases, an important part of identified proteins (from 30 to 60%) following a differential 

analysis are not bona fide nuclear proteins [4], even though some papers have reported a 

better proportion of nuclear proteins [5]. However, many of the nuclear proteins reported 

using classical extractions are involved in RNA metabolism, and the fraction of the nuclear 

proteins that interacts with nucleic acids is still under-represented, unless specific 

enrichment procedures such as DNA affinity chromatography is carried out [5]. To visualize 

and analyze such proteins, the solubilization procedure has to be adapted. We have tested 

different ways to solubilize and separate them from DNA, to increase the ratio of nuclear 

proteins compared to contaminant proteins like cytosolic proteins or proteins from other 

organelles. As the ultimate goal is to perform comparisons between different biological 

conditions, the chosen procedure must be able to extract chromatin proteins and still allow 

obtaining reproducible conditions with several cell types and/or culture growth conditions and 
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be compatible with 2D-gel electrophoresis. The NaCl procedure is the procedure that fits 

best to all these constraints. We have compared the proteome of the NaCl extract with the 

proteome of total nucleus extract, and identified a largest proportion of nucleus proteins in 

the spots specifically highlighted in the NaCl extract (not present in the total nuclear extract). 

Then, we have tested this experimental procedure to compare the nuclear protein 

expression profiles of two cell types, macrophage and dendritic cells by 2D-gel 

electrophoresis. We compared J774 and XS52 cell lines, which are representative of 

macrophages and dendritic cells respectively, and are known to present different 

phenotypes. Using the Delta 2D software, we have selected and identified by mass 

spectrometry 193 proteins showing significant differences between the two groups of them 

essentially involved in transcriptional regulation and/or chromatin structure using 

immunoblotting approaches (in one and two dimensional gel): HMGB1,2 and HP1 

proteins. 
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Materials & Methods 

 

Cells lines 

J774 cells were obtained from ATCC, XS52 were obtained from Dr Bernd Kleuser (Marburg, 

Germany). J774 cells (mouse macrophages) and XS52 cells (mouse dendritic cells 

Langerhans subtype) were grown in tissue culture flasks (BD Falcon™) in High glucose 

DMEM (Sigma) supplemented with 10% fetal calf serum (FCS), and 10mM Hepes. All 

mouse cell cultures were supplemented with ciprofloxacin (30µM final) and maintained in a 

37°C incubator in 5% CO2, up to a density of 1 million cells/ml. 

 

Protein preparations. 

Total protein extract: The cells were rinsed with phosphate-buffer saline and then swollen in 

one volume of TES buffer (10mM Tris, 1mM EDTA, 0.2M Sucrose). Four volumes of lysis 

buffer (8.75M urea, 2.5M Thiourea, 5% CHAPS, 12mM Tris carboxyethylphosphine, 25mM 

Spermine) were added and the proteins extracted for 30 min at room temperature. The 

lysate was ultracentrifuged at 320,000xg for 30 min at 20°C. The supernatant was then 

collected and frozen at -20°C.  

Nuclei preparation: Nuclei were isolated by modification of a published method [6]. The cells 

(109) were rinsed with phosphate-buffer saline and lysed at 0°C in 10 volumes of buffer A 

(10mM Hepes, pH 7.5, 1mM DTT, 1mM Spermidine, 0.25mM Spermine, 0.5mM EDTA, 

10mM KCl and 0.05% Triton X100) for 20 min. 0.2M Sucrose was added to the suspension 

before centrifugation at 1000xg for 5 min. The pellet, containing the nuclei, was washed in 10 

volumes of buffer B (10mM Hepes, pH 7.5, 1mM DTT, 2mM MgCl2, 0.2M Sucrose) and then 

centrifuged at 1000xg for 5 min at 4°C. The pellet was resuspended in storage buffer (10mM 

Hepes, pH 7.5, 25% Glycerol, 5mM MgCl2, 0.1mM EDTA, 5mM DTT) and frozen at -20°C. 

Total nuclear protein extract: The nuclei pellet was resuspended in extraction buffer (7M 

urea, 2M thiourea, 4% CHAPS, 10mM Tris carboxyethylphosphine and 20mM spermine 

base) and then centrifuged at 320,000xg for 30 min at room temperature. The nuclei 

preparation was quantified using Bradford assay before adding ampholyte (0.4% w/v final). 

Benzonase nuclear protein extract (adapted from [7]): 1000u of benzonase and 0.2mM of 

dicholoroisocoumarin (serine protease inhibitor) were added to 30l of nuclei suspension. 

The volume was adjusted to 50l with H2O. The sample was incubated at 37°C during 30 

min. The sample was then diluted in 10mM EDTA, 50mM DTT and 2% SDS in 100l final 

volume, boiled for 3-5 min at 100°C and then cooled in a cold water bath. One volume of 5% 

cresol in water-saturated phenol was added. The sample was vortexed at least five times 

and centrifuged at 10000xg for 10 min. The phenol phase was collected and dialysed 



 6 

overnight in 0,1% SDS, 5mM Tris-base pH7.5, 0.25M sucrose, 1mM EDTA and 5mM DTT. 

The proteins were finally concentrated by the TCA/sarkosyl precipitation protocol [8]. 

DNase nuclear protein extract: The nuclei preparation was diluted in 10 volumes of 0.25M 

sucrose, 5mM EDTA pH 6.4 and 0.2mM dichloroisocoumarin, incubated 15 min at 4°C. 100u 

of DNase II was added. The mixed sample was incubated 1h at 37°C and then centrifuged at 

10,000xg for 5min. The supernatant was collected and concentrated by the TCA/sarkosyl 

precipitation method. 

Urea-salt nuclear protein extract: One volume of nuclei preparation was diluted in four 

volumes of 6M urea, 1M NaCl and 20mM spermidine, incubated at room temperature for 1h 

and centrifuged at 320,000xg for 30min at 20°C. The supernatant was collected and 

concentrated by the TCA/sarkosyl precipitation method. 

NaCl nuclear protein extract: The nuclei preparation was diluted in 10 to 20 volumes of 

10mM Tris-Base pH 7.5 and 0.35M NaCl, incubated for 30 min at 4°C and then centrifuged 

at 320,000g for 30 min at 4°C. The supernatant was collected, diluted three times with cold 

water and concentrated by the TCA/sarkosyl precipitation method.  

NaCl/SB3-12 nuclear protein extract [9]: The nuclei preparation was diluted in 10 to 20 

volumes of 10mM Tris-Base pH 7.5, 0.35M NaCl and 1% SB3-12 incubated for 30 min at 

4°C and then centrifuged at 320,000g for 30 min at 4°C. The supernatant was collected, 

diluted three times with cold water and concentrated by the TCA/sarkosyl precipitation 

method. 

Lecithin nuclear protein extract [10]: One volume of nuclei preparation was diluted in four 

volumes of 0.5% lecithin, 7M urea, 2M thiourea, 0.4% ampholyte and 50mM phosphoric 

acid-HCl pH 2.8, incubated 1h at 25°C, and centrifuged at 320,000xg for 30min at 20°C. The 

pellet was resuspended in rehydratation solution without ampholytes (7M urea, 2M thiourea, 

4% CHAPS). 

Protein quantitation: Total protein extracts, total nuclear protein extracts, DNase nuclear 

protein extracts and lecithin nuclear protein extracts were quantified using Bradford assay. 

NaCl nuclear protein extracts were quantified after separation and staining of SDS-PAGE: 

known quantities (10, 20 and 30 g) of total protein extracts and nuclear protein extracts, 

and two dilutions of the NaCl nuclear protein extracts were separated on the same gel. 

Proteins were stained with colloidal coomassie blue [11]. The NaCl protein extract 

concentration was then estimated with the ImageJ freeware. 

 

 

2D-gel electrophoresis 

IEF: Home made 160mm long 4-8 or 3-10.5 linear pH gradient [12] gels were cast according 

to published procedures [13].  Four mm-wide strips were cut, and rehydrated overnight with 
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the sample, diluted in a final volume of 0.6 ml of rehydratation solution (7M urea, 2M 

thiourea, 4% CHAPS, 04% carrier ampholytes (Pharmalytes 3-10) and 100mM 

dithiodiethanol [14, 15].  

The strips were then placed in a Multiphor plate, and IEF was carried out with the following 

electrical parameters: 100V for 1 hour, then 300V for 3 hours, then 1000V for 1 hour, then 

3400V up to 60-70 kVh. After IEF, the gels were equilibrated for 20 minutes in Tris 125mM, 

HCl 100mM, SDS 2.5%, glycerol 30% and urea 6M. They were then transferred on top of the 

SDS gels and sealed with 1% agarose dissolved in Tris 125mM, HCl 100mM, SDS 0.4% and 

0.005% (w/v) bromophenol blue.  

SDS electrophoresis and protein detection: 10%T gels (160x200x1.5 mm) were used for 

protein separation. The Tris taurine buffer system was used at a ionic strength of 0.1 and a 

pH of 7.9 [16]. The final gel composition is thus Tris 180mM, HCl 100mM, acrylamide 10% 

(w/v), and bisacrylamide 0.27%. The upper electrode buffer is Tris 50mM, Taurine 200mM, 

SDS 0.1%. The lower electrode buffer is Tris 50mM, glycine 200mM, SDS 0.1%. The gels 

were run at 25V for 1hour, then 12.5W per gel until the dye front has reached the bottom of 

the gel. Detection was carried out by fast silver staining [17].  

Image analysis: Image analysis was performed with the Delta2D software (v.3.6) (Decodon, 

Germany). Briefly, 3 gel images arising from 3 different cultures and nuclear preparations 

were warped for each group onto a master image, one for the J774 cell line and one for the 

XS52 cell line. The XS52 master gel image was then warped onto the J774 master gel 

image and a union fusion image of all the gel images was then made. The detection was 

carried out on this fusion image, and the detection results were then propagated to each 

individual image.  

The resulting quantification table was then analyzed using the Student t-test function of the 

software, and the spots having both a p-value lesser than 0.05 and an induction/repression 

ratio of 2 or greater were selected for further analysis by mass spectrometry after all being 

manually verified. For the global analysis of the power and reproducibility of the experiments, 

the Storey and Tibshirani approach was used [18] as described by Karp and Lilley [19]. 

The spots of interest were excised from a silver staining gel by a scalpel blade and 

transferred to a 96 well microtitration plate. Destaining of the spots was carried out by the 

ferricyanide-thiosulfate method [20] on the same day as silver staining to improve sequence 

coverage in the mass spectrometry analysis [21]. In some cases, to maximize sequence 

coverage and avoid the artefacts associated with silver staining, the ultrafast carbocyanine 

fluorescent stain was used [22]. 

 

Mass spectrometry analysis 
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In gel digestion: In gel digestion was performed with an automated protein digestion system, 

MassPrep Station (Waters, Milford, USA). The gel plugs were washed twice with 50 µL of 25 

mM ammonium hydrogen carbonate (NH4HCO3) and 50 µL of acetonitrile. The cysteine 

residues were reduced by 50 µL of 10 mM dithiothreitol at 57°C and alkylated by 50 µL of 55 

mM iodoacetamide. After dehydration with acetonitrile, the proteins were cleaved in gel with 

10 µL of 12.5 ng/µL of modified porcine trypsin (Promega, Madison, WI, USA) in 25 mM 

NH4HCO3. The digestion was performed overnight at room temperature.  

 

MALDI-MS analysis and protein identification: Mass measurements were carried out on an 

UltraflexTM MALDI-TOF/TOF mass spectrometer (Bruker Daltonics GmbH, Bremen, 

Germany) under control of Flexcontrol 2.0 software (Bruker Daltonics GmbH, Bremen, 

Germany). This instrument was used at a maximum accelerating potential of 25 kV in 

positive mode and was operated in mode reflector at 26 kV. The delay extraction was fixed 

at 110 ns and the frequency of the laser (nitrogen 337 nm) was set at 20 Hz.  

Sample preparation was performed with the dried droplet method using a mixture of 0.5 µl of 

sample with 0.5 µl of matrix solution dry at room temperature. The matrix solution was 

prepared from a saturated solution of alpha-cyano-4-hydroxycinnamic acid in 

water/acetonitrile 50/50 diluted three times in water/acetonitrile 50/50. 

The acquisition mass range was set to 400-4000 m/z with a matrix suppression deflection 

(cut off) set to 500 m/z. The equipment was first externally calibrated with a standard peptide 

calibration mixture that contained 7 peptides (Bruker Peptide Calibration Standard #206196, 

Bruker Daltonics GmbH, Bremen, Germany) covering the 1000-3200 m/z range and 

thereafter every spectrum was internally calibrated using selected signals arising from 

trypsin autoproteolysis (842.510 m/z, 1045.564 m/z and 2211.105 m/z). Each raw spectrum 

was opened with flexAnalysis 2.4 (Bruker Daltonics GmbH, Bremen, Germany) software and 

processed using the following parameters: signal-to-noise threshold of 1, Savitzky-Golay 

algorithm for smoothing, median algorithm for baseline substraction, and SNAP algorithm for 

monoisotopic peak detection.  

The proteins were identified by peptide mass fingerprinting using a local Mascot server with 

MASCOT 2.2.0 algorithm (Matrix Science, London, UK) against UniProtKB SwissProt and 

TrEMBL databases (version 20080905, 6462751 entries). The research was carried out in all 

species. Spectra were searched with a mass tolerance 50 ppm, allowing a maximum of one 

trypsin missed cleavage. Carbamidomethylation of cysteine residues and oxidation of 

methionine residues were specified as variable modifications. Proteins are validated when 

the ratio of the number of matched peaks on the total number of peaks is higher than 60%, 

and if i) the position of the spot in the pI dimension was within the theoretical pI ± 1pH unit, 

and if ii) the position of the spot in the Mw dimension corresponded to at least 90% of the 



 9 

theoretical Mw. This strategy was implemented to remove proteolytic fragments from our 

protein identifications. 

 

NanoLC-MS/MS analysis and protein identification: NanoLC-MS/MS analysis was performed 

using an Agilent 1100 series nanoLC-Chip system (Agilent Technologies, Palo Alto, USA) 

coupled to an HCTplus ion trap (Bruker Daltonics GmbH, Bremen, Germany). The system 

was fully controlled by ChemStation B.01.03 (Agilent Technologies, Palo Alto, USA) and 

EsquireControl 5.3 (Bruker Daltonics, Bremen, Germany). The chip was composed of a 

Zorbax 300SB-C18 (43 mm × 75 m, with a 5m particle size) analytical column and a 

Zorbax 300SB-C18 (40 nL, 5 m) enrichment column. The solvent system consisted of 2% 

acetonitrile, 0.1% formic acid in water (solvent A) and 2% water, 0.1% formic acid in 

acetonitrile (solvent B). The sample was loaded into the enrichment column at a flow rate set 

to 3.75L/min with solvent A. Elution of the peptides was performed at a flow rate of 300 

nL/min with a 8-40% linear gradient of solvent B in 7 minutes. For tandem MS experiments, 

the system was operated in Data-Dependent-Acquisition (DDA) mode with automatic 

switching between MS and MS/MS. The voltage applied to the capillary cap was optimized to 

-1800V. The MS scanning was performed in the standard/enhanced resolution mode at a 

scan rate of 8100 m/z per second. The mass range was 250-2500 m/z. The Ion Charge 

Control was 100000 and the maximum accumulation time was 200 ms. A total of 4 scans 

was averaged to obtain a MS spectrum and the rolling average was 2. The three most 

abundant precursor ions with an isolation width of 4 m/z were selected on each MS spectrum 

for further isolation and fragmentation. The MS/MS scanning was performed in the ultrascan 

mode at a scan rate of 26000 m/z per second. The mass range was 50-2800 m/z. The Ion 

Charge Control was 300000. A total of six scans was averaged to obtain an MS/MS 

spectrum.  

