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a Laboratoire MAS, Ecole Centrale de Paris, Grande Voie des Vignes, 92295 Chatenay-Malabry
cedex, FRANCE. E-mail: christophe.cuny@ecp.fr
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Abstract

We consider the almost sure asymptotic behavior of the periodogram of stationary and ergodic se-
quences. Under mild conditions we establish that the limsup of the periodogram properly normalized
identifies almost surely the spectral density function associated with the stationary process. Results
for a specified frequency are also given. Our results also lead to the law of the iterated logarithm
for the real and imaginary part of the discrete Fourier transform. The proofs rely on martingale ap-
proximations combined with results from harmonic analysis and technics from ergodic theory. Several
applications to linear processes and their functionals, iterated random functions, mixing structures
and Markov chains are also presented.

1 Introduction

The periodogram, introduced as a tool by Schuster in 1898, plays an essential role in the estimation
of the spectral density of a stationary time series (Xj)j∈Z of centered random variables with finite
second moment. The finite Fourier transform is defined as

Sn(t) =

n∑

k=1

eiktXk , (1)

where i =
√
−1 is the imaginary unit, and the periodogram as

In(t) =
1

2πn

∣∣Sn(t)
∣∣2 t ∈ [0, 2π] . (2)

It is well-known since Wiener and Wintner [30] that for any stationary sequence (Xj)j∈Z in L1

(namely E|X0| < ∞) there is a set Ω′ of probability one such that for any t ∈ [0, 2π] and any ω ∈ Ω′,
Sn(t)/n converges. To provide the speed of this convergence many authors (see Peligrad and Wu
[21] and the references therein) established a central limit theorem for the real and imaginary parts
of Sn(t)/

√
n under various assumptions. Recently, Peligrad and Wu [21] showed that, under a very

mild regularity condition and finite second moment, 1√
n
[Re(Sn(t)), Im(Sn(t))] are asymptotically

independent normal random variables with mean 0 and variance πf(t) for almost all t (here f is
the spectral density of (Xj)j∈Z). The central limit theorem implies that In(t)/ log logn converges

1 Supported in part by a Charles Phelps Taft Memorial Fund grant, the NSA grant H98230-11-1-0135 and the NSF

grant DMS-1208237.
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to 0 in probability. An interesting and natural problem, that apparently has never been studied
in depth before, is the law of the iterated logarithm, namely to identify in the almost sure sense,
lim supn→∞ In(t)/ log logn for almost all t, or for a t fixed. In this paper, we study both these
problems. We provide mild sufficient conditions on the stationary sequence that are sufficient to have
lim supn→∞ In(t)/ log logn = f(t) almost surely. These results shed additional light on the importance
of the periodogram in approximating the spectral density f(t) of a stationary process. The techniques
are based on martingale approximation, rooted in Gordin [15] and Rootzén [26] and developed by
Gordin and Lifshitz [16] and Woodroofe [31], combined with tools from ergodic theory and harmonic
analysis. Various applications are presented to linear processes and their functionals, iterated random
functions, mixing structures and Markov chains.

We would like to point out that our results are formulated under the assumption that the under-
lying stationary sequence is assumed to be adapted to an increasing (stationary) filtration. Results
in the non adapted case could also be obtained. We shall also assume that our stationary sequence is
constructed via a measure-preserving transformation that is invertible. Since our proofs are based on
martingale approximation, we could also obtain similar results when the measure-preserving transfor-
mation is assumed to be non invertible. In this situation, the conditions should be expressed with the
help of the Perron-Frobenius operator associated to the transformation (see for instance [9]). In our
paper we shall not pursue these last two cases.

Our paper is organized as follows. Section 2 contains the presentation of the results. Section 3 is
devoted to the proofs. Applications are presented in Section 4.

2 Main results

Let (Ω,A,P) be a probability space. Assume, without loss of generality, that A is a countably
generated σ-field, and let θ : Ω → Ω be a bijective bi-measurable transformation preserving P. Let
F0 be a σ-algebra such that F0 ⊆ θ−1(F0). Let (Fn)n∈Z be the non-decreasing filtration given by
Fn = θ−n(F0), and let F−∞ =

⋂
k∈Z

Fk. All along the paper X0 is a centered real random variable in
L2 which is F0-measurable. We then define a stationary sequence (Xn, n ∈ Z) by Xn = X0 ◦ θn. We
denote Ek(·) = E(·|Fk) and Pk(·) = Ek(·) − Ek−1(·). Throughout the paper, we say that a complex
number z is an eigenvalue of θ if there exists h 6= 0 in L2(P) such that h ◦ θ = zh almost everywhere.
We say that A ∈ A is invariant if θ−1(A) = A. If for any invariant set A, P(A) = 0 or 1, we say that
θ is ergodic with respect to P, or equivalently that the stationary sequence is ergodic.

Relevant to our results is the notion of spectral distribution function induced by the covariances.
By Herglotz’s Theorem (see e.g. Brockwell and Davis [3]), there exists a non-decreasing function G
(the spectral distribution function) on [0, 2π] such that, for all j ∈ Z,

cov(X0, Xj) =

∫ 2π

0

exp(ijθ)dG(θ), j ∈ Z .

If G is absolutely continuous with respect to the normalized Lebesgue measure λ on [0, 2π], then the
Radon-Nikodym derivative f of G with respect to the Lebesgue measure is called the spectral density
and we have

cov(X0, Xj) =

∫ 2π

0

exp(ijθ)f(θ)dθ, j ∈ Z .

Our first theorem points out a projective condition which assures the law of the iterated logarithm
for almost all frequencies.

All along the paper, denote

Yk(t) =
(
cos(kt)Xk, sin(kt)Xk

)′
,

where u′ stands for the transposed vector of u.
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Theorem 1 Assume that θ is ergodic and that

∑

k≥2

(log k)

k
‖E0(Xk)‖22 < ∞ . (3)

Then the spectral density, say f , of (Xk, k ∈ Z) exists and for almost all t ∈ [0, 2π), the sequence{∑n
k=1 Yk(t)/

√
2n log logn, n ≥ 3

}
is P-a.s. bounded and has the ball {x ∈ R2 : x′x ≤ πf(t)} as its

set of limit points. In particular, for almost all t ∈ [0, 2π), the following law of the iterated logarithm
holds

lim sup
n→∞

In(t)

log logn
= f(t) P-a.s.

Note that condition (3) is satisfied by martingale differences. It is a very mild condition involving
only a logarithmic rate of convergence to 0 of ‖E0(Xk)‖2.

If we assume a more restrictive moment condition, (3) can be weakened. Define the function
L(x) = log(e + |x|).

Theorem 2 Assume that θ is ergodic. Assume in addition that

E

(X2
0L(X0)

L(L(X0))

)
< ∞ ,

and that ∑

k≥3

‖E0(Xk)‖22
k(log log k)

< ∞ . (4)

Then the conclusions of Theorem 1 hold.

Note that condition (3), as well as condition (4), implies the following regularity condition:

E(X0|F−∞) = 0 P-a.s. (5)

We point out that this regularity condition implies that the process (Xk)k∈Z is purely non determin-
istic. Hence by a result of Szegö (see for instance [1, Theorem 3]) if (5) holds, the spectral density f
of (Xk)k∈Z exists and if X0 is non degenerate,

∫ 2π

0

log f(t) dt > −∞ ;

in particular, f cannot vanish on a set of positive measure. We mention also that under (5), Peligrad
and Wu [21] established that

lim
n→∞

E|Sn(t)|2
n

= 2πf(t) for almost all t ∈ [0, 2π) (6)

(see their Lemma 4.2).

Both theorems above hold for almost all frequencies. It is possible that on a set of measure 0 the
behavior be quite different. This fact is suggested by a result of Rosenblatt [28] who established, on
a set of measure 0, non-normal attraction for the Fourier transform under a different normalization
than

√
n.

We give next conditions imposed to the stationary sequence which help to identify the frequencies
for which the LIL holds. As we shall see, the next result is well adapted for linear processes generated
by iid (independent identically distributed) sequences.
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Theorem 3 Assume that (5) holds and that

∑

n≥0

‖P0(Xn)− P0(Xn+1)‖2 < ∞ . (7)

Then the spectral density f(t) of (Xk, k ∈ Z) is continuous on (0, 2π), and the convergence (6) holds
for all t ∈ (0, 2π). Moreover if θ is ergodic, the conclusions of Theorem 1 hold for all t ∈ (0, 2π)\{π}
such that e−2it is not an eigenvalue of θ.

