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A Lagrangian relaxation view of linear and

semidefinite hierarchies

Jean B. Lasserre
∗

Abstract

We consider the general polynomial optimization problem P : f∗ =
min{f(x) : x ∈ K} where K is a compact basic semi-algebraic set.
We first show that the standard Lagrangian relaxation yields a lower
bound as close as desired to the global optimum f∗, provided that it
is applied to a problem P̃ equivalent to P, in which sufficiently many
redundant constraints (products of the initial ones) are added to the
initial description of P. Next we show that the standard hierarchy
of LP-relaxations of P (in the spirit of Sherali-Adams’ RLT) can be
interpreted as a brute force simplification of the above Lagrangian re-
laxation in which a nonnegative polynomial (with coefficients to be
determined) is replaced with a constant polynomial equal to zero. In-
spired by this interpretation, we provide a systematic improvement
of the LP-hierarchy by doing a much less brutal simplification which
results into a parametrized hierarchy of semidefinite programs (and
not linear programs any more). For each semidefinite program in the
parametrized hierarchy, the semidefinite constraint has a fixed size
O(nk), independently of the rank in the hierarchy, in contrast with
the standard hierarchy of semidefinite relaxations. The parameter k
is to be decided by the user. When applied to a non trivial class of
convex problems, the first relaxation of the parametrized hierarchy is
exact, in contrast with the LP-hierarchy where convergence cannot be
finite. When applied to 0/1 programs it is at least as good as the first
one in the hierarchy of semidefinite relaxations. However obstructions
to exactness still exist and are briefly analyzed. Finally, the standard
semidefinite hierarchy can also be viewed as a simplification of an ex-
tended Lagrangian relaxation, but different in spirit as sums of squares
(and not scalars) multipliers are allowed.
Keywords: Global and 0/1 optimization; approximation algorithms;
linear and semidefinite relaxations; Lagrangian relaxations.
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1 Introduction

Recent years have seen the development of (global) semi-algebraic optimiza-
tion and in particular LP- or semidefinite relaxations for the polynomial
optimization problem:

P : f∗ = min
x

{f(x) : x ∈ K } (1.1)

where f ∈ R[x] is a polynomial and K ⊂ R
n is the basic semi-algebraic set

K = {x ∈ R
n : gj(x) ≥ 0, j = 1, . . . ,m}, (1.2)

for some polynomials gj ∈ R[x], j = 1, . . . ,m.

In particular, associated with P are two hierarchies of convex relaxations:

- Semidefinite relaxations based on Putinar’s certificate of positivity on
K [16], where the d-th convex relaxation of the hierarchy is a semidefinite
program which solves the optimization problem

γd = max
t,σj

{ t : f − t = σ0 +

n
∑

j=1

σj gj}. (1.3)

The unknowns σj are sums of squares polynomials with the degree bound
constraint degree σjgj ≤ 2d, j = 0, . . . ,m, and the expression in (1.3) is a
certificate of positivity on K for the polynomial x 7→ f(x)− t.

- LP-relaxations based on Krivine-Stengle’s certificate of positivity on K

[9, 19], where the d-th convex relaxation of the hierarchy is a linear program
which solves the optimization problem

θd = max
λ≥0,t

{t : f − t =
∑

(α,β)∈N2m
d

λαβ





m
∏

j=1

g
αj

j



×





m
∏

j=1

(1− gj)
βj











, (1.4)

where N
2m
d = {(α, β) ∈ N

2m :
∑

j αj + βj ≤ d}. The unknown are t and
the nonnegative scalars λ = (λαβ), and it is assumed that 0 ≤ gj ≤ 1 on
K (possibly after scaling) and the family {gi, 1 − gi} generates the algebra
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R[x] of polynomials. Problem (1.4) is an LP because stating that the two
polynomials in both sides of “=” are equal yields linear constraints on the
λαβ ’s. For instance, the LP-hierarchy from Sherali-Adams’ RLT [17] and
their variants [18] are of this form. See more details in §3.3.

In both cases, (γd) and (θd), d ∈ N, provide two monotone nondecreasing
sequences of lower bounds on f∗ and if K is compact then both converge
to f∗ as one let d increase. For more details as well as a comparison of
such relaxations the interested reader is referred to e.g. Lasserre [12, 10]
and Laurent [13], as well as Chlamtac and Tulsiani [5] for the impact of
LP- and SDP-hierarchies on approximation algorithms in combinatorial op-
timization.

Of course, in principle, one would much prefer to solve LP-relaxations
rather than semidefinite relaxations (i.e. compute θd rather than γd) because
present LP-software packages can solve problems with millions of variables
and constraints, which is far from being the case for semidefinite solvers.
And so the hierarchy (1.3) applies to problems of modest size only unless
some sparsity or symmetry is taken into account in which case specialized
variants can handle problems of much larger size. However, on the other
hand, the LP-relaxations (1.4) suffer from several serious theoretical and
practical drawbacks. For instance, it has been shown in [10, 12] that the LP-
relaxations cannot be exact for most convex problems, i.e., the sequence of
the associated optimal values converges to the global optimum only asymp-
totically and not in finitely many steps. Moreover, the LPs of the hierarchy
are numerically ill-conditioned. This is in contrast with the semidefinite
relaxations (1.3) for which finite convergence takes place for convex prob-
lems where ∇2f(x∗) is positive definite at every minimizer x∗ ∈ K (see de
Klerk and Laurent [6, Corollary 3.3]) and occurs at the first relaxation for
SOS-convex1 problems [11, Theorem 3.3]. In fact, as demonstrated in recent
works of Marshall [14] and Nie [15], finite convergence is generic (even for
non convex problems).