Mass data collected during analysis were processed and converted into .mgf files using 

DataAnalysis 3.3 (Bruker Daltonics GmbH, Bremen, Germany). A maximum number of 250 

compounds was detected with an intensity threshold of 60000. MS spectra were smoothed 

by Savitzky Golay algorithm with a smoothing width of 0.2 m/z in one cycle. A charge 

deconvolution was applied on the MS full scan and the MS/MS spectra with an abundance 

cutoff of 5% and 2% respectively and with a maximum charge state of 3 and 2 respectively.  

For protein identification, the MS/MS data were interpreted using a local Mascot server with 

MASCOT 2.2.0 algorithm (Matrix Science, London, UK) against UniProtKB SwissProt and 

TrEMBL databases (version 20080905, 6462751 entries). The research was carried out in all 

species. Spectra were searched with a mass tolerance of 0.2 Da in MS and MS/MS modes, 

allowing a maximum of one trypsin missed cleavage. Carbamidomethylation of cysteine 
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residues and oxidation of methionine residues were specified as variable modifications. 

Protein identifications were validated when the Mascot protein score was above 60, and if i) 

the position of the spot in the pI dimension was within the theoretical pI ± 1pH unit, and if ii) 

the position of the spot in the Mw dimension corresponded to at least 90% of the theoretical 

Mw. This strategy was implemented to remove proteolytic fragments from our protein 

identifications. 

 

 

Immunoblotting analysis 

Protein concentration was measured using the Bradford assay. 20 g of each crude extracts 

were separated on a 10% SDS-PAGE gel and then electrotransferred (Bio-Rad system) onto 

nitro-cellulose membranes (Bio-Rad). Membranes were blocked with PVP40 1% in PBS-

0.1% Tween overnight [23]. They were then probed with appropriate dilution of primary 

antibodies raised against HP1 (ab64916), or HP1 (ab10480), or HMGB1 (ab18256), or 

HMGB2 (ab61169). This was followed by incubation with appropriate horse-radish 

peroxidase-conjugated secondary antibodies (Abcam or Santa Cruz Biotechnology). The 

blots were developed with the ECL kit (Amersham Biosciences). To normalize the total 

protein quantities really transferred, the membranes were stained with 0.5% india ink/ PBS-

0.1% Tween overnight [24], and then rinsed twice in PBS-0.1% Tween. The intensity of each 

immunoblot band and of the total protein transferred was quantified with the ImageJ 

software. The results are presented as follow: (intensity of the ECL band in XS52 extract/ 

intensity of the ink total XS52 protein extract) / (intensity of the ECL band revealed in J774 

extract/ intensity of the ink J774 total protein extract). Figures 5 and 6 were the results of at 

least three measurements from three independent cultures of each cell line. 
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Results and Discussion 

 

Nuclear protein extractions 

To analyse nuclear protein with a 2-DE approach, we have tested different methods to 

extract proteins from the nuclei. The protein extraction methods must be compatible with 2-

DE conditions and efficient to give sufficient quantities of proteins. The first step consists to 

prepare total nuclear protein extract from a nuclei preparation. From this total nuclear 

extract, we have tested different ways to enriched the extract in nuclear proteins and 

separate them from DNA using different agents as urea, DNAse, benzonase, non-ionic 

detergent (SB-12) or lecithin (Fig. 1). The DNAse and urea extractions led to the poorest 

yield and IEF (Fig. 1b,c). The benzonase extraction also led to insufficient IEF (Fig. 1d). The 

NaCl combined to SB3-12 and the lecithin extractions led to a similar protein profile to the 

NaCl extraction but resulted in an insufficient yield (Fig. 1a,f). These three different extraction 

conditions showing similar profiles, we have ruled out general effect of TCA on protein 

proteolysis (which is not used in to prepare the lecithin nuclear protein extract). Moreover, 

most of the protein identifications (Table 1) were within a MW/pI window corresponding to 

theoretical data. The NaCl extraction method gave the best results: spots were well focused 

with a good yield (Fig. 1e). Moreover, this method being one of the simplest with few steps, 

has constantly given the most reproducible protein profiles. To obtain consistent gels 

showing around two thousand spots, we have separated 150g of proteins which correspond 

to around 2x106 and 0.25x109 cells for total nuclear protein extract and the NaCl protein 

extract, respectively. The NaCl extract method require at least a hundred fold more cells 

than the total nuclear protein extract method to obtain gels with an equivalent quality. To test 

the relevance of such extraction, we must be sure that two main problems were resolved. 

First, we have to check the quality of the nuclear fractionation knowing that proteins coming 

from other compartments always pollute subcellular fractionations. Second, we have to 

analyse the NaCl pattern to be sure that proteins interacting with DNA as chromatin proteins 

or transcriptional regulator are effectively enriched compared to "pollutant" proteins. To 

ensure this both goals, we have compared the protein patterns from three extractions 

methods: the total protein extract (Fig. 2a), the total nuclear protein extract (Fig. 2b) and the 

NaCl nuclear protein extract (Fig. 2c). On the total protein extract, we have identified, by 

mass spectrometry, proteins systematically present compared to the nuclear (total or NaCl) 

extracts. These spots being very abundant because of the very different patterns, we have 

randomly chosen spots covering most of the area of the gel (Table 1). The main part of 

identified spots are localized in the cytoplasm (64% corresponding to cytoplasm 17% + 

cytoplasm and nucleus 47%) (Fig. 2d). 31% of the identified spots are secreted or localized 
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in organelles or in the cell membrane. 5% of the identified spots are exclusively nuclear. In 

the two nuclear extracts, apart from a few abundant housekeeping proteins, the nuclear 

protein patterns are very different from the total protein extract, so that a direct comparison is 

not very meaningful (Fig. 2a compared to 2b and 2c). So, we have identified spots 

systematically enriched in a nuclear pattern compared to the other one (total nuclear extract 

against NaCl nuclear extract). The comparison of the two types of nuclear extracts shows 

that the NaCl extraction promotes the identification of nuclear proteins and moreover, of 

proteins interacting directly with DNA like the Pur transcriptional regulator or the hnRP 

complex. Most of proteins enriched in NaCl nuclear protein extract are localized in the 

nucleus (52.5 % corresponding to 9.5% in the nucleus and 43% in the cytoplasm and 

nucleus, Fig. 2f). And the part of protein exclusively localized in the cytoplasm is reduced to 

33% compared to 42% in the total nuclear extract (Fig. 2e). Reciprocally, the part of proteins 

localized both in the cytoplasm and the nucleus, is of 43% in the NaCl nuclear extract 

against 26% in the total nuclear extract. No protein localized exclusively in the nucleus has 

been highlighted in the total nuclear extract (Fig. 2e). Thus, despite its lower yield of protein 

extraction compared to the total nuclear extract, we have decided to use the NaCl nuclear 

extraction method, with which we have enriched the nuclear part of the extract (52.5% in the 

NaCl nuclear extract compared to 26% in the total nuclear extract), to compare the nuclear 

proteomes of different cell lineages. To test this nuclear protein extraction methodology, we 

have compared the nuclear proteomes of two cell types which have been differentiated from 

a common myeloid progenitor, the circulating blood monocytes: a dendritic cell line, XS52 

and a macrophage cell line, J774.  These two cell lines represent two different myeloid cell 

types (macrophage for J774 and Langerhans cells for XS52), so that we could expect to 

detect differences in their nuclear proteomes. 

 

Comparison of NaCl protein extracts from macrophage and dendritic cell lines 

Three independent samples of NaCl protein extracts from a murine macrophage cell line 

(J774) and three from a murine dendritic cell line (XS52), i.e. made from three independent 

cultures, were compared by 2-DE followed by silver staining. Around two thousand spots 

have been detected on each gel.  

Delta 2D software analyses have highlighted 101 spots on 4-8 homemade strips (Fig. 4a) 

and 92 spots on 3.7-10.5 homemade strips (Fig. 4b), which were differentially expressed by 

a factor equal or greater than two and a p-value lower than 0.05 in a two-tailed t-test. The t-

test distribution analysis showed that we could expect more than 50% true positives when 

detecting differentially-expressed proteins, while the null experiment (J774 against itself, 

using independent gels and cultures) showed a much weaker proportion (Fig. 3). All the 

differentially expressed spots between J774 and XS52 have been identified by mass 
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spectrometry (Table 2). 62.6% of identified spots are nuclear proteins (35% exclusively 

nuclear and 27.6% with at least one subcellular localization described to be the nucleus) in 

an equivalent way in the two cell lines: they are involved in transcriptional regulation 

(COMMD1, COMMD3, Dr1 or Pur), splicing (hnRPs or ISY1 homolog), (hetero)chromatin 

modelling (nucleoplasmin, HP1, HP1, HMGB1 or HMGB2) or replication (Rfc2, Rfc4 

MCM4 or MCM5). The other identified proteins are described being localized in the 

cytoplasm (19.5% exclusively in the cytoplasm), in different organelles (e.g. 4% in the 

mitochondria, 0.8% in the golgi) or in the membrane (10.6% for at least one localization). It is 

interesting to note that the part of identified proteins localized exclusively in the nucleus and 

moreover described to interact with DNA represents a significant part of the identified 

proteins (35%). We have decided to focus on four proteins which are, directly or not, 

involved in gene expression regulation and for which antibodies were available: HMGB1, 

HMGB2, HP1 and HP1  

 

HMGB1 and HMGB2 

HMG (High Mobility Group) proteins are the second most abundant chromosomal proteins, 

after histone proteins, and are thought to play important roles in modelling the assembly of 

chromatin and in regulating gene transcription in higher eukaryotic cells. They play essential 

roles in a variety of cellular processes such as cancer development, DNA repair and 

infectious/inflammatory disorders. All HMG proteins are subjected to a number of post-

translational modifications, which modulate their interaction with DNA and other proteins. 

Three distinct families of HMG proteins have been defined and named based on the 

structure of their DNA-binding domains and their substrate binding specificity: HMGA (HMG-

AT hook), HMGB (HMG-box) and HMGN (HMG-nucleosome binding). HMGB family includes 

HMGB1, HMGB2 and HMGB3. They exhibit different gene expression patterns: HMGB1 is 

ubiquitous, whereas HMGB2 is primarily expressed in the thymus and testes and HMGB3 

expression is localized to the bone marrow [25] [26]. HMGB1 and -2 enhance the binding of 

various transcription factors like p53 [27] or Rel family proteins [28] [29] [30] [31]. Five spots 

corresponding to HMGB1 and -2 have been identified on 2-DE analysis: two for HMGB2 

(spots 58 and 59, Fig. 4a) and three for HMGB1 (spots 61, 62 and 63, Fig. 4a). This 

multispot patttern is consistent with what has been already described for HMG1 [32] and 

HMG2 [33]. This, together with the absence of artifactual modifications of major spots such 

as actin, suggests that our procedure does not induce artifactual modifications of the 

proteins. 

All of the HMGB spots have an increased intensity value in the NaCl nuclear extract from 

XS52 cells compared to the NaCl nuclear extract from J774 cells (Table 2). We have 
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performed immnunoblot analysis in one and two dimensions gels to evaluate the relative 

quantity of each HMGB protein with another approach (Fig. 5). The immunoblot quantitation 

of HMGB2 in a total protein extract in one or two dimensions has shown that HMGB2 

expression level is equivalent in the both cell lines (Fig. 5a,b). The 2-DE immunoblot analysis 

of HMGB2 spots (Fig. 5b) has revealed that the main part of HMGB2 spots is basic (pI 

between 7 and 9) and that the pattern and the total intensity are constant. The two spots first 

identified in 2-DE analysis belong to the acidic part of the pattern. The different modified 

forms have probably different expression levels relatively to their function but are not 

representative of the total quantity. By contrast, the immunoblot analysis of the HMGB1 

protein has confirmed the observation of the 2-DE analysis: HMGB1 is more expressed in 

XS52 cells than in J774 cells (ratio of 2) (Fig. 5a). The immunoblot analysis of total protein 

extract by 2-DE have confirmed this result (Fig. 5b): the patterns were identical whatever the 

cell lines but the expression level was higher in XS52 cell line in comparison to the pattern of 

the J774 cell line. Systematic analysis by mass spectrometry of spots of the same MW in the 

area where the first HMGBs spots have been identified, have shown that at least seven (pI 

between 6 to 7) and nine spots (pI between 7 to 9) correspond to HMGB1 and -2, 

respectively (data not shown). In the case of HMGB1 proteins, all spots display the same 

intensity in a cell line relatively to the other. The PTMs of HMGB1 seem not to be relevant to 

explain phenotype differences between the two cell lines. Only the relative concentration of 

HMGB1 proteins differs from a cell line to the other. In contrast, two spots of HMGB2 seem 

to have a differential pattern of expression in the two cell lines while the total quantity of 

HMGB2 is constant. These results show that although belonging to the same family of 

proteins, HMGB1 and HMGB2 are regulated by different mechanisms. When the comparison 

between XS52 and J774 is made HMGB1 is regulated by a translational mechanism (all 

protein species are regulated in the same extent) while HMGB2 is regulated by a 

posttranslational mechanism (only the most acidic i.e. most modified forms are increased). 

 

HP1 and HP1  

Heterochromatin protein I (HP1), first discovered in Drosophila, is a protein family that is 

evolutionary conserved, from fungi, to plants and animals. There are multiple members 

within the same species. HPI proteins are composed of two domains: the amino-terminal 

chromodomain binds methylated lysine 9 of histone H3, causing transcriptional repression, 

and the highly conserved carboxy-terminal chromo-shadow domain enables dimerization 

and also serves as a docking site for protein involved in a wide variety of nuclear functions, 

from transcription, regulation of euchromatin genes to nuclear architecture [34] [35]  for 

reviews. HP1 proteins are amenable to posttranslational modifications that probably regulate 

these distinct functions [36] [37]. Takanashi and collaborators [38] have shown that HP1 



 15 

decreases during adipocyte differentiation, whereas HP1 and HP1are constitutively 

expressed. Three spots corresponding to HP1andHP1 were detected on 2-DE: spot 1 (= 

HP1 (Fig.4a) and spot 127 (= HP1 and 137 (= HP1 (Fig.4b). They were all localised in 

the same small area (Fig. 6b). The intensity ratios (XS52/J774) estimated with Delta 2D 

software were similar for the both spots identified as HP1 (XS52/J774 = 0.48 and 0.5) and 

opposite for HP1XS52/J774  (Table 2). In contrast, in a total protein extract and for the 

HP1and HP1, the immunoblot quantifications have shown that the intensity levels were 

identical in the both cell lines (XS52 and J774) (Fig. 6a). This result was confirmed with 

immunoblot analysis of total protein extract separated by 2-DE (Fig. 6b). These experiments 

detected several spots for the HP1 proteins: at least three for HP1and nine for HP1(Fig. 

6b). Only two of them for HP1 and one for HP1 have been detected with a modified 

expression level between J774 and XS52. The different modified forms have probably 

different expression levels relatively to their function but the total quantity of HP1( or ) 

protein is constant in differentiated cell lines. HP1 is known to be highly posttranslationally 

modified [36] [37]. Similar expression profiles have already been described during adipocyte 

differentiation [38]. These results show that the regulation made on HP1 proteins between 

J774 and XS52 is made essentially at the post translational stages suggesting that 

modifications play an important role in the modulation of the functions of HP1 proteins. 
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Concluding remarks 

One of the major problems of proteomics is undersampling. In 2D gel-based proteomics, this 

undersampling results in the visualization of a limited number of proteins, so that many 

studies end up with the same types of proteins [39], that belong to the core stress response 

of animal cells [40]. In order to reach lower abundance proteins, it is necessary to focus the 

proteomic analysis to a subcellular subset. A good example is represented by secreted 

proteins, for which a sensitivity down to 1ng/ml can be reached [8]. When this type of 

sensitivity is reached, the classical differential proteomic analysis is able to go deeper and 

reach less common proteins [17]. 

