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Non-technical Summary 

Pancreatic islet cells are required for glucose homeostasis and their dysfunction leads to 
diabetes mellitus. The electrical activity of these cells is regulated by nutrients as well as 
hormones and this provides the first integrative read-out reflecting their function. Non-
invasive recording of their electrical activity and its analysis in real time would provide the 
possibility of long-term and repetitive investigations or testing of multiple drugs. Combining 
electrophysiology and microelectronics, we now demonstrate such an approach with multiple 
(up to 60) electrodes and including on-line signal analysis on the two major cell types present 
in islets, - and -cells. This method should be applicable to other endocrine cells and may 
serve in the long-run as the basis for a novel biosensor. 

Word count of the summary: 120 

ABSTRACT 
 

Non-invasive high-throughput and long-term monitoring of endocrine cells is important for 

drug research, phenotyping, tissue engineering and pre-transplantation quality control. Here 

we report a novel approach to obtain simultaneous long-term electrical recordings of different 

islet cell types using multi-electrode arrays. We implemented wavelet transforms to resolve 

the low signal/noise ratio inherent to these measurements and extracted on-line a signature 

specific of cell activity. The architecture employed allows multiplexing a large number of 

electrodes for high-throughput screening. This method should be of considerable advantage in 

endocrine research and may be extended to other excitable cells previously not accessible to 

the technique. 

 
Abbreviations: ASIC, Application-specific integrated circuit; FPGA, field-programmable gate 

array; SWT, stationary wavelet transform; MEA, multi-electrode array. 

 

Running Title: Long-term and real-time analysis of endocrine cells 
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INTRODUCTION 

Glucose homeostasis requires insulin secretion from β-cells clustered in a micro-organ, 

the pancreatic islets. They are regulated by nutrients and further tuned by hormones to reflect 

the physiological needs of the organism (Henquin, 2000). Ensuing membrane depolarization 

and action potentials provide the first integrative read-out reflecting the state of these cells 

(Hiriart & Aguilar-Bryan, 2008). Derangements in glucose homeostasis are a hallmark of 

diabetes mellitus, a currently incurable and costly disease that is characterized by dysfunction 

of islets. On-line large-scale monitoring of islets would be of considerable advantage to 

assess function prior to transplantation, to screen compounds, to phenotype transgenic mice 

or to follow differentiation of stem-cells. Most approaches beyond hormone secretion are 

invasive, requiring probe loading thus precluding long-term or repetitive measurements. 

Genetically encoded sensors allow long-term recordings (Palmer et al., 2011) but major 

problems persist such as probe bleaching, expansive computing time and difficulties in 

pattern recognition (Schroeder, 2011). They may also be biased by a fixed genetic 

background and size of recorders or light sources restrict miniaturization. In contrast, 

monitoring electrical activity provides information without prior specific manipulation and is 

suited for real-time analysis and miniaturization in the case of implantation. Extracellular 

recordings preserve the cell's plasma membrane, a prerequisite for signals driven by 

metabolism and long-term observations. Their major disadvantage resides in their very low 

signal-to-noise ratio especially in endocrine cells and in the generation of huge amounts of 

data during prolonged recordings. To resolve these two problems, we developed a new 

screening device and novel real-time signal processing by integrated circuits based on 

submicron technologies.  

 

METHODS  

Preparation of islets and cell culture. Experiments were performed on mouse islet cells or 

clonal β-cells cultured for 2-7 days on MEAs (MEA100/10-Ti-gr, Multichannel Systems, 

Reuttlingen, Germany) coated with Matrigel (BD Biosciences, San Diego, USA) or on poly-

D-lysine/laminin-coated glass coverslips. Mice were sacrificed by stunning and cervical 

dislocation and islets were obtained as described and approved by the ethics committee 

(Roger et al., 2011). Cells from 80-100 or 20-40 islets were seeded and cultured at 11 mmol/l 

glucose. Clonal β-cells INS-1E cells were generously provided by P. Maechler and C. B. 