So would it be possible to define a hierarchy of convex relaxations in
between (1.3) and (1.4), i.e., with some of the nice features of the semidefi-
nite relaxations but with a much less demanding computational effort (hence
closer to the LP-relaxations)? This paper is a contribution in this direction.

Contribution. This paper consists of two contributions: In the first

1An SOS-convex polynomial is a convex polynomial whose Hessian factors as
L(x)L(x)T for some rectangular matrix polynomial L. For instance, separable convex
polynomials are SOS-convex.
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contribution which is of theoretical nature, we describe a new hierarchy of
convex relaxations for P with the following feature. Each relaxation in the
hierarchy is a finite-dimensional convex optimization problem of the form:

ρd = max
λ

{Gd(λ) : λ ≥ 0}, (1.5)

where Gd(·) is the concave function defined by:

Gd(λ) := min
x

{f(x) −
∑

(α,β)∈N2m
d

λαβ





m
∏

j=1

g
αj

j (x)



 ×





m
∏

j=1

(1− gj(x))
βj











. (1.6)

Therefore ρd ≤ f∗ for all d. And we prove that:
(a) ρd ≥ θd for all d, and so ρd → f∗ as one let d increase.
(b) For convex problems P, i.e., when f,−gj are convex, j = 1, . . . ,m,

and Slater’s condition holds, the convergence is finite and occurs at the first
relaxation, i.e., ρ1 = f∗, in contrast with the LP-relaxations (1.4) where
convergence cannot be finite (and is very slow on simple trivial examples).
In fact computing ρ1 is just applying the standard dual method of multipliers
(or Lagrangian relaxation) to the convex problem P.

(c) For 0/1 optimization, i.e., whenK ⊆ {0, 1}n, finite convergence takes
place and the optimal value ρd provides a better lower bound than the one
obtained with Sherali-Adams’ RLT hierarchy [17]. In fact, the latter is
solving (1.4) with only a subset of the products that appear in (1.4).

(d) Finally, (1.5) has a nice interpretation in terms of the dual method of
Non Linear Programming (or Lagrangian relaxation). To see this, consider
the optimization problem P̃d defined by:

min
x

{f(x) : gj(x)
αj (1− gj(x))

βj ≥ 0, (α, β) ∈ N
2m
d } (1.7)

which has same value f∗ as P because P̃d is justP with additional redundant
constraints; and notice that P̃1 = P. Then solving (1.5) is just applying the
dual method of multipliers in Non Linear Programming to P̃d; see e.g. [4,
Chapter 8]. In general one obtains only a lower bound on the optimal value
of P̃d when P is not a convex program). And so our result states that the
Lagrangian relaxation applied to P̃d provides a lower bound as close to f∗
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as desired, provided that d is sufficiently large, i.e., provided that sufficiently
many redundant constraints are added to the description of P.

Note in passing that this provides a rigorous rationale for the well-known
fact that adding redundant constraints helps for solving P. Indeed, even
though the new problems P̃d, d ∈ N, are all equivalent toP, their Lagrangian
relaxations are not equivalent to that of P.

Practical and computational considerations

Our second contribution has a practical and algorithmic flavor. Even though
(1.5) is a convex optimization problem, evaluating Gd(λ) at a point λ ≥ 0
requires computing the unconstrained global minimum of the function

x 7→ Ld(x, λ) := f(x)−
∑

(α,β)∈N2m
d

λαβ





m
∏

j=1

gj(x)
αj



×





m
∏

j=1

(1− gj(x))
βj



 , (1.8)

an NP-hard problem in general. After all, in principle the goal of Lagrangian
relaxation is to end up with a problem which is easier to solve than P, and
so, in this respect, the hierarchy (1.5) is not practical.

So in this second part of the paper, we first show that the LP-relaxations
(1.4) can be interpreted as a way to “restrict” and simplify the hierarchy
(1.5) by a simple and brute force trick, so as to make it tractable (but
of course less efficient). Namely, a certain nonnegative polynomial (whose
coefficients have to be determined) is imposed to be the constant polynomial
equal to zero! More precisely, the nonnegative vector λ in (1.5) is restricted
to a polytope so as to make the polynomial Ld in (1.8) constant! In fact,
if one had initially defined the LP-relaxations (1.4) as this brute force (and
even brutal) simplification of (1.5), it would have been hard to justify.