In this frame, nuclear proteins represent a good way to investigate by proteomics the 

mechanisms underlying the changes made in gene expression during a biological process. 

However, nuclear proteins are rather difficult to extract under conditions compatible with 

proteomics. First of all, nuclei are very rich in DNA, and this DNA must be eliminated. 

Second, DNA-bound proteins are of great interest when dealing with processes involved in 

changes in gene expression. However, these proteins are often not extracted by low ionic 

strength solutions, even in the presence of urea [41]. Conversely, they are easily extracted 

by salt [42]. A good example is represented by the HMG proteins, which are very abundant 

chromatin proteins. They are not present when the nuclei are extracted with urea, but are 

easily detected as soon as salt is used for extraction ([5], this work). However, high 

concentrations of salts are incompatible with many types of proteomics, including 2D gel-

based proteomics. We therefore coupled salt extraction, used to effectively extract DNA-

bound proteins in proteomics setups [1] [5] with the TCA-sarkosyl precipitation process, 

which has proven to be of high yield and devoid of efficiency thresholds [8]. However, we 

had to dilute the salt-containing sample before precipitation, otherwise the residual salt 

concentration in the final sample remained too high for 2D gel electrophoresis. Overall, our 

data show that the NaCl extraction methodology allowed observing nuclear proteins that 

interact with nucleic acid such as protein Dr1 (proteins associated with transcriptional 

regulator) or histone proteins (i.e. HMGB proteins). Moreover, the similarity of the patterns 

observed with two cell lineages that arise from a common myeloid progenitor, show the 

robustness of this extraction approach. In spite of this similarity, more than a hundred spots 

have a significantly different expression in one lineage compared to the other one. 35% of 

this differentially expressed spots are exclusively nuclear proteins.  

In fact, this technique offers an interesting extraction of nuclear proteins without the added 

complexity of the DNA chromatography used in [5]. Moreover, it retains bona fide chromatin 

proteins that are lost during the DNA chromatography, such as the chromobox proteins.  

This approach allowed us to reach not only high abundance nuclear proteins, such as 

HMGs, but also lower abundance proteins, such as the HP1 proteins, or transcriptional 
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factors, i.e. Pur. We could easily study proteins that are implicated at the level of chromatin 

structure, such as HMG and HP1 proteins. Interestingly, the immunoblotting experiments 

carried out to confirm the results of 2DE-gel unravelled the fact that many detected changes 

do not correspond to an overall increase in the amount of proteins, but to a change in the 

PTM pattern of the proteins.  

This is another reminder that observing an increased on a 2D gel does not necessarily 

means that the amount of the total gene product has changed, and control experiments such 

as 1D or 2D blots are required to demonstrate a real increase in the amount of the protein 

identified, and not just an increase in a specific form of this protein. This also underlines the 

possible importance of these PTM in the functions of the proteins and thus in the general 

control of gene expression. Further studies of these PTM will be needed to understand in 

more detail the link between these PTM and the modulation of the function of the proteins. 

This observation reinforces the interest of using 2DE-gel in proteomics because it allows 

seeing intact proteins. Further identifications of PTM associated with the different 

phenotypes of myeloïd cells will provide new insight in mechanisms controlling gene 

expression. This study is the first step of a PTM analysis of nuclear proteins involved in 

genetic regulations. 
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Table 1 

 

         

Protein Identification Prot. 
Local. 

(4) 

Mass spectrometry analysis (nLC-
MS/MS or MALDI/TOF-PMF) 

Spot 
nb.(1) 

Protein 
function(2) 

Protein 
access.
number

s(3) 

Mass 
(Da) 

pI  Nb 
unique 
pept. 

% seq. 
cov. 

Peptide sequence 

(Figure 
2a) 

        

EB1 Galectin-1  P16045 14848 5.28 S 9 63% DSNNLCLHFNPR - 
EDGTWGTEHR - 

FNAHGDANTIVCN
TK - 

FNAHGDANTIVCN
TKEDGTWGTEHR 

- 
LNMEAINYMAADG

DFK - 
LNMEAINYMAADG

DFKIK - 
LPDGHEFKFPNR - 

SFVLNLGK - 
VRGEVASDAK 

EB2 Coactosin-like 
protein  

Q9CQI6 15926 5.23 C 10 49% AAYNLVR - 
AGGANYDAQSE - 

ELEEDFIR - 
EVVQNFAK - 

FALITWIGEDVSGL
QR - FTTGDAMSK 
- KAGGANYDAQSE 

- KELEEDFIR - 
LFAFVR - 

SKFALITWIGEDVS
GLQR 

EB3 Eukaryotic 
translation 

initiation factor 
5A-1 

P63242 16832 5.07 N+C - C+N MALDI/TOF PMF 

EB4 Protein mago 
nashi homolog  

P61327 17146 5.74 N+C 2 21% IGSLIDVNQSK - 
IIDDSEITKEDDAL

WPPPDR 

EB5 Prefoldin subunit 
5  

Q9WU2
8 

17338 5.94 N 7 53% DCLNVLNK - 
ELLVPLTSSMYVP
GK - IQPALQEK - 

IQQLTALGAAQATV
K - KIDFLTK - 

NQLDQEVEFLSTSI
AQLK - 

QAVMEMMSQK 

EB6 Ubiquitin-
conjugating 

enzyme E2 N  

P61089 17121 6.13 N+C 10 61% DKWSPALQIR - 
ICLDILK - 

ICLDILKDK - 
IYHPNVDK - 

IYHPNVDKLGR - 
LELFLPEEYPMAA

PK - 
LLAEPVPGIKAEPD

ESNAR - 
TNEAQAIETAR - 

WSPALQIR - 
YFHVVIAGPQDSP

FEGGTFK 
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EB7 Superoxide 
dismutase [Cu-Zn]  

P08228 15924 6.02 C 6 46% DGVANVSIEDR - 
GDGPVQGTIHFEQ

K - 
HVGDLGNVTAGK - 
QDDLGKGGNEES

TK - 
TMVVHEKQDDLGK 
- VISLSGEHSIIGR 

EB8 Prefoldin subunit 
2  

O70591 16516 6.2 N+C+
Mb 

3 23% GAVSAEQVIAGFN
R - IIETLSQQLQAK 

- MVGGVLVER 

EB9 Peptidyl-prolyl cis-
trans isomerase A  

P17742 17882 7.73 C 9 56% EGMNIVEAMER - 
FEDENFILK - 

HTGPGILSMANAG
PNTNGSQFFICTA

K - 
IIPGFMCQGGDFT
R - KITISDCGQL - 
SIYGEKFEDENFIL

K - 
VKEGMNIVEAMER 

- VSFELFADK - 
VSFELFADKVPK 

EB10 Nucleoside 
diphosphate 

kinase A  

P15532 17190 6.84 N+C 10 76% DRPFFTGLVK - 
EISLWFQPEELVEY
K - FLQASEDLLK - 

GDFCIQVGR - 
GLVGEIIKR - 

NIIHGSDSVK - 
SAEKEISLWFQPE

ELVEYK - 
TFIAIKPDGVQR - 

VMLGETNPADSKP
GTIR - 

YMHSGPVVAMVW
EGLNVVK 

EB11 Stathmin  P54227 17257 5.75 C 4 31% ASGQAFELILSPR - 
DLSLEEIQK - 

ESKDPADETEAD - 
ESVPDFPLSPPK 

EB12 Cofilin-1  P18760 18542 8.22 N+C+
Mb 

4 37% EILVGDVGQTVDD
PYTTFVK - 

KEDLVFIFWAPEN
APLK - 

LGGSAVISLEGKPL 
- YALYDATYETK 

EB13 Proteasome 
subunit beta type-

9  

P28076 23379 5.07 N+C 2 10% FTTNAITLAMNR - 
VSAGTAVVNR 

EB14 Transmembrane 
emp24 domain-

containing protein 
2  

Q9R0Q3 22172 5.08 Mb 2 11% HEQEYMEVR - 
IVMFTIDIGEAPK 

EB15 ATP synthase 
subunit d 

Q9DCX
2 

18732 5.52 Mt 10 64% ANVAKPGLVDDFE
K - IPVPEDK - 

IPVPEDKYTALVDQ
EEK - IQEYEK - 

LASLSEKPPAIDWA
YYR - 

SCAEFVSGSQLR - 
SWNETFHAR - 

TIDWVSFVEVMPQ
NQK - 

YPYWPHQPIENL - 
YTALVDQEEK 

EB16 UMP-CMP kinase  Q9DBP5 22262 5.68 N+C 5 28% EMDQTMAANAQK 
- FLIDGFPR - 

NPDSQYGELIEK - 
NQDNLQGWNK - 

YGYTHLSAGELLR 

EB17 Ferritin light chain 
1  

P29391 20785 5.65 C 3 19% LLEFQNDR - 
QNYSTEVEAAVNR 

- 
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TQEAMEAALAMEK 

EB18 Adenine 
phosphoribosyltra

nsferase 

P47957 19707 6.31 C 4 33% GFLFGPSLAQELG
VGCVLIR - 

IDYIAGLDSR - 
LPGPTVSASYSLE

YGK - 
SFPDFPIPGVLFR 

EB19 Thioredoxin-
dependent 
peroxide 

reductase 

P20108 28109 7.15 Mt 6 28% DYGVLLESAGIALR 
- GLFIIDPNGVVK - 

GTAVVNGEFK - 
HLSVNDLPVGR - 
NGGLGHMNITLLS
DITK - SVEETLR 

EB20 NADH 
dehydrogenase 

[ubiquinone] iron-
sulfur protein 8 

Q8K3J1 24021 5.89 Mt 8 38% EPATINYPFEK - 
EQESEVDMK - 
FRGEHALR - 

GLGMTLSYLFR - 
ILMWTELIR - 

LCEAICPAQAITIEA
EPR - YDIDMTK - 

YPSGEER 

EB21 Phosphatidylethan
olamine-binding 

protein 1  

P70296 20812 5,19 C 3 28% GNDISSGTVLSDY
VGSGPPSGTGLHR 

- 
LYTLVLTDPDAPSR 

- 
VDYAGVTVDELGK 

EB22 Peroxiredoxin-2  Q61171 21761 5.2 C 4 22% EGGLGPLNIPLLAD
VTK - NDEGIAYR - 
QITVNDLPVGR - 

SVDEALR 

EB23 Translationally-
controlled tumor 

protein  

P63028 19445 4.76 C 3 23% DLISHDELFSDIYK 
- EDGVTPFMIFFK - 
EIADGLCLEVEGK 

EB24 Rho GDP-
dissociation 
inhibitor 2  

Q61599 22833 4.95 C 4 31% DAQPQLEEADDDL
DSK - 

ELQEMDKDDESLT
K - 

TLLGDVPVVADPT
VPNVTVTR - 
VNKDIVSGLK 

EB25 Rho GDP-
dissociation 
inhibitor 1  

Q99PT1 23390 5.1 C 4 24% AEEYEFLTPMEEA
PK - 

TDYMVGSYGPR - 
VAVSADPNVPNVI
VTR - YIQHTYR 

EB26 Tumor protein 
D52  

Q62393 24295 4.69 RE 3 17% ASAAFSSVGSVITK 
- 

GWQDVTATNAYK 
- TSETLSQAGQK 

EB27 14-3-3 protein 
beta/alpha  

Q9CQV
8 

28069 4.77 C 6 24% DSTLIMQLLR - 
NLLSVAYK - 
VISSIEQK - 

YDDMAAAMK - 
YLILNATQAESK - 
YLSEVASGENK 

EB28 Proteasome 
subunit alpha 

type-5  

Q9Z2U1 26393 4.74 N+C 2 11% ITSPLMEPSSIEK - 
PFGVALLFGGVDE

K 

EB29 14-3-3 protein 
zeta/delta  

P63101 27754 4.73 C 8 31% DICNDVLSLLEK - 
FLIPNASQPESK - 

NLLSVAYK - 
SVTEQGAELSNEE

R - VVSSIEQK - 
YDDMAACMK - 

YLAEVAAGDDK - 
YLAEVAAGDDKK 

EB30 14-3-3 protein 
gamma  

P61982 28235 4.8 C 5 20% NLLSVAYK - 
NVTELNEPLSNEE

R - VISSIEQK - 
YDDMAAAMK - 
YLAEVATGEK 
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EB31 Elongation factor 
1-beta  

O70251 24676 4.53 C 4 24% LAQYESK - 
SIQADGLVWGSSK 

- 
TPAGLQVLNDYLA

DK - 
YGPSSVEDTTGSG

AADAK 

EB32 Tropomyosin 
alpha-3 chain   

Q63610 28989 4.75 C 9 28% EQAEAEVASLNR - 
EQAEAEVASLNRR 

- IQLVEEELDR - 
IQLVEEELDRAQE

R - 
KIQVLQQQADDAE
ER - KLVIIEGDLER 

- LATALQK - 
LVIIEGDLER - 
MELQEIQLK 

EB33 Ubiquitin carboxyl-
terminal hydrolase 

isozyme L3  

Q9JKB1 26134 4.96 C 2 10% FLENYDAIR - 
SQGQDVTSSVYF

MK 

EB34 Inositol 
monophosphatase 

1  

O55023 30419 5.08 C 4 17% IIAANSITLAK - 
LQVSQQEDITK - 
SLLVTELGSSR - 

SSPADLVTVTDQK 

EB35 Chloride 
intracellular 

channel protein 1  

Q9Z1Q5 26996 5.09 N+C+
Mb 

4 27% GVTFNVTTVDTK - 
LAALNPESNTSGL

DIFAK - 
LFMVLWLK - 

VLDNYLTSPLPEEV
DETSAEDEGISQR 

EB36 6-
phosphogluconola

ctonase  

Q9CQ60 27237 5.55 C 2 13% DLPAAAAPAGPAS
FAR - 

FALGLSGGSLVSM
LAR 

EB37 Proteasome 
subunit alpha 

type-3  

O70435 28387 5,29 N+C 3 12% AVENSSTAIGIR - 
SNFGYNIPLK - 
VFQVEYAMK 

EB38 NADH 
dehydrogenase  

Q9DCT2 30131 6.67 Mt 3 13% DFPLTGYVELR - 
FEIVYNLLSLR - 

VVAEPVELAQEFR 

EB39 Proteasome 
subunit alpha 

type-6  

Q9QUM
9 

27382 6.34 N+C 4 17% AINQGGLTSVAVR 
- HITIFSPEGR - 
LYQVEYAFK - 
QTESTSFLEK 

EB40 Endoplasmic 
reticulum resident 

protein 29  

P57759 28807 5.9 RE 5 21% ESYPVFYLFR - 
FDTQYPYGEK - 

GALPLDTVTFYK - 
ILDQGEDFPASEM
AR - SLNILTAFR 

EB41 Superoxide 
dismutase [Mn]  

P09671 24603 8.8 Mt 4 20% AIWNVINWENVTE
R - 

GDVTTQVALQPAL
K - GELLEAIKR - 

NVRPDYLK 

EB42 Phosphoglycerate 
mutase 1  

Q9DBJ1 28787 6.67 C 8 36% ALPFWNEEIVPQIK 
- AMEAVAAQGK - 
FSGWYDADLSPA

GHEEAK - 
HGESAWNLENR - 
HYGGLTGLNK - 

KAMEAVAAQGK - 
VLIAAHGNSLR - 

YADLTEDQLPSCE
SLK 

EB43 GTP-binding 
nuclear protein 

Ran  

P62827 24405 7.01 N+C 7 34% FNVWDTAGQEK - 
HLTGEFEK - 

KYVATLGVEVHPL
VFHTNR - 

LVLVGDGGTGK - 
NLQYYDISAK - 

SNYNFEKPFLWLA
R - 
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YVATLGVEVHPLV
FHTNR 

