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Law of the iterated logarithm for the periodogram

Introduction

The periodogram, introduced as a tool by Schuster in 1898, plays an essential role in the estimation of the spectral density of a stationary time series (X j ) j∈Z of centered random variables with finite second moment. The finite Fourier transform is defined as

S n (t) = n k=1 e ikt X k , (1) 
where i = √ -1 is the imaginary unit, and the periodogram as

I n (t) = 1 2πn S n (t) 2 t ∈ [0, 2π] . (2) 
It is well-known since Wiener and Wintner [START_REF] Wiener | On the ergodic dynamics of almost periodic systems[END_REF] that for any stationary sequence (X j ) j∈Z in L1 (namely E|X 0 | < ∞) there is a set Ω ′ of probability one such that for any t ∈ [0, 2π] and any ω ∈ Ω ′ , S n (t)/n converges. To provide the speed of this convergence many authors (see Peligrad and Wu [START_REF] Peligrad | Central limit theorem for Fourier transforms of stationary processes[END_REF] and the references therein) established a central limit theorem for the real and imaginary parts of S n (t)/ √ n under various assumptions. Recently, Peligrad and Wu [START_REF] Peligrad | Central limit theorem for Fourier transforms of stationary processes[END_REF] showed that, under a very mild regularity condition and finite second moment, 1 √ n [Re(S n (t)), Im(S n (t))] are asymptotically independent normal random variables with mean 0 and variance πf (t) for almost all t (here f is the spectral density of (X j ) j∈Z ). The central limit theorem implies that I n (t)/ log log n converges to 0 in probability. An interesting and natural problem, that apparently has never been studied in depth before, is the law of the iterated logarithm, namely to identify in the almost sure sense, lim sup n→∞ I n (t)/ log log n for almost all t, or for a t fixed. In this paper, we study both these problems. We provide mild sufficient conditions on the stationary sequence that are sufficient to have lim sup n→∞ I n (t)/ log log n = f (t) almost surely. These results shed additional light on the importance of the periodogram in approximating the spectral density f (t) of a stationary process. The techniques are based on martingale approximation, rooted in Gordin [START_REF] Gordin | The central limit theorem for stationary processes[END_REF] and Rootzén [START_REF] Rootzén | Gordin's theorem and the periodogram[END_REF] and developed by Gordin and Lifshitz [START_REF] Gordin | A remark about a Markov process with normal transition operator[END_REF] and Woodroofe [START_REF] Woodroofe | A central limit theorem for functions of a Markov chain with applications to shifts[END_REF], combined with tools from ergodic theory and harmonic analysis. Various applications are presented to linear processes and their functionals, iterated random functions, mixing structures and Markov chains.

We would like to point out that our results are formulated under the assumption that the underlying stationary sequence is assumed to be adapted to an increasing (stationary) filtration. Results in the non adapted case could also be obtained. We shall also assume that our stationary sequence is constructed via a measure-preserving transformation that is invertible. Since our proofs are based on martingale approximation, we could also obtain similar results when the measure-preserving transformation is assumed to be non invertible. In this situation, the conditions should be expressed with the help of the Perron-Frobenius operator associated to the transformation (see for instance [START_REF] Cuny | Strong invariance principles with rate for "reverse" martingales and applications[END_REF]). In our paper we shall not pursue these last two cases.

Our paper is organized as follows. Section 2 contains the presentation of the results. Section 3 is devoted to the proofs. Applications are presented in Section 4.

Main results

Let (Ω, A, P) be a probability space. Assume, without loss of generality, that A is a countably generated σ-field, and let θ : Ω → Ω be a bijective bi-measurable transformation preserving P. Let F 0 be a σ-algebra such that F 0 ⊆ θ -1 (F 0 ). Let (F n ) n∈Z be the non-decreasing filtration given by F n = θ -n (F 0 ), and let F -∞ = k∈Z F k . All along the paper X 0 is a centered real random variable in L 2 which is F 0 -measurable. We then define a stationary sequence (X n , n ∈ Z) by

X n = X 0 • θ n . We denote E k (•) = E(•|F k ) and P k (•) = E k (•) -E k-1 (•).
Throughout the paper, we say that a complex number z is an eigenvalue of θ if there exists h = 0 in L 2 (P) such that h • θ = zh almost everywhere. We say that A ∈ A is invariant if θ -1 (A) = A. If for any invariant set A, P(A) = 0 or 1, we say that θ is ergodic with respect to P, or equivalently that the stationary sequence is ergodic.

Relevant to our results is the notion of spectral distribution function induced by the covariances. By Herglotz's Theorem (see e.g. Brockwell and Davis [START_REF] Brockwell | Time series: theory and methods[END_REF]), there exists a non-decreasing function G (the spectral distribution function) on [0, 2π] such that, for all j ∈ Z,

cov(X 0 , X j ) = 2π 0 exp(ijθ)dG(θ), j ∈ Z .
If G is absolutely continuous with respect to the normalized Lebesgue measure λ on [0, 2π], then the Radon-Nikodym derivative f of G with respect to the Lebesgue measure is called the spectral density and we have cov

(X 0 , X j ) = 2π 0 exp(ijθ)f (θ)dθ, j ∈ Z .
Our first theorem points out a projective condition which assures the law of the iterated logarithm for almost all frequencies.

All along the paper, denote

Y k (t) = cos(kt)X k , sin(kt)X k ′ ,
where u ′ stands for the transposed vector of u.

Theorem 1 Assume that θ is ergodic and that

k≥2 (log k) k E 0 (X k ) 2 2 < ∞ . (3) 
Then the spectral density, say f , of (X k , k ∈ Z) exists and for almost all t ∈ [0, 2π), the sequence n k=1 Y k (t)/ √ 2n log log n, n ≥ 3 is P-a.s. bounded and has the ball {x ∈ R 2 : x ′ x ≤ πf (t)} as its set of limit points. In particular, for almost all t ∈ [0, 2π), the following law of the iterated logarithm holds

lim sup n→∞ I n (t) log log n = f (t) P-a.s.
Note that condition (3) is satisfied by martingale differences. It is a very mild condition involving only a logarithmic rate of convergence to 0 of E 0 (X k ) 2 .

If we assume a more restrictive moment condition, (3) can be weakened. Define the function L(x) = log(e + |x|).

Theorem 2 Assume that θ is ergodic. Assume in addition that

E X 2 0 L(X 0 ) L(L(X 0 )) < ∞ ,
and that

k≥3 E 0 (X k ) 2 2 k(log log k) < ∞ . ( 4 
)
Then the conclusions of Theorem 1 hold.

Note that condition (3), as well as condition (4), implies the following regularity condition:

E(X 0 |F -∞ ) = 0 P-a.s. (5) 
We point out that this regularity condition implies that the process (X k ) k∈Z is purely non deterministic. Hence by a result of Szegö (see for instance [START_REF] Bingham | Szegö's theorem and its probabilistic descendants[END_REF]Theorem 3]) if [START_REF] Carleson | On convergence and growth of partial sums of Fourier series[END_REF] holds, the spectral density f of (X k ) k∈Z exists and if X 0 is non degenerate,

2π 0 log f (t) dt > -∞ ;
in particular, f cannot vanish on a set of positive measure. We mention also that under (5), Peligrad and Wu [START_REF] Peligrad | Central limit theorem for Fourier transforms of stationary processes[END_REF] established that

lim n→∞ E|S n (t)| 2 n = 2πf (t) for almost all t ∈ [0, 2π) (6) 
(see their Lemma 4.2). Both theorems above hold for almost all frequencies. It is possible that on a set of measure 0 the behavior be quite different. This fact is suggested by a result of Rosenblatt [START_REF] Rosenblatt | Limit theorems for Fourier transforms of functionals of Gaussian sequences[END_REF] who established, on a set of measure 0, non-normal attraction for the Fourier transform under a different normalization than √ n.

We give next conditions imposed to the stationary sequence which help to identify the frequencies for which the LIL holds. As we shall see, the next result is well adapted for linear processes generated by iid (independent identically distributed) sequences.

Theorem 3 Assume that (5) holds and that

n≥0 P 0 (X n ) -P 0 (X n+1 ) 2 < ∞ . ( 7 
)
Then the spectral density f (t) of (X k , k ∈ Z) is continuous on (0, 2π), and the convergence (6) holds for all t ∈ (0, 2π). Moreover if θ is ergodic, the conclusions of Theorem 1 hold for all t ∈ (0, 2π)\{π} such that e -2it is not an eigenvalue of θ.