Inspired by this interpretation, we propose a systematic way to define
improved versions of the LP-hierarchy (1.4) by simplifying (1.5) in a much
less brutal manner. We now impose the same nonnegative polynomial Ld−t
to be an SOS polynomial of fixed degree 2k (rather than the zero polyno-
mial in (1.4)). The increase of complexity is completely controlled by the
parameter k ∈ N and is chosen by the user. That is, in the new resulting
hierarchy (parametrized by k), each LP of the hierarchy (1.4) now becomes
a semidefinite program but whose size of the semidefiniteness constraint is
fixed and equal to

(

n+k
n

)

, independently of the rank d in the hierarchy. (It is
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known that crucial for solving semidefinite programs is the size of the LMIs
involved rather than the number of variables.) The level k = 0 of complexity
corresponds to the original LP-relaxations (1.4), the level k = 1 corresponds
to a hierarchy of semidefinite programs with an Linear Matrix Inequality
(LMI) of size (n + 1), etc. To fix ideas, let us mention that for k = 1,
the first relaxation (i.e., d = 1) is even stronger than the first relaxation of
the hierarchy (1.3) as it takes into account products of linear constraints;
and so for instance, when applied to the celebrated MAXCUT problem,
the first relaxation has the Goemans-Williamson’s performance guarantee.
Moereover, when k = 1 one obtains the so-called “Sherali-Adams + SDP”
hierarchy already used for approximating some 0/1 optimization problems.

So an important issue is: What do we gain by this increase of complexity?

Of course, from a computational complexity point of view, one way got
evaluate the efficiency of those relaxations is to analyze whether they help
reduce integrality gaps, e.g. for some 0/1 optimization problems. For the
level k = 1 (i.e. the “Adams-Sherali + SDP hierarchy”) some negative
results in this direction have been provided in Benabbas and Magen [2], and
in Benabbas et al. [3].

But in a different point of view, we claim that a highly desirable prop-
erty for a general purpose method (e.g., the hierarchies (1.3) or (1.4)) aiming
at solving NP-hard optimization problems, is to behave “efficiently” when
applied to a class of problems considered relatively “easy” to solve. Oth-
erwise one might raise reasonable doubts on its efficiency for more difficult
problems, not only in a worst-case sense but also in “average”. Convex
problems P as in (1.1)-(1.2), i.e., when f,−gj are convex, form the most
natural class of problems which are considered easy to solve by some stan-
dard methods of Non Linear Programming; see e.g. Ben-tal and Nemirovski
[1]. We have already proved that the hierarchy (1.3) somehow recognizes
convexity. For instance, finite convergence takes places as soon as ∇2f(x∗)
is positive definite at every global minimizer x∗ ∈ K (see deKlerk and Lau-
rent [6]); moreover, SOS-convex programs are solved at the first step of the
hierarchy as shown in Lasserre [11]. On the other hand, the LP-hierarchy
(1.4) behaves poorly on such problems as the convergence cannot be finite;
see e.g. Lasserre [12, 10].

We prove that the gain by this (controlled) increase of complexity is pre-
cisely to permit finite convergence (and at the first step of the hierarchy)
for a non trivial class of convex problems. For instance with k = 1 the re-
sulting hierarchy of semidefinite programs solves convex quadratic programs
exactly at the first step of the hierarchy. And more generally, for k > 1, the
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first relaxation is exact for SOS-convex2 problems of degree at most k. On
the other hand, we show that for non convex problems, exactness at some
relaxation in the hierarchy still implies restrictive conditions.

2 Main result

2.1 Notation and definitions

Let R[x] be the ring of polynomials in the variables x = (x1, . . . , xn). Denote
by R[x]d ⊂ R[x] the vector space of polynomials of degree at most d, which
forms a vector space of dimension s(d) =

(

n+d
d

)

, with e.g., the usual canonical
basis (xα) of monomials. Also, denote by Σ[x] ⊂ R[x] (resp. Σ[x]d ⊂ R[x]2d)
the space of sums of squares (s.o.s.) polynomials (resp. s.o.s. polynomials
of degree at most 2d). If f ∈ R[x]d, write f(x) =

∑

α∈Nn
d
fαx

α in the

canonical basis and denote by f = (fα) ∈ R
s(d) its vector of coefficients.

Finally, let Sn denote the space of n×n real symmetric matrices, with inner
product 〈A,B〉 = traceAB, and where the notation A � 0 (resp. A ≻ 0)
stands for A is positive semidefinite. With g0 := 1, the quadratic module
Q(g1, . . . , gm) ⊂ R[x] generated by polynomials g1, . . . , gm, is defined by

Q(g1, . . . , gm) := {
m
∑

j=0

σj gj : σj ∈ Σ[x]}.

We briefly recall two important theorems by Putinar [16] and Krivine-
Stengle [9, 19] respectively, on the representation of polynomials positive
on K,

Theorem 2.1 Let g0 = 1 and K in (1.2) be compact.
(a) If the quadratic polynomial x 7→ M − ‖x‖2 belongs to Q(g1, . . . , gm)

and if f ∈ R[x] is strictly positive on K then f ∈ Q(g1, . . . , gm).
(b) Assume that 0 ≤ gj ≤ 1 on K for every j, and the family {gj , 1− gj}

generates R[x]. If f is strictly positive on K then

f =
∑

α,β∈Nm

cαβ
∏

j

g
αj

j

∏

ℓ

(1− gℓ)
βℓ ,

for some finitely many nonnegative scalars (cαβ).