EB44 Triosephosphate 
isomerase  

P17751 32173 5.56 C 5 20% HVFGESDELIGQK 
- IIYGGSVTGATCK 
- SNVNDGVAQSTR 

- 
VTNGAFTGEISPG

MIK - VVFEQTK 

EB45 S-
formylglutathione 

hydrolase  

Q9R0P3 31302 6.7 C 2 12% AFSGYLGPDESK - 
SGYQQAASEHGLV

VIAPDTSPR 

EB46 EF-hand domain-
containing protein 

D2  

Q4FZY0 26902 5.01 Mb 2 9% DGFIDLMELK - 
LSEIDVSTEGVK 

EB47 Microtubule-
associated protein 

RP/EB family 
member 1  

Q61166 29999 5.12 C+Gol
gi 

4 16% AGPGMVR - 
EYDPVAAR - 
ILQAGFK - 

QGQETAVAPSLVA
PALSKPK 

EB48 Annexin A5  P48036 35736 4.82 Mb 2 7% GTVTDFPGFDGR - 
VLTEIIASR 

EB49 Proliferating cell 
nuclear antigen  

P17918 28731 4.66 N 2 9% CAGNEDIITLR - 
NLAMGVNLTSMSK 

EB50 Eukaryotic 
translation 

initiation factor 3 
subunit J  

Q66JS6 29469 4.69 C 2 10% ITNSLTVLCSEK - 
SLYYASFLEALVR 

EB51 Elongation factor 
1-delta  

P57776 31275 4.91 C 2 13% ITSLEVENQNLR - 
SLAGSSGPGASSG

PGGDHSELIVR 

EB52 Guanine 
nucleotide-binding 

protein G(i) 
subunit alpha-2  

P08752 40472 5.28 C+Mb 13 40% AMGNLQIDFADPQ
R - 

AVVYSNTIQSIMAI
VK - 

EYQLNDSAAYYLN
DLER - FEDLNK - 

FEDLNKR - 
IAQSDYIPTQQDVL

R - 
ITQSSLTICFPEYT

GANK - 
LFDSICNNK - 

LLLLGAGESGK - 
LWADHGVQACFG
R - MFDVGGQR - 

SREYQLNDSAAYY
LNDLER - 

YDEAASYIQSK 

EB53 Farnesyl 
pyrophosphate 

synthase  

Q920E5 40565 5.48 C 2 7% GLTVVQAFQELVE
PK - LDAYNQEK 

EB54 Serine-threonine 
kinase receptor-

associated protein  

Q9Z1Z2 38421 4.99 N+C 3 12% FSPDGELYASGSE
DGTLR - 

GAVWGATLNK - 
YDYNSGEELESYK 

EB55 Galactokinase  Q9R0N0 42158 5.17 C 3 7% LAVLITNSNVR - 
MEELEAGR - 

TAQAAAAMSR 

EB56 40S ribosomal 
protein SA  

P14206 32866 4.8 N+C+
Mb 

6 29% ADHQPLTEASYVN
LPTIALCNTDSPLR 

- 
AIVAIENPADVSVIS

SR - 
FTPGTFTNQIQAAF

R - 
GAHSVGLMWWML
AR - KSDGIYIINLK 

- SDGIYIINLK 

EB57 Tropomodulin-3  Q9JHJ0 39487 5.02 C 3 10% FGYQFTQQGPR - 



 23 

LVEVNLNNIK - 
SNDPVAVAFADML

K 

EB58 Eukaryotic 
initiation factor 

4A-I  

P60843 46137 5.02 C 5 14% ATQALVLAPTR - 
ELAQQIQK - 

LQMEAPHIIVGTPG
R - 

MFVLDEADEMLSR 
- QFYINVER 

EB59 Dolichyl-
diphosphooligosa
ccharide--protein 
glycosyltransferas

e   

O54734 48775 5.52 RE+Mb 3 7% APTIVGK - 
LPDVYGVFQFK - 

NTLLIAGLQAR 

EB60 Malate 
dehydrogenase 

P14152 36494 6.16 C 5 18% DLDVAVLVGSMPR 
- FVEGLPINDFSR - 

GEFITTVQQR - 
LGVTADDVK - 

VIVVGNPANTNCLT
ASK 

EB61 26S proteasome 
non-ATPase 

regulatory subunit 
14  

O35593 34559 6.06 N+C 11 58% AGVPMEVMGLML
GEFVDDYTVR - 

AVAVVVDPIQSVK - 
EMLELAK - 

HYYSITINYR - 
LGGGMPGLGQGP
PTDAPAVDTAEQV

YISSLALLK - 
LINANMMVLGHEP
R - MTPEQLAIK - 

QTTSNLGHLNKPSI
QALIHGLNR - 

SWMEGLTLQDYS
EHCK - 

VIDVFAMPQSGTG
VSVEAVDPVFQAK 

- VVIDAFR 

EB62 Aldose reductase  P45376 35715 6.71 C 4 12% EVGVALQEK - 
TIGVSNFNPLQIER 

- TTAQVLIR - 
VAIDLGYR 

EB63 Annexin A2  P07356 38660 7.55 Mb+se
c 

5 17% QDIAFAYQR - 
RAEDGSVIDYELID

QDAR - 
SLYYYIQQDTK - 
TNQELQEINR - 
TPAQYDASELK 

EB64 L-lactate 
dehydrogenase A 

chain  

P06151 36481 7.61 C 7 18% DYCVTANSK - 
LNLVQR - 

LVIITAGAR - 
QVVDSAYEVIK - 
SADTLWGIQK - 
VTLTPEEEAR - 

YLMGER 

EB65 Glyceraldehyde-3-
phosphate 

dehydrogenase  

P16858 35792 8.44 N+C 7 27% GAAQNIIPASTGAA
K - 

IVSNASCTTNCLAP
LAK - 

LISWYDNEYGYSN
R - PITIFQER - 

VKVGVNGFGR - 
VPTPNVSVVDLTC

R - 
VVDLMAYMASK 

EB66 Phosphoglycerate 
kinase 1 

P09411 44545 8.02 C 3 9% ALESPERPFLAILG
GAK - VDFNVPMK 
- VLPGVDALSNV 

EB67  Poly(rC)-binding 
protein 1  

P60335 37480,
2 

6.66 N 2 8% AITIAGVPQSVTEc
VK-IITLTGPTNAIFK 

EB68 Transaldolase  Q93092 37370 6.57 C 7 21% LGGPQEEQIK - 
LSFDKDAMVAR - 

LSSTWEGIQAGK - 
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MESALDQLK - 
SYEPQEDPGVK - 

TIVMGASFR - 
VSTEVDAR 

EB69 26S protease 
regulatory subunit 

8  

P62196 45609 7.11 N+C 3 9% LEGGSGGDSEVQ
R - 

VPDSTYEMIGGLD
K - VSGSELVQK 

EB70 Hematopoietic 
prostaglandin D 

synthase  

Q9JHF7 23211 6.31 C 2 13% MFNELLTHQAPR - 
VQAIPAISAWILK 

EB71  Glutamate 
dehydrogenase 1 

P26443 61320,
3 

8.05 Mt 4 6% LVEDLK-
mVEGFFDR-

TAAYVNAIEK-
YNLGLDLR 

EB72 Elongation factor 
1-gamma  

Q9D8N0 50043 6.31 C 4 11% ALIAAQYSGAQVR 
- ILGLLDTHLK - 

LDPGSEETQTLVR 
- WFLTCINQPQFR 

EB73 Elongation factor 
Tu 

Q8BFR5 18818 7.23 Mt 3 17% AEAGDNLGALVR - 
DPELGVK - 

GTVVTGTLER 

EB74 Eukaryotic 
initiation factor 

4A-III  

Q91VC3 46824 6.3 N+C 18 47% DELTLEGIK - 
DVIAQSQSGTGK - 
EANFTVSSMHGD

MPQK - 
ETQALILAPTR - 

FMTDPIR - 
GFKEQIYDVYR - 

GIYAYGFEKPSAIQ
QR - 

GLDVPQVSLIINYD
LPNNR - 

KGVAINFVK - 
KLDYGQHVVAGTP

GR - 
LDYGQHVVAGTPG

R - 
MLVLDEADEMLNK 

- QFFVAVER - 
RDELTLEGIK - 

VDWLTEK - 
VFDMIR - 

VLISTDVWAR - 
YLPPATQVVLISAT

LPHEILEMTNK 

EB75 Alpha-enolase  P17182 47124 6.37 C+Mb 8 24% AAVPSGASTGIYE
ALELR - 

DATNVGDEGGFAP
NILENK - 

GNPTVEVDLYTAK 
- GVSQAVEHINK - 

IGAEVYHNLK - 
LMIEMDGTENK - 

VNVVEQEK - 
YITPDQLADLYK 

EB76  V-type proton 
ATPase subunit H  

Q8BVE3 55837,
5 

6.18 Vacuol
e 

2 4% VSIFFDYAK-
YNALLAVQK 

EB77 T-complex protein 
1 subunit beta  

P80314 57459 5.97 C 2 4% GATQQILDEAER - 
LAVEAVLR 

EB78 Cytochrome b-c1 
complex subunit 1 

Q9CZ13 52834 5.81 Mt 16 39% EHTAYLIK - 
FTGSEIR - 
HLSSVSR - 

IPLAEWESR - 
IQEVDAQMLR - 

LCTSATESEVTR - 
MVLAAAGGVEHQ

QLLDLAQK - 
NALVSHLDGTTPV

CEDIGR - 
NNGAGYFLEHLAF
K - RIPLAEWESR - 



 25 

SGMFWLR - 
TDLTDYLNR - 

VASEQSSHATCTV
GVWIDAGSR - 

VYEEDAVPGLTPC
R - 

YETEKNNGAGYFL
EHLAFK - 

YFYDQCPAVAGYG
PIEQLPDYNR 

EB79 T-complex protein 
1 subunit alpha  

P11983 60432 5.82 C 22 54% AFHNEAQVNPER - 
EQLAIAEFAR - 
FATEAAITILR - 

GANDFMCDEMER 
- IACLDFSLQK - 

ICDDELILIK - 
IHPTSVISGYR - 

IIGINGDYFANMVV
DAVLAVK - 

LGVQVVITDPEK - 
MLVDDIGDVTITND

GATILK - 
QAGVFEPTIVK - 
SLHDALCVVK - 

SLLVIPNTLAVNAA
QDSTDLVAK - 

SQNVMAAASIANIV
K - SSFGPVGLDK - 
SVVPGGGAVEAAL
SIYLENYATSMGS

R - TSASIILR - 
VLCELADLQDK - 

VLCELADLQDKEV
GDGTTSVVIIAAEL

LK - 
YFVEAGAMAVR - 

YINENLIINTDELGR 
- YPVNSVNILK 

EB80 Protein disulfide-
isomerase A3 

precursor  

P27773 56643 5.88 REL - 54% MALDI/TOF PMF 

EB81 Transketolase  P40142 67588 7.23 C - 39% MALDI/TOF PMF 

EB82 Lamin-A/C  Q9DC21 74193 6.54 N - 20% MALDI/TOF PMF 

EB83 Plastin-3  Q99K51 70322 5.54 C - 14% MALDI/TOF PMF 

EB84 Elongation factor 
2  

P58252 95298 6.41 C 10 12% AGIIASAR - 
EGALCEENMR - 

EGIPALDNFLDKL - 
ETVSEESNVLCLS
K - GEGQLSAAER 
- GGGQIIPTAR - 

GVQYLNEIK - 
IMGPNYTPGK - 
QFAEMYVAK - 
VFDAIMNFR 

EB85 DNA replication 
licensing factor 

MCM7  

Q61881 81194 5.98 N 2 3% GSSGVGLTAAVLR 
- SITVVLEGENTR 

EB86 von Willebrand 
factor A domain-

containing protein 
5A 

Q99KC8 87087 6.15 C - 18% MALDI/TOF PMF 

EB87 Vinculin  Q64727 11664
4 

5.77 C - 23% MALDI/TOF PMF 

EB88 Gelsolin precursor P13020 85888 5,83 C+Sec 16 27% MALDI/TOF PMF 

EB89 Heat shock 
cognate 71 kDa 

protein  

Q3U9G0 70827 5.37 C 18 55% MALDI/TOF PMF 
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EB90 60 kDa heat 
shock protein 

P63038 60972 5.91 Mt 13 25% ALMLQGVDLLADA
VAVTMGPK - 

CEFQDAYVLLSEK 
- DDAMLLK - 
GANPVEIR - 

GVMLAVDAVIAELK 
- IGIEIIK - 

LSDGVAVLK - 
NAGVEGSLIVEK - 
TVIIEQSWGSPK - 

VGEVIVTK - 
VGGTSDVEVNEK - 

VGLQVVAVK - 
VTDALNATR 

EB91 Heat shock 
protein HSP 90-

Beta  

P11499 83142 4,97 Mt 11 17% MALDI/TOF PMF 

EB92 Importin-5  Q8BKC5 123,57
5.6 

4.82 N+C 7 7.02% MALDI/TOF PMF 

EB93 Vimentin  P20152 51832 5.05 C 5 16% EMEENFALEAANY
QDTIGR - 

ILLAELEQLK - 
KVESLQEEIAFLK - 
LLQDSVDFSLADAI

NTEFK - 
MALDIEIATYR 

EB94 Ubiquitin 
thioesterase   

Q7TQI3 31267 4.85 C 2 9% IQQEIAVQNPLVSE
R - LLTSGYLQR 

EB95 Peroxiredoxin-6  O08709 24854 5.71 C+L 11 67% DFTPVCTTELGR - 
DINAYNGETPTEK - 
DLAILLGMLDPVEK 

- 
FHDFLGDSWGILF

SHPR - 
KGESVMVVPTLSE

EEAK - 
LIALSIDSVEDHLA
WSK - LPFPIIDDK - 
PGGLLLGDEAPNF

EANTTIGR - 
PVATPVDWK - 

VVDSLQLTGTK - 
VVFIFGPDK 

(Figure 
2b) 

        

T1 Alpha-enolase   P17182 47124 6,37 C 3 8% IGAEVYHNLK - 
LMIEMDGTENK - 
VNQIGSVTESLQA