Remark 4

The conditions of this theorem do not imply that the spectral density is continuous at 0. This is easy to see by considering the time series X k = j≥0 j -3/4 ε k-j where (ε k ) k∈Z is a sequence of iid centered real random variables in L 2 . For this case all the conditions of Theorem 3 are satisfied (see Section 4.1) and var( n k=1 X k )/n converges to ∞. This shows that the spectral density is not continuous at 0 since otherwise we would have Var( n k=1 X k )/n → 2πf (0), which is not the case.

We would like to mention that Condition [START_REF] Cuny | Pointwise ergodic theorems with rate with applications to limit theorems for stationary processes[END_REF] above was used by Wu [START_REF] Wu | Fourier transforms of stationary processes[END_REF] in the context of the CLT. We also infer from our proof and Remark 10, that if ( 5) and ( 7) hold, and θ is ergodic, then lim sup n→∞ I n (π)/ log log n = 2f (π) P-a.s. Moreover, it follows from a recent result of Cuny [START_REF] Cuny | ASIP for martingales in 2-smooth Banach spaces[END_REF] that if θ is ergodic, (5) holds and ( 7) is reinforced to n≥0 P 0 (X n ) 2 < ∞, then lim sup n→∞ I n (0)/ log log n = 2f (0) P-a.s.

We say that θ is weakly-mixing, if for all A, B ∈ A,

lim n→∞ 1 n n-1 k=0 |P(θ -k A ∩ B) -P(A)P(B)| = 0 .
It is well-known (see e.g. [START_REF] Petersen | Ergodic theory[END_REF]Theorem 6.1]) that saying that θ is weakly mixing is equivalent to saying that θ is ergodic and its only eigenvalue is 1. Let us also mention that when F -∞ is trivial then θ is weakly mixing (see section 2 of [START_REF] Petersen | Ergodic theory[END_REF]).

As an immediate corollary to Theorem 3 we obtain the following LIL for all frequencies.

Corollary 5 Assume that θ is weakly mixing and that (5) and ( 7) hold. Then the conclusion of Theorem 3 holds for all t ∈ (0, 2π)\{π}.

Next theorem involves a projective condition in the spirit of Rootzén [START_REF] Rootzén | Gordin's theorem and the periodogram[END_REF]. It is very useful in order to treat several classes of Markov chains including reversible Markov chains.

Theorem 6 Assume that θ is ergodic. Let t ∈ (0, 2π)\{π} be such that e -2it is not an eigenvalue of θ. Assume in addition that sup

n E 0 (S n (t)) 2 < ∞ . (8) 
Then

lim n→∞ E|S n (t)| 2 n = σ 2 t (say) (9) 
and n k=1 Y k (t)/ √ 2n log log n, n ≥ 3 is P-a.s. bounded and has the ball {x ∈ R 2 : x ′ x ≤ σ 2 t /2} as its set of limit points. In particular,

lim sup n→∞ I n (t) log log n = σ 2 t 2π P-a.s.
Remark 7 Note that in Theorem 6 we do not require the sequence to be regular, i.e. it may happen that E(X 0 |F -n ) does not converge to 0 in L 2 . The spectral density might not exist.

Proofs

Proof of Theorem 1. The proof is based on martingale approximation. By Lemma 4.1 in Peligrad and Wu [START_REF] Peligrad | Central limit theorem for Fourier transforms of stationary processes[END_REF], since X 0 ∈ L 2 and (5) holds under (3), we know that for almost all t ∈ [0, 2π), the following limit exists in L 2 (P) and P-a.s.

D 0 (t) = lim n→∞ n k=0 e ikt P 0 (X k ) . (10) 
Hence setting for all ℓ ∈ Z,

D ℓ (t) = e iℓt D 0 (t) • θ ℓ , (11) 
we get that for almost all t ∈ (0, 2π), (D ℓ (t)) ℓ∈Z forms a sequence of martingale differences in L 2 (P) with respect to (F ℓ ) ℓ∈Z . As we shall see, the conclusion of the theorem will then follow from Propositions 8 and 11 below.

Proposition 8 Assume that θ is ergodic. Let t ∈ (0, 2π)\{π} and assume that e -2it is not an eigenvalue of θ. Let D be a square integrable complex-valued random variable adapted to F 0 and such that E -1 (D) = 0 a.s. For any

k ∈ Z, let d k (t) = Re(e ikt D • θ k ), Im(e ikt D • θ k ) ′ .
Then the sequence n k=1 d k (t)/ √ 2n log log n, n ≥ 3 is P-a.s. bounded and has the ball {x ∈ R 2 : x ′ • x ≤ E(|D| 2 )/2} as its set of limit points.

Remark 9 Since we assume A to be countably generated, then L 2 (Ω, A, P) is separable and (see Lemma 32) θ can admit at most countably many eigenvalues. Hence, Proposition 8 applies to almost all t ∈ [0, 2π).

Remark 10 Let t = 0 or t = π, and assume that θ is ergodic. Then if D is a square integrable real-valued random variable adapted to F 0 and such that E -1 (D) = 0 a.s., the following result holds:

lim sup n→∞ | n k=1 cos(kt)D • θ k | 2 /(2n log log n) = E(D 2 )
a.s. For t = 0, it is the usual law of the iterated logarithm for stationary ergodic martingale differences sequences. For t = π, it follows from a direct application of [START_REF] Heyde | Invariance principles for the paw of the iterated logarithm for martingales and processes with stationary increments[END_REF]Theorem 1].

Proposition 11 Assume that condition (3) holds. Then, for almost all t ∈ [0, 2π),

|S n (t) -M n (t)| √ n log log n → 0 P-a.s. ( 12 
)
where M n (t) = n k=1 D k (t) and D k (t) is defined by [START_REF] Dedecker | On the functional central limit theorem for stationary processes[END_REF].

To end the proof of Theorem 1, we proceed as follows. By Proposition 11, it suffices to prove that the conclusion of Theorem 1 holds replacing

Y k (t) with d k (t) = Re(D k (t)), Im(D k (t))
′ . With this aim, it suffices to apply Proposition 8 together with Remark 9 and to notice the following fact: according to Lemma 4.2 in Peligrad and Wu [START_REF] Peligrad | Central limit theorem for Fourier transforms of stationary processes[END_REF], for almost all t ∈ [0, 2π),

E(|D 0 (t)| 2 ) 2 = πf (t) .
It remains to prove the above propositions.

It is convenient to work on the product space. Let ( Ω,

F , P) = ([0, 2π] × Ω, B ⊗ A, λ ⊗ P)
where λ is the normalized Lebesgue measure on [0, 2π], and B be the Borel σ-algebra on [0, 2π]. Let t ∈ [0, 2π) be a real number, fixed for the moment. Clearly, the transformation θ = θ t (we omit the dependence with respect to t when t is fixed) given by

θ : (u, ω) → (u + t modulo 2π, θ(ω)) , (13) 
is invertible, bi-measurable and preserves P.

Consider also the filtration ( F n ) n∈Z given by F n := B ⊗ F n . Define a random variable X 0 on Ω by X 0 (u, ω) = e iu X 0 (ω) for every (u, ω) ∈ Ω, and for any n ∈ Z, X n = X 0 • θ n . Notice that ( X n ) n∈Z is a stationary sequence of complex random variables adapted to the non-decreasing filtration ( F n ). Moreover e iu e int X n (ω) = X n (u, ω).

Proof of Proposition 8. Let t ∈ [0, 2π) be fixed. Let D(u) = e iu D and D k = D • θ k . Let d k = Re( D k ), Im( D k ) ′ . Then d k (u) = cos u -sin u sin u cos u d k (t) .
Since the unit ball is invariant under rotations, the result will follow if we prove that for λ-a.e. u ∈ [0, 2π], the sequence

n k=1 d k (u)/ √ 2n log log n, n ≥ 3 has P-a.s. the ball {y ∈ R 2 : y ′ • y ≤ D 0 2
2 /2} as its set of limit points, or equivalently (by Fubini's Theorem), if the sequence

n k=1 d k / √ 2n log log n, n ≥ 3 has P-a.s. the ball {y ∈ R 2 : y ′ • y ≤ D 2
2 /2} as its set of limit points.