2A SOS-convex polynomial is such that its Hessian matrix is SOS, i.e., factors as
L(x)L(x)T for some rectangular matrix polynomial L.
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2.2 Main result

With K as in (1.2) we make the following assumption:

Assumption 1 K is compact and 0 ≤ gj ≤ 1 on K for all j = 1, . . . ,m.
Moreover, the family of polynomials {gj , 1− gj} generates the algebra R[x].

Notice that ifK is compact and Assumption 1 does not hold, one may always
rescale the variables xi so as to have K ⊂ [0, 1]n, and then add redundant
constraints 0 ≤ xi ≤ 1 for all i = 1, . . . ,m. Then the family {gj , 1 − gj}
(which includes xj and 1 − xj for all j) generates the algebra R[x] and
Assumption 1 holds.

With d ∈ N and 0 ≤ λ = (λαβ), (α, β) ∈ N
2m
d , let λ 7→ Gd(λ) be the

function defined in (1.6), with associated problem:

ρd = max
λ

{Gd(λ) : λ ≥ 0}. (2.1)

Observe that Gd(λ) ≤ f∗ for all λ ≥ 0, and computing ρd is just solving the
Lagrangian relaxation of problem P̃d in (1.7).

Theorem 2.2 Let K be as in (1.2), f ∈ R[x], d ∈ N, and let Assumption 1
hold. Consider problem (2.1) associated with P and with optimal value ρd.
Then the sequence (ρd), d ∈ N, is monotone nondecreasing and ρd → f∗ as
d → ∞.

Proof. We first prove that ρd+1 ≥ ρd for all d, so that the sequence (ρd),
d ∈ N, is monotone nondecreasing. Let 0 ≤ λ = (λαβ) with (α, β) ∈ N

2m
d .

Then 0 ≤ λ̃ with λ̃αβ = λαβ whenever (α, β) ∈ N
2m
d , and λ̃αβ = 0 whenever

|α + β| > d, is such that Gd+1(λ̃) = Gd(λ) and so ρd+1 ≥ ρd. Next, let
ǫ > 0 be fixed, arbitrary. The polynomial f − f∗ + ǫ is positive on K and
therefore, by [19], [12, Theorem 2.23],

f − (f∗ − ǫ) =
∑

(α,β)∈N2m
d

cǫαβ





m
∏

j=1

g
αj

j









m
∏

j=1

(1− gj)
βj



 ,

for some nonnegative vector of coefficients cǫ = (cǫαβ). Equivalently,

f −
∑

(α,β)∈N2m
d

cǫαβ





m
∏

j=1

g
αj

j









m
∏

j=1

(1− gj)
βj



 = (f∗ − ǫ).
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Letting
dǫ := max

α,β
{|α + β| : cǫαβ > 0},

we obtain f∗ ≥ Gdǫ(c
ǫ) = f∗ − ǫ. And so

f∗ ≥ max
λ

{Gdǫ(λ) : λ ≥ 0} ≥ f∗ − ǫ.

As ǫ > 0 was arbitrary, the desired result follows. �

Corollary 2.1 Let K be as in (1.2), Assumption (1) hold and let P̃d, d ∈ N,
be as in (1.7). Then for every ǫ > 0 there exists dǫ ∈ N such that for every
d ≥ dǫ, the Lagrangian relaxation of P̃d, yields a lower bound f∗ − ǫ ≤ ρd ≤
f∗.

This follows from Theorem 2.2 and the fact that computing ρd is just solv-
ing the Lagrangian relaxation associated with P̃d. So the interpretation
of Corollary 2.1 is that the Lagrangian relaxation technique in non convex
optimization can provide a lower bound as close as desired to the global
optimum f∗ provided that it is applied to an equivalent formulation of P
that contains sufficiently many redundant constraints which are products of
the original ones. It also provides a rigorous rationale for the well-known
fact that adding redundant constraints helps solve P. Indeed, even though
the new problems P̃d, d ∈ N, are all equivalent to P, their Lagrangian
relaxations are not equivalent to that of P.

2.3 Convex programs

In this section, the set K is not assumed to be compact.

Theorem 2.3 Let K be as in (1.2) and assume that f and −gj are convex,
j = 1, . . . ,m. Moreover, assume that Slater’s condition3 holds and f∗ >
−∞.

Then the hierarchy of convex relaxations (1.5) has finite convergence at
step d = 1, i.e., ρ1 = f∗, and ρ1 = G1(λ

∗) for some nonnegative λ∗ ∈ R
m.

3Slater’s condition holds for P if there exists x0 ∈ K such that gj(x0) > 0 for every
j = 1, . . . ,m.
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Proof. This is because the dual method applied to P (i.e. P̃1) converges,
i.e.,

f∗ = max
λ≥0







min
x

{f(x)−
m
∑

j=1

λj gj(x)}







= max
λ

{G1(λ) : λ ≥ 0} = ρ1.

Next, let λ(n) be a maximizing sequence, i.e., G1(λ
(n)) → f∗ as n → ∞.