CK 

T2 Alpha-enolase   P17182 47124 6,37 C 8 23% GNPTVEVDLYTAK 
- GVSQAVEHINK - 

IEEELGSK - 
IGAEVYHNLK - 

LAMQEFMILPVGA
SSFR - 

LAQSNGWGVMVS
HR - 

LMIEMDGTENK - 
VNQIGSVTESLQA

CK 

T3 Pyruvate kinase 
isozymes M1/M2   

P52480 57828 7,18 N+C 12 29% FGVEQDVDMVFAS
FIR - 

GADFLVTEVENGG
SLGSK - 

GSGTAEVELK - 
GVNLPGAAVDLPA

VSEK - 
ITLDNAYMEK - 

IYVDDGLISLQVK - 
LAPITSDPTEAAAV

GAVEASFK - 
LDIDPITAR - 
MQHLIAR - 
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NTGIICTIGPASR - 
SGMNVAR - 

VNLAMDVGK 

T4 Actin  P60710 41805 5,29 C 12 35% AGFAGDDAPR - 
AVFPSIVGR - 

AVFPSIVGRPR - 
DLTDYLMK - 

DSYVGDEAQSK - 
EITALAPSTMK - 
GYSFTTTAER - 

HQGVMVGMGQK - 
IWHHTFYNELR - 

QEYDESGPSIVHR 
- 

SYELPDGQVITIGN
ER - 

VAPEEHPVLLTEA
PLNPK 

T5 26S proteasome 
non-ATPase 

regulatory subunit 
14   

O35593 34559 6,06 N+C 2 5% HYYSITINYR - 
VVIDAFR 

T6 26S proteasome 
non-ATPase 

regulatory subunit 
7   

P26516 37008 6,29 N+C 6 22% DTTVGTLSQR - 
PELAVQK - 

SVVALHNLINNK - 
TNDQMVVVYLASLI

R - 
VVGVLLGSWQK - 
VVVHPLVLLSVVD

HFNR 

T6 Tranldolase  Q93092 37371 6,57 C 6 18% ALAGCDFLTISPK - 
LGGPQEEQIK - 

LIELYK - 
LSSTWEGIQAGK - 

MELDQLK - 
SYEPQEDPGVK 

T7 Alcohol 
dehydrogenase 

[NADP+]   

Q9JII6 36569 6,90 C 5 19% ALEVLVAK - 
ALGLSNFNSR - 

GLEVTAYSPLGSS
DR - 

HPDEPVLLEEPVV
LALAEK - 
SPAQILLR 

T8 Glyceraldehyde-3-
phphate 

dehydrogenase   

P16858 35792 8,44 N+C 7 31% GAAQNIIPASTGAA
K - 

IVSNASCTTNCLAP
LAK - 

LISWYDNEYGYSN
R - PITIFQER - 

VIHDNFGIVEGLMT
TVHAITATQK - 

VPTPNVSVVDLTC
R - 

VVDLMAYMASK 

T9 Biliverdin 
reductase A   

Q9CY64 33507 6,53 C 8 30% ELGSLDNVR - 
FGFPAFSGISR - 
FGVVVVGVGR - 
FTASPLEEEK - 

LLGQVEDLAAEK - 
MTVQLETQNK - 

QISLEDALR - 
SGSLEEVPNVGVN

K 

T10 Chloride 
intracellular 

channel protein 1   

Q9Z1Q5 26996 5,09 N+C 4 29% GVTFNVTTVDTK - 
LAALNPESNTSGL

DIFAK - 
NSNPALNDNLEK - 
VLDNYLTSPLPEEV

DETEDEGISQR 
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T11 Rho GDP-
dissociation 
inhibitor 2   

Q61599 22833 4,97 C 3 23% DAQPQLEEADDDL
DSK - LNYKPPPQK 

- 
TLLGDVPVVADPT

VPNVTVTR 

T12 Myosin regulatory 
light chain 12B   

Q3THE2 19777 4,71 C 5 30% EAFNMIDQNR - 
ELLTTMGDR - 

FTDEEVDELYR - 
GNFNYIEFTR - 
LNGTDPEDVIR 

T13 ATP synthase 
subunit d  

Q9DCX
2 

18732 5,52 Or+Mb 4 28% ANVAKPGLVDDFE
K - 

SCAEFVSGSQLR - 
SWNETFHAR - 
YTALVDQEEK 

(Figure 
2c) 

        

N1 60 kDa heat 
shock protein 

P63038 60972 5,91 Or+Mb 18 35% AAVEEGIVLGGGC
ALLR - 

ALMLQGVDLLADA
VAVTMGPK - 
DDAMLLK - 
GANPVEIR - 

GVMLAVDAVIAELK 
- 

GVMLAVDAVIAELK
K - GYISPYFINTSK 
- IGIEIIK - KGVITVK 

- LSDGVAVLK - 
LVQDVANNTNEEA
GDGTTTATVLAR - 
NAGVEGSLIVEK - 
TLNDELEIIEGMK - 
TVIIEQSWGSPK - 

VGEVIVTK - 
VGGTSDVEVNEK - 

VGLQVVAVK - 
VTDALNATR 

N2 WD repeat-
containing protein 

1  

O88342 66388 6,11 C 14 31% AHDGGIYAISWSP
DSTHLLSGDK - 

DHLLSISLSGYINYL
DK - DIAWTEDSKR 

- 
FATADGQIFIYDGK 

- 
GPVTDVAYSHDGA

FLAVCDASK - 
IAVVGEGR - 

LATGSDDNCAAFF
EGPPFK - 

SIQCLTVHR - 
VFASLPQVER - 

VINSVDIK - 
VYSILASTLKDEGK 

- 
YAPSGFYIASGDIS
GK - YEYQPFAGK 

- YTNLTLR 

N3 Coronin-1A  O89053 50971 6,05 C 13 35% ADQCYEDVR - 
ATPEPSGTPSSDT

VSR - 
CEPIAMTVPR - 
DAGPLLISLK - 
DGALICTSCR - 
EPVITLEGHTK - 

FMALICEASGGGA
FLVLPLGK - 
ILTTGFSR - 

KCEPIAMTVPR - 
KSDLFQEDLYPPT
AGPDPALTAEEWL

GGR - 
LDRLEETVQAK - 

NLNAIVQK - 
VSQTTWDSGFCA
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VNPK 

N4 Actin-related 
protein 3  

Q99JY9 47340 5,61 C 11 28% DITYFIQQLLR - 
DREVGIPPEQSLE

TAK - 
DYEEIGPSICR - 
EFSIDVGYER - 

HGIVEDWDLMER - 
HNPVFGVMS - 

KDYEEIGPSICR - 
LPACVVDCGTGYT
K - LSEELSGGR - 
NIVLSGGSTMFR - 
PIDVQVITHHMQR 

N5 Vimentin   P20152 53671 5,06 C 17 42% DNLAEDIMR - 
EEAESTLQSFR - 

EMEENFALEAANY
QDTIGR - 

ETNLESLPLVDTHS
K - FADLSEAANR - 

ILLAELEQLK - 
ISLPLPTFSSLNLR 
- LGDLYEEEMR - 

LLQDSVDFSLADAI
NTEFK - 

LQDEIQNMK - 
LQEEMLQR - 

MALDIEIATYR - 
NLQEAEEWYK - 
QDVDNASLAR - 
QVDQLTNDK - 

QVQSLTCEVDALK 
- VELQELNDR 

N6 40S ribomal 
protein   

P14206 32866 4,80 N+C 10 43% AIVAIENPADVSVIS
SR - 

DPEEIEKEEQAAA
EK - 

FAAATGATPIAGR - 
FLAAGTHLGGTNL

DFQMEQYIYK - 
FTPGTFTNQIQAAF

R - 
GAHSVGLMWWML
AR - KSDGIYIINLK 

- LLVVTDPR - 
SDGIYIINLK - 

YVDIAIPCNNK 

N7 N-myc-interactor   O35309 35217 4,98 C 10 27% CHSVAVSPCIER - 
CSLDQSFAAYFK - 

FQVHVDISK - 
KLEAELQSDAR - 

KNNGGGEVEVVK - 
LEAELQSDAR - 

NGGGEVESVDYD
R - 

NGGGEVESVDYD
RK - 

NNGGGEVEVVK - 
VITFVETGVVDK 

N7 40S ribomal 
protein    

P14206 32866 4,80 N+C 3 18% AIVAIENPADVSVIS
SR - 

FAAATGATPIAGR - 
FLAAGTHLGGTNL

DFQMEQYIYK 

N8 Serine-threonine 
kinase receptor-

associated protein   

Q9Z1Z2 38425 4,99 N+C 12 43% AATAAADFTAK - 
ALWCSDDK - 

EFLVAGGEDFK - 
FSPDGELYASGSE

DGTLR - 
GAVWGATLNK - 
IYDLNKPEAEPK - 
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LWDHATMTEVK - 
LWQTVVGK - 

SFEAPATINSLHPE
K - SIAFHVSLEPIK 

- 
VWDAVSGDELMTL

AHK - 
YDYNSGEELESYK 

N9 Nucleophosmin   Q61937 32542 4,62 N+C 6 29% DELHIVEAEAMNY
EGSPIK - 

GPSSVEDIK - 
MSVQPTVSLGGFE

ITPPVVLR - 
MTDQEAIQDLWQ

WR - 
TVSLGAGAKDELHI
VEAEAMNYEGSPI

K - 
VDNDENEHQLSLR 

N10 Proliferating cell 
nuclear antigen   

P17918 28768 4,66 N 9 45% AEDNADTLALVFE
APNQEK - 

ATPLSPTVTLSMD
VPLVVEYK - 

CAGNEDIITLR - 
DLSHIGDAVVISCA
K - FSGELGNGNIK 

- IADMGHLK - 
LIQGSILK - 

MPSGEFAR - 
NLAMGVNLTSMSK 

N11 40S ribomal 
protein    

P14206 32866 4,80 N+C 7 32% AIVAIENPADVSVIS
SR - 

DPEEIEKEEQAAA
EK - 

FAAATGATPIAGR - 
FTPGTFTNQIQAAF

R - 
GAHSVGLMWWML
AR - LLVVTDPR - 

YVDIAIPCNNK 

N12 Actin   P60710 41805 5,29 C 7 21% DLTDYLMK - 
DSYVGDEAQSK - 
EITALAPSTMK - 
GYSFTTTAER - 

LDLAGR - 
QEYDESGPSIVHR 

- 
VAPEEHPVLLTEA

PLNPK 

N12 Transcriptional 
activator protein 

Pur-beta   

O35295 33885 5,35 N 5 21% FFFDVGCNK - 
FGGAFCR - 

GGGGGGGGGPG
GFQPAPR - 

GGGGGGGGPGG
EQETQELASK - 
LTLSMAVAAEFR 

N13 Isocitrate 
dehydrogenase 
[NAD] subunit 

alpha  

Q9D6R2 39621 6,27 Or+Mb 11 33% APIQWEER - 
CSDFTEEICR - 

DMANPTALLLVMM
LR - 

HMGLFDHAAK - 
IAEFAFEYAR - 
IEAACFATIK - 
LITEEASKR - 

MSDGLFLQK - 
NVTAIQGPGGK - 

TPIAAGHPSMNLLL
R - TPYTDVNIVTIR 

N14 60S acidic ribomal 
protein    

P14869 34353 5,91 N+C 9 32% AGAIAPCEVTVPA
QNTGLGPEK - 

CFIVGADNVGSK - 
DMLLANK - 

GHLENNPALEK - 
GNVGFVFTK - 

GTIEILSDVQLIK - 
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IIQLLDDYPK - 
SNYFLK - 

TSFFQALGITTK 

N15 Tranldolase   Q93092 37371 6,57 C 9 28% ALAGCDFLTISPK - 
LFVLFGAEILK - 
LGGPQEEQIK - 

LSFDKDAMVAR - 
LSSTWEGIQAGK - 

MELDQLK - 
TIVMGASFR - 
VSTEVDAR - 

WLHNEDQMAVEK 

N16 Eukaryotic 
translation 

initiation factor 6   

O55135 26492 4,63 N+C 7 31% ASFENNCEVGCFA
K - DSLIDSLT - 
ETEEILADVLK - 

HGLLVPNNTTDQE
LQHIR - 

LNEAKPSTIATSMR 
- NSLPDSVQIR - 

PSTIATSMR 

N17 Proteasome 
subunit alpha 

type-5   

Q9Z2U1 26393 4,74 N+C 8 44% EELEEVIKDI - 
GPQLFHMDPSGTF

VQCDAR - 
GVNTFSPEGR - 

ITSPLMEPSSIEK - 
LFQVEYAIEAIK - 

LGSTAIGIQTSEGV
CLAVEK - 

PFGVALLFGGVDE
K - SSLIILK 

N18 Thioredoxin-
dependent 
peroxide 

reductase  

P20108 28109 7,15 Or+Mb 6 28% DYGVLLEGIALR - 
ELSLDDFK - 

GLFIIDPNGVVK - 
GTAVVNGEFK - 

HLSVNDLPVGR - 
KNGGLGHMNITLL

SDITK 

N19 Proteasome 
subunit alpha 

type-2   

P49722 25881 8,39 N+C 6 32% AANGVVLATEK - 
GYSFSLTTFSPSG

K - 
HIGLVYSGMGPDY

R - 
RYNEDLELEDAIHT

AILTLK - 
VASVMQEYTQSG

GVR - 
YNEDLELEDAIHTA

ILTLK 

 
 

Table 1: Identification and localization of spots highlighted in the two nuclear protein 

extracts: Total protein extract (Fig. 2a) Total nuclear protein extract (Fig. 2b) and NaCl 

protein extract (Fig. 2c). Three independent growth cultures of J774 cells have been 

performed. For each culture, total protein extract (5% of cells, Fig. 2a) and total nuclear 

protein extract (95% of cells) has been prepared (see materials and methods). NaCl nuclear 

protein extraction has been performed on the 90% of the total nuclear protein extract (see 

Materials and Methods) (Fig. 2c) and 10% has been put aside (Fig. 2b). The patterns of the 

different extracts have been compared after separation on 2-DE Gel. Mass spectrometry 

identification has been performed on spots systematically enriched in a nuclear extract 

compared to the other one. (1) Spot numbers circled on figure 2, (2) Protein function 

described by UniProtKB, (3) Accession number from UniProKB, (4) Protein localization 
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annotated in UniProtKB. When the localization is not annotated, the localization has been 

determined using the WoLF PSORT program (http://www.psort.org/) [43] Abbreviations: N = 

Nucleus, C = cytoplasm, Mt = Mitochondria, R = Ribosome, Mb = Membrane, G = Golgi, RE 

= Reticulum Endoplasmic, L = Lysosome, E = Endosome, V = Vacuole, NA = Nucleic Acid 

binding, U = Unknown, Or = organelles. 
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Table 2: Part A (pH gradient 4-8)                   

                        

Protein Identification Protein 
localization(

4) 

Mass spectrometry 
analysis 

Delta 2D analysis           

Spot 
Nb. 
(1) 

Access.n
b.(2) 

Protein 
function(3) 

Mass 
(Da) 

pI  % C(5) Nb 
pep
.(6) 

 
Masc

ot 
Score 

Mass 
spectro
metry 

Analysi
s 

J774 
(7) 

SD 
J774 
(8) 

XS52 
(7) 

SD 
XS52 

(8) 

 XS52 / 
J774(9) 

         