Remark 4 The conditions of this theorem do not imply that the spectral density is continuous at 0.
This is easy to see by considering the time series Xk =

∑
j≥0 j

−3/4εk−j where (εk)k∈Z is a sequence

of iid centered real random variables in L2. For this case all the conditions of Theorem 3 are satisfied
(see Section 4.1) and var(

∑n
k=1 Xk)/n converges to ∞. This shows that the spectral density is not

continuous at 0 since otherwise we would have Var(
∑n

k=1 Xk)/n → 2πf(0), which is not the case.

We would like to mention that Condition (7) above was used by Wu [32] in the context of
the CLT. We also infer from our proof and Remark 10, that if (5) and (7) hold, and θ is er-
godic, then lim supn→∞ In(π)/ log logn = 2f(π) P-a.s. Moreover, it follows from a recent result
of Cuny [8] that if θ is ergodic, (5) holds and (7) is reinforced to

∑
n≥0 ‖P0(Xn)‖2 < ∞, then

lim supn→∞ In(0)/ log logn = 2f(0) P-a.s.

We say that θ is weakly-mixing, if for all A,B ∈ A,

lim
n→∞

1

n

n−1∑

k=0

|P(θ−kA ∩B)− P(A)P(B)| = 0 .

It is well-known (see e.g. [22, Theorem 6.1]) that saying that θ is weakly mixing is equivalent to saying
that θ is ergodic and its only eigenvalue is 1. Let us also mention that when F−∞ is trivial then θ is
weakly mixing (see section 2 of [22]).

As an immediate corollary to Theorem 3 we obtain the following LIL for all frequencies.

Corollary 5 Assume that θ is weakly mixing and that (5) and (7) hold. Then the conclusion of
Theorem 3 holds for all t ∈ (0, 2π)\{π}.

Next theorem involves a projective condition in the spirit of Rootzén [26]. It is very useful in order
to treat several classes of Markov chains including reversible Markov chains.

Theorem 6 Assume that θ is ergodic. Let t ∈ (0, 2π)\{π} be such that e−2it is not an eigenvalue of
θ. Assume in addition that

sup
n

‖E0(Sn(t))‖2 < ∞ . (8)

Then

lim
n→∞

E|Sn(t)|2
n

= σ2
t (say) (9)

and
{∑n

k=1 Yk(t)/
√
2n log log n, n ≥ 3

}
is P-a.s. bounded and has the ball {x ∈ R

2 : x′x ≤ σ2
t /2} as

its set of limit points. In particular,

lim sup
n→∞

In(t)

log logn
=

σ2
t

2π
P-a.s.

Remark 7 Note that in Theorem 6 we do not require the sequence to be regular, i.e. it may happen
that E(X0|F−n) does not converge to 0 in L2. The spectral density might not exist.
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3 Proofs

Proof of Theorem 1. The proof is based on martingale approximation. By Lemma 4.1 in Peligrad
and Wu [21], since X0 ∈ L2 and (5) holds under (3), we know that for almost all t ∈ [0, 2π), the
following limit exists in L2(P) and P-a.s.

D0(t) = lim
n→∞

n∑

k=0

eiktP0(Xk) . (10)

Hence setting for all ℓ ∈ Z,
Dℓ(t) = eiℓtD0(t) ◦ θℓ , (11)

we get that for almost all t ∈ (0, 2π), (Dℓ(t))ℓ∈Z forms a sequence of martingale differences in L2(P)
with respect to (Fℓ)ℓ∈Z. As we shall see, the conclusion of the theorem will then follow from Propo-
sitions 8 and 11 below.

Proposition 8 Assume that θ is ergodic. Let t ∈ (0, 2π)\{π} and assume that e−2it is not an
eigenvalue of θ. Let D be a square integrable complex-valued random variable adapted to F0 and such
that E−1(D) = 0 a.s. For any k ∈ Z, let dk(t) =

(
Re(eiktD ◦ θk), Im(eiktD ◦ θk)

)′
. Then the sequence{∑n

k=1 dk(t)/
√
2n log logn, n ≥ 3

}
is P-a.s. bounded and has the ball {x ∈ R2 : x′ · x ≤ E(|D|2)/2}

as its set of limit points.

Remark 9 Since we assume A to be countably generated, then L2(Ω,A,P) is separable and (see
Lemma 32) θ can admit at most countably many eigenvalues. Hence, Proposition 8 applies to almost
all t ∈ [0, 2π).

Remark 10 Let t = 0 or t = π, and assume that θ is ergodic. Then if D is a square integrable
real-valued random variable adapted to F0 and such that E−1(D) = 0 a.s., the following result holds:
lim supn→∞ |∑n

k=1 cos(kt)D ◦ θk|2/(2n log logn) = E(D2) a.s. For t = 0, it is the usual law of the
iterated logarithm for stationary ergodic martingale differences sequences. For t = π, it follows from
a direct application of [17, Theorem 1].

Proposition 11 Assume that condition (3) holds. Then, for almost all t ∈ [0, 2π),

|Sn(t)−Mn(t)|√
n log logn

→ 0 P-a.s. (12)

where Mn(t) =
∑n

k=1 Dk(t) and Dk(t) is defined by (11).

To end the proof of Theorem 1, we proceed as follows. By Proposition 11, it suffices to prove
that the conclusion of Theorem 1 holds replacing Yk(t) with dk(t) =

(
Re(Dk(t)), Im(Dk(t))

)′
. With

this aim, it suffices to apply Proposition 8 together with Remark 9 and to notice the following fact:
according to Lemma 4.2 in Peligrad and Wu [21], for almost all t ∈ [0, 2π),

E(|D0(t)|2)
2

= πf(t) .

It remains to prove the above propositions.

It is convenient to work on the product space. Let (Ω̃, F̃ , P̃) = ([0, 2π]×Ω,B ⊗A, λ⊗ P) where λ
is the normalized Lebesgue measure on [0, 2π], and B be the Borel σ-algebra on [0, 2π]. Let t ∈ [0, 2π)
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be a real number, fixed for the moment. Clearly, the transformation θ̃ = θ̃t (we omit the dependence
with respect to t when t is fixed) given by

θ̃ : (u, ω) 7→ (u + t modulo 2π, θ(ω)) , (13)

is invertible, bi-measurable and preserves P̃.
Consider also the filtration (F̃n)n∈Z given by F̃n := B ⊗ Fn.

Define a random variable X̃0 on Ω̃ by X̃0(u, ω) = eiuX0(ω) for every (u, ω) ∈ Ω̃, and for any n ∈ Z,

X̃n = X̃0 ◦ θ̃n. Notice that (X̃n)n∈Z is a stationary sequence of complex random variables adapted to

the non-decreasing filtration (F̃n). Moreover eiueintXn(ω) = X̃n(u, ω).

Proof of Proposition 8. Let t ∈ [0, 2π) be fixed. Let D̃(u) = eiuD and D̃k = D̃ ◦ θ̃k.
Let d̃k =

(
Re(D̃k), Im(D̃k)

)′
. Then

d̃k(u) =

(
cosu − sinu
sinu cosu

)
dk(t) .

Since the unit ball is invariant under rotations, the result will follow if we prove that for λ-a.e.
u ∈ [0, 2π], the sequence

{∑n
k=1 d̃k(u)/

√
2n log logn, n ≥ 3

}
has P-a.s. the ball {y ∈ R2 : y′ ·

y ≤ ‖D0‖22/2} as its set of limit points, or equivalently (by Fubini’s Theorem), if the sequence{∑n
k=1 d̃k/

√
2n log logn, n ≥ 3

}
has P̃-a.s. the ball {y ∈ R2 : y′ · y ≤ ‖D‖22/2} as its set of limit

points.
According to the almost sure analogue of the Cramér-Wold device (see Sections 5.1 and 5.2 in

Philipp [23]), this will happen if we can prove that for any x ∈ R2 such that x′ · x = 1,

lim sup
n→∞

∑n
k=1 x

′ · d̃k√
2n log logn

=
‖D‖22
2

P̃− a.s. (14)

To prove it we shall apply Corollary 2 in Heyde and Scott [17] to the stationary martingale differences

x′ · d̃ ◦ θ̃kt . We have to verify

1

n

n∑

k=1

(x′ · d̃k)2 → ‖D‖22
2

P̃− a.s. (15)

In order to understand this convergence it is convenient to write

D = A+ iB .