According to the almost sure analogue of the Cramér-Wold device (see Sections 5.1 and 5.2 in Philipp [START_REF] Philipp | A functional law of the iterated logarithm for empirical distribution functions of weakly dependent random variables[END_REF]), this will happen if we can prove that for any

x ∈ R 2 such that x ′ • x = 1, lim sup n→∞ n k=1 x ′ • d k √ 2n log log n = D 2 2 2 P -a.s. (14) 
To prove it we shall apply Corollary 2 in Heyde and Scott [START_REF] Heyde | Invariance principles for the paw of the iterated logarithm for martingales and processes with stationary increments[END_REF] to the stationary martingale differences

x ′ • d • θ k t .
We have to verify

1 n n k=1 (x ′ • d k ) 2 → D 2 2 2 P -a.s. ( 15 
)
In order to understand this convergence it is convenient to write

D = A + iB . Therefore if x = (a, b) ′ , (x ′ • d k ) 2 = (aRe( D k ) + bIm( D k )) 2 = (a cos(u + kt) + b sin(u + kt)) 2 (A 2 • θ k ) + (b cos(u + kt) -a sin(u + kt)) 2 (B 2 • θ k ) +2(a cos(u + kt) + b sin(u + kt))(b cos(u + kt) -a sin(u + kt))(A • θ k )(B • θ k ) .
By using basic trigonometric formulas, it follows that if

x = (a, b) ′ is such that a 2 + b 2 = 1, (x ′ • d k ) 2 = (A 2 + B 2 ) • θ k 2 + (a 2 -b 2 ) cos(2u + 2kt) 2 (A 2 -B 2 ) • θ k + ab sin(2u + 2kt)(A 2 -B 2 ) • θ k + ab(cos(2u + 2kt) + sin(2u + 2kt))(A • θ k )(B • θ k ) +(b 2 -a 2 ) sin(2u + 2kt))(A • θ k )(B • θ k ) .
By Lemma 32 applied with t 0 = 2t, we derive that, for any t ∈ (0, 2π)\{π} such that e -2it is not an eigenvalue of θ then, for all u,

lim n→∞ 1 n n k=1 (x ′ • d k (u)) 2 - a 2 + b 2 2 (A 2 + B 2 ) • θ k = 0 P -a.s. ( 16 
)
Also by the ergodic theorem for θ,

lim n→∞ 1 n n k=1 (A 2 + B 2 ) • θ k = E(|A| 2 + |B| 2 ) = D 2 2 P -a.s. ( 17 
)
Gathering ( 16) and ( 17), we get [START_REF] Gordin | The central limit theorem for stationary processes[END_REF]. This ends the proof of Proposition 8.

Proof of Proposition 11.

Let D 0 (u, •) = e iu k≥0 P 0 (e ikt X k ) = k≥0 P 0 ( X k ) which is defined for λ-a.e. t ∈ [0, 2π). Write S n = n k=1 X k , M n = n k=1 D 0 • θ k , and R n = S n -M n .
Denote by E the expectation with respect to P.

The next lemma follows from Corollary 4.2 in Cuny [START_REF] Cuny | Pointwise ergodic theorems with rate with applications to limit theorems for stationary processes[END_REF]. Notice that in [START_REF] Cuny | Pointwise ergodic theorems with rate with applications to limit theorems for stationary processes[END_REF], complex-valued variables are allowed.

Lemma 12 Assume that n≥1 log n E(| R n | 2 ) n 2 < ∞ . ( 18 
) Then R n = o( n log log n) P-a.s. (19) 
To prove that ( 12) holds, it suffices to prove that for λ-a.e. t ∈ [0, 2π), [START_REF] Merlevède | Recent advances in invariance principles for stationary sequences[END_REF] holds. According to Lemma 12 it suffices then to prove that ( 18) is satisfied for λ-a.e. t ∈ [0, 2π). To this end, we first prove that

2π 0 E(| R n | 2 )dt = 2 n k=1 E 0 (X k ) 2 2 . (20) 
Indeed, for almost all t ∈ [0, 2π),

R n (u, ω) = e iu n k=1 e ikt E 0 (X k )(ω) + e iu k≥n+1 e ikt (E 0 (X k )(ω) -E n (X k )(ω)) . (21) 
Whenever the R.H.S. below converges, the following identity holds:

2π 0 | R n (u, ω)| 2 dt = n k=1 (E 0 (X k )) 2 (ω) + k≥n+1 (E 0 (X k )(ω) -E n (X k )(ω)) 2 .
Then, using that

E((E 0 (X k ) -E n (X k )) 2 ) = E 0 (X k-n ) 2 2 -E 0 (X k ) 2 2
, and the fact that under (3), ( 5) holds, we obtain [START_REF] Merlevède | Strong approximation of partial sums under dependence conditions with application to dynamical systems[END_REF]. Using [START_REF] Merlevède | Strong approximation of partial sums under dependence conditions with application to dynamical systems[END_REF], we see that under (3), for λ-a.e. t ∈ [0, 2π), condition [START_REF] Hunt | A weighted norm inequality for Fourier series[END_REF] holds. This ends the proof of ( 12) and then of the proposition.

Proof of Theorem 2. According to the proof of Theorem 1, it suffices to prove that under the conditions of Theorem 2, the almost sure convergence [START_REF] Diaconis | Iterated random functions[END_REF] holds for almost all t ∈ [0, 2π). With this aim, we shall use truncation arguments. Given γ > 0 and r ≥ 0, we set for any integer ℓ,

X ℓ,r := X ℓ 1 {|X ℓ |≤2 γr } -E(X ℓ 1 {|X ℓ |≤2 γr } ) and D ℓ,r (t) := e iℓt k≥0 e ikt P 0 (X k,r ) • θ ℓ .
We know that for almost all t ∈ [0, 2π), D ℓ,r (t) is defined P-a.s. and in L 2 (P).

We define non stationary sequences (X ℓ ) ℓ≥1 and (D ℓ (t)) ℓ≥1 as follows: for every r ∈ N and every ℓ ∈ {2 r , ..., 2 r+1 -1},

X ℓ := X ℓ,r , D ℓ (t) := D ℓ,r (t) . (22) 
Let also

X * ℓ = X ℓ -X ℓ and D * ℓ (t) = D ℓ (t) -D ℓ (t) . ( 23 
)
Lemma 13 Assume that E

X 2 0 L(X0) L(L(X0)) < ∞. Then, for a.e. t ∈ [0, 2π), n≥3 X * n √ n log log n e int converges P-a.s. ( 24 
)
In particular, by Kronecker's lemma, for a.e. t ∈ [0, 2π),

n k=1 e ikt X * k √ n log log n → 0 P-a.s.
Proof. By Carleson's theorem [START_REF] Carleson | On convergence and growth of partial sums of Fourier series[END_REF], in order to establish [START_REF] Pomeau | Intermittent transition to turbulence in dissipative dynamical systems[END_REF] it suffices to prove that

n≥3 (X * n ) 2 n log log n < ∞ P-a.s. This is true because n≥4 E((X * n ) 2 ) n log log n = r≥2 2 r+1 -1 ℓ=2 r E((X ℓ -X ℓ,r ) 2 ) ℓ log log ℓ ≤ 4 r≥2 E(X 2 0 1 {|X0|>2 γr } ) 2 r+1 -1 ℓ=2 r 1 ℓ log log ℓ ≪ r≥2 1 log r E(X 2 0 1 {|X0|>2 γr } ) ≪ E X 2 0 L(X 0 ) L(L(X 0 )) < ∞ , (25) 
where we used Fubini in the last step and the notation a ≪ b means there is a universal constant C > 0 such that a < Cb.

Lemma 14

Assume that E

X 2 0 L(X0) L(L(X0)) < ∞. Then, for a.e. t ∈ [0, 2π), n k=1 D * k (t) √ n log log n → 0 P-a.s.
Proof. For almost all t ∈ [0, 2π), (D * ℓ (t)) ℓ≥1 is a sequence of martingale differences in L 2 (P). Hence using the Doob-Kolmogorov maximal inequality, we infer that the lemma will be established provided that

k≥3 2π 0 D * k (t) 2 2 k log log k dt < ∞ . ( 26 
)
To prove it we use simple algebra and the projection's orthogonality, as follows:

k≥4 2π 0 D * k (t) 2 2 k log log k dt = r≥2 2 r+1 -1 ℓ=2 r 2π 0 D ℓ (t) -D ℓ,r (t) 2 2 ℓ log log ℓ dt ≤ r≥2 1 2 r log r 2 r+1 -1 ℓ=2 r 2π 0 D ℓ (t) -D ℓ (t) 2 2 ℓ log log ℓ dt ≤ 2π r≥2 1 2 r log r 2 r+1 -1 ℓ=2 r k≥0 P 0 (X k -X k,r ) • θ ℓ 2 2 = 2π r≥2 1 2 r log r 2 r+1 -1 ℓ=2 r k≥0 P -k (X 0 1 {|X0|>2 γr } ) • θ ℓ+k 2 2 = 2π r≥2 1 log r E X 0 1 {|X0|>2 γr } -E(X 0 1 {|X0|>2 γr } |F -∞ ) 2 ≤ 2π r≥2 1 log r X 0 1 {|X0|>2 γr } 2 2 .
Next, using Fubini's theorem as done in ( 25), ( 26) follows.