1 P23198 Chromobox 
protein 
homolog 3 
(HP1g) 

20842 5,13 N 22% 4 253 nLC-
MS/MS 

0,05207 36,0 0,025
08 

16,74
311 

0,48          

2 Q8K4M5 COMM 
domain-
containing 
protein 1 

20983 7,03 N+C 13% 3 225 nLC-
MS/MS 

0,02358 0,7 0,007
04 

39,44
65 

0,30          

3 Q80UW8 DNA-directed 
RNA 
polymerases 
I, II, and III 
subunit 
RPABC1 

24555 5,69 N 12% 3 185 nLC-
MS/MS 

0,04323 14,2 0,014
21 

12,34
891 

0,33          

4 Q91XN7 Tropomyosin 
alpha isoform 

28495 4,71 C 29% 9 590 nLC-
MS/MS 

0,1156 39,1 0,034
59 

49,08
996 

0,30          

5 Q63610 Tropomyosin 
alpha-3 chain 

28989 4,75 C 68% 28/
31 

394 MALDI-
MS 

0,36754 36,3 0,100
89 

58,64
702 

0,27          

6 P14206 40S 
ribosomal 
protein SA  

32817 4,80 R 24% 6 453 nLC-
MS/MS 

0,04939 16,0 0,011
59 

42,09
206 

0,23          

7 Q5M9K0 H2-Ke6 
protein 

26572 6,10 Mt 38% 7 555 nLC-
MS/MS 

0,12013 24,3 0,046
38 

39,73
895 

0,39          

 Q8BGT7 Survival of 
motor 
neuron-
related-
splicing 
factor 30 

26737 6,78 N 21% 4 241                

 Q8R081 Heterogeneo
us nuclear 
ribonucleopro
tein L  

60085 6,65 N+C 5% 3 207                

8 P03336 Gag 
polyprotein  

60521 8,12 Mb 20% 15/
22 

139 MALDI-
MS 

0,13565 10,6 0,015
95 

18,60
904 

0,12          

9 O88569 Heterogeneo
us nuclear 
ribonucleopro
teins A2/B1 

37380 8,97 N+C 28% 10/
13 

137 MALDI-
MS 

0,14731 25,4 0,021
04 

19,36
445 

0,14          

11 O88569 Heterogeneo
us nuclear 
ribonucleopro
teins A2/B1 

37380 8,97 N+C 61% 23/
26 

335 MALDI-
MS 

0,12645 25,3 0,050
3 

33,04
73 

0,40          

12 Q0VG47 Heterogeneo
us nuclear 
ribonucleopro
tein A3 

37063 8,46 N+C 29% 9 532 nLC-
MS/MS 

0,08082 23,3 0,017
74 

54,42
051 

0,22          

13 Q2HJC9 Polyglutamin
e-binding 
protein 1 

30328 5,93 N 20% 5 235 nLC-
MS/MS 

0,038 38,5 0,007
22 

38,28
51 

0,19          

 Q9R059 Four and a 
half LIM 
domains 3 

31773 5,80 N 16% 4 222                

14 Q9DB05 Alpha-soluble 
NSF 
attachment 
protein 

33168 5,30 Mb 33% 10 630 nLC-
MS/MS 

0,07845 32,8 0,035
56 

40,29
004 

0,45          

15 P14206 40S 
ribosomal 
protein SA 

32817 4,80 R 40% 11/
16 

166 MALDI-
MS 

0,15487 33,1 0,045
58 

23,75
385 

0,29          
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16 O35309 N-myc-
interactor 

35213 4,98 C 29% 10/
16 

124 MALDI-
MS 

0,05785 16,6 0,025
53 

26,82
393 

0,44          

17 O35295 Transcription
al activator 
protein Pur-
beta 

33881 5,35 N 33% 13/
19 

163 MALDI-
MS 

0,05116 29,1 0,009
18 

19,81
047 

0,18          

18 O35295 Transcription
al activator 
protein Pur-
beta 

33881 5,35 N 9% 3 101 nLC-
MS/MS 

0,06792 36,1 0,007
17 

45,98
016 

0,11          

 Q3UFS4 Coiled-coil 
domain-
containing 
protein 75 

31064 5,06 NA 3% 1 75                

19 Q69ZQ2 Pre-mRNA-
splicing 
factor ISY1 
homolog 

32969 5,15 N 18% 4 277 nLC-
MS/MS 

0,04984 22,0 0,024
82 

10,71
716 

0,50          

20 O35295 Transcription
al activator 
protein Pur-
beta 

33881 5,35 N 16% 6/2
5 

79 MALDI-
MS 

0,04663 30,4 0,020
9 

5,680
07 

0,45          

21 Q5XJV3 Eukaryotic 
translation 
initiation 
factor 3, 
subunit F 

37960 5,33 C 31% 9 592 nLC-
MS/MS 

0,07937 39,5 0,027
93 

29,93
987 

0,35          

 O88544 COP9 
signalosome 
complex 
subunit 4 

46256 5,57 N+C 17% 6 324                

22 Q9WUK4 Replication 
factor C 
subunit 2 

38700 6,04 N 42% 14 851 nLC-
MS/MS 

0,08617 15,4 0,039
23 

50,16
719 

0,46          

23 P10107 Annexin A1 38710 6,97 N+C 30% 9 641 nLC-
MS/MS 

0,03389 12,4 0,008
99 

57,56
362 

0,27          

24 Q99J62 Replication 
factor C 
subunit 4 

39842 6,29 N 10% 4 222 nLC-
MS/MS 

0,06822 8,5 0,014
86 

33,21
598 

0,22          

25 Q4VBE8 WD repeat-
containing 
protein 18 

47181 6,43 N+C 9% 4 213 nLC-
MS/MS 

0,01891 6,9 0,005
91 

55,43
778 

0,31          

26 Q8VDW0 ATP-
dependent 
RNA helicase 
DDX39 

49036 5,46 N 5% 3 126 nLC-
MS/MS 

0,03819 3,1 0,019
02 

13,60
159 

0,50          

27 P29758 Ornithine 
aminotransfe
rase, 
mitochondrial 

48324 6,19 Mt 22% 10/
19 

114 MALDI-
MS 

0,01807 33,6 0,004
69 

25,20
771 

0,26          

28 P20152 Vimentin 53655 5,06 C 56% 31/
31 

451 MALDI-
MS 

0,09493 35,0 0,020
1 

11,48
413 

0,21          

29 P20152 Vimentin 53655 5,06 C 59% 33/
34 

451 MALDI-
MS 

0,19493 46,4 0,054
44 

30,42
035 

0,28          

30 P20152 Vimentin 53655 5,06 C 45% 24/
24 

357 MALDI-
MS 

0,06948 30,5 0,017
08 

30,07
05 

0,25          

31 P14211 Calreticulin 47965 4,33 RE 20% 7 351 nLC-
MS/MS 

0,09759 17,4 0,037
09 

29,31
098 

0,38          

32 P20152 Vimentin 53655 5,06 C 47% 25/
25 

373 MALDI-
MS 

0,03104 20,1 0,014
92 

27,19
775 

0,48          

33 P29416 Beta-
hexosaminid
ase subunit 
alpha 

60560 6,09 L 15% 9/9 134 MALDI-
MS 

0,13776 7,6 0,046
2 

16,69
143 

0,34          

34 Q91YW3 DnaJ 
homolog 
subfamily C 
member 3 

57428 5,61 RE 21% 11 694 nLC-
MS/MS 

0,03322 35,9 0,009
33 

27,78
37 

0,28          

 O89053 Coronin-1A 50957 6,05 Mb + C 5% 2 109                

35 Q08943 FACT 
complex 
subunit 
SSRP1 

80810 6,33 N 16% 12 755 nLC-
MS/MS 

0,16 24,2 0,06 34,9 0,39          
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36 P60122 RuvB-like 1 50182 6,02 N 18% 8/1
9 

71 MALDI-
MS 

0,09064 11,6 0,030
75 

11,54
538 

0,34          

37 O89053 Coronin-1A 50957 6,05 Mb + C 48% 23/
36 

284 MALDI-
MS 

0,20549 15,1 0,092
17 

1,637
44 

0,45          

38 P80314 T-complex 
protein 1 
subunit beta 

57441 5,97 C 19% 10/
32 

78 MALDI-
MS 

0,06834 10,2 0,028
22 

11,53
644 

0,41          

 O89053 Coronin-1A 50957 6,05 Mb + C 19% 9/3
2 

62                

39 Q3MHE2 U4/U6 small 
nuclear 
ribonucleopro
tein Prp4 

58362 7,06 N 9% 4 259 nLC-
MS/MS 

0,02762 18,5 0,006
24 

48,09
453 

0,23          

40 Q99J39 Malonyl-CoA 
decarboxylas
e 

54701 9,13 P+C+Mt 2% 1 72 nLC-
MS/MS 

0,04761 60,5 0,004
75 

29,40
514 

0,10          

41 P48678 Lamin-A/C 74193 6,54 N 32% 22/
40 

170 MALDI-
MS 

0,03365 1,3 0,013
03 

8,381
42 

0,39          

 Q9EQP2 EH domain-
containing 
protein 4 

61441 6,33 Mb 33% 20/
40 

159                

42 Q9EQP2 EH domain-
containing 
protein 4 

61441 6,33 Mb 33% 19/
29 

183 MALDI-
MS 

0,11765 5,6 0,044
35 

17,89
611 

0,38          

 P48678 Lamin-A/C 74193 6,54 N 14% 10/
29 

70                

43 O08599 Syntaxin-
binding 
protein 1 

67526 6,49 Mt 8% 4 281 nLC-
MS/MS 

0,02407 19,3 0,009
3 

13,27
276 

0,39          

 Q64324 Syntaxin-
binding 
protein 2 

66315 6,28 Mt 3% 2 110                

44 P26041 Moesin 67735 6,22 Mb + C 49% 40/
53 

400 MALDI-
MS 

0,07345 9,5 0,033
4 

5,513
94 

0,45          

45 Q8BH57 WD repeat-
containing 
protein 48 

75959 6,73 L+C+N 9% 6 335 nLC-
MS/MS 

0,02961 15,5 0,009
6 

41,26
338 

0,32          

46 P49717 DNA 
replication 
licensing 
factor MCM4 

96676 6,77 N 7% 6 298 nLC-
MS/MS 

0,10631 19,4 0,043
24 

26,66
94 

0,41          

 P39054 Dynamin-2 98084 7,02 Mb + C 4% 4 154                

47 Q8VE90 Transducin 
(Beta)-like 3 

88324 6,28 N 6% 5 291 nLC-
MS/MS 

0,02406 21,7 0,007
46 

10,33
492 

0,31          

 P49717 DNA 
replication 
licensing 
factor MCM4 

96676 6,77 N 5% 6 272                

48 P49717 DNA 
replication 
licensing 
factor MCM4  

96676 6,77 N 6% 6 321 nLC-
MS/MS 

0,01713 13,9 0,005
13 

11,99
744 

0,30          

 Q9DBR0 A-kinase 
anchor 
protein 8 

76247 5,04 N 3% 2 109                

49 P08228 Superoxide 
dismutase 
[Cu-Zn] 

15933 6,02 C 24% 3 221 nLC-
MS/MS 

0,01 26,3 0,02 26,1 3,40          

50 P63166 Small 
ubiquitin-
related 
modifier 1 

11550 5,35 N+C 27% 3 156 nLC-
MS/MS 

0,03984 35,4 0,093
51 

8,473
51 

2,35          

51 Q91WV0 Protein Dr1 19419 4,69 N 16% 3 112 nLC-
MS/MS 

0,01164 40,3 0,025
81 

35,18
678 

2,22          

52 Q63829 COMM 
domain-
containing 
protein 3 

22023 5,36 N+C 22% 4 190 nLC-
MS/MS 

0,01346 26,1 0,031
07 

28,08
899 

2,31          

53 Q9CPP0 Nucleoplasmi
n-3 

19011 4,71 N 20% 2 173 nLC-
MS/MS 

0,02891 9,0 0,072
69 

11,80
719 

2,51          

54 Q9CQ80 Vacuolar 
protein-
sorting-

20735 5,97 Mb+N+C 27% 5 246 nLC-
MS/MS 

0,00402 79,5 0,020
81 

34,03
679 

5,17          
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associated 
protein 25 

55 Q6P8I4 PEST 
proteolytic 
signal-
containing 
nuclear 
protein 

18951 6,86 N 27% 4 196 nLC-
MS/MS 

0,01194 53,5 0,039
27 

13,39
824 

3,29          

56 P67871 Casein 
kinase II 
subunit beta 

24926 5,33 C 16% 5 272 nLC-
MS/MS 

0,02585 37,0 0,055
21 

7,272
23 

2,14          

57 Q9CQE8 UPF0568 
protein 

28135 6,40 N+C 42% 13/
15 

210 MALDI-
MS 

0,04238 9,3 0,107
82 

7,479
32 

2,54          

58(10
) 

P30681 High mobility 
group protein 
B2 

24147 6,88 N 46% 13/
25 

152 MALDI-
MS 

0,02338 10,9 0,076
12 

10,18
283 

3,26          

 Q9CXW3 Calcyclin-
binding 
protein 

26494 7,63 N+C 22% 6/2
5 

69                

59(10
) 

P30681 High mobility 
group protein 
B2 

24147 6,88 N 55% 19/
36 

203 MALDI-
MS 

              

60 Q9WUK2 Eukaryotic 
translation 
initiation 
factor 4H 

27324 6,67 C 61% 19/
43 

205 MALDI-
MS 

0,01255 7,5 0,047
59 

21,74
888 

3,79          

61 P63158 High mobility 
group protein 
B1 

24878 5,62 N 43% 13/
34 

127 MALDI-
MS 

0,00551 43,5 0,022
1 

15,99
995 

4,01          

62 P63158 High mobility 
group protein 
B1 

24878 5,62 N 39% 12/
19 

158 MALDI-
MS 

0,01263 82,0 0,036
18 

32,35
689 

2,86          

63 P63158 High mobility 
group protein 
B1 

24878 5,62 N 19% 4 189 nLC-
MS/MS 

0,01683 28,3 0,035
65 

15,00
733 

2,12          

 Q8K0H5 Transcription 
initiation 
factor TFIID 
subunit 10 

21827 6,13 N 11% 1 153                

64 P97371 Proteasome 
activator 
complex 
subunit 1 

28655 5,73 C 16% 3 230 nLC-
MS/MS 

0,00335 34,8 0,018
97 

31,67
332 

5,66          

65 Q61166 Microtubule-
associated 
protein 
RP/EB family 
member 1 

29997 5,12 C 30% 8 491 nLC-
MS/MS 

0,01248 44,1 0,037
92 

10,32
363 

3,04          

66 Q61166 Microtubule-
associated 
protein 
RP/EB family 
member 1 

29997 5,12 C 58% 16/
30 

206 MALDI-
MS 

0,0932 41,0 0,229
36 

7,282
92 

2,46          

67 Q61166 Microtubule-
associated 
protein 
RP/EB family 
member 1 

29997 5,12 C 58% 17/
29 

221 MALDI-
MS 

0,06342 30,5 0,142
02 

10,19
719 

2,24          

68 Q9CS42 Ribose-
phosphate 
pyrophospho
kinase 2 

34764 6,15 N 20% 6 424 nLC-
MS/MS 

0,02325 49,1 0,048
43 

18,54
855 

2,08          

 Q99N96 39S 
ribosomal 
protein L1, 
mitochondrial 

34977 7,70 R 16% 5 307                

69 Q9JIY5 Serine 
protease 
HTRA2, 
mitochondrial 

49318 9,60 Mt 22% 10/
12 

139 MALDI-
MS 

0,04221 30,4 0,086
13 

4,514
88 

2,04          

70 Q5U4D9 THO 
complex 
subunit 6 
homolog 

37291 6,67 C 20% 8/1
6 

105 MALDI-
MS 

0,01763 58,7 0,044
18 

5,641
07 

2,51          
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71 Q1JQB2 Mitotic 
checkpoint 
protein BUB3 