Since Slater’s condition holds (say at some x0 ∈ K), one has

G1(λ
(0)) ≤ G1(λ

(n)) ≤ f(x0)−
m
∑

j=1

λ
(n)
j gj(x0),

for all n, and so λ
(n)
j ≤ (f(x0)−G1(λ

(0)))/gj(x0) for every j = 1, . . . ,m, and
all n ≥ 1. So there is a subsequence (nk), k ∈ N, and λ∗ ∈ R

m
+ , such that

λ(nk) → λ∗ ≥ 0 as k → ∞. Finally, let x ∈ R
n be fixed, arbitrary. From

G1(λ
(nk)) ≤ f(x)−

m
∑

j=1

λ
(nk)
j gj(x), ∀ k,

letting k → ∞ yields

f∗ ≤ f(x)−
m
∑

j=1

λ∗
j gj(x).

As x ∈ R
n was arbitrary, this proves G1(λ

∗) ≥ f∗, which combined with
G1(λ

∗) ≤ f∗ yields the desired result G1(λ
∗) = f∗. �

Observe that this does not hold for the LP-relaxations (1.4) where gener-
ically θd < f∗ for every d ∈ N; see e.g. [10, 12].

3 A parametrized hierarchy of

semidefinite relaxations

Problem (2.1) is convex but in general the objective function Gd is non
differentiable. Moreover, another difficulty is the computation of Gd(λ) for
each λ ≥ 0 since Gd(λ) is the global optimum of the possibly non convex
function (x, λ) 7→ Ld(x, λ) defined in (1.8). So one strategy is to replace (2.1)
by a simpler convex problem (while preserving the convergence property) as
follows.
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3.1 Interpreting the LP-relaxations

Observe that the LP-relaxations (1.4) can be written

θd = max
λ≥0,t

{ t : Ld(x, λ)− t = 0, ∀x ∈ R
n } , (3.1)

where Ld has been defined in (1.8).
And so the LP-relaxations (1.4) can be interpreted as simplifying (2.1) by

restricting the nonnegative orthant {λ : λ ≥ 0} to its subset of λ’s that make
the polynomial x 7→ L(x, λ)− t constant and equal to zero, instead of being
only nonnegative. This subset being a polyhedron, solving (3.1) reduces to
solving a linear program. At first glance, such an a priori simple and naive
brute force simplification might seem unreasonable (to say the least). But
of course the LP-relaxations (1.4) where not defined this way. Initially, the
Sherali-Adams’ RLT hierarchy [17] was introduced for 0/1 programs and
finite convergence was proved by using ad hoc arguments. But in fact, the
rationale behind convergence of the more general LP-relaxations (1.4) is the
Krivine-Stengle positivity certificate [12, Theorem 2.23].

However, even though this brute force simplification still preserves the
convergence θd → f∗ thanks to [12, Theorem 2.23], we have already men-
tioned that it also implies serious theoretical (and practical) drawbacks for
the resulting LP-relaxations (like slow asymptotic convergence for convex
problems and numerical ill-conditioning).

3.2 A parametrized hierarchy of semidefinite relaxations

However, inspired by this interpretation we propose a systematic way to
improve the LP-relaxations (1.4) along the same lines but by doing a much
less brutal simplification of (2.1). Indeed, one may now impose on the same
nonnegative polynomial x 7→ L(x, λ) − t to be a sum of squares (SOS)
polynomial σ of degree at most 2k (instead of being constant and equal to
zero as in (3.1)), and solve the resulting hierarchy of optimization problems:

qkd = max
λ,t,σ

t

s.t. Ld(x, λ)− t = σ, ∀x ∈ R
n

λ ≥ 0, σ ∈ Σ[x]k

, (3.2)

with d = 1, 2, . . ., and parametrized by k, fixed. (Recall that Σ[x]k denotes
the set of SOS polynomials of degree at most 2k.) To see that (3.2) is a
semidefinite program, write

x 7→ Ld(x, λ)− t :=
∑

β∈Nn
s

Lβ(λ, t)x
β ,
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where s = dmaxj[deg gj ] and Lβ(λ, t) is linear in (λ, t) for each β ∈ N
n
s .

Next, for k ∈ N such that 2k ≤ s, let vk(x) be the vector of the monomial
basis (xβ), β ∈ N

n
k , of R[x]k, and write

vk(x)vk(x)
T =

∑

β∈Nn
2k

xβ Bβ,

for some appropriate real symmetric matrices (Bβ), β ∈ N
n
2k. Then problem

(3.2) is the semidefinite program:

qkd = max
λ,t,Q

t

s.t. Lβ(λ, t) = 〈Bβ,Q〉, ∀β ∈ N
n
2k

Lβ(λ, t) = 0, ∀β ∈ N
n
s , |β| > 2k

λ ≥ 0; Q = QT � 0,

(3.3)

where Q is a
(

n+k
n

)

×
(

n+k
n

)

real symmetric matrix.
Of course qkd ≥ θd (= q0d) for all d because with σ = 0 one retrieves (1.4).

Moreover in the semidefinite program (3.3), the semidefinite constraint Q �
0 is concerned with a real symmetric

(

n+k
n

)

×
(

n+k
n

)

matrix, independently
of the rank d in the hierarchy. For instance if k = 1 then σ is a quadratic
SOS and Q has size (n + 1) × (n + 1). In other words, even if the number
of variables λ = (λαβ) increases fast with d, the LMI constraint Q � 0 has
fixed size, in contrast with the semidefinite relaxations (1.3) where the size
of the LMIs increases with d. And it is a well-known fact that crucial for
solving semidefinite program is the size of the LMIs involved rather than
the number of variables.