Wollheim (Université de Genève, Switzerland) and cultured as published (Roger et al., 2011). 
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Electrophysiology. Whole-cell perforated patch-clamp recordings in current-clamp 

configuration were performed at 33°C using an EPC-9 amplifier (HEKA, Lambrecht, 

Germany). Data were acquired and analysed with Patchmaster (v2.35, HEKA) and IGOR Pro 

(v6.04, Wavemetrics, Lake Oswego, OR). Patch pipettes pulled from borosilicate glass 

capillaries had tip resistances of 2–4 MΩ when filled with the internal solution containing (in 

mM): K2SO4 76, NaCl 10, KCl 10, MgCl 2.1, and HEPES 5 (pH 7.35 with KOH). The 

external solution was (in mM): NaCl 135, KCl 4.8, MgCl2 1.2, CaCl2 2.5, HEPES 10, and 

glucose as indicated (pH 7.4 adjusted with NaOH). Zero-current potential was adjusted in the 

bath and electrical contact with the cell interior established by addition of amphotericin B 

(0.24 mg/ml) to the internal solution. Extracellular recordings with MEAs were performed at 

37°C with the same external solution as above. For experiments with primary cells, this 

solution was gassed with O2/CO2 (94%/6%) before pH adjustment and enriched with 0.1% 

(m/v) of bovine serum albumin. A MEA1060-Inv-BC-Standard amplifier was used for these 

recordings and simultaneous analogue data were acquired at 10 kHz per electrode with 

MC_Rack™ software (Multichannel Systems, Reuttlingen, Germany). 

Spike detection using hardware: Detection was implemented on a configurable digital 

integrated circuit (FPGA) in 90 nm technology from Xilinx™ (Spartan 3E XC3S500E; San 

Jose, CA, USA), using the VHDL hardware description language and the Xilinx ISE design 

tool for synthesis. Spikes are detected by comparison with a threshold set as a multiple of the 

standard deviation σ of the recorded signal after its processing by a stationary wavelet 

transform. Due to limited occurrence and small amplitudes of spikes, we approximate the 

probability of the signal to exceed σ to 0.159, which is the equivalent probability for a 

Gaussian white noise having a mean of zero. That actual probability is obtained by averaging 

(using a low-pass filter) the duty cycle of a comparator output and the following inputs: 1) the 

recorded signal without its DC component (d1[n] after SWT, see figure 3.b); 2) the actual σ 

value.  is servoed to 0.159 using a feedback loop. A low-pass filter and an amplifier 

respectively smooth and multiply σ  by a factor K. The threshold K x σ is applied to the ith 

decomposition level by the SWT of the input signal. The detection output is an asynchronous 

binary signal (high-level for d1[n]>  low-level for d1[n]<σ). Experimental results in figure 3 

were obtained with K=4 and i =6. 

Spike detection using software. The threshold module of the MC_Rack™ software was used 

for off-line spike detection (in Fig. 1 and Fig. 3c). Data were digitally filtered between 10 and 

1000 Hz except for the condition named “software” in Fig. 3c (7-3000 Hz). For each channel 
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the threshold was set to six times the standard deviation of the average noise amplitude in the 

absence of spikes. The dead time, which represents the absolute refractory period, was set to 

40 ms. 

Statistics. Results are presented as mean ±S.E.M. Paired Student's t tests were used or 

ANOVA with Bonferroni’s as post hoc test for comparisons between 2 groups or more. 

*p<0.05; **p<0.01, ***p<0.001. 

 

RESULTS 

Figure 1A gives the general outline of our approach. Clonal β-cells or primary islet cells 

are cultured on micro-electrode arrays (MEA) that contain multiple plates to record electrical 

signals. Electrical signals were conditioned, recognized and first sampled off-line. We 

subsequently developed Application Specific Integrated Circuits (ASICs) on FPGAs and 

implemented stationary wavelets for real-time on-line treatment. Electrical activity of islet 

cells is generally recorded using sharp electrodes or patch clamp which do, however, not 

permit long-term recordings. Moreover, patch clamp requires a specific and time-consuming 

configuration, the perforated patch, to prevent dilution of metabolic signals into the 

micropipette. This complex patch configuration records well the glucose-induced increase in 

membrane potential and subsequent firing of action potentials (Fig. 1B). Non-invasive 

recordings using extracellular electrodes present a major advantage in terms of success rate 

and long-term monitoring. In contrast to neurons or cardiomyocytes, action potentials in β-

cells do generally not extend beyond 0 mV and these cells will thus exhibit only minute field 

potentials. Despite this challenge, we were able to capture glucose-induced generation of field 

potentials by extracellular recordings on MEA electrodes (Fig. 1B). Spike frequencies 

measured with MEAs were in the same order as those in patch-clamp (1.96±0.39 and 

2.00±0.53 Hz, respectively, n=3-9). As pancreatic islet cells have never been recorded 

previously on MEAs we first evaluated relevant biological parameters before implementing 

novel signal detection functions. Glucose effects on spike frequencies in INS1-E clonal β-