From Lemmas 13 and 14, we then deduce that if E

X 2 0 L(X0) L(L(X0)) < ∞, then, for a.e. t ∈ [0, 2π), n k=1 e ikt X * k -D * k (t) √ n log log n → 0 P-a.s.
Therefore, to prove that the almost sure convergence [START_REF] Diaconis | Iterated random functions[END_REF] holds for almost all t ∈ [0, 2π) (and then the theorem) it suffices to prove that for almost all t ∈ [0, 2π),

|S n (t) -M n (t)| √ n log log n → 0 P-a.s. (27) 
where S n (t) = n j=1 e ijt X j and M n (t) = n j=1 D j (t) where the X j 's and D j (t)'s are defined in [START_REF] Petersen | Ergodic theory[END_REF]. Let R n (t) = S n (t) -M n (t) , and for any r ∈ N, let A r (t) := sup 0≤k≤2 r -1

|R k+2 r (t) -R 2 r -1 (t)| . Let N ∈ N * and let k ∈]1, 2 N ]. We first notice that A r (t) ≥ | 2 r+1 -1 ℓ=2 r e iℓt (X ℓ -D ℓ (t))|, so if K is the integer such that 2 K-1 ≤ k ≤ 2 K -1, then R k (t) ≤ K-1 r=0 A r (t) . Consequently since K ≤ N , sup 1≤k≤2 N R k (t) ≤ N -1 r=0 A r (t) .
Therefore, [START_REF] Rosenblatt | A central limit theorem and a strong mixing condition[END_REF] will follow if we can prove that for almost all t ∈ [0, 2π),

sup 0≤k≤2 r -1 |R k+2 r (t) -R 2 r -1 (t)| = o 2 r/2 • (log r) 1/2
P-a.s. , which will be true if we can prove that

r≥0 1 2 r log r 2π 0 E[ max 2 r ≤k≤2 r+1 -1 |R k (t) -R 2 r -1 (t)| 2 ]dt < ∞ . (28) 
Notice that for any integer k in [2 r , 2 r+1 -1],

R k (t) -R 2 r -1 (t) = e i(2 r -1)t k-2 r +1 ℓ=1 e iℓt X 0,r -D 0,r (t) • θ ℓ • θ 2 r -1 .
Therefore, by stationarity proving [START_REF] Rosenblatt | Limit theorems for Fourier transforms of functionals of Gaussian sequences[END_REF] amounts to prove that

r≥0 1 2 r log r 2π 0 E max 1≤k≤2 r k ℓ=1 (X ℓ,r -D ℓ,r (t)) 2 dt < ∞ , (29) 
where X ℓ,r (t) = e iℓt X ℓ,r . Using Lemma 33 given in the Appendix with M = 2 γr , we get that for any integer s > 1,

(2π) -1 2π 0 E max 1≤k≤2 r k ℓ=1 (X ℓ,r -D ℓ,r (t)) 2 dt ≤ 24 × 2 r E -s (X 0 ) 2 + 24 × 2 r X 0 1 |X0|>2 γr 2 + 12s 2 2 2γr .
To prove [START_REF] Schuster | On the investigation of hidden periodicities with application to a supposed 26 day period of meteorological phenomena[END_REF] and then to end the proof of the theorem, we select γ < 1/4 and use the above inequality with s = [2 γr ] + 1. Using Fubini's theorem as done in [START_REF] Rio | Théorie asymptotique des processus aléatoires faiblement dépendants[END_REF], we infer that (29) will be established provided that

r≥2 1 log r E -[2 γr ] (X 0 ) 2 2 < ∞ . (30) 
This convergence follows from condition (4) by using the fact ( E -n (X 0 ) 2 2 ) n≥1 is decreasing and by noticing that by the usual comparison between the series and the integrals, for any non-increasing and positive function h on R + and any positive γ,

n≥1 n -1 h(n γ ) < ∞ if and only if n≥1 n -1 h(n) < ∞ .
and that [START_REF] Wiener | On the ergodic dynamics of almost periodic systems[END_REF] 

is equivalent to n≥3 1 n(log log n) E -[n γ ] (X 0 ) 2 2 < ∞.
Proof of Theorem 3. We divide the proof of this theorem in two parts.

1. Proof of the continuity of f and of relation [START_REF] Cuny | Weak mixing of random walks on groups[END_REF]. Let (c n ) n∈Z denote the Fourier coefficients of f , i.e. c n := E(X 0 X n ). Then, the Fourier coefficients of (1 -e it )f (t) are (c n -c n+1 ) n∈Z and the Fourier coefficients of h(t)

:= |1 -e it | 2 f (t) are (b n ) n∈Z with b n = 2c n -c n+1 -c n-1 , n ∈ Z.
One can easily see that h is the spectral density associated with the stationary process

(Z n ) n∈Z := (X n -X n-1 ) n∈Z , i.e. b n = E(Z 0 Z n ). Hence for n ≥ 0, |b n | = |E(Z 0 Z n )| = | k≥0 E(P -k (Z 0 )P -k (Z n ))| ≤ k≥0 P -k (Z 0 ) 2 P -k-n (Z 0 ) 2 . Therefore, n∈Z\{0} |b n | = 2 n≥1 |b n | ≤ 2 n≥0 P -n (Z 0 ) 2 2 .
By [START_REF] Cuny | Pointwise ergodic theorems with rate with applications to limit theorems for stationary processes[END_REF] it follows that (b n ) n∈Z is absolutely summable. Therefore, by well known results on spectral density, (see for instance Bradley [START_REF] Bradley | Introduction to Strong Mixing Conditions, Volumes I[END_REF], Ch 8 and 9) h must be continuous and bounded on [0, 2π], which in turn implies that f is continuous on (0, 2π).

We prove now that (6) holds for every t ∈ (0, 2π). With this aim, it suffices to show that, for every

t ∈ (0, 2π), |1 -e it | 2 E(|S n (t)| 2 )/n → h(t).
Define T n (t) := n k=1 e ikt Z k . It is easy to see, using the fact that c n → 0 as n → ±∞, that

E(|T n (t)| 2 ) n = |1 -e it | 2 E(|S n (t)| 2 ) n + o(1) ,
(the little o is uniform in t ∈ [0, 2π]). Now, by (4.6) of [START_REF] Peligrad | Central limit theorem for Fourier transforms of stationary processes[END_REF], (E(|T n (t)| 2 /n) n≥0 is nothing else but the Cesàro averages of the partial sums of the Fourier series associated with h, hence it converges to h(t) by Fejer's theorem.

2. End of the proof.

By assumption [START_REF] Cuny | Pointwise ergodic theorems with rate with applications to limit theorems for stationary processes[END_REF], we have

k≥0 |P 0 (X k -X k+1 )| converges in L 2 . ( 31 
)
Let t ∈ (0, 2π) be fixed. Using that P 0 (X -1 ) = 0, we obtain

k m=0 e imt P 0 (X m -X m-1 ) = k m=0 e imt P 0 (X m ) - k-1 m=0 e i(m+1) P 0 (X m ) = (1 -e it )
k m=0 e imt P 0 (X m ) + e i(k+1)t P 0 (X k ) .

Since P 0 (X k ) 2 → 0, by [START_REF] Woodroofe | A central limit theorem for functions of a Markov chain with applications to shifts[END_REF], we see that the series k m=0 e imt P 0 (X m ) converges in L 2 as k → ∞. Hence defining D 0 (t) by [START_REF] Dedecker | Some almost sure results for unbounded functions of intermittent maps and their associated Markov chains[END_REF], it follows that (D 0 (t) • θ ℓ , ℓ ∈ Z) is a stationary sequence of martingale differences in L 2 adapted to (F ℓ , ℓ ∈ Z). Hence the theorem will follow by Proposition e imt P 0 (X m -X m-1 ) .