3.3 Sherali-Adams’ RLT for 0/1 programs

Consider 0/1 programs with f ∈ R[x], and feasible set K = {x : Ax ≤
b}∩ {0, 1}n, for some real matrix A ∈ R

m×n and some vector b ∈ R
m. The

Sherali-Adams’s RLT hierarchy [17] belongs to the family of LP-relaxations
(1.4) but with a more specific form since K ⊂ [0, 1]n. Notice that the
family {1, x1, (1 − x1), . . . , xn, (1 − xn)} generates the algebra R[x]. Let
gℓ(x) = (b−Ax)ℓ, ℓ = 1, . . . ,m, and g0(x) = 1.

Following the definition of the Sherali-Adams’ RLT in [17], the resulting
linear program at step d in the hierarchy reads:

θd = max
λ≥0,t,h

{

t : f(x)− t =

n
∑

i=1

hi(x)xi(1− xi)

12



+

m
∑

ℓ=0

∑

I,J⊂{1,...,n}

I∩J=∅;|I∪J |≤d

λℓ
IJ gℓ(x)

∏

i∈I

xi
∏

j∈J

(1− xj);

hi ∈ R[x]d−1 i = 1, . . . , n} , (3.4)

where λ is the nonnegative vector (λℓ
IJ). (If there are linear equality con-

straints gℓ(x) = 0 the corresponding variables λℓ
IJ are not required to be

nonnegative.) So all products between the gℓ’s are ignored (see the para-
graph before Lemma 1 in [17, p. 414]) even though they might help tighten
the relaxations. In the literature the dual LP of (3.4) is described rather
than (3.4) itself.

In this context, the problem P̃d equivalent to P and defined in (1.7) by
adding redundant constraints formed with products of original ones, reads:

min{f(x) : xα xj(1 − xj) = 0, j = 1, . . . , n; α ∈ N
n
d−1;

gℓ(x)
∏

i∈I

xj
∏

j∈J

(1− xj) ≥ 0, ℓ = 0, . . . ,m,

I, J ⊂ {1, . . . , n}; I ∩ J = ∅; |I ∪ J | ≤ d}.

Hence the 0/1 analogue of (3.2) reads

qkd = max
λ≥0,t,h

{

t : f(x)− t = σ(x) +

n
∑

i=1

hi(x)xi(1− xi)

+
m
∑

ℓ=0

∑

I,J⊂{1,...,n}

I∩J=∅;|I∪J |≤d

λℓ
IJ gℓ(x)

∏

i∈I

xi
∏

j∈J

(1− xj);

σ ∈ Σ[x]k; hi ∈ R[x]d−1 i = 1, . . . , n} . (3.5)

For 0/1 programs with linear or quadratic objective function, and for ev-
ery k ≥ 1, the first semidefinite relaxation (3.5), i.e., with d = 2, is at least as
powerful as that of the standard hierarchy of semidefinite relaxations (1.3).
Indeed (3.5) contains products gℓ(x)xj or gℓ(x)(1−xk), for all (ℓ, j, k), which
do to not appear in (1.3) with d = 1. And so in particular, the first such
relaxation for MAXCUT has the celebrated Goemans-Williamson’s perfor-
mance guarantee while the standard LP-relaxations (1.4) do not. On the
other hand, for 0/1 problems and for the parameter value k = 1, the hi-
erarchy (3.5) is what is called the Sherali-Adams + SDP hierarchy (basic
SDP-relaxation + RLT hierarchy) in e.g. Benabas and Magen [3] and Ben-
abbas et al. [2]; and in [3, 2] the authors show that any (constant) level d of
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this hierarchy, viewed as a strengthening of the basic SDP-relaxation, does
not make the integrality gap decrease.

In fact, and in view of our previous analysis, the “Sherali-Adams +
SDP” hierarchy should be viewed as a (level k = 1)-strengthening of the
basic Sherali-Adams’ LP-hierarchy (3.4) rather than a strengthening of the
basic SDP relaxation.

4 Comparing with standard

LP-relaxations

As asked in introduction:
What do we gain by going from the LP hierarchy (1.4) to the semidefinite
hierarchy (3.3) parametrized by k? Some answers are provided below.

4.1 Convex problems

Recall that a highly desirable property for a general purpose method aiming
at solving NP-hard optimization problems, is to behave efficiently when
applied to a class of problems considered relatively easy to solve. Otherwise
one might raise reasonable doubts on its efficiency for more difficult problems
not only in a worst-case sense but also in average. And convex problems P
as in (1.1)-(1.2), i.e., when f,−gj are convex, form the most natural class
of problems which are considered easy to solve by some standard methods
of Non Linear Programming.

Theorem 4.1 With P as in (1.1)-(1.2) let f,−gj be convex, j = 1, . . . ,m,
let Slater’s condition hold and let f∗ > −∞. Then:

(a) If max[deg f, deg gj ] ≤ 2 then q11 = f∗, i.e., the first relaxation of
the hierarchy (3.2) parametrized by k = 1, is exact.