cells were dose-dependent for concentrations mimicking hyperglycaemia (> 5.5 mM) as well 

as hypoglycaemia (< 5.5 mM) (Fig. 1C). The set-up also captured the effects of hormones that 

physiologically regulate islets: firing rates of clonal β cells in the presence of elevated glucose 

were increased by the intestinal hormone GLP-1 (Fig. 1D). Moreover, spike frequencies 

increased reversibly and repetitively in response to increased glucose concentrations (Fig. 1E) 

without deterioration of the recordings as occurs during patch-clamp. Long-term monitoring 
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of cells was feasible as documented here for the effect of prolonged exposure to elevated 

glucose concentrations on clonal β-cells termed glucotoxicity (Roger et al., 2011) (Fig. 1F). 

Most importantly, the device allowed for the first time simultaneous electrophysiological 

recordings of different islet cell types on the same biological sample as shown here for α- and 

β-cells (Fig. 1G) which were differentiated by the effect of adrenalin (Dean and Matthews, 

1970; De Marinis et al., 2010). We further validated the suitability of the device for drug 

screening using compounds targeting islet cell ion channels (Braun et al., 2008) (Fig. 1H). As 

expected, electrical signals from mouse β cells were inhibited by the L-type Ca2+-channel 

blocker nifedipine and increased by the K+-channel blockers iberiotoxin, tetraethyl 

ammonium, and stromatoxine-1. The N-type Ca2+-channel blocker ω-conotoxin GVIA had no 

detectable effects (not shown). Tetrodotoxin-sensitive Na+-channels were involved in 

glucose-induced action potentials in mouse -cells as previously published for human cells 

(Braun et al., 2008). Previous experiences in mouse -cells using patch-clamp revealed the 

presence of these channels but it was concluded that they do not contribute to glucose-induced 

action potentials (Plant, 1988). For real-time on-line analysis, electrode analogue voltage 

signals have to be conditioned, digitized, and finally processed for spike detection by 

integrated electronics in real-time that is less than 5 µs delay. To this end we designed ASICs 

which ensure ultra-high speed spike detection coping with real-time constraints and variations 

of signal baseline as well as signal amplitude. We also established novel signal detection 

functions to minimize computational delays and large data storage. This ensures real-time 

online analysis when multiplexing the detecting devices and miniaturization for in-vivo use. 

The inhomogeneity and the non-stationary character of discrete biological time series imply 

several fundamental steps: centring, denoising, smoothing to single out signal trends and 

subsequent focusing on impulse characteristics. Consequently we first developed on-line 

computing of adaptive thresholds depending on signal standard deviation. Second, as wavelet 

transforms provide compression and time–frequency localization for feature extraction 

(Phillies, 1996), they are particularly well suited for detection of signals with low signal/noise 

ratio as encountered here. We optimized stationary wavelet transforms, which supply 

excellent time-frequency filters in accordance with the characteristics of action potentials 

(Fig. 2). Haar and beta mother wavelets provided the highest detection rate. The Haar wavelet 

was used in the study as it represents the simplest relevant wavelet and thus requires less 

computing time. Moreover, using ASICs, stationary wavelet transforms for up to 70 recorded 

signals can still be time-multiplexed on a single computational channel thus facilitating real-

time processing in screening (Fig. S1). 
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The procedure and its experimental validation are illustrated by testing on very noisy 

recordings (Fig. 3). Each recorded signal is digitized and processed by a stationary wavelet 

transform SWT (Kyung Hwan & Sung June, 2003) (Fig. 3A). The first decomposition level of 

the signal (d1(n)) is used to compute on-line an adaptive threshold and applied for spike 

detection of the absolute value of d6(n), the 6th decomposition level of x[n]. We implemented 

an algorithm that adaptively sets a detection threshold to capture action potentials and to 

reject occasional background peaks. Due to the low frequency and duration of spikes, the 

standard deviation σ (equal to its root mean square) of the signal approximates the standard 

deviation of Gaussian white noise having a mean of zero. By definition the probability P for 

such a signal to be larger than σ is 0.159. We implemented a digital ASIC on FPGA (Fig. 3B) 

that computes: i) the stationary wavelet transform; ii) σ using a servo loop referenced to 

probability P=0.159; iii) a dynamic spike detection function whose threshold is the multiple of 

σ by a factor M. As in white Gaussian noise 95% of samples locate between 0 and 3σ, setting 

M to 3 ensured correct spike detection. The values of P and M can be modified depending on 

estimated signal distribution and signal-to-noise ratio. Our newly designed on-line circuit 

performed similar or better than the off-line software (the latter setting the optimum 

attainable) in differential spike recognition between basal and elevated glucose concentrations 

(Fig. 3C). Moreover, our circuit provides the major advantages of real-time processing and of 

significantly less silicon area for its hardware integration thus minimizing fabrication costs 

and power consumption. 