36931 6,36 N 46% 16/
20 

237 MALDI-
MS 

0,03127 4,8 0,066
88 

11,34
8 

2,14          

72 P47754 F-actin-
capping 
protein 
subunit 
alpha-2 

32947 5,57 Mb + C 25% 6 443 nLC-
MS/MS 

0,02714 38,9 0,077
93 

8,672
43 

2,87          

 O35639 Annexin A3 36348 5,33 Mb 20% 5 303                

73 P62137 Serine/threon
ine-protein 
phosphatase 
PP1-alpha 
catalytic 
subunit 

37516 5,94 N+C 33% 11/
17 

140 MALDI-
MS 

0,00768 117,0 0,029
58 

40,26
799 

3,85          

74 P57776 Elongation 
factor 1-delta 

31274 4,91 C 44% 14/
24 

166 MALDI-
MS 

0,02763 31,6 0,055
88 

22,49
82 

2,02          

 Q61937 Nucleophos
min 

32540 4,62 N 29% 8/2
4 

76                

75 P57776 Elongation 
factor 1-delta 

31274 4,91 C 28% 7 517 nLC-
MS/MS 

0,00655 66,1 0,040
34 

11,95
92 

6,16          

 Q61937 Nucleophos
min 

32540 4,62 N 19% 5 282                

76 Q61937 Nucleophos
min 

32540 4,62 N 26% 6 361 nLC-
MS/MS 

0,21204 41,7 0,600
76 

1,793
8 

2,83          

77 Q8BK64 Activator of 
90 kDa heat 
shock protein 
ATPase 
homolog 1 

38093 5,41 RE+C 21% 8 376 nLC-
MS/MS 

0,00687 19,7 0,017
75 

27,50
911 

2,58          

 Q9D6J3 Coiled-coil 
domain-
containing 
protein 94 

35966 5,84 N+C 11% 2 112                

78 Q9D0R9 WD repeat-
containing 
protein 89 

42443 5,36 N+C 5% 2 119 nLC-
MS/MS 

0,00546 21,6 0,019
48 

29,94
214 

3,57          

79 Q4FJP2 nmi protein 35326 5,08 N 32% 10/
10 

161 MALDI-
MS 

0,00909 36,7 0,036
4 

5,859
05 

4,00          

80 O54984 Arsenical 
pump-driving 
ATPase 

38797 4,81 N+C+RE 11% 4 242 nLC-
MS/MS 

0,01755 45,7 0,068
36 

5,339
09 

3,90          

81 Q9CX97 WD repeat-
containing 
protein 55 

42584 4,74 N 18% 8/9 120 MALDI-
MS 

0,0088 65,5 0,039
61 

18,89
798 

4,50          

82 Q9CX97 WD repeat-
containing 
protein 55 

42584 4,74 N 8% 4 199 nLC-
MS/MS 

0,01877 25,0 0,054
43 

9,285
51 

2,90          

83 Q99JX3 Golgi 
reassembly-
stacking 
protein 2 

47009 4,68 G 7% 3 198 nLC-
MS/MS 

0,01342 50,5 0,057
93 

7,055
97 

4,32          

84 Q0VGB7 Serine/threon
ine-protein 
phosphatase 
4 regulatory 
subunit 2 

46450 4,52 N+C 22% 7 503 nLC-
MS/MS 

0,00733 106,3 0,022
67 

23,41
78 

3,09          

 Q9CXG3 Peptidyl-
prolyl cis-
trans 
isomerase-
like 4 

57195 5,79 N 5% 2 93                

85 Q9D8N0 Elongation 
factor 1-
gamma 

50029 6,31 C 31% 13/
22 

151 MALDI-
MS 

0,0499 30,6 0,108
44 

8,057
57 

2,17          

 P63037 DnaJ 
homolog 
subfamily A 
member 1 

44839 6,65 Mb 13% 7/2
2 

49                

86 P17182 Alpha-
enolase 

47111 6,37 Mb + C 38% 14/
21 

177 MALDI-
MS 

0,01015 37,2 0,042
6 

6,178
12 

4,20          

 P50580 Proliferation-
associated 
protein 2G4 

43671 6,41 N+C 12% 5/2
1 

57                
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87 Q61RT4 Eukaryotic 
translation 
initiation 
factor 3, 
subunit F 

37857 5,33 C 27% 9/1
5 

124 MALDI-
MS 

0,03585 32,5 0,079
36 

12,47
152 

2,21          

 Q8CCS6 Polyadenylat
e-binding 
protein 2 

32277 5,13 N+C 16% 4/1
5 

59                

88 P97855 Ras GTPase-
activating 
protein-
binding 
protein 1 

51797 5,41 Mb+N+C 44% 16/
21 

214 MALDI-
MS 

0,00799 47,3 0,029
27 

5,515
81 

3,66          

89 P97855 Ras GTPase-
activating 
protein-
binding 
protein 1 

51797 5,41 Mb+N+C 18% 7/1
1 

87 MALDI-
MS 

0,00312 39,3 0,020
23 

12,40
136 

6,49          

90 Q9WUA2 Phenylalanyl-
tRNA 
synthetase 
beta chain 

65628 6,69 C 13% 8 501 nLC-
MS/MS 

0,03421 6,9 0,087
74 

7,380
61 

2,56          

91 Q9Z110 Delta-1-
pyrroline-5-
carboxylate 
synthetase 

87242 7,18 Mb+Mt 14% 11 718 nLC-
MS/MS 

0,01546 18,6 0,031
19 

11,49
563 

2,02          

92 Q8BIQ5 Cleavage 
stimulation 
factor 64 kDa 
subunit 

61302 6,36 N 33% 16/
17 

240 MALDI-
MS 

0,02326 12,2 0,047
88 

8,673
93 

2,06          

93 Q8BIQ5 Cleavage 
stimulation 
factor 64 kDa 
subunit 

61302 6,36 N 38% 21/
30 

261 MALDI-
MS 

0,00858 54,5 0,041
78 

11,48
926 

4,87          

94 Q6NVF9 Cleavage 
and 
polyadenylati
on specificity 
factor subunit 
6 

59116 6,66 N 11% 6 335 nLC-
MS/MS 

0,01812 42,4 0,047
14 

18,10
188 

2,60          

95 P11983 T-complex 
protein 1 
subunit alpha 
B 

60411 5,82 C 22% 12 699 nLC-
MS/MS 

0,01426 25,8 0,029
26 

10,16
248 

2,05          

96 P97855 Ras GTPase-
activating 
protein-
binding 
protein 1 

51797 5,41 N+C 50% 19/
28 

238 MALDI-
MS 

0,02333 38,7 0,057
47 

14,52
695 

2,46          

97 P61979 Heterogeneo
us nuclear 
ribonucleopro
tein K 

50944 5,39 N+C 30% 14/
18 

177 MALDI-
MS 

0,07114 23,7 0,154
47 

4,494
23 

2,17          

98 Q9WVE8 Protein 
kinase C and 
casein kinase 
substrate in 
neurons 
protein 2 

55798 5,10 C 27% 12 728 nLC-
MS/MS 

0,0137 44,3 0,051
61 

3,504
28 

3,77          

99 Q9WVE8 Protein 
kinase C and 
casein kinase 
substrate in 
neurons 
protein 2 

55798 5,10 C 17% 9 569 nLC-
MS/MS 

0,01062 39,3 0,026
32 

26,51
316 

2,48          

100 Q60960 Importin 
subunit 
alpha-1 

60144 4,93 N+C 14% 7 443 nLC-
MS/MS 

0,0084 35,3 0,039
4 

18,90
786 

4,69          

 Q9WVE8 Protein 
kinase C and 
casein kinase 
substrate in 
neurons 
protein 2 

55798 5,10 C 10% 5 302                
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101 Q8BMP6 Golgi 
resident 
protein 
GCP60 

60144 5,07 G 20% 9 628 nLC-
MS/MS 

0,0194 38,3 0,042
61 

11,35
742 

2,20          

                        

                        

                        

Part B (pH gradient 3.7-10.5)               

Protein Identification Protein 
localization 

(4) 

Mass spectrometry analysis  Delta 2D analysis          

Spot 
nb. 
(1) 

Access.
nb. 
(2) 

Protein 
function(3) 

Mass 
(Da) 

pI  % C 
(5) 

Nb  
pep. 
(6) 

 
Masc

ot 
Score 

Mass spec 
Analysis 

J774 
(7) 

SD 
J774 
(8) 

XS52 
(7) 

SD 
XS52 

(8) 

 XS52 / 
J774 
(9) 

         

102 Q8BQ03 Putative 
uncharacterize
d protein (DNA 
replication 
licensing 
factor MCM5) 

82296 8,65 N 11% 9 483 nLC-MS/MS 0,03 58,0 0,01 70,2 0,35          

103 P49718 DNA 
replication 
licensing 
factor MCM5 

82290 8,70 N 8% 6/7 61 MALDI-MS 0,03 54,3 0,01 81,2 0,20          

104 P49718 DNA 
replication 
licensing 
factor MCM5 

82290 8,70 N 16% 15/20 129 MALDI-MS 0,05 73,3 0,01 47,5 0,21          

105 P10126 Elongation 
factor 1-alpha 
1 

50082 9,10 C 5% 3 158 nLC-MS/MS 0,09 14,8 0,04 63,5 0,41          

106 P09405 Nucleolin  76677 4,69 N+C 10% 9/17 83 MALDI-MS 0,24 23,9 0,04 30,0 0,15          

107 P20152 Vimentin 53655 5,06 C 11% 6 368 nLC-MS/MS 0,08 22,1 0,02 32,0 0,21          

108 P20152 Vimentin 53655 5,06 C 48% 26  MALDI-MS 0,12 29,0 0,02 69,9 0,13          

109 P20152 Vimentin 53655 5,06 C 52% 28  MALDI-MS 0,17 50,7 0,02 40,9 0,11          

110 O35309 N-myc-
interactor 

35213 4,98 C 26% 8 398 nLC-MS/MS 0,17 8,5 0,04 28,4 0,24          

 Q9Z204 Heterogeneou
s nuclear 
ribonucleoprot
eins C1/C2 

34364 4,92 N 14% 4 267                

111 Q99L47 Hsc70-
interacting 
protein 

41629 5,19 C 4% 2 80 nLC-MS/MS 0,03 58,8 0,00 70,2 0,13          

112 Q69ZQ2 Pre-mRNA-
splicing factor 
ISY1 homolog 

32969 5,15 N 26% 7 337 nLC-MS/MS 0,04 33,7 0,02 22,4 0,46          

113 O35295 Transcriptional 
activator 
protein Pur-
beta 

33881 5,35 N 24% 8/13 122 MALDI-MS 0,06 6,4 0,02 22,1 0,34          

114 Q9DCH4 Eukaryotic 
translation 
initiation factor 
3 subunit F 

37976 5,33 C 28% 9 554 nLC-MS/MS 0,03 44,1 0,01 16,6 0,28          

115 Q9WUK
4 

Replication 
factor C 
subunit 2 

38700 6,04 N 38% 12 768 nLC-MS/MS 0,07 12,9 0,03 27,2 0,43          
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116 O88544 COP9 
signalosome 
complex 
subunit 4 

46256 5,57 N+C 7% 3 136 nLC-MS/MS 0,18 26,0 0,09 13,8 0,50          

117 Q99J62 Replication 
factor C 
subunit 4 

39842 6,29 N 20% 7 412 nLC-MS/MS 0,03 25,3 0,01 43,1 0,24          

118 O88569 Heterogeneou
s nuclear 
ribonucleoprot
eins A2/B1 

37380 8,97 N+C 41% 15  MALDI-MS 0,11 21,4 0,02 12,0 0,19          

119 P68040 Guanine 
nucleotide-
binding protein 
subunit beta-
2-like 1 

35055 7,60 N+C+Mb 21% 7  MALDI-MS 0,10 22,4 0,02 33,3 0,17          

120 P48678 Lamin-A/C 74193 6,54 N 11% 7 447 nLC-MS/MS 0,04 19,8 0,01 21,0 0,35          

121 O88569 Heterogeneou
s nuclear 
ribonucleoprot
eins A2/B1 

37380 8,97 N+C 16% 6/8 80 MALDI-MS 0,02 53,1 0,00 121,4 0,02          

122 Q9D1J3 Nuclear 
protein Hcc-1 

23518 6,29 N 20% 5 261 nLC-MS/MS 0,05 9,7 0,02 12,2 0,38          

123 P46737 Lys-63-
specific 
deubiquitinase 
BRCC36 

33319 5,54 N 9% 3 171 nLC-MS/MS 0,03 22,1 0,01 19,2 0,44          

124 P14206 40S ribosomal 
protein SA 

32817 4,80 R 33% 9 571 nLC-MS/MS 0,07 36,0 0,04 15,9 0,49          

125 Q9DB05 Alpha-soluble 
NSF 
attachment 
protein 

33168 5,30 Mb 12% 3 220 MALDI-MS 0,07 35,0 0,03 32,6 0,46          

126 P14206 40S ribosomal 
protein SA 

32817 4,80 R 30% 8  MALDI-MS 0,18 32,6 0,06 25,8 0,33          

127 P23198 Chromobox 
protein 
homolog 3 
(HP1g) 

20842 5,13 N 15% 2 166 nLC-MS/MS 0,14 6,4 0,07 14,7 0,50          

128 Q9Y5S9 RNA-binding 
protein 8A 

19877 5,50 N+C 20% 3 153 nLC-MS/MS 0,16 17,4 0,06 26,7 0,34          

129 Q9CWZ
3 

RNA-binding 
protein 8A 

19877 5,50 N+C 21% 3 187 nLC-MS/MS 0,10 17,3 0,02 34,0 0,17          

130 Q7TMY4 THO complex 
subunit 7 
homolog 

23700 5,46 N+C 26% 6  MALDI-MS 0,15 14,6 0,05 44,8 0,34          

131 P20108 Thioredoxin-
dependent 
peroxide 
reductase, 
mitochondrial 

28109 7,15 Mt 8% 2 101 nLC-MS/MS 0,06 15,5 0,02 45,7 0,33          

132 P17742 Peptidyl-prolyl 
cis-trans 
isomerase A 

17960 7,74 C 17% 3 170 nLC-MS/MS 0,08 36,4 0,17 32,2 2,19          

133 Q8BG13 Putative 
uncharacterize
d protein 
(Putative 
RNA-binding 
protein 3) 

16751 7,98 N+C 40% 8/14 116 MALDI-MS 0,09 17,2 0,18 14,3 2,05          

134 P17742 Peptidyl-prolyl 
cis-trans 
isomerase A 

17960 7,74 C 21% 4 196 nLC-MS/MS 0,07 17,3 0,16 19,4 2,21          

135 P63166 Small 
ubiquitin-
related 
modifier 1 

11550 5,35 N+C 41% 6/8 88 MALDI-MS 0,03 21,4 0,09 22,5 2,97          

136 P63166 Small 
ubiquitin-
related 
modifier 1 

11550 5,35 N+C 49% 7/28 67 MALDI-MS 0,06 34,9 0,16 24,2 2,56          
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137 Q61686 Chromobox 
protein 
homolog 5 
(HP1a) 