(a) If max[deg f, deg gj] ≤ 2k and f,−gj are all SOS-convex, then qk1 =
f∗, i.e., the first relaxation of the hierarchy (3.2) parametrized by k, is exact.

Proof. Under the assumptions of Theorem 4.1, P has a minimizer x∗ ∈
K and the Karush-Kuhn-Tucker optimality conditions hold at (x∗, λ∗) ∈
K × R

m
+ for some λ∗ ∈ R

m
+ . And so if k = 1, the Lagrangian polynomial

L1(·, λ
∗) − f∗ is a nonnegative quadratic polynomial and so an SOS σ∗ ∈

Σ[x]1. Therefore as q1d ≤ f∗ for all d, the triplet (λ∗, f∗, σ∗) is an optimal
solution of (3.2) with k = d = 1, which proves (a).

Next, if k > 1 and f,−gj are all SOS-convex then so is the Lagrangian
polynomial L1(·, λ

∗)−f∗. In addition, as ∇xL1(x
∗, λ∗) = 0 and L1(x

∗, λ∗)−
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f∗ = 0, the polynomial L1(·, λ
∗) − f∗ is SOS; see e.g. Helton and Nie [8,

Lemma 4.2]. Hence L1(·, λ
∗)− f∗ = σ∗ for some σ∗ ∈ Σ[x]k, and again, the

triplet (λ∗, f∗, σ∗) is an optimal solution of (3.2) with d = 1, which proves
(b). �

Hence by simplifying (1.5) in a less brutal manner than in (1.4) one
recovers a nice and highly desirable property for the resulting hierarchy. The
price to pay is to pass from solving a hierarchy of LPs to solving hierarchy
of semidefinite programs; however the increase in complexity is controlled
by the parameter k since the size of the LMI in the semidefinite program
(3.3) is O(nk), independently of the rank d in the hierarchy.

4.2 Obstructions to Exactness

On the other hand, for non convex problems, exactness at level-d of the
hierarchy (3.2), i.e., finite convergence after d rounds, still implies restrictive
conditions on the problem:

Corollary 4.1 Let P be as in (1.1)-(1.2) and let Assumption 1 hold. Let
x∗ ∈ K be a global minimizer and let I1(x

∗) := {j ∈ {1, . . . ,m} : gj(x
∗) =

0} and I2(x
∗) := {j ∈ {1, . . . ,m} : (1 − gj(x

∗)) = 0} be the set of active
constraints at x∗. Let 0 ≤ k ∈ N be fixed.

The level-d semidefinite relaxation (3.2) is exact only if f∗ (resp. x∗ ∈
K) is also the global optimum (resp. a global minimizer) for the problem

min
x

{f(x) : x ∈ V}, (4.1)

where V ⊂ R
n (see (4.2) below) is a variety defined from some products of

the polynomials gj’s and (1 − gj)’s. And if k = 0 then f must be constant
on the variety V.

Proof. If (3.2) is exact at level d ∈ N, then

Ld(x, λ
∗)− f∗ = σ(x), ∀x ∈ R

n,

for some λ∗ ≥ 0 and some σ ∈ Σ[x]k. Equivalently,

f(x)− f∗ = σ(x) +
∑

(α,β)∈N2m
d

λ∗
αβ





m
∏

j=1

gj(x)
αj



×





m
∏

j=1

(1− gj(x))
βj



 .
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Then evaluating at x = x∗ yields σ(x∗) = 0 and

λ∗
αβ > 0 ⇒

{

∃j ∈ I1(x
∗) s.t. αj > 0, or

∃j ∈ I2(x
∗) s.t. βj > 0.

So let Ω := {(α, β) ∈ N
2m
d : λ∗

αβ > 0} and for every (α, β) ∈ Ω let

J1
αβ := {j ∈ I1(x

∗) : αj > 0},

J2
αβ := {j ∈ I2(x

∗) : βj > 0}.

Next, define V ⊂ R
n to be the real variety:

{x ∈ R
n :







∏

j∈J1

αβ

gj(x)













∏

j∈J2

αβ

(1− gj(x))






= 0,

∀ (α, β) ∈ Ω } . (4.2)

Then for every x ∈ V, one obtains f(x)− f∗ = σ(x) ≥ 0, which means that
f∗ is the global minimum of f on V. If k = 0 then σ is constant and equal
to zero. And so f(x)− f∗ = 0 for all x ∈ V. �

Hence Corollary 4.1 shows that exactness at some step d of the hierarchy
(3.2) imposes rather restrictive conditions on problem P. Namely, the global
optimum f∗ (resp. the global minimizer x∗ ∈ K) must also be the global
optimum (resp. a global minimizer) of problem (4.1). For instance, suppose
that only one constraint, say gk(x) ≥ 0, is active at x∗. Then f∗ (resp. x∗)
is also the global minimum (resp. a global minimizer) of f on the variety
{x : gk(x) = 0}. And if k = 0 then f must be constant on the variety V!