Therefore if x = (a, b)′,

(x′ · d̃k)2 = (aRe(D̃k) + bIm(D̃k))
2

= (a cos(u + kt) + b sin(u+ kt))2(A2 ◦ θk) + (b cos(u+ kt)− a sin(u+ kt))2(B2 ◦ θk)
+2(a cos(u + kt) + b sin(u+ kt))(b cos(u + kt)− a sin(u+ kt))(A ◦ θk)(B ◦ θk) .

By using basic trigonometric formulas, it follows that if x = (a, b)′ is such that a2 + b2 = 1,

(x′ · d̃k)2 =
(A2 +B2) ◦ θk

2
+

(a2 − b2) cos(2u+ 2kt)

2
(A2 −B2) ◦ θk

+ ab sin(2u+ 2kt)(A2 −B2) ◦ θk + ab(cos(2u+ 2kt) + sin(2u+ 2kt))(A ◦ θk)(B ◦ θk)
+(b2 − a2) sin(2u+ 2kt))(A ◦ θk)(B ◦ θk) .
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By Lemma 32 applied with t0 = 2t, we derive that, for any t ∈ (0, 2π)\{π} such that e−2it is not an
eigenvalue of θ then, for all u,

lim
n→∞

1

n

n∑

k=1

(
(x′ · d̃k(u))2 −

a2 + b2

2
(A2 +B2) ◦ θk

)
= 0 P̃− a.s. (16)

Also by the ergodic theorem for θ,

lim
n→∞

1

n

n∑

k=1

(A2 +B2) ◦ θk = E(|A|2 + |B|2) = ‖D‖22 P̃− a.s. (17)

Gathering (16) and (17), we get (15). This ends the proof of Proposition 8. �

Proof of Proposition 11.

Let D̃0(u, ·) = eiu
∑

k≥0 P0(e
iktXk) =

∑
k≥0 P̃0(X̃k) which is defined for λ-a.e. t ∈ [0, 2π). Write

S̃n =
∑n

k=1 X̃k, M̃n =
∑n

k=1 D̃0 ◦ θ̃k, and R̃n = S̃n − M̃n.

Denote by Ẽ the expectation with respect to P̃.

The next lemma follows from Corollary 4.2 in Cuny [7]. Notice that in [7], complex-valued variables
are allowed.

Lemma 12 Assume that
∑

n≥1

logn
Ẽ(|R̃n|2)

n2
< ∞ . (18)

Then
R̃n = o(

√
n log logn) P̃-a.s. (19)

To prove that (12) holds, it suffices to prove that for λ-a.e. t ∈ [0, 2π), (19) holds. According to
Lemma 12 it suffices then to prove that (18) is satisfied for λ-a.e. t ∈ [0, 2π). To this end, we first
prove that ∫ 2π

0

Ẽ(|R̃n|2)dt = 2

n∑

k=1

‖E0(Xk)‖22 . (20)

Indeed, for almost all t ∈ [0, 2π),

R̃n(u, ω) = eiu
n∑

k=1

eiktE0(Xk)(ω) + eiu
∑

k≥n+1

eikt(E0(Xk)(ω)− En(Xk)(ω)) . (21)

Whenever the R.H.S. below converges, the following identity holds:

∫ 2π

0

|R̃n(u, ω)|2dt =
n∑

k=1

(E0(Xk))
2(ω) +

∑

k≥n+1

(E0(Xk)(ω)− En(Xk)(ω))
2 .

Then, using that E((E0(Xk)− En(Xk))
2) = ‖E0(Xk−n)‖22 − ‖E0(Xk)‖22, and the fact that under (3),

(5) holds, we obtain (20). Using (20), we see that under (3), for λ-a.e. t ∈ [0, 2π), condition (18)
holds. This ends the proof of (12) and then of the proposition. �

Proof of Theorem 2. According to the proof of Theorem 1, it suffices to prove that under the
conditions of Theorem 2, the almost sure convergence (12) holds for almost all t ∈ [0, 2π). With this
aim, we shall use truncation arguments. Given γ > 0 and r ≥ 0, we set for any integer ℓ,

Xℓ,r := Xℓ1{|Xℓ|≤2γr} − E(Xℓ1{|Xℓ|≤2γr})

7



and
Dℓ,r(t) := eiℓt

∑

k≥0

eikt
(
P0(Xk,r)

)
◦ θℓ .

We know that for almost all t ∈ [0, 2π), Dℓ,r(t) is defined P-a.s. and in L2(P).
We define non stationary sequences (Xℓ)ℓ≥1 and (Dℓ(t))ℓ≥1 as follows: for every r ∈ N and every

ℓ ∈ {2r, ..., 2r+1 − 1},
Xℓ := Xℓ,r , Dℓ(t) := Dℓ,r(t) . (22)

Let also
X∗

ℓ = Xℓ −Xℓ and D∗
ℓ (t) = Dℓ(t)−Dℓ(t) . (23)

Lemma 13 Assume that E
(

X2
0L(X0)

L(L(X0))

)
< ∞. Then, for a.e. t ∈ [0, 2π),

∑

n≥3

X∗
n√

n log logn
eint converges P-a.s. (24)

In particular, by Kronecker’s lemma, for a.e. t ∈ [0, 2π),
∑n

k=1
eiktX∗

k√
n log logn

→ 0 P-a.s.

Proof. By Carleson’s theorem [5], in order to establish (24) it suffices to prove that

∑

n≥3

(X∗
n)

2

n log logn
< ∞ P-a.s.

This is true because

∑

n≥4

E((X∗
n)

2)

n log logn
=

∑

r≥2

2r+1−1∑

ℓ=2r

E((Xℓ −Xℓ,r)
2)

ℓ log log ℓ
≤ 4

∑

r≥2

E(X2
01{|X0|>2γr})

2r+1−1∑

ℓ=2r

1

ℓ log log ℓ

≪
∑

r≥2

1

log r
E(X2

01{|X0|>2γr}) ≪ E

(X2
0L(X0)

L(L(X0))

)
< ∞ , (25)

where we used Fubini in the last step and the notation a ≪ b means there is a universal constant
C > 0 such that a < Cb. �

Lemma 14 Assume that E
(

X2
0L(X0)

L(L(X0))

)
< ∞. Then, for a.e. t ∈ [0, 2π),

∑n
k=1 D

∗
k(t)√

n log log n
→ 0 P-a.s.

Proof. For almost all t ∈ [0, 2π), (D∗
ℓ (t))ℓ≥1 is a sequence of martingale differences in L2(P). Hence

using the Doob-Kolmogorov maximal inequality, we infer that the lemma will be established provided
that ∑

k≥3

∫ 2π

0

‖D∗
k(t)‖22

k log log k
dt < ∞ . (26)
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To prove it we use simple algebra and the projection’s orthogonality, as follows:

∑

k≥4

∫ 2π

0

‖D∗
k(t)‖22

k log log k
dt =

∑

r≥2

2r+1−1∑

ℓ=2r

∫ 2π

0

‖Dℓ(t)−Dℓ,r(t)‖22
ℓ log log ℓ

dt

≤
∑

r≥2

1

2r log r

2r+1−1∑

ℓ=2r

∫ 2π

0

‖Dℓ(t)−Dℓ(t)‖22
ℓ log log ℓ

dt

≤ 2π
∑

r≥2

1

2r log r

2r+1−1∑

ℓ=2r

∑

k≥0

‖
(
P0(Xk −Xk,r)

)
◦ θℓ‖22

= 2π
∑

r≥2

1

2r log r

2r+1−1∑

ℓ=2r

∑

k≥0

‖
(
P−k(X01{|X0|>2γr})

)
◦ θℓ+k‖22

= 2π
∑

r≥2

1

log r
E
(
X01{|X0|>2γr} − E(X01{|X0|>2γr}|F−∞)

)2 ≤ 2π
∑

r≥2

1

log r
‖X01{|X0|>2γr}‖22 .