22172 5,71 N 16% 3 190 nLC-MS/MS 0,03 6,1 0,07 15,3 2,11          

138 P67871 Casein kinase 
II subunit beta 

24926 5,33 N+C 11% 4 201 nLC-MS/MS 0,01 48,1 0,04 21,5 3,49          

139 P97372 Proteasome 
activator 
complex 
subunit 2 

27040 5,54 N+C 31% 11  MALDI-MS 0,04 25,2 0,08 10,6 2,02          

140 Q9R1P4 Proteasome 
subunit alpha 
type-1 

29528 6,00 N+C 22% 6 301 nLC-MS/MS 0,77 8,6 0,17 11,7 2,18          

 Q9CX56 26S 
proteasome 
non-ATPase 
regulatory 
subunit 8 

30007 6,03 N+C 9% 3 138                

 Q8BTW
3 

Exosome 
complex 
exonuclease 
MTR3 

28353 5,87 N+C 11% 2 123                

141 Q9Z1Q5 Chloride 
intracellular 
channel 
protein 1 

26996 5,09 N+C 24% 6 337 nLC-MS/MS 0,10 64,3 0,26 15,8 2,52          

142 Q61166 Microtubule-
associated 
protein RP/EB 
family member 
1 

29997 5,12 C 58% 16  MALDI-MS 0,10 35,8 0,28 3,5 2,77          

143 Q61166 Microtubule-
associated 
protein RP/EB 
family member 
1 

29997 5,12 C 55% 15/24 193 MALDI-MS 0,08 27,3 0,18 6,6 2,29          

144 Q61166 Microtubule-
associated 
protein RP/EB 
family member 
1 

29997 5,12 C 29% 8/11 117 MALDI-MS 0,04 44,0 0,11 8,6 2,54          

145 Q61937 Nucleophosmi
n 

32540 4,62 N 43% 12/18 174 MALDI-MS 0,04 61,4 0,28 5,7 7,51          

146 Q8BFQ4 WD repeat-
containing 
protein 82 

35056 7,59 Mb+C 6% 3 118 nLC-MS/MS 0,01 77,9 0,03 49,6 2,41          

 P68040 Guanine 
nucleotide-
binding protein 
subunit beta-
2-like 1 

35055 7,60 R 6% 2 110                

147 P60335 Poly(rC)-
binding protein 
1 

37474 6,66 N+C 18% 6/6 101 MALDI-MS 0,05 63,4 0,10 12,0 2,10          

148 Q60737 Casein kinase 
II subunit 
alpha 

45133 7,79 N+C 8% 4 204 nLC-MS/MS 0,03 6,4 0,09 4,3 2,65          

149 Q8BG05 Heterogeneou
s nuclear 
ribonucleoprot
ein A3 

39628 9,10 N+C 29% 11  MALDI-MS 0,09 40,9 0,20 15,5 2,16          

150 Q8QZT1 Acetyl-CoA 
acetyltransfera
se 

44787 8,71 Mt 29% 13  MALDI-MS 0,03 23,9 0,10 22,7 2,94          

151 O55131 Septin-7 50518 8,73 C 17% 9  MALDI-MS 0,08 45,5 0,16 16,5 2,12          

 P10126 Elongation 
factor 1-alpha 
1 

50082 9,10 C 13% 7                 

152 Q9CY58 Plasminogen 
activator 
inhibitor 1 
RNA-binding 
protein 

44687 8,60 N+C 55% 24  MALDI-MS 0,07 15,2 0,14 4,9 2,03          
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153 Q9CY58 Plasminogen 
activator 
inhibitor 1 
RNA-binding 
protein 

44687 8,60 N+C 35% 19/26 211 MALDI-MS 0,04 26,2 0,08 16,7 2,22          

154 Q9CY58 Plasminogen 
activator 
inhibitor 1 
RNA-binding 
protein 

44687 8,60 N+C 49% 24/30 280 MALDI-MS 0,05 70,0 0,13 17,7 2,77          

155 Q99K48 Non-POU 
domain-
containing 
octamer-
binding protein 

54506 9,01 N 19% 11/28 49 MALDI-MS 0,04 30,4 0,09 17,9 2,25          

 Q5RJV5 Polypyrimidine 
tract binding 
protein 1 

59227 9,28 N 14% 8/28 68                

156 Q99K48 Non-POU 
domain-
containing 
octamer-
binding protein 

54506 9,01 N 60% 40/50 348 MALDI-MS 0,03 25,0 0,11 23,2 3,77          

157 Q9D0E1 Heterogeneou
s nuclear 
ribonucleoprot
ein M 

77597 8,80 N 59% 58  MALDI-MS 0,02 10,6 0,07 20,9 3,90          

158 Q9D0E1 Heterogeneou
s nuclear 
ribonucleoprot
ein M 

77597 8,80 N 54% 52  MALDI-MS 0,03 31,5 0,09 22,7 2,75          

159 Q9D0E1 Heterogeneou
s nuclear 
ribonucleoprot
ein M 

77597 8,80 N 30% 22 1281 nLC-MS/MS 0,03 43,3 0,07 20,4 2,82          

160 Q9CW4
6 

Ribonucleopro
tein PTB-
binding 1 

79333 8,91 N+C 14% 12  MALDI-MS 0,01 73,5 0,02 32,2 2,96          

161 Q9CW4
6 

Ribonucleopro
tein PTB-
binding 1 

79333 8,91 N+C 16% 13  MALDI-MS 0,00 67,5 0,05 40,8 9,78          

162 Q9CW4
6 

Ribonucleopro
tein PTB-
binding 1 

79333 8,91 N+C 32% 21  MALDI-MS 0,00 133,5 0,06 47,7 14,53          

163 Q9CW4
6 

Ribonucleopro
tein PTB-
binding 1 

79333 8,91 N+C 13% 11  MALDI-MS 0,01 38,5 0,04 27,4 3,77          

164 Q501J6 Probable ATP-
dependent 
RNA helicase 
DDX17 

72354 8,82 N 20% 13/17 134 MALDI-MS 0,02 12,7 0,06 33,1 3,03          

165 Q61990 Poly(rC)-
binding protein 
2 

38197 6,33 N 13% 4 246 nLC-MS/MS 0,01 31,5 0,02 4,9 2,14          

166 Q9Z1D1 Eukaryotic 
translation 
initiation factor 
3 subunit G 

35616 5,69 N+C 19% 9/10 110 MALDI-MS 0,01 11,3 0,03 18,9 2,13          

167 P17182 Alpha-enolase 47111 6,37 Mb+C 18% 8/18 86 MALDI-MS 0,01 26,0 0,03 5,2 3,12          

168 Q922R8 Protein 
disulfide-
isomerase A6 

48070 5,00 Mb+RE 16% 6/12 68 MALDI-MS 0,03 36,2 0,09 8,4 3,24          

 Q60973 Histone-
binding protein 
RBBP7 

47760 4,89 N 13% 6/12 67                

169 Q922R8 Protein 
disulfide-
isomerase A6 

48070 5,00 Mb+RE 17% 7  MALDI-MS 0,03 21,1 0,11 6,3 3,32          

170 Q99L47 Hsc70-
interacting 
protein 

41629 5,19 C 38% 16  MALDI-MS 0,10 14,8 0,21 3,6 2,03          

 Q922R8 Protein 
disulfide-
isomerase A6 

48070 5,00 Mb+RE 30% 12                 
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171 P54775 26S protease 
regulatory 
subunit 6B 

47252 5,18 N+C 8% 4 226 nLC-MS/MS 0,02 38,2 0,05 13,0 2,72          

172 P54775 26S protease 
regulatory 
subunit 6B 

47252 5,18 N+C 20% 10  MALDI-MS 0,03 14,9 0,07 5,1 2,10          

 Q9Z2X1 Heterogeneou
s nuclear 
ribonucleoprot
ein F 

45701 5,31 N 11% 5                 

173 P61979 Heterogeneou
s nuclear 
ribonucleoprot
ein K 

50944 5,39 N 24% 11  MALDI-MS 0,01 55,8 0,07 7,9 6,00          

174 P61979 Heterogeneou
s nuclear 
ribonucleoprot
ein K 

50944 5,39 N 33% 16  MALDI-MS 0,05 11,8 0,16 9,5 3,00          

175 Q61233 Plastin-2 70105 5,20 C 10% 6 367 nLC-MS/MS 0,01 27,6 0,03 20,3 3,62          

176 Q61233 Plastin-2 70105 5,20 C 13% 8  MALDI-MS 0,02 20,6 0,04 20,5 2,18          

177 Q61233 Plastin-2 70105 5,20 C 13% 8  MALDI-MS 0,01 31,5 0,03 21,3 3,47          

178 P61979 Heterogeneou
s nuclear 
ribonucleoprot
ein K 

50944 5,39 N+C 26% 12  MALDI-MS 0,02 29,6 0,07 4,2 3,65          

 Q63850 Nuclear pore 
glycoprotein 
p62 

53222 5,21 N 19% 10                 

179 P97855 Ras GTPase-
activating 
protein-binding 
protein 1 

51797 5,41 N+C 9% 4 211 nLC-MS/MS 0,00 173,2 0,01 33,8 12,36          

 P61979 Heterogeneou
s nuclear 
ribonucleoprot
ein K 

50944 5,39 N 7% 3 199                

180 P97855 Ras GTPase-
activating 
protein-binding 
protein 1 

51797 5,41 N+C 32% 13  MALDI-MS 0,01 32,4 0,04 6,1 3,45          

181 P97855 Ras GTPase-
activating 
protein-binding 
protein 1 

51797 5,41 N+C 47% 20  MALDI-MS 0,01 45,6 0,03 12,9 4,74          

182 Q6NVF9 Cleavage and 
polyadenylatio
n specificity 
factor subunit 
6 

59116 6,66 N 18% 11  MALDI-MS 0,02 31,1 0,04 6,9 2,08          

183 Q6NVF9 Cleavage and 
polyadenylatio
n specificity 
factor subunit 
6 

59116 6,66 N 15% 9  MALDI-MS 0,02 36,0 0,04 10,2 2,48          

184 Q6NVF9 Cleavage and 
polyadenylatio
n specificity 
factor subunit 
6 

59116 6,66 N 16% 10  MALDI-MS 0,01 29,5 0,03 15,5 3,09          

185 Q8BIQ5 Cleavage 
stimulation 
factor 64 kDa 
subunit 

61302 6,36 N 17% 11  MALDI-MS 0,00 55,1 0,04 7,5 10,27          

186 Q8BIQ5 Cleavage 
stimulation 
factor 64 kDa 
subunit 

61302 6,36 N 18% 13  MALDI-MS 0,02 59,8 0,04 8,8 2,72          

189 Q8BIQ5 Cleavage 
stimulation 
factor 64 kDa 
subunit 

61302 6,36 N 12% 8  MALDI-MS 0,02 28,7 0,04 14,9 2,25          
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190 Q8CCF0 U4/U6 small 
nuclear 
ribonucleoprot
ein Prp31 

55367 5,55 N 13% 6  MALDI-MS 0,04 10,5 0,07 9,0 2,02          

191 Q91WJ8 Far upstream 
element-
binding protein 
1 

68497 7,74 N 8% 5 267 nLC-MS/MS 0,00 106,9 0,01 58,6 21,26          

192 P52480 Pyruvate 
kinase 
isozymes 
M1/M2 

57808 7,18 N+C 11% 8  MALDI-MS 0,03 53,5 0,07 7,2 2,27          

193 P50580 Proliferation-
associated 
protein 2G4 

43671 6,41 N+C 10% 4 241 nLC-MS/MS 0,00 62,9 0,02 24,5 4,13          

                        

                        

Table 2: Characterization of spots highlighted on the comparison of NaCl nuclear 

protein extracts from J774 and XS52 cell lines (Fig. 4) 

(1) Spot number circled on the Figure 4a (Part A) and Figure 4b (Part B), (2) Accession 

number from UniProKB, (3) Protein function described by UniProtKB, (4) Protein localization 

annotated in UniProtKB. When the localization is not annotated, the localization has been 

determined using the WoLF PSORT program (http://www.psort.org/) [43] Abbreviations: N = 

Nucleus, C = cytoplasm, Mt = Mitochondria, R = Ribosome, Mb = Membrane, G = Golgi, RE 

= Reticulum Endoplasmic, L = Lysosome, E = Endosome, V = Vacuole, NA = Nucleic Acid 

binding, U = Unknown, (5) Percentage of coverage, (6) When two numbers are noted, the 

first number indicates the number of matched peaks and the second, the number of 

unmatched peaks, (7) average quantification of the spot using Delta2D software from three 

independent 2-DE Gels in a cell line, (8) Standard Deviation of the considering spot in a cell 

line and (9) Ratio of the average quantification determined by the Delta 2D analysis: 

XS52/J774. (10) Spots 80 and 81 have been detected together by the delta 2D software 
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Figure 1: Test of different nuclear protein extract preparations  

J774 cells were disrupted and nuclei were prepared as described by Rabilloud and coll. [6] 

with some modifications (see Materials & Methods). Then, nuclear proteins were extracted 

using (a) NaCl/SB3-12, (b) DNase, (c) Urea, (d) Benzonase, (e) NaCl and (f) lecithin. 
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Figure 2:  

Comparison of the 2D Gel patterns from (a) a J774 total protein extract, (b) a J774 total 

nuclear protein extract, (c) a J774 NaCl nuclear proteins extract. The comparison has been 

performed with at least three independent extracts for each method. Proteins systematically 

present in the total protein extract compared to the nuclear (total or NaCl) extracts have 

been identified by mass spectrometry (see Table 1). These spots being very abundant 

because of the very different patterns, we have randomly chosen spots covering most of the 

area of the gel. The spots systematically enriched in a nuclear extract compared to the other 

extract have been identified by Mass spectrometry (see Table 1). The piechart shows the 

ratio of each localization in each extract condition (d) in the total protein extract, (e) in the 

total nuclear protein extract and (f) in the NaCl nuclear protein extract: white, proteins 

localized in the cytoplasm, grey, in the cytoplasm and the nucleus, dashed, in the organelles 

or secreted or in the membrane, and black, in the nucleus. 
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Figure 3:  

Distribution of the t-tests for all spots detected in the image analysis of the 2D gels (3 independent 

biological replicates per condition). This allows estimating the proportion of false positives, i.e. spots 

detected only through random processes, in the selected spots, i.e. those with a t-test lower than 

0.05. (a) J774 vs XS52 comparison and (b) J774 vs J774 comparison (null experiment). 
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Figure 4: Comparison of the NaCl nuclear protein patterns from J774 and XS52 cell 

lines. 

Nuclear proteins were extracted with the NaCl method as described in Materials & Methods 

and separated on 2D-gel electrophoresis. Gels were analysed using Delta2D software. 

Circled spots are those differentially expressed by a factor equal or greater than two and a p-

value lower than 0.05 in a two-tailed t-test. They have been identified by mass spectrometry 

see Table 2. (a) pH gradient 4-8 and (b) pH gradient 3.7-10.5. 
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Figure 5: HMGB1&2 expression patterns 

(a) 1D-gel immunoblotting analysis: Total protein extracts from J774 and XS52 cell lines 

were separated on 10% SDS-PAGE gel, transferred and then probed with appropriate 

antibodies raised against HMGB1 or HMGB2. The histogram shows the average ratio of 

XS52 band relatively to the J774 band, each being normalized to the total amount of proteins 

quantified with the ink staining. The average is the result of at least three independent 

extracts (white and grey represent the analysis using antibodies raised against HMGB1 and 

HMGB2, respectively). (b) 2D-gel immunoblotting analysis: Total protein extracts from J774 

and XS52 cell lines were separated on 2D-gel, transferred and then probed with appropriate 

antibodies raised against HMGB1 or HMGB2. The same part of 2D-gel electrophoresis has 

been in one hand, silver stained (first line) and, in the other hand, revealed with HMGB1 

(second lane) or HMGB2 (third lane) antibodies. The 2D-gel analysis has been repeated at 

least three times with independent extracts. The spot numbers are the same as Figure 4 and 

Table 2. 
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Figure 6: HP1, HP1expression pattern 

(a) 1D-gel immunoblotting analysis: Total protein extracts from J774 and XS52 cell lines 

were separated on 10% SDS-PAGE gel, transferred and then probed with appropriate 

antibodies raised against HP1or HP1. The histogram shows the average ratio of XS52 

band relatively to the J774 band, each being normalized to the total amount of proteins 

quantified with the ink staining. The average is the result of at least three independent 

extracts (white and grey represent the analysis using antibodies raised against HP1 and 

HP1, respectively). (b) 2D-gel immunoblotting analysis: Total protein extracts from J774 and 

XS52 cell lines were separated on 2D-gel, transferred and then probed with appropriate 
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antibodies raised against HP1or HP1. The same part of 2D-gel electrophoresis has been 

in one hand, silver stained (first line) and, in the other hand, revealed with HP1 (second 

lane) or HP1 (third lane) antibodies. The 2D-gel analysis has been repeated at least three 

times with independent extracts. The spot numbers are the same as Figure 4 and Table 2. 
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