Example 1 If K is the (compact) polytope {x : aTj x ≤ 1, j = 1, . . . ,m}
for some vectors (aj) ⊂ R

n, then invoking a result by Handelman [7], one
does not need the polynomials {1− gj} in the definition (1.8) of Ld. So for
instance, suppose that I1(x

∗) = {ℓ} at a global minimizer x∗ ∈ K. Then
exactness at some step d of the hierarchy (3.2) imposes that f∗ should also
be the global minimum of f on the whole hyperplane V = {x : aTℓ x = 1};
for non convex functions f , this is a serious restriction. Moreover, if k = 0
then f must be constant on the hyperplane V.

Concerning exactness for 0/1 polynomial optimization:

Corollary 4.2 Let K = {x : Ax ≤ b} ∩ {0, 1}n and let x∗ ∈ K be an
optimal solution of f∗ = min{f(x) : x ∈ K}. Assume that Ax∗ < b, i.e.,
no constraint is active at x∗.
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(a) The Sherali-Adams’ RLT relaxation (3.4) is exact at step d in the
hierarchy only if f(x) = f(x∗) = f∗ for all x in the set

V := {x ∈ {0, 1}n :
∏

i∈I

xi
∏

j∈J

(1− xj) = 0, (I, J) ∈ Q},

where Q is some finite set of couples (I, J) satisfying I∩J = ∅ and |I∪J | ≤ d.
(b) Similarly, the semidefinite relaxation (3.5) is exact at step d only if

x∗ is also a global minimizer of min{f(x) : x ∈ V} for some V as in (a).

Proof. (a) Exactness implies that the polynomial x 7→ f(x) − f∗ has the
representation described in (3.4) for some polynomials (hi) ⊂ R[x]d−2 and
some nonnegative scalars (λℓ

IJ). Evaluating both sides of (3.4) at x = x∗

and using gℓ(x
∗) > 0 for all ℓ = 0, . . . ,m, yields

λℓ
IJ > 0 =⇒

∏

i∈I

x∗i
∏

j∈J

(1− x∗j) = 0. (4.3)

Let V be as in Corollary 4.2 with Q := {(I, J) : ∃ ℓ s.t. λℓ
IJ > 0}. Then

from the representation of x 7→ f(x)− f∗ in (3.4) we obtain f(x) − f∗ = 0
for all x ∈ V and the result follows. For (b) a similar argument is valid
but now using the representation of f(x) − f∗ described in (3.5). And so
exactness yields (4.3) as well as σ(x∗) = 0. Next, for every x ∈ V we now
obtain f(x)− f∗ = σ(x) ≥ 0 because σ is SOS. �

The constraints Ax ≤ b play no explicit role in the definition of the set
V. Moreover, if f discriminates all points of the hypercube {0, 1}n then
exactness of the Sherali-Adams’ RLT implies that V must be the singleton
{x∗}.

On the hierarchy of semidefinite relaxations

Similarly, the hierarchy of semidefinite relaxations (1.3) also has an inter-
pretation in terms of simplifying an extended Lagrangian relaxation of P.
Indeed consider the hierarchy of optimization problems

ωd := max
σj

{H(σ1, . . . , σm) : deg(σj gj) ≤ 2d, σj ∈ Σ[x]

j = 1, . . . ,m}, (4.4)

d ∈ N, where σ 7→ H(σ1, . . . , σm) is the function

H(σ1, . . . , σm) := min
x

{f(x)−
m
∑

j=1

σj(x) gj(x) }.
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For each d ∈ N, problem (4.4) is an obvious relaxation of P and in fact is an
extended Lagrangian relaxation of P where the multipliers are now allowed
to be SOS polynomials with a degree bound, instead of constant nonnegative
polynomials (i.e., SOS polynomials of degree zero).

If K is compact and the quadratic module

Q(g) := {
m
∑

j=0

σj gj : σj ∈ Σ[x], j = 0, 1, . . . ,m}

(where g0 = 1) is Archimedean, then ωd → f∗ as d → ∞. But of course,
and like for the usual Lagrangian, minimizing the extended Lagrangian

x 7→ L(x, σ) := f(x)−
m
∑

j=1

σj(x) gj(x),

is in general an NP-hard problem. In fact, writing (4.4) as

ωd = max
t,σ

{t : f(x)−
m
∑

j=1

σj(x) gj(x)− t ≥ 0 ∀x ;

deg(σjgj) ≤ 2d},

the semidefinite relaxations (1.3) simplify (4.4) by imposing on the nonneg-
ative polynomial x 7→ f(x) −

∑

j σj(x)gj(x) − t to be an SOS polynomial
σ0 ∈ Σ[x]d (rather than just being nonnegative).

But the spirit is different from the LP-relaxations as there is no prob-
lem P̃d obtained from P by adding finitely many redundant constraints and
equivalent to P. Instead of adding more and more redundant constraints
and doing a standard Lagrangian relaxation to P̃d, one applies an extended
Lagrangian relaxation to P with SOS multipliers of increasing degree (in-
stead of nonnegative scalars). And in contrast to LP-relaxations, there is
no obstruction to exactness (i.e., finite convergence). In fact, it is quite the
opposite since as demonstrated recently in Nie [15], finite convergence is
generic!

5 Conclusion

We have shown that the hierarchy of LP-relaxations (1.4) has a rather sur-
prising interpretation in terms of the Lagrangian relaxation applied to a
problem P̃ equivalent to P (but with redundant constraints formed with
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product of polynomials defining the original constraints of P). Indeed it con