Next, using Fubini’s theorem as done in (25), (26) follows. �

From Lemmas 13 and 14, we then deduce that if E
(

X2
0L(X0)

L(L(X0))

)
< ∞, then, for a.e. t ∈ [0, 2π),

∑n
k=1

(
eiktX∗

k −D∗
k(t)

)
√
n log logn

→ 0 P-a.s.

Therefore, to prove that the almost sure convergence (12) holds for almost all t ∈ [0, 2π) (and then
the theorem) it suffices to prove that for almost all t ∈ [0, 2π),

|Sn(t)−Mn(t)|√
n log logn

→ 0 P-a.s. (27)

where Sn(t) =
∑n

j=1 e
ijtXj and Mn(t) =

∑n
j=1 Dj(t) where the Xj ’s and Dj(t)’s are defined in (22).

Let
Rn(t) = Sn(t)−Mn(t) ,

and for any r ∈ N, let
Ar(t) := sup

0≤k≤2r−1
|Rk+2r (t)−R2r−1(t)| .

Let N ∈ N∗ and let k ∈]1, 2N ]. We first notice that Ar(t) ≥ |
∑2r+1−1

ℓ=2r eiℓt(Xℓ −Dℓ(t))|, so if K is the
integer such that 2K−1 ≤ k ≤ 2K − 1, then

∣∣Rk(t)
∣∣ ≤

K−1∑

r=0

Ar(t) .

Consequently since K ≤ N ,

sup
1≤k≤2N

∣∣Rk(t)
∣∣ ≤

N−1∑

r=0

Ar(t) .

Therefore, (27) will follow if we can prove that for almost all t ∈ [0, 2π),

sup
0≤k≤2r−1

|Rk+2r (t)−R2r−1(t)| = o
(
2r/2 · (log r)1/2

)
P-a.s. ,
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which will be true if we can prove that

∑

r≥0

1

2r log r

∫ 2π

0

E[ max
2r≤k≤2r+1−1

|Rk(t)−R2r−1(t)|2]dt < ∞ . (28)

Notice that for any integer k in [2r, 2r+1 − 1],

Rk(t)−R2r−1(t) = ei(2
r−1)t

( k−2r+1∑

ℓ=1

eiℓt
(
X0,r −D0,r(t)

)
◦ θℓ

)
◦ θ2r−1 .

Therefore, by stationarity proving (28) amounts to prove that

∑

r≥0

1

2r log r

∫ 2π

0

E
(

max
1≤k≤2r

∣∣
k∑

ℓ=1

(Xℓ,r −Dℓ,r(t))
∣∣2)dt < ∞ , (29)

where Xℓ,r(t) = eiℓtXℓ,r. Using Lemma 33 given in the Appendix with M = 2γr, we get that for any
integer s > 1,

(2π)−1

∫ 2π

0

E
(

max
1≤k≤2r

∣∣
k∑

ℓ=1

(Xℓ,r −Dℓ,r(t))
∣∣2)dt

≤ 24× 2r‖E−s(X0)‖2 + 24× 2r‖X01|X0|>2γr‖2 + 12s222γr .

To prove (29) and then to end the proof of the theorem, we select γ < 1/4 and use the above
inequality with s = [2γr] + 1. Using Fubini’s theorem as done in (25), we infer that (29) will be
established provided that ∑

r≥2

1

log r
‖E−[2γr](X0)‖22 < ∞ . (30)

This convergence follows from condition (4) by using the fact (‖E−n(X0)‖22)n≥1 is decreasing and by
noticing that by the usual comparison between the series and the integrals, for any non-increasing
and positive function h on R

+ and any positive γ,

∑

n≥1

n−1h(nγ) < ∞ if and only if
∑

n≥1

n−1h(n) < ∞ .

and that (30) is equivalent to
∑

n≥3
1

n(log logn)‖E−[nγ ](X0)‖22 < ∞. �

Proof of Theorem 3. We divide the proof of this theorem in two parts.

1. Proof of the continuity of f and of relation (6). Let (cn)n∈Z denote the Fourier coefficients
of f , i.e. cn := E(X0Xn). Then, the Fourier coefficients of (1 − eit)f(t) are (cn − cn+1)n∈Z and the
Fourier coefficients of h(t) := |1− eit|2f(t) are (bn)n∈Z with bn = 2cn − cn+1 − cn−1, n ∈ Z.

One can easily see that h is the spectral density associated with the stationary process (Zn)n∈Z :=
(Xn −Xn−1)n∈Z, i.e. bn = E(Z0Zn). Hence for n ≥ 0,

|bn| = |E(Z0Zn)| = |
∑

k≥0

E(P−k(Z0)P−k(Zn))| ≤
∑

k≥0

‖P−k(Z0)‖2‖P−k−n(Z0)‖2 .

Therefore, ∑

n∈Z\{0}
|bn| = 2

∑

n≥1

|bn| ≤ 2
∑

n≥0

(
‖P−n(Z0)‖2

)2
.
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By (7) it follows that (bn)n∈Z is absolutely summable. Therefore, by well known results on spectral
density, (see for instance Bradley [2], Ch 8 and 9) h must be continuous and bounded on [0, 2π], which
in turn implies that f is continuous on (0, 2π).

We prove now that (6) holds for every t ∈ (0, 2π). With this aim, it suffices to show that, for every
t ∈ (0, 2π), |1− eit|2E(|Sn(t)|2)/n → h(t).

Define Tn(t) :=
∑n

k=1 e
iktZk. It is easy to see, using the fact that cn → 0 as n → ±∞, that

E(|Tn(t)|2)
n

=
|1− eit|2E(|Sn(t)|2)

n
+ o(1) ,

(the little o is uniform in t ∈ [0, 2π]). Now, by (4.6) of [21], (E(|Tn(t)|2/n)n≥0 is nothing else but the
Cesàro averages of the partial sums of the Fourier series associated with h, hence it converges to h(t)
by Fejer’s theorem.

2. End of the proof.
By assumption (7), we have

∑

k≥0

|P0(Xk −Xk+1)| converges in L2. (31)

Let t ∈ (0, 2π) be fixed. Using that P0(X−1) = 0, we obtain

k∑

m=0

eimtP0(Xm −Xm−1) =
k∑

m=0

eimtP0(Xm)−
k−1∑

m=0

ei(m+1)P0(Xm)

= (1− eit)
k∑

m=0

eimtP0(Xm) + ei(k+1)tP0(Xk) .

Since ‖P0(Xk)‖2 → 0, by (31), we see that the series
∑k

m=0 e
imtP0(Xm) converges in L2 as k → ∞.

Hence defining D0(t) by (10), it follows that (D0(t) ◦ θℓ, ℓ ∈ Z) is a stationary sequence of martingale
differences in L2 adapted to (Fℓ, ℓ ∈ Z). Hence the theorem will follow by Proposition 8, if we can
prove that |Sn(t) − Mn(t)|/

√
n log logn → 0 P-a.s. where Mn(t) =

∑n
k=1 e

iktD0(t) ◦ θk. With this
aim, we first notice that

(1 − eit)D0(t) = F0(t) where F0(t) =
∑

m≥0

eimtP0(Xm −Xm−1) .

Hence, writing Fk(t) = F0(t) ◦ θk, we obtain the representation

(1 − eit)(Sn(t)−Mn(t)) =

n−1∑

k=0

eikt(Zk − Fk(t)) ,

where Zk = Xk −Xk−1. Therefore, the proof of the theorem will be complete if we can show that

∣∣
n−1∑

k=0

eikt(Zk − Fk(t))
∣∣/
√
n log logn → 0 P-a.s. (32)

To prove this almost sure convergence, we shall work on the product space (Ω̃, F̃ , P̃) introduced in the

proof of Theorem 1. Recall that θ̃ has been defined in (13), F̃n := B([0, 2π]) ⊗ Fn and Ẽ stands for

the expectation under P̃.

11



Define Z̃0(u, ω) := eiuZ0(ω) and Z̃k := Z̃0 ◦ θ̃k. Similarly, define F̃0(u, ω) = eiuF0(t)(ω) and F̃k =

F̃0 ◦ θ̃k. Let P̃0(·) = Ẽ(·|F̃0)− Ẽ(·|F̃−1). Note that F̃0 =
∑

k≥0 P̃0(Z̃k) = eiu
∑

k≥0 e
iktP0(Xk−Xk−1).

By assumption (7), we have ∑

n≥0

‖P̃0(Z̃n)‖2,P̃ < ∞ ,

where ‖ · ‖2,P̃ is the L2 norm with respect to P̃.