Hence, writing F k (t) = F 0 (t) • θ k , we obtain the representation

(1 -e it )(S n (t) -M n (t)) = n-1 k=0 e ikt (Z k -F k (t)) ,
where

Z k = X k -X k-1 .
Therefore, the proof of the theorem will be complete if we can show that

n-1 k=0 e ikt (Z k -F k (t)) / n log log n → 0 P-a.s. (32) 
To prove this almost sure convergence, we shall work on the product space ( Ω, F , P) introduced in the proof of Theorem 1. Recall that θ has been defined in [START_REF] Duflo | Random Iterative Models, Applications of Mathematics[END_REF], F n := B([0, 2π]) ⊗ F n and E stands for the expectation under P.

Define Z 0 (u, ω) := e iu Z 0 (ω) and Z k := Z 0 • θ k . Similarly, define F 0 (u, ω) = e iu F 0 (t)(ω) and

F k = F 0 • θ k . Let P 0 (•) = E(•| F 0 ) -E(•| F -1
). Note that F 0 = k≥0 P 0 ( Z k ) = e iu k≥0 e ikt P 0 (X k -X k-1 ). By assumption [START_REF] Cuny | Pointwise ergodic theorems with rate with applications to limit theorems for stationary processes[END_REF], we have n≥0 P 0 ( Z n ) 2, P < ∞ , where • 2, P is the L 2 norm with respect to P.

Therefore, by Theorem 2.7 of Cuny [START_REF] Cuny | ASIP for martingales in 2-smooth Banach spaces[END_REF] (see [START_REF] Peligrad | Central limit theorem for Fourier transforms of stationary processes[END_REF] of [START_REF] Cuny | ASIP for martingales in 2-smooth Banach spaces[END_REF]), identifying C with R 2 , we obtain that

n-1 k=0 ( Z k -F k ) / n log log n → 0 P-a.s.
Now, Z k (u, .) = e iu e ikt Z k and F k (u, .) = e iu e ikt F k , hence (32) follows.

Proof of Theorem 6. Define an operator R t on L 2 (Ω, Lemma 5], there exists Z 0 = Z 0 (t) ∈ L 2 (Ω, F 0 , P) such that

F 0 , P) by R t (Y ) := e it E 0 (Y • θ) . Note that for every n ≥ 0, R n t (Y ) = e int E 0 (Y • θ n ). Hence by assumption sup n≥1 n k=0 R k t (X 0 ) 2 < ∞ . By Browder [4,
X 0 = Z 0 -R t (Z 0 ) = Z 0 -e it E 0 (Z 1 ) . ( 33 
)
Now we denote

Z k = Z 0 • θ k . Note that (Z k ) k is a stationary sequence, R t (Z 0 ) = e it E 0 (Z 1
) and we have the decomposition:

X 0 = Z 0 -E -1 (Z 0 ) + E -1 (Z 0 ) -e it E 0 (Z 1 ) . Denote the martingale difference D 0 (t) = Z 0 -E -1 (Z 0 ) = P 0 (Z 0 ). So, S n (t) = n k=1 e itk D 0 (t) • θ k + n k=1 (e itk E k-1 (Z k ) -e it(k+1) E k (Z k+1 )) = n k=1 e itk D 0 (t) • θ k + e it E 0 (Z 1 ) -e it(n+1) E n (Z n+1 ) .
By the Borel-Cantelli lemma,

|E n (Z n+1 )|/ √ n = |E -1 (Z t )| • θ n+1 / √ n → 0 P-a.s.
Therefore we have the following martingale approximation:

1 n S n (t) - n k=1 e itk D 0 (t) • θ k → 0 a.s. and in L 2 .
Hence, since e -2it is not an eigenvalue of θ, the proposition follows from Proposition 8 with

E(|D 0 | 2 ) = E(|Z 0 -E -1 (Z 0 )| 2 ) = σ 2 t .
It is convenient to express σ t in terms of the original variables. With this aim notice that by equation (33) we obtain

n k=0 e itk P 0 (X k ) = n k=0 e itk P 0 (Z k ) - n k=0 e it(k+1) P 0 (Z k+1 ) = P 0 (Z 0 ) -e it(n+1) P 0 (Z n+1 ) = D 0 (t) -e it(n+1) P 0 (Z n+1 ) . Since P 0 (Z n+1 ) 2 2 = E 0 (Z n+1 ) 2 2 -E -1 (Z n+1 ) 2 2 = E -n-1 (Z 0 ) 2 2 -E -n-2 (Z 0 ) 2 2 → 0 , we obtain n k=0 e itk P 0 (X k ) → D 0 (t) in L 2 .
This shows that, for this case, the representation [START_REF] Dedecker | Some almost sure results for unbounded functions of intermittent maps and their associated Markov chains[END_REF] holds for all t ∈ [0, 2π] such that (8) is satisfied.

Examples

4.1 Linear processes.

Let us consider the following linear process (X k ) k∈Z defined by X k = j≥0 a j ε k-j where (ε k ) k∈Z is a sequence of iid real random variables in L 2 and (a k ) k∈Z is a sequence of reals in ℓ 2 . Taking

F 0 = σ(ε k , k ≤ 0), it follows that P 0 (X i ) = a i ε 0 . Therefore (7) is reduced to n≥3 |a n -a n+1 | < ∞ . ( 34 
)
Hence, because F -∞ is trivial, we conclude, by Corollary 5, that the conclusions of Theorem 3 hold for all t ∈ (0, π) ∪ (π, 2π) as soon as (34) is satisfied. Let us mention that when a n is decreasing (34) is always satisfied.

Functions of linear processes

In this section, we shall focus on functions of real-valued linear processes. Define

X k = h i≥0 a i ε k-i -E h i≥0 a i ε k-i , (35) 
where (a i ) i∈Z be a sequence of real numbers in ℓ 2 and (ε i ) i∈Z is a sequence of iid random variables in L 2 . We shall give sufficient conditions in terms of the regularity of the function h, for I n (t) to satisfy a law of the iterated logarithm as described in Theorem 1.

Denote by w h (., M ) the modulus of continuity of the function h on the interval [-M, M ], that is

w h (u, M ) = sup{|h(x) -h(y)|, |x -y| ≤ u, |x| ≤ M, |y| ≤ M } .
Corollary 15 Assume that h is γ-Hölder on any compact set, with w h (u, M ) ≤ Cu γ M α , for some C > 0, γ ∈]0, 1] and α ≥ 0. Assume that k≥2

(log k) 2 |a k | 2γ < ∞ and E(|ε 0 | 2∨(2α+2γ) ) < ∞ . ( 36 
)
Then the conclusions of Theorem 1 hold with (X k ) k∈Z defined by (35).

Proof. We shall apply Theorem 1 by taking

F k = σ(ε ℓ , ℓ ≤ k). Since X 0 is regular, E 0 (X k ) 2 2 = ℓ≥k P -ℓ (X 0 ) 2 2 . Therefore (3) is equivalent to ℓ≥2 (log ℓ) 2 P 0 (X ℓ ) 2 2 < ∞ . ( 37 
)
Let ε ′ be an independent copy of ε, and denote by E ε (•) the conditional expectation with respect to ε. Clearly

P 0 (X k ) = E ε h k-1 i=0 a i ε ′ k-i + a k ε 0 + i>k a i ε k-i -h k-1 i=0 a i ε ′ k-i + a k ε ′ 0 + i>k a i ε k-i . Since w h (u 1 + u 2 , M ) ≤ w h (u 1 , M ) + w h (u 2 , M ), it follows that |P 0 (X k )| ≤ E ε 2 X 0 ∞ ∧ w h (|a k ||ε 0 |, |Y 1 | ∨ |Y 2 |) + w h (|a k ||ε ′ 0 |, |Y 1 | ∨ |Y 2 |) , ( 38 
)
where

Y 1 = k i=0 a i ε ′ k-i + i>k a i ε k-i and Y 2 = k-1 i=0 a i ε ′ k-i + i≥k a i ε k-i . Noting that (ε 0 , |Y 1 | ∨ |Y 2 |) and (ε ′ 0 , |Y 1 | ∨ |Y 2 |) are both distributed as (ε 0 , M k ), where M k = max i≥0 a i ε ′ i , a k ε 0 + i =k a i ε ′ i
, and taking the L 2 -norm in (38), it follows that (37) is satisfied as soon as (36) is

Autoregressive Lipschitz models.

In this section, we give an example of iterative Lipschitz model, which fails to be irreducible, to which our results apply. For the sake of simplicity, we do not analyze the iterative Lipschitz models in their full generality, as defined in Diaconis and Freedman [START_REF] Diaconis | Iterated random functions[END_REF] and Duflo [START_REF] Duflo | Random Iterative Models, Applications of Mathematics[END_REF].