 

DISCUSSION 

The novel technology developed here records the regulation of a micro-organ implicated 

in diabetes. Using CMOS compatible electrode arrays, we have designed a low power/low 

cost integrated system able to quantify and decode the detected parameters on-line. Its low 

heat generation and power dissipation, important to preserve biological samples, compares 

favourably with imaging techniques (Schroeder, 2011). Multiplexing and long-term 

recordings, up to at least several days, generates huge amounts of information. Their efficient 

on-line handling is guaranteed by the specific properties of the integrated circuit in terms of 

signal identification and computed final data out-put at a defined significance level. Although 

similar devices have been presented previously (Imfeld et al., 2009; Jones et al., 2011), they 

only worked off-line and on considerably larger signals such as those recorded here. During 

the submission of our manuscript a similar electrophysiological approach was reported by 
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Pfeiffer et al. recording the effect of glucose on islets positioned on one microelectrode of a 

multi-array and using fraction of plateau phase of the sustained bursting phase as signal read-

out (Pfeiffer et al., 2011). This read-out and overall approach does not allow real-time 

analysis and may become even more computing-time intensive if not only one electrode of 

the array is used or long-term recordings are performed.  

Our approach presented here may be extended to other excitable cells previously not 

accessible to the technique. In the long term this may allow its use as an embedded system 

and serve as bio-microelectronic hybrid sensor of the metabolic status in small animals 

(Raoux et al., 2011). 
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FIGURE LEGENDS 
 

Figure 1: Bio-electronic acquisition system and characterization of electrical activities of 

clonal β-cells and mouse islet cells  

A, Architecture: 2-days old culture of mouse islet cells on an electrode array; microelectrodes 

at the centre of the ring are connected to output contact pads at the device periphery. Spike 

detection is processed using either off-line detection a standard software tool or on-line 

detection an application specific integrated circuits (ASIC) in commercial Complementary 

Metal Oxide-Semiconductor (CMOS) technology. B, Upper panel: Representative 

intracellular perforated patch-clamp recording (current clamp) of a primary -cell. In response 

to an increase of glucose concentrations from 3 to 15 mM (G15, horizontal bar), the cell 

depolarized and subsequently generated sequences of spikes of ~50 mV in amplitude. Lower 

panel: Representative extracellular recording of glucose-evoked electrical activity generated 

by primary -cells cultured on one of the 60 MEA electrodes. C, Glucose concentration-

dependent firing rate of clonal β-cells. The concentration of glucose was increased every 10 

min to mimic hyperglycaemia (> 5.5 mM) and subsequently decreased to mimic 
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hypoglycaemia (<5.5 mM). Normalized mean frequencies (n=4-12) were determined over 5 

min. D, Firing rates of clonal β-cells in the presence of 5.5 mM glucose, 15 mM glucose and 

15 mM glucose with 10 nM GLP-1 (G15+GLP-1). Mean frequencies (n=18) were determined 

during the early phase (1 min) of the response. E, Clonal β-cells reproducibly changed their 

firing rates over 110 min under repetitive changes in the external glucose concentrations from 

5.5 to 15 mM. Upper panel: representative recording of 5.5 mM or 15 mM glucose (5.5, 15) 

applied alternatively during 10 minutes; lower panel: mean spike frequencies (n=22) were 

determined over the last 5 min for each condition before each change in the glucose 

concentration. F, Chronically elevated glucose reduces the electrical activity of clonal β-cells. 

Cells were cultured in the presence of 11 mM glucose for 3 days and firing rates determined 

in the presence of 3 and 15 mM glucose. Subsequently the same cells were further cultured 

for 3 days at 11 mM (G11, left panel) or 20 mM (G20, right panel) glucose at the end of 

which firing rates for G3 and G15 were again recorded (normalized mean frequencies, n=27-