Therefore, by Theorem 2.7 of Cuny [8] (see (21) of [8]), identifying C with R2, we obtain that

∣∣
n−1∑

k=0

(Z̃k − F̃k)
∣∣/
√
n log logn → 0 P̃-a.s.

Now, Z̃k(u, .) = eiueiktZk and F̃k(u, .) = eiueiktFk, hence (32) follows. �

Proof of Theorem 6. Define an operator Rt on L2(Ω,F0,P) by Rt(Y ) := eitE0(Y ◦ θ) . Note that
for every n ≥ 0, Rn

t (Y ) = eintE0(Y ◦ θn). Hence by assumption supn≥1 ‖
∑n

k=0 R
k
t (X0)‖2 < ∞ . By

Browder [4, Lemma 5], there exists Z0 = Z0(t) ∈ L2(Ω,F0,P) such that

X0 = Z0 −Rt(Z0) = Z0 − eitE0(Z1) . (33)

Now we denote Zk = Z0 ◦ θk. Note that (Zk)k is a stationary sequence, Rt(Z0) = eitE0(Z1) and we
have the decomposition:

X0 = Z0 − E−1(Z0) + E−1(Z0)− eitE0(Z1) .

Denote the martingale difference D0(t) = Z0 − E−1(Z0) = P0(Z0). So,

Sn(t) =

n∑

k=1

eitkD0(t) ◦ θk +
n∑

k=1

(eitkEk−1(Zk)− eit(k+1)
Ek(Zk+1))

=
n∑

k=1

eitkD0(t) ◦ θk + eitE0(Z1)− eit(n+1)
En(Zn+1) .

By the Borel-Cantelli lemma,

|En(Zn+1)|/
√
n = |E−1(Zt)| ◦ θn+1/

√
n → 0 P-a.s.

Therefore we have the following martingale approximation:

1

n

(
Sn(t)−

n∑

k=1

eitkD0(t) ◦ θk
)
→ 0 a.s. and in L

2 .

Hence, since e−2it is not an eigenvalue of θ, the proposition follows from Proposition 8 with E(|D0|2) =
E(|Z0 − E−1(Z0)|2) = σ2

t .
It is convenient to express σt in terms of the original variables. With this aim notice that by

equation (33) we obtain

n∑

k=0

eitkP0(Xk) =
n∑

k=0

eitkP0(Zk)−
n∑

k=0

eit(k+1)P0(Zk+1)

= P0(Z0)− eit(n+1)P0(Zn+1) = D0(t)− eit(n+1)P0(Zn+1) .

12



Since

‖P0(Zn+1)‖22 = ‖E0(Zn+1)‖22 − ‖E−1(Zn+1)‖22 = ‖E−n−1(Z0)‖22 − ‖E−n−2(Z0)‖22 → 0 ,

we obtain
n∑

k=0

eitkP0(Xk) → D0(t) in L
2 .

This shows that, for this case, the representation (10) holds for all t ∈ [0, 2π] such that (8) is satisfied.
�

4 Examples

4.1 Linear processes.

Let us consider the following linear process (Xk)k∈Z defined by Xk =
∑

j≥0 ajεk−j where (εk)k∈Z

is a sequence of iid real random variables in L2 and (ak)k∈Z is a sequence of reals in ℓ2. Taking
F0 = σ(εk, k ≤ 0), it follows that P0(Xi) = aiε0. Therefore (7) is reduced to

∑

n≥3

|an − an+1| < ∞ . (34)

Hence, because F−∞ is trivial, we conclude, by Corollary 5, that the conclusions of Theorem 3 hold
for all t ∈ (0, π) ∪ (π, 2π) as soon as (34) is satisfied. Let us mention that when an is decreasing (34)
is always satisfied.

4.2 Functions of linear processes

In this section, we shall focus on functions of real-valued linear processes. Define

Xk = h
(∑

i≥0

aiεk−i

)
− E

(
h
(∑

i≥0

aiεk−i

))
, (35)

where (ai)i∈Z be a sequence of real numbers in ℓ2 and (εi)i∈Z is a sequence of iid random variables in
L2. We shall give sufficient conditions in terms of the regularity of the function h, for In(t) to satisfy
a law of the iterated logarithm as described in Theorem 1.

Denote by wh(.,M) the modulus of continuity of the function h on the interval [−M,M ], that is

wh(u,M) = sup{|h(x)− h(y)|, |x− y| ≤ u, |x| ≤ M, |y| ≤ M} .

Corollary 15 Assume that h is γ-Hölder on any compact set, with wh(u,M) ≤ CuγMα, for some
C > 0, γ ∈]0, 1] and α ≥ 0. Assume that

∑

k≥2

(log k)2|ak|2γ < ∞ and E(|ε0|2∨(2α+2γ)) < ∞ . (36)

Then the conclusions of Theorem 1 hold with (Xk)k∈Z defined by (35).

Proof. We shall apply Theorem 1 by taking Fk = σ(εℓ, ℓ ≤ k). Since X0 is regular, ‖E0(Xk)‖22 =∑
ℓ≥k ‖P−ℓ(X0)‖22. Therefore (3) is equivalent to

∑

ℓ≥2

(log ℓ)2‖P0(Xℓ)‖22 < ∞ . (37)
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Let ε′ be an independent copy of ε, and denote by Eε(·) the conditional expectation with respect to
ε. Clearly

P0(Xk) = Eε

(
h
( k−1∑

i=0

aiε
′
k−i + akε0 +

∑

i>k

aiεk−i

)
− h

( k−1∑

i=0

aiε
′
k−i + akε

′
0 +

∑

i>k

aiεk−i

))
.

Since wh(u1 + u2,M) ≤ wh(u1,M) + wh(u2,M), it follows that

|P0(Xk)| ≤ Eε

(
2‖X0‖∞ ∧

(
wh (|ak||ε0|, |Y1| ∨ |Y2|) + wh (|ak||ε′0|, |Y1| ∨ |Y2|)

))
, (38)

where Y1 =
∑k

i=0 aiε
′
k−i +

∑
i>k aiεk−i and Y2 =

∑k−1
i=0 aiε

′
k−i +

∑
i≥k aiεk−i. Noting that (ε0, |Y1| ∨

|Y2|) and (ε′0, |Y1| ∨ |Y2|) are both distributed as (ε0,Mk), where Mk = max
{∣∣∣

∑
i≥0 aiε

′
i

∣∣∣,
∣∣∣akε0 +

∑
i6=k aiε

′
i

∣∣∣
}
, and taking the L2-norm in (38), it follows that (37) is satisfied as soon as (36) is �

4.3 Autoregressive Lipschitz models.

In this section, we give an example of iterative Lipschitz model, which fails to be irreducible, to which
our results apply. For the sake of simplicity, we do not analyze the iterative Lipschitz models in their
full generality, as defined in Diaconis and Freedman [12] and Duflo [13].

For δ in [0, 1[ and C in ]0, 1], let L(C, δ) be the class of 1-Lipschitz functions h which satisfy

h(0) = 0 and |h′(t)| ≤ 1− C(1 + |t|)−δ almost everywhere.

Let (εi)i∈Z be a sequence of iid real-valued random variables. For S ≥ 1, let ARL(C, δ, S) be the class
of Markov chains on R defined by

Yn = h(Yn−1) + εn with h ∈ L(C, δ) and E

( |ε0|SL(ε0)
L(L(ε0))

)
< ∞ . (39)

(Recall that L(x) = log(e + |x|)). For this model, there exists a unique invariant probability measure
µ (see Proposition 2 of Dedecker and Rio [11]). Moreover we have

Proposition 16 Assume that (Yi)i∈Z belongs to ARL(C, δ, S). Then there exists a unique invariant
probability measure that satisfies

∫
|x|S−δ L(x)

L(L(x))
µ(dx) < ∞ .

Applying Theorem 2 we derive the following result.

Corollary 17 Assume that (Yi)i∈Z is a stationary Markov chain belonging to ARL(C, δ, S) for some
S ≥ 2+δ. Then, for any Lipschitz function g, the conclusions of Theorem 1 hold for (g(Yi)−µ(g))i∈Z.