For δ in [0, 1[ and C in ]0, 1], let L(C, δ) be the class of 1-Lipschitz functions h which satisfy

h(0) = 0 and |h ′ (t)| ≤ 1 -C(1 + |t|) -δ almost everywhere.
Let (ε i ) i∈Z be a sequence of iid real-valued random variables. For S ≥ 1, let ARL(C, δ, S) be the class of Markov chains on R defined by

Y n = h(Y n-1 ) + ε n with h ∈ L(C, δ) and E |ε 0 | S L(ε 0 ) L(L(ε 0 )) < ∞ . (39) 
(Recall that L(x) = log(e + |x|)). For this model, there exists a unique invariant probability measure µ (see Proposition 2 of Dedecker and Rio [START_REF] Dedecker | On the functional central limit theorem for stationary processes[END_REF]). Moreover we have

Proposition 16

Assume that (Y i ) i∈Z belongs to ARL(C, δ, S). Then there exists a unique invariant probability measure that satisfies

|x| S-δ L(x) L(L(x)) µ(dx) < ∞ .
Applying Theorem 2 we derive the following result.

Corollary 17 Assume that (Y i ) i∈Z is a stationary Markov chain belonging to ARL(C, δ, S) for some S ≥ 2 + δ. Then, for any Lipschitz function g, the conclusions of Theorem 1 hold for (g(Y i )-µ(g)) i∈Z .

Remark 18

The proof of this result reveals that an application of Theorem 1 would require the following moment condition on µ:

|x| 2 L(x)µ(dx) < ∞ which according to the proof of Proposition 16 is satisfied provided that E(|ε 0 | S L(ε 0 )) < ∞ for some S ≥ 2 + δ.
Proof of Proposition 16. To prove Proposition 16, we shall modify the proof of Proposition 2 of Dedecker and Rio [START_REF] Dedecker | On the functional central limit theorem for stationary processes[END_REF] as follows. Let K be the transition kernel of the stationary Markov chain (Y i ) i∈Z belonging to ARL(C, δ, η). For n > 0, we write K n g for the function g(y)K n (x, dy). Let V (x) = |x| S L(x) L(L(x)) . Notice that

KV (x) = E V (Y n+1 )|Y n = x = E V (h(x) + ε 0 ) ≤ E V (|h(x)| + |ε 0 |) .
By assumption on h, there exists R 1 ≥ 1 and some c ∈ ]0, 1/2[ such that for every x, with |x| > R 1 , |h(x)| ≤ |x| -c|x| 1-δ := g(x) ≤ |x|. Therefore, using the fact that for any positive reals a and b, log(e + a + b) = log(e + a) + log(1 + b/(e + a)), we get for any |x| > R 1 (using that for u ≥ 0, log

(1 + u) ≤ u), V (|h(x)| + |ε 0 |) ≤ (g(x) + |ε 0 |) S L(x) L(L(|x| + |ε 0 |)) + (|x| + |ε 0 |) S L(ε 0 /(1 + |x|) L(L(|x| + |ε 0 |)) ≤ (g(x) + |ε 0 |) S L(x) L(L(x)) + 2 S |x| S-1 |ε 0 | L(L(R 1 )) + 2 S |ε 0 | S L(ε 0 ) L(L(ε 0 )) . (40) 
To deal now with the first term in the right hand side of the above inequality, we shall use inequality (54), in the Appendix, with a = g(x) and b = |ε 0 |. We get that there exist positive constants c and R 2 such that for any |x| > R 2 ,

V (|h(x)| + |ε 0 |) ≤ (g(x)) S L(x) L(L(x)) + 2 S+1 |ε 0 |(g(x)) S-1 L(x) L(L(x)) +2 S |ε 0 | S L(x) L(L(x)) + 2 S |x| S-1 |ε 0 | + 2 S |ε 0 | S L(ε 0 ) L(L(ε 0 )) ≤ |x| S L(x) L(L(x)) -c|x| S-δ L(x) L(L(x)) + 3 × 2 S |ε 0 ||x| S-1 L(x) + 2 S |ε 0 | S L(x) L(L(x)) + 2 S |ε 0 | S L(ε 0 ) L(L(ε 0 )) .
Taking the expectation, considering the moment assumption on ε 0 and using the fact that δ ∈ [0, 1[ and S ≥ 1, it follows that there exist positive constants d and R such that for any |x| > R,

KV (x) ≤ V (x) -d |x| S-δ L(x) L(L(x)) .
So overall it follows that there exists a positive constant b such that

KV (x) ≤ V (x) -d |x| S-δ L(x) L(L(x)) + b1 [-R,R] (x) . (41) 
This inequality allows to use the arguments given at the end of the proof of Proposition 2 in Dedecker and Rio [START_REF] Dedecker | On the functional central limit theorem for stationary processes[END_REF]. Indeed, iterating n times the inequality (41), we get

d n n k=1 |y| S-δ L(y) L(L(y)) K k (x, dy) ≤ 1 n KV (x) + b n n k=1 K k ([-R, R])(x) ,
and letting n tend to infinity, it follows that

d |x| S-δ L(x) L(L(x)) µ(dx) ≤ bµ([-R, R]) < ∞ . Proof of Corollary 17. Let X i = g(Y i ) -µ(g). According to Proposition 16, E X 2 0 L(X0) L(L(X0)) < ∞.
Hence Corollary 17 will follow from Theorem 2 if we can prove that the condition (4) is satisfied which will clearly hold if

n>0 n -1 |K n g(x) -µ(g)| 2 µ(dx) < ∞ . (42) 
According to the inequality (5.7) in Dedecker and Rio [START_REF] Dedecker | On the functional central limit theorem for stationary processes[END_REF], there exists a positive constant A such that

|K n g(x) -µ(g)| ≤ An 1-S/δ |x -y|µ(dy) + A(1 -B n (x)) n |x -y|µ(dy) + An 1-(S-1)/δ |x -y||y| S-δ-1 µ(dy) , (43) 
where

B n (x) = C[4(1 + |x| + (n -1)E|ε 0 |)] -δ .
Noticing that n>0 n 1-2(S-1)/δ < ∞ as soon as S > 1 + δ and that according to Proposition 16, x 2 is µ-integrable as soon as S ≥ 2 + δ, we infer from (43) that (42) will be satisfied if we can prove that n>0

n -1 x 2 (1 -B n (x)) 2n µ(dx) < ∞ . (44) 
Notice that that (1

-B n (x)) 2n ≤ exp(-2nB n (x)). If |x| ≤ 1, exp(-2nB n (x)) ≤ exp(-2Cn(8 + 4n) -δ ) , implying that 1 -1 x 2 n>0 n -1 exp(-2nB n (x))µ(dx) < ∞ . Now if |x| > 1, n≥2 n -1 exp(-2nB n (x)) ≤ ∞ 1 u -1 exp -2Cu[4(1 + |x| + uE|ε 0 |)] -δ du ≤ ∞ 1 u -1 exp -2Cu|x| -δ [8 + u|x| -δ E|ε 0 |)] -δ du ≤ ∞ 1 z -1 exp -2Cz[8 + zE|ε 0 |)] -δ dz .
Hence there exists a positive constant M such that

|x|>1 x 2 n>0 n -1 exp(-2nB n (x))µ(dx) ≤ M |x|>1 x 2 µ(dx) , (45) 
which according to Proposition 16 is finite as soon as S ≥ 2 + δ. All the above computations then show that (44) (and then (42)) holds provided that S ≥ 2 + δ.

Application to weakly dependent sequences

Theorems 1 and 2 can be successively applied to large classes of weakly dependent sequences. In this section, we give an application to α-dependent sequences. With this aim, we first need some definitions.

Definition 19

For a sequence Y = (Y i ) i∈Z , where Y i = Y 0 • θ i and Y 0 is an F 0 -measurable and real-valued random variable, let for any k ∈ N,

α Y (k) = sup u∈R E(1 Y k ≤u |F 0 ) -E(1 Y k ≤u ) 1 .
Remark 20 Recall that the strong mixing coefficient of Rosenblatt [START_REF] Rosenblatt | A central limit theorem and a strong mixing condition[END_REF] between two σ-algebras F and G is defined by α(F , G) = sup

A∈F ,B∈G

|P(A ∩ B) -P(A)P(B)| .

For a strictly stationary sequence (Y i ) i∈Z of real valued random variables, and the σ-algebra F 0 = σ(Y i , i ≤ 0), define then

α(0) = 1 and α(k) = 2α(F 0 , σ(Y k )) for k > 0 . ( 46 
)
Between the two above coefficients, the following relation holds: for any positive k, α Y (k) ≤ α(k).