111). G, Simultaneous recordings of mouse primary α-cells (n=18) and β-cells (n=36) 

identified on the same MEAs (glucose 5 or 15 mM; A, 5 M adrenaline). H, Effects of ion 

channel modulating drugs on glucose-induced (G15) electrical activities of primary mouse 

islet cells: glucose 5 or 15 mM (5, 15), nifedipine (N, 25 µM, n=18), iberiotoxin (I, 100 nM, 

n=12), tetraethyl ammonium chloride (TEA, 20 mM, n=12), stromatoxin-1 (STX, 100 nM, 

n=12), tetrodotoxin (TTX, 500 nM, n=3). Horizontal and vertical scales in panel E and G and 

H represent 3 min and 30 µV, respectively. 
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Figure 2: Mothers wavelets and their performance in correct detection of spikes 

recorded on microelectrode arrays from -cells 

A, Names and shapes of 5 mother wavelets tested in our circuit (db4, Daubechies 4; ior1.3: 

biorthogonal 1.3; sym2: Symlet 2; beta: a mother wavelet we created to detect spikes from 

clonal -cells; haar: Haar or Daubechies D2 wavelet). B, Comparison of detection of clonal β-

cell activity with different mother wavelets (n=50, original recording time = 1.8s). Haar and 

beta mother wavelets provided the highest detection rate. The Haar wavelet was used in the 

study as it represents the simplest possible wavelet and thus requires less computing time. 

 
 
Figure 3: On-line adaptive spike detection of -cell activity recorded by MEAs 

A, Noise filtering and signal compression by Stationary Wavelet Transforms (SWT) that 

process signals from -cell activity recorded as shown in Fig. 1. 6-level SWT detection on the 

right panel shows the timing of the spikes as detected by the comparator (block C1, panel B). 

n is the filters level, G a high-pass filter, H a low-pass filter; x(n) the digitized input signal; 

di(n) the signal output at the ith decomposition level. The 6th level decomposition output d6(n) 

is the reference signal for spike detection using the adaptive threshold circuit in B. B, adaptive 

threshold circuit for spike detection (left panel) after noise filtering as described in A and final 

read-out (right panel) of the trace presented in A. The entire detection circuit was 

implemented into an ASIC, a digital configurable integrated circuit (FPGA). The signal 

recorded on an electrode is digitized into x(n) using a 12-bits analogue-to-digital converter 

(not shown). SWT is implemented as in A. The absolute value of d6(n), the 6th decomposition 

level of x(n), is compared to a dynamically computed threshold T using the comparator block 

B. d6(n) is high-pass filtered by G and has a null mean value. If we servo, using a feedback 

loop, the duty cycle of the signal (obtained using a low-pass filter F1) to 0.159 after 

comparison with σ (comparator C1), Vσ is set to the RMS level of the input waveform. G1 

gain in the feedback loop is used for normalization. σ is smoothed by the F2 filter and 

amplified by G2, thus setting the detection threshold T to (σ x G2). C, spike detection statistics 

demonstrate that circuit performances are equivalent or better than the software results. Clonal 

β-cells were recorded on the MEA set-up and signals were processed using either 1) the 

MC_Rack software (software), 2) the same software after digital filtering (software after 

filtering) or 3) the integrated detection circuit as described in B (wavelet circuit). 1) and 2) 

were realized off-line whereas detection using the circuit in 3) was realized on-line and in real 

time. Experiments using low and high glucose concentrations were analysed (3 mM, G3, 

N=37; 15mM, G15; N=18). Left panel: mean spike frequencies determined at G3 and G15 
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with the 3 methods. Right panel: performances of each method in terms of percentages of 

correct/false detections comparing G3, G15 and pooled data (G3 and G15, termed Global). 

Validation of each spike was finally controlled visually. **, p<0.01, ***, p<0.001 as 

compared to the condition “software”. 
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FIGURE 1 
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FIGURE 2 

 

 

FIGURE 3 
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SUPPLEMENTAL FIGURE 

 

 

 

Figure S1: Stationary Wavelet Transform (SWT) computation timing 

A, Operation sequence for one level of decomposition in SWT: 10 clock cycles (20 ns each) 

are necessary to calculate the output Dn. Four functional units are involved into the 

computation: multiplexing filter, static memory (SRAM), multiplier and accumulator.  

B, The 6th level of decomposition of SWT is available after a series of 6 cycles as in A, i.e. 

1.4µs. C, All experiments were conducted with a 10 kHz sampling frequency on the recorded 

biological signal. SWT computation on 1 sample is 1.4 µs, meaning that up to 70 equivalent 

computations can be conducted using the same functional circuit during the 100 µs period 

between 2 samples. This demonstrates that SWT for 70 recorded signals can be time-

multiplexed on a single computational channel, still ensuring real-time processing. 

 
 