Remark 18 The proof of this result reveals that an application of Theorem 1 would require the fol-
lowing moment condition on µ:

∫
|x|2L(x)µ(dx) < ∞ which according to the proof of Proposition 16

is satisfied provided that E(|ε0|SL(ε0)) < ∞ for some S ≥ 2 + δ.

Proof of Proposition 16. To prove Proposition 16, we shall modify the proof of Proposition 2
of Dedecker and Rio [11] as follows. Let K be the transition kernel of the stationary Markov chain
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(Yi)i∈Z belonging to ARL(C, δ, η). For n > 0, we write Kng for the function
∫
g(y)Kn(x, dy). Let

V (x) = |x|S L(x)
L(L(x)) . Notice that

KV (x) = E
(
V (Yn+1)|Yn = x

)
= E

(
V (h(x) + ε0)

)
≤ E

(
V (|h(x)| + |ε0|)

)
.

By assumption on h, there exists R1 ≥ 1 and some c ∈ ]0, 1/2[ such that for every x, with |x| > R1,
|h(x)| ≤ |x| − c|x|1−δ := g(x) ≤ |x|. Therefore, using the fact that for any positive reals a and b,
log(e + a + b) = log(e + a) + log(1 + b/(e + a)), we get for any |x| > R1 (using that for u ≥ 0,
log(1 + u) ≤ u),

V (|h(x)| + |ε0|) ≤ (g(x) + |ε0|)S
L(x)

L(L(|x|+ |ε0|))
+ (|x|+ |ε0|)S

L(ε0/(1 + |x|)
L(L(|x|+ |ε0|))

≤ (g(x) + |ε0|)S
L(x)

L(L(x))
+

2S |x|S−1|ε0|
L(L(R1))

+
2S|ε0|SL(ε0)
L(L(ε0))

. (40)

To deal now with the first term in the right hand side of the above inequality, we shall use inequality
(54), in the Appendix, with a = g(x) and b = |ε0|. We get that there exist positive constants c and
R2 such that for any |x| > R2,

V (|h(x)|+ |ε0|) ≤ (g(x))S
L(x)

L(L(x))
+ 2S+1|ε0|(g(x))S−1 L(x)

L(L(x))

+2S|ε0|S
L(x)

L(L(x))
+ 2S |x|S−1|ε0|+

2S|ε0|SL(ε0)
L(L(ε0))

≤ |x|S L(x)

L(L(x))
− c|x|S−δ L(x)

L(L(x))
+ 3× 2S |ε0||x|S−1L(x) + 2S|ε0|S

L(x)

L(L(x))
+

2S |ε0|SL(ε0)
L(L(ε0))

.

Taking the expectation, considering the moment assumption on ε0 and using the fact that δ ∈ [0, 1[
and S ≥ 1, it follows that there exist positive constants d and R such that for any |x| > R,

KV (x) ≤ V (x)− d |x|S−δ L(x)

L(L(x))
.

So overall it follows that there exists a positive constant b such that

KV (x) ≤ V (x) − d |x|S−δ L(x)

L(L(x))
+ b1[−R,R](x) . (41)

This inequality allows to use the arguments given at the end of the proof of Proposition 2 in Dedecker
and Rio [11]. Indeed, iterating n times the inequality (41), we get

d

n

n∑

k=1

∫
|y|S−δ L(y)

L(L(y))
Kk(x, dy) ≤ 1

n
KV (x) +

b

n

n∑

k=1

Kk([−R,R])(x) ,

and letting n tend to infinity, it follows that

d

∫
|x|S−δ L(x)

L(L(x))
µ(dx) ≤ bµ([−R,R]) < ∞ .

�

Proof of Corollary 17. Let Xi = g(Yi) − µ(g). According to Proposition 16, E
(

X2
0L(X0)

L(L(X0))

)
< ∞.

Hence Corollary 17 will follow from Theorem 2 if we can prove that the condition (4) is satisfied which
will clearly hold if ∑

n>0

n−1|Kng(x)− µ(g)|2µ(dx) < ∞ . (42)
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According to the inequality (5.7) in Dedecker and Rio [11], there exists a positive constant A such
that

|Kng(x)− µ(g)| ≤ An1−S/δ

∫
|x− y|µ(dy) +A(1−Bn(x))

n

∫
|x− y|µ(dy)

+An1−(S−1)/δ

∫
|x− y||y|S−δ−1µ(dy) , (43)

where Bn(x) = C[4(1 + |x| + (n − 1)E|ε0|)]−δ. Noticing that
∑

n>0 n
1−2(S−1)/δ < ∞ as soon as

S > 1 + δ and that according to Proposition 16, x2 is µ−integrable as soon as S ≥ 2 + δ, we infer
from (43) that (42) will be satisfied if we can prove that

∑

n>0

n−1

∫
x2(1−Bn(x))

2nµ(dx) < ∞ . (44)

Notice that that (1− Bn(x))
2n ≤ exp(−2nBn(x)). If |x| ≤ 1,

exp(−2nBn(x)) ≤ exp(−2Cn(8 + 4n)−δ) ,

implying that ∫ 1

−1

x2
∑

n>0

n−1 exp(−2nBn(x))µ(dx) < ∞ .

Now if |x| > 1,

∑

n≥2

n−1 exp(−2nBn(x)) ≤
∫ ∞

1

u−1 exp
(
− 2Cu[4(1 + |x|+ uE|ε0|)]−δ

)
du

≤
∫ ∞

1

u−1 exp
(
− 2Cu|x|−δ[8 + u|x|−δ

E|ε0|)]−δ
)
du

≤
∫ ∞

1

z−1 exp
(
− 2Cz[8 + zE|ε0|)]−δ

)
dz .

Hence there exists a positive constant M such that

∫

|x|>1

x2
∑

n>0

n−1 exp(−2nBn(x))µ(dx) ≤ M

∫

|x|>1

x2µ(dx) , (45)

which according to Proposition 16 is finite as soon as S ≥ 2 + δ. All the above computations then
show that (44) (and then (42)) holds provided that S ≥ 2 + δ. �

4.4 Application to weakly dependent sequences

Theorems 1 and 2 can be successively applied to large classes of weakly dependent sequences. In
this section, we give an application to α-dependent sequences. With this aim, we first need some
definitions.

Definition 19 For a sequence Y = (Yi)i∈Z, where Yi = Y0 ◦ θi and Y0 is an F0-measurable and
real-valued random variable, let for any k ∈ N,

αY(k) = sup
u∈R

∥∥E(1Yk≤u|F0)− E(1Yk≤u)
∥∥
1
.
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Remark 20 Recall that the strong mixing coefficient of Rosenblatt [27] between two σ-algebras F and
G is defined by

α(F ,G) = sup
A∈F ,B∈G

|P(A ∩B)− P(A)P(B)| .

For a strictly stationary sequence (Yi)i∈Z of real valued random variables, and the σ-algebra F0 =
σ(Yi, i ≤ 0), define then

α(0) = 1 and α(k) = 2α(F0, σ(Yk)) for k > 0 . (46)

Between the two above coefficients, the following relation holds: for any positive k, αY(k) ≤ α(k).
In addition, the α-dependent coefficient as defined in Definition 19 may be computed for instance for
many Markov chains associated to dynamical systems that fail to be strongly mixing in the sense of
Rosenblatt [27].

Definition 21 A quantile function Q is a function from ]0, 1] to R+, which is left-continuous and
non increasing. For any nonnegative random variable Z, we define the quantile function QZ of Z by
QZ(u) = inf{t ≥ 0 : P(|Z| > t) ≤ u}.

Definition 22 Let µ be the probability distribution of a random variable X. If Q is an integrable
quantile function (see Definition 21), let Mon(Q,µ) be the set of functions g which are monotonic on
some open interval of R and null elsewhere and such that Q|g(X)| ≤ Q. Let Monc(Q,µ) be the closure

in L1(µ) of the set of functions which can be written as
∑L

ℓ=1 aℓfℓ, where
∑L

ℓ=1 |aℓ| ≤ 1 and fℓ belongs
to Mon(Q,µ).

Applying Theorem 2, we get

Corollary 23 Let Y0 be a real-valued random variable with law PY0
, and Yi = Y0 ◦ θi. Let Xi =

f(Yi) − E(f(Yi)) where f belongs to Monc(Q,PY0
) with Q2L(Q)/L(L(Q))) integrable. Assume in

addition that
∑

k≥3

1

k(log log k)

∫ αY(k)

0

Q2(u)du < ∞ . (47)

Then (4) is satisfied and consequently, the conclusions of Theorem 1 hold for (Xk)k∈Z.