In addition, the α-dependent coefficient as defined in Definition 19 may be computed for instance for many Markov chains associated to dynamical systems that fail to be strongly mixing in the sense of Rosenblatt [START_REF] Rosenblatt | A central limit theorem and a strong mixing condition[END_REF]. 

Definition 21 A quantile function Q is a function from ]0, 1] to R + ,
Y i = Y 0 • θ i . Let X i = f (Y i ) -E(f (Y i )) where f belongs to Mon c (Q, P Y0 ) with Q 2 L(Q)/L(L(Q))) integrable. Assume in addition that k≥3 1 k(log log k) αY(k) 0 Q 2 (u)du < ∞ . (47) 
Then ( 4) is satisfied and consequently, the conclusions of Theorem 1 hold for (X k ) k∈Z .

To prove that (47) implies (4), it suffices to notice that

E 0 (X k ) 2 2 = E(X k E 0 (X k )) ≤ αY(k) 0 Q 2 (u)du
(see the proof of (4.17) in Merlevède and Rio [START_REF] Merlevède | Strong approximation of partial sums under dependence conditions with application to dynamical systems[END_REF] for the last inequality).

The definition 22 describes spaces similar to weak L p where we require a monotonicity condition plus a uniform bound on the tails of the functions. Let us introduce in the same spirit L p -like spaces. 

Let X i = f (Y i ) -E(f (Y i ))
, where f belongs to Mon c 2+δ (M, P Y0 ) for some δ > 0. If

k≥3 (α Y (k)) δ/(2+δ) k(log log k) < ∞ ,
then Corollary 23 applies.

Application to functions of Markov chains associated to intermittent maps.

For γ in ]0, 1[, we consider the intermittent map T γ from [0, 1] to [0, 1], which is a modification of the Pomeau-Manneville map [START_REF] Pomeau | Intermittent transition to turbulence in dissipative dynamical systems[END_REF]:

T γ (x) = x(1 + 2 γ x γ ) if x ∈ [0, 1/2[ 2x -1 if x ∈ [1/2, 1] .
Recall that T γ is ergodic and that there exists a unique T γ -invariant probability measure ν γ on [0, 1], which is absolutely continuous with respect to the Lebesgue measure. We denote by L γ the Perron-Frobenius operator of T γ with respect to ν γ . Recall that for any bounded measurable functions f and g, ν γ (f

• g • T γ ) = ν γ (L γ (f )g) .
Let (Y i ) i≥0 be a Markov chain with transition Kernel L γ and invariant measure ν γ .

Corollary 25 Let γ ∈ (0, 1) and (Y i ) i≥1 be a stationary Markov chain with transition kernel L γ and invariant measure ν γ . Let Q be a quantile function such that

1 0 L(Q(u)) L(L(Q(u)) Q 2 (u)du < ∞ . ( 48 
)
Let X i = f (Y i ) -ν γ (f )
where f belongs to Mon c (Q, ν γ ). Then ( 4) is satisfied and the conclusions of Theorem 1 hold for (X k ) k∈Z .

Remark 26 Notice that, by standard arguments on quantile functions, (48) is equivalent to the following condition:

∞ 0 xL(x) L(L(x)) Q -1 (x)dx < ∞ ,
where Q -1 is the generalized inverse of Q.

Proof. To prove this corollary, it suffices to see that (48) implies (47). For this purpose, we first notice that (47) can be rewritten in the following equivalent way (see Rio [START_REF] Rio | Théorie asymptotique des processus aléatoires faiblement dépendants[END_REF]):

1 0 L(α -1 Y (u)) L(L(α -1 Y (u))) Q 2 (u)du < ∞ ,
where α -1 Y (x) = min{q ∈ N : α Y (q) ≤ x}. Now, according to Proposition 1.17 in Dedecker et al. [START_REF] Dedecker | Some almost sure results for unbounded functions of intermittent maps and their associated Markov chains[END_REF], there exists a positive constant C such that α -1 Y (u) ≤ Cu -γ/(1-γ) . Therefore, for any η ∈]0, 1/2[, there exists a constant c depending on γ, C and η such that

1 0 L(α -1 Y (u)) L(L(α -1 Y (u))) Q 2 (u)du ≤ c 1 0 L(u -η ) L(L(u -η )) Q 2 (u)du ≤ c 1 0 L(Q(u)) L(L(Q(u)) Q 2 (u)du + c 1 0 L(u -η ) L(L(u -η )) u -2η du ,
which is finite under (47).

In particular, if f is with bounded variation and γ < 1, we infer from Corollary 25 that the conclusions of Theorem 1 hold for (X k ) k∈Z . Note also that (48) is satisfied if Q is such that Q(u) ≤ Cu -1/2 (log(u -1 )) -1 (log log(u -1 )) -b for u small enough and b > 1/2. Therefore, since the density h νγ of ν γ is such that h νγ (x) ≤ Cx -γ on (0, 1], one can easily prove that if f is positive and non increasing on (0, 1), with

f (x) ≤ C x (1-γ)/2 | log(x)|(log | log(x)|) b near 0 for some b > 1/2,
then (48) holds.

Application to a class of Markov chains

We shall point out next some consequences of Theorem 6 in terms of stationary Markov chains characteristics. Let T be a regular transition probability on the measurable space (S, S), leaving invariant a probability µ on (S, S). We also denote by T the Markov operator induced on L 2 (µ) via

T g(x) = S g(y)T (x, dy)
and we assume that it is ergodic (i.e. T f = f µ a.e. for f ≥ 0 implies f is constant µ a.e.). Let (ξ n ) n∈Z be the (stationary) canonical Markov chain with state space (S, S) associated with T , defined on the canonical space (Ω, A, P) = (S Z , S ⊗Z , P) (the law of ξ 0 under P is µ). Denote by θ the shift on Ω. Denote by F n = σ(ξ j ; j ≤ n).

Corollary 27 Let (ξ n ) n∈Z be a stationary Markov chain. Let h ∈ L 2 (S, µ) centered and define X k = h(ξ k ). Let t ∈ (0, 2π)\{π} be such that e -it is not in the spectrum of T , and e -2it is not an eigenvalue of T . Then the conclusions of Theorem 6 hold for (X k ) k∈Z .

Remark 28

In Corollary 27 we do not assume the regularity condition T n h 2,µ → 0. The spectral density might not exist.

Proof of Corollary 27. By assumption, there exists g ∈ L 2 (S, µ) such that h = g -e it T g. Therefore,

E 0 (S n (t)) = n k=1 E 0 (e itk g(ξ k ) -e it(k+1) g(ξ k+1 )) = e it E 0 (g(ξ 1 )) -e it(n+1) E 0 (g(ξ n+1 )) ,
showing that condition (8) is satisfied. Hence, for t ∈ (0, 2π)\{π} such that e -2it is not an eigenvalue of θ (the shift on Ω), the proposition will follow from Theorem 6. To end the proof we notice that if e -2it is an eigenvalue for θ, it is an eigenvalue for T , see e.g. Proposition 2.3 of Cuny [START_REF] Cuny | Weak mixing of random walks on groups[END_REF] (notice that the proof there extends easily to L 2 )

We give now a consequence of Corollary 27 for reversible Markov chains. This follows from the fact that the spectrum of T is real and lies in [-1, 1].

Corollary 29 Let (ξ n ) n∈Z be a stationary and reversible Markov chain (T = T * ). Let h ∈ L 2 (S, µ) centered and define X k = h(ξ k ). Then the conclusion of Theorem 6 holds for every t ∈ (0, 2π)\{π}.

The (independent) Metropolis Hastings Algorithm leads to a Markov chain with transition function

T (x, A) = p(x)δ x (A) + (1 -p(x))ν(A) ,
where δ x denotes the Dirac measure at point x, ν is a probability measure on S and p : S → [0, 1] is a measurable function for which θ = S 1 1-p(x) ν(dx) < ∞. Then there is a unique invariant distribution

µ(dx) = 1 θ(1 -p(x)) ν (dx)
and the associated stationary Markov chain (ξ i ) i is reversible and ergodic. Hence Corollary 29 applies to this example.

The proof of this lemma follows from the following result (which is of independent interest) by selecting a j = 1 for 0 ≤ j ≤ s -1 and a j = 0 for any j ≥ s.