To prove that (47) implies (4), it suffices to notice that

‖E0(Xk)‖22 = E(XkE0(Xk)) ≤
∫ αY(k)

0

Q2(u)du

(see the proof of (4.17) in Merlevède and Rio [20] for the last inequality).

The definition 22 describes spaces similar to weak Lp where we require a monotonicity condition
plus a uniform bound on the tails of the functions. Let us introduce in the same spirit Lp-like spaces.

Definition 24 If µ is a probability measure on R and p ∈ [2,∞), M ∈ (0,∞), let Monp(M,µ) denote
the set of functions f : R → R which are monotonic on some interval and null elsewhere and such that
µ(|f |p) ≤ Mp. Let Moncp(M,µ) be the closure in Lp(µ) of the set of functions which can be written as∑L

ℓ=1 aℓfℓ, where
∑L

ℓ=1 |aℓ| ≤ 1 and fℓ ∈ Monp(M,µ).

Let Xi = f(Yi)− E(f(Yi)), where f belongs to Monc2+δ(M,PY0
) for some δ > 0. If

∑

k≥3

(αY(k))δ/(2+δ)

k(log log k)
< ∞ ,
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then Corollary 23 applies.

Application to functions of Markov chains associated to intermittent maps.

For γ in ]0, 1[, we consider the intermittent map Tγ from [0, 1] to [0, 1], which is a modification of
the Pomeau-Manneville map [24]:

Tγ(x) =

{
x(1 + 2γxγ) if x ∈ [0, 1/2[

2x− 1 if x ∈ [1/2, 1] .

Recall that Tγ is ergodic and that there exists a unique Tγ-invariant probability measure νγ on [0, 1],
which is absolutely continuous with respect to the Lebesgue measure. We denote by Lγ the Perron-
Frobenius operator of Tγ with respect to νγ . Recall that for any bounded measurable functions f and
g,

νγ(f · g ◦ Tγ) = νγ(Lγ(f)g) .

Let (Yi)i≥0 be a Markov chain with transition Kernel Lγ and invariant measure νγ .

Corollary 25 Let γ ∈ (0, 1) and (Yi)i≥1 be a stationary Markov chain with transition kernel Lγ and
invariant measure νγ . Let Q be a quantile function such that

∫ 1

0

L(Q(u))

L(L(Q(u))
Q2(u)du < ∞ . (48)

Let Xi = f(Yi)− νγ(f) where f belongs to Monc(Q, νγ). Then (4) is satisfied and the conclusions of
Theorem 1 hold for (Xk)k∈Z.

Remark 26 Notice that, by standard arguments on quantile functions, (48) is equivalent to the fol-
lowing condition: ∫ ∞

0

xL(x)

L(L(x))
Q−1(x)dx < ∞ ,

where Q−1 is the generalized inverse of Q.

Proof. To prove this corollary, it suffices to see that (48) implies (47). For this purpose, we first
notice that (47) can be rewritten in the following equivalent way (see Rio [25]):

∫ 1

0

L(α−1
Y

(u))

L(L(α−1
Y

(u)))
Q2(u)du < ∞ ,

where α−1
Y

(x) = min{q ∈ N : αY(q) ≤ x}. Now, according to Proposition 1.17 in Dedecker et al.
[10], there exists a positive constant C such that α−1

Y
(u) ≤ Cu−γ/(1−γ). Therefore, for any η ∈]0, 1/2[,

there exists a constant c depending on γ, C and η such that

∫ 1

0

L(α−1
Y

(u))

L(L(α−1
Y

(u)))
Q2(u)du ≤ c

∫ 1

0

L(u−η)

L(L(u−η))
Q2(u)du

≤ c

∫ 1

0

L(Q(u))

L(L(Q(u))
Q2(u)du+ c

∫ 1

0

L(u−η)

L(L(u−η))
u−2ηdu ,

which is finite under (47). �

In particular, if f is with bounded variation and γ < 1, we infer from Corollary 25 that the
conclusions of Theorem 1 hold for (Xk)k∈Z. Note also that (48) is satisfied if Q is such that Q(u) ≤
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Cu−1/2(log(u−1))−1(log log(u−1))−b for u small enough and b > 1/2. Therefore, since the density hνγ

of νγ is such that hνγ (x) ≤ Cx−γ on (0, 1], one can easily prove that if f is positive and non increasing
on (0, 1), with

f(x) ≤ C

x(1−γ)/2| log(x)|(log | log(x)|)b near 0 for some b > 1/2,

then (48) holds.

4.5 Application to a class of Markov chains

We shall point out next some consequences of Theorem 6 in terms of stationary Markov chains
characteristics. Let T be a regular transition probability on the measurable space (S,S), leaving
invariant a probability µ on (S,S). We also denote by T the Markov operator induced on L2(µ) via

Tg(x) =

∫

S

g(y)T (x, dy)

and we assume that it is ergodic (i.e. Tf = f µ a.e. for f ≥ 0 implies f is constant µ a.e.). Let
(ξn)n∈Z be the (stationary) canonical Markov chain with state space (S,S) associated with T , defined
on the canonical space (Ω,A,P) = (SZ,S⊗Z,P) (the law of ξ0 under P is µ). Denote by θ the shift on
Ω. Denote by Fn = σ(ξj ; j ≤ n).

Corollary 27 Let (ξn)n∈Z be a stationary Markov chain. Let h ∈ L2(S, µ) centered and define Xk =
h(ξk). Let t ∈ (0, 2π)\{π} be such that e−it is not in the spectrum of T , and e−2it is not an eigenvalue
of T . Then the conclusions of Theorem 6 hold for (Xk)k∈Z.

Remark 28 In Corollary 27 we do not assume the regularity condition ‖T nh‖2,µ → 0. The spectral
density might not exist.

Proof of Corollary 27. By assumption, there exists g ∈ L2(S, µ) such that h = g−eitTg. Therefore,

E0(Sn(t)) =

n∑

k=1

E0(e
itkg(ξk)− eit(k+1)g(ξk+1)) = eitE0(g(ξ1))− eit(n+1)

E0(g(ξn+1)) ,

showing that condition (8) is satisfied. Hence, for t ∈ (0, 2π)\{π} such that e−2it is not an eigenvalue
of θ (the shift on Ω), the proposition will follow from Theorem 6. To end the proof we notice that if
e−2it is an eigenvalue for θ, it is an eigenvalue for T , see e.g. Proposition 2.3 of Cuny [6] (notice that
the proof there extends easily to L2) �

We give now a consequence of Corollary 27 for reversible Markov chains. This follows from the
fact that the spectrum of T is real and lies in [−1, 1].

Corollary 29 Let (ξn)n∈Z be a stationary and reversible Markov chain (T = T ∗). Let h ∈ L2(S, µ)
centered and define Xk = h(ξk). Then the conclusion of Theorem 6 holds for every t ∈ (0, 2π)\{π}.

The (independent) Metropolis Hastings Algorithm leads to a Markov chain with transition function

T (x,A) = p(x)δx(A) + (1 − p(x))ν(A) ,

where δx denotes the Dirac measure at point x, ν is a probability measure on S and p : S → [0, 1] is a
measurable function for which θ =

∫
S

1
1−p(x)ν(dx) < ∞. Then there is a unique invariant distribution

µ(dx) =
1

θ(1− p(x))
ν (dx)

and the associated stationary Markov chain (ξi)i is reversible and ergodic. Hence Corollary 29 applies
to this example.
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5 Appendix

5.1 Facts from ergodic theory

We first recall the following consequence of the Dunford-Schwartz ergodic theorem, see sections VIII.5
and VIII.6 of [14].

Proposition 30 Let (Ω,A,P) be a probability space and θ be a measure-preserving transformation on
Ω. Let s ∈ R. For every X ∈ L1(Ω,A,P), there exists πs(X) ∈ L1(Ω,A,P) such that

1

n

n−1∑

k=0

eiksX ◦ θk −→
n→∞

πs(X) P-a.s. (49)

and in L1(Ω,A,P). Moreover, πs(X) ◦ θ = e−isπs(X) P-a.s.

Remark 31 It follows from the Wiener-Wintner theorem that the set of measure 1 in (49) may be
chosen independently of s, but we shall not need that refinement.