Lemma 34 Assume that X 0 is almost surely bounded by M . Let (a n ) be a sequence of positive numbers nonincreasing smaller than 1 with ∞ j=1 a j < ∞ and a 0 = 1. Then

(2π) -1 2π 0 E( max 1≤ℓ≤m |S ℓ (t) -M ℓ (t)| 2 )dt ≤ 12 m ∞ j=1 (a j-1 -a j ) E -j (X 0 ) 2 + M 2 ∞ j=0 a j 2 .
Proof of Lemma 34.

Step 1: Martingale decomposition.

We start with a traditional martingale decomposition (see for instance Section 4.1 in Merlevède, Peligrad and Utev [START_REF] Merlevède | Recent advances in invariance principles for stationary sequences[END_REF]). Let t ∈ [0, 2π) and X k (t) = e ikt X k .

θ k (t) = X k (t) + ∞ j=1 a j E k (X k+j (t)); θ ′ k (t) = ∞ j=1 a j E k (X k+j (t))
and

E k (θ k+1 (t)) -θ k (t) = -X k (t) + ∞ j=1
(a j-1 -a j )E k (X k+j (t)) .

Finally, denote by

D ′ k+1 (t) = θ k+1 (t) -E k (θ k+1 )(t) = ∞ j=0 a j P k+1 (X k+j+1 (t)) ; M ′ n (t) = n k=1 D ′ k (t) .
Then, (D ′ k (t)) k∈Z is a sequence of martingale differences with respect to the stationary filtration (F j ) j∈Z . Note X k (t) = D ′ k+1 (t) + θ k (t) -θ k+1 (t) + ∞ j=1 (a j-1 -a j )E k (X k+j (t)) .

Taking into account the definition of θ ′ k (t) we can also write

X k (t) = D ′ k (t) + θ ′ k-1 (t) -θ ′ k (t) + ∞ j=1
(a j-1 -a j )E k-1 (X k+j-1 (t)) .

It follows that for almost all t ∈ [0, 2π),

S ℓ (t) -M ℓ (t) = ℓ k=1 ∞ j=0 (a j -1)P k (X k+j (t)) + ℓ-1 k=0 ∞ j=1 (a j-1 -a j )E k (X k+j (t)) + θ ′ 0 (t) -θ ′ ℓ (t) = I + II + θ ′ 0 (t) -θ ′ m (t) . ( 50 
)
Step 2: The estimation of 2π 0 E max 1≤ℓ≤m |S ℓ (t) -M ℓ (t)| 2 dt. We shall estimate separately this maximum for all the terms in the decomposition (50).

By the Doob-Kolmogorov martingale maximal inequality, stationarity, Fubini theorem and orthogonality of e itk the first term will be (remind a 0 = 1) dominated by (a j -1) 2 P -j

X 0 | 2 = ∞ j=1 (a j -1) 2 E -j (X 0 ) 2 -E -j-1 (X 0 ) 2 = (a 1 -1) 2 E -1 (X 0 ) 2 + ∞ j=2 [(a j -1) 2 -(a j-1 -1) 2 ] E -j (X 0 ) 2 = ∞ j=1 [(a j -1) 2 -(a j-1 -1) 2 ] E -j (X 0 ) 2 ≤ 2 ∞ j=1 (a j-1 -a j ) E -j (X 0 ) 2 . So (2π) -1 2π 0 E max 1≤ℓ≤m |I| 2 dt ≤ 2m ∞ j=1 (a j-1 -a j ) E -j (X 0 ) 2 . ( 51 
)
By Cauchy Schwarz inequality the second term is estimated as follows. (a j-1 -a j ) E 0 (X j ) 2 .

(52)

The last terms are estimated in a trivial way as follows:

(2π) -1 2π 0 E max 1≤ℓ≤m θ ′ 0 (t) -θ ′ k (t) 2 dt = 4M 2 ∞ j=0 a j 2 . (53) 
Gathering (51), ( 52) and (53), the lemma follows. 

An algebraic inequality

Definition 24

 24 If µ is a probability measure on R and p ∈ [2, ∞), M ∈ (0, ∞), let Mon p (M, µ) denote the set of functions f : R → R which are monotonic on some interval and null elsewhere and such that µ(|f | p ) ≤ M p . Let Mon c p (M, µ) be the closure in L p (µ) of the set of functions which can be written as L ℓ=1 a ℓ f ℓ , where L ℓ=1 |a ℓ | ≤ 1 and f ℓ ∈ Mon p (M, µ).

(a j - 1 ) 2 P 2 .

 122 -j X 0 | By simple computations, ∞ j=1

  k+j)t E k (X k+j ) 2 dt .By Hunt and Young maximal inequality [

Lemma 35

 35 For any positive reals a and b and any real S ≥ 1,(a + b) S ≤ 2 S b S + a S (1 + 2 S+1 b/a) .(54)Proof. To prove the above inequality we first notice that if a ≤ b, the inequality is trivial. Let then assume that b < a. The Newton binomial formula gives(a + b) S ≤ a S (1 + b/a) [S]+1 ≤ a S 1 + b/a [S]+1 k=1 C k [S]+1 (b/a) k-1 ≤ a S (1 + 2 S+1 b/a) .

  8, if we can prove that |S

				this
	aim, we first notice that			
	(1 -e it )D 0 (t) = F 0 (t)	where	F 0 (t) =	m≥0

n (t) -M n (t)|/ √ n log log n → 0 P-a.s. where M n (t) = n k=1 e ikt D 0 (t) • θ k . With

  which is left-continuous and non increasing. For any nonnegative random variable Z, we define the quantile functionQ Z of Z by Q Z (u) = inf{t ≥ 0 : P(|Z| > t) ≤ u}.Definition 22 Let µ be the probability distribution of a random variable X. If Q is an integrable quantile function (see Definition 21), let Mon(Q, µ) be the set of functions g which are monotonic on some open interval of R and null elsewhere and such that Q |g(X)| ≤ Q. Let Mon c (Q, µ) be the closure in L 1 (µ) of the set of functions which can be written as Corollary 23 Let Y 0 be a real-valued random variable with law P Y0 , and

	to Mon(Q, µ).	L ℓ=1 a ℓ f ℓ , where	L ℓ=1 |a ℓ | ≤ 1 and f ℓ belongs
	Applying Theorem 2, we get		
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Appendix

Facts from ergodic theory

We first recall the following consequence of the Dunford-Schwartz ergodic theorem, see sections VIII.5 and VIII.6 of [START_REF] Dunford | Linear operators. Part I[END_REF].

Proposition 30 Let (Ω, A, P) be a probability space and θ be a measure-preserving transformation on Ω. Let s ∈ R. For every X ∈ L 1 (Ω, A, P), there exists π s (X) ∈ L 1 (Ω, A, P) such that

and in L 1 (Ω, A, P). Moreover, π s (X) • θ = e -is π s (X) P-a.s.

Remark 31 It follows from the Wiener-Wintner theorem that the set of measure 1 in (49) may be chosen independently of s, but we shall not need that refinement.

Proof. Define an operator

which also contracts the L ∞ norm. Hence we may apply [14, Theorem 6 p. 675], to obtain the almost sure convergence. The L 1 convergence follows from [14, Corollary 5 p. 664] (see also the proof of the next lemma).

We also give the following lemma, that should be well-known. We give a proof for completeness.

Lemma 32 Let (Ω, A, P) be a probability space and θ be a measure-preserving transformation on Ω. Let t 0 ∈ R be fixed. If there is no non trivial Y ∈ L 2 (Ω, A, P), such that Y • θ = e -it0 Y P-a.s., then, for every X ∈ L 1 (Ω, F , P) π t0 (X) = 0 P-a.s. Furthermore, when L 2 (Ω, A, P) is separable, there exists a countable (at most) set S ⊂ R such that for every t ∈ R\S and every X ∈ L 1 (Ω, A, P), π t (X) = 0 P-a.s.

Proof. Define V t0 as above. Since sup n≥1

where Fix V t0 stands for the fixed points of V t0 in L 2 (Ω, A, P) and the closure is in norm • 2 . By assumption, V t0 has no non trivial fixed point. Obviously, Y contains (I -V t0 )L 2 (Ω, A, P), hence Y = L 1 (Ω, A, P). Assume now that L 2 (Ω, A, P) is separable. Define an operator on L 2 (Ω, A, P) by U X = X • θ. It is well known that the eigenspaces of U corresponding to different eigenvalues are orthogonal. By separability there are at most countably many eigenvalues for U , hence the result.

Technical approximation results

Lemma 33 Assume that X 0 is almost surely bounded by M . For any integer s ≥ 1

where M n (t) = n k=1 D k (t) and D k (t) is defined by [START_REF] Dedecker | On the functional central limit theorem for stationary processes[END_REF].