Proof. Define an operator Vs on L1(Ω,A,P), by Vs(X) = eisX ◦ θ. Then, Vs is a contraction of L1

which also contracts the L∞ norm. Hence we may apply [14, Theorem 6 p. 675], to obtain the almost
sure convergence. The L1 convergence follows from [14, Corollary 5 p. 664] (see also the proof of the
next lemma). �

We also give the following lemma, that should be well-known. We give a proof for completeness.

Lemma 32 Let (Ω,A,P) be a probability space and θ be a measure-preserving transformation on Ω.
Let t0 ∈ R be fixed. If there is no non trivial Y ∈ L2(Ω,A,P), such that Y ◦ θ = e−it0Y P-a.s., then,
for every X ∈ L1(Ω,F ,P) πt0(X) = 0 P-a.s. Furthermore, when L2(Ω,A,P) is separable, there exists
a countable (at most) set S ⊂ R such that for every t ∈ R\S and every X ∈ L1(Ω,A,P), πt(X) = 0
P-a.s.

Proof. Define Vt0 as above. Since supn≥1
1
n‖

∑n−1
k=0 V

k
t0‖L1→L1 < ∞, by the Banach-principle, the set

Y := {X ∈ L1(Ω,A,P) : ‖ 1
n

∑n−1
k=0 e

ikt0X ◦ θk‖1 → 0} is closed in L1. Now, by von Neumann’s mean
ergodic theorem

L
2(Ω,A,P) = (I − Vt0)L

2(Ω,A,P)⊕ FixVt0 ,

where FixVt0 stands for the fixed points of Vt0 in L2(Ω,A,P) and the closure is in norm ‖ · ‖2. By
assumption, Vt0 has no non trivial fixed point. Obviously, Y contains (I − Vt0)L

2(Ω,A,P), hence
Y = L1(Ω,A,P).
Assume now that L2(Ω,A,P) is separable. Define an operator on L2(Ω,A,P) by UX = X ◦ θ. It
is well known that the eigenspaces of U corresponding to different eigenvalues are orthogonal. By
separability there are at most countably many eigenvalues for U , hence the result. �

5.2 Technical approximation results

Lemma 33 Assume that X0 is almost surely bounded by M . For any integer s ≥ 1

(2π)−1

∫ 2π

0

E( max
1≤ℓ≤m

|Sℓ(t)−Mℓ(t)|2)dt ≤ 12
(
m‖E−s(X0)‖2 + s2M2

)
,

where Mn(t) =
∑n

k=1 Dk(t) and Dk(t) is defined by (11).
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The proof of this lemma follows from the following result (which is of independent interest) by
selecting aj = 1 for 0 ≤ j ≤ s− 1 and aj = 0 for any j ≥ s.

Lemma 34 Assume that X0 is almost surely bounded by M . Let (an) be a sequence of positive
numbers nonincreasing smaller than 1 with

∑∞
j=1 aj < ∞ and a0 = 1. Then

(2π)−1

∫ 2π

0

E( max
1≤ℓ≤m

|Sℓ(t)−Mℓ(t)|2)dt ≤ 12
(
m

∞∑

j=1

(aj−1 − aj)‖E−j(X0)‖2 +M2
( ∞∑

j=0

aj
)2)

.

Proof of Lemma 34.

Step 1: Martingale decomposition.
We start with a traditional martingale decomposition (see for instance Section 4.1 in Merlevède,

Peligrad and Utev [19]). Let t ∈ [0, 2π) and Xk(t) = eiktXk.

θk(t) = Xk(t) +

∞∑

j=1

ajEk(Xk+j(t)); θ′k(t) =
∞∑

j=1

aj Ek(Xk+j(t))

and

Ek(θk+1(t))− θk(t) = −Xk(t) +

∞∑

j=1

(aj−1 − aj)Ek(Xk+j(t)) .

Finally, denote by

D′
k+1(t) = θk+1(t)− Ek(θk+1)(t) =

∞∑

j=0

ajPk+1(Xk+j+1(t)) ; M ′
n(t) =

n∑

k=1

D′
k(t) .

Then, (D′
k(t))k∈Z is a sequence of martingale differences with respect to the stationary filtration

(Fj)j∈Z. Note

Xk(t) = D′
k+1(t) + θk(t)− θk+1(t) +

∞∑

j=1

(aj−1 − aj)Ek(Xk+j(t)) .

Taking into account the definition of θ
′

k(t) we can also write

Xk(t) = D′
k(t) + θ′k−1(t)− θ′k(t) +

∞∑

j=1

(aj−1 − aj)Ek−1(Xk+j−1(t)) .

It follows that for almost all t ∈ [0, 2π),

Sℓ(t)−Mℓ(t) =
ℓ∑

k=1

∞∑

j=0

(aj − 1)Pk(Xk+j(t)) +
ℓ−1∑

k=0

∞∑

j=1

(aj−1 − aj)Ek(Xk+j(t)) + θ′0(t)− θ′ℓ(t)

= I + II + θ′0(t)− θ′m(t) . (50)

Step 2: The estimation of
∫ 2π

0 Emax1≤ℓ≤m |Sℓ(t)−Mℓ(t)|2dt.
We shall estimate separately this maximum for all the terms in the decomposition (50).
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By the Doob-Kolmogorov martingale maximal inequality, stationarity, Fubini theorem and orthog-
onality of eitk the first term will be (remind a0 = 1) dominated by

(2π)−1

∫ 2π

0

E max
1≤ℓ≤m

|I|2dt ≤ (2π)−1m

∫ 2π

0

E|D′
0(t)−D0(t)|2dt

= (2π)−1m

∫ 2π

0

E
∣∣

∞∑

j=0

(aj − 1)P0(Xj(t))
∣∣2dt

= m

∞∑

j=1

(aj − 1)2‖P−jX0|‖2 .

By simple computations,

∞∑

j=1

(aj − 1)2‖P−jX0|‖2 =
∞∑

j=1

(aj − 1)2
(
‖E−j(X0)‖2 − ‖E−j−1(X0)‖2

)

= (a1 − 1)2‖E−1(X0)‖2 +
∞∑

j=2

[(aj − 1)2 − (aj−1 − 1)2]‖E−j(X0)‖2

=

∞∑

j=1

[(aj − 1)2 − (aj−1 − 1)2]‖E−j(X0)‖2 ≤ 2

∞∑

j=1

(aj−1 − aj)‖E−j(X0)‖2 .

So

(2π)−1

∫ 2π

0

E max
1≤ℓ≤m

|I|2dt ≤ 2m

∞∑

j=1

(aj−1 − aj)‖E−j(X0)‖2 . (51)

By Cauchy Schwarz inequality the second term is estimated as follows.

∫ 2π

0

E max
1≤ℓ≤m

|II|2dt ≤
∞∑

ℓ=1

(aℓ−1 − aℓ)
∞∑

j=1

(aj−1 − aj)

∫ 2π

0

E max
1≤ℓ≤m

∣∣
ℓ−1∑

k=0

ei(k+j)t
Ek(Xk+j)

∣∣2dt .

By Hunt and Young maximal inequality [18],

(2π)−1

∫ 2π

0

E max
1≤ℓ≤m

|II|2dt ≤
∞∑

j=1

(aj−1 − aj)
m−1∑

k=0

‖E0(Xj)‖2

= m
∞∑

j=1

(aj−1 − aj)‖E0(Xj)‖2 . (52)

The last terms are estimated in a trivial way as follows:

(2π)−1

∫ 2π

0

E max
1≤ℓ≤m

∣∣θ′0(t)− θ′k(t)
∣∣2dt = 4M2

( ∞∑

j=0

aj
)2

. (53)

Gathering (51), (52) and (53), the lemma follows. �

5.3 An algebraic inequality

Lemma 35 For any positive reals a and b and any real S ≥ 1,

(a+ b)S ≤ 2SbS + aS(1 + 2S+1b/a) . (54)
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Proof. To prove the above inequality we first notice that if a ≤ b, the inequality is trivial. Let then
assume that b < a. The Newton binomial formula gives

(a+ b)S ≤ aS(1 + b/a)[S]+1 ≤ aS
(
1 + b/a

[S]+1∑

k=1

Ck
[S]+1(b/a)

k−1
)
≤ aS(1 + 2S+1b/a) .

�

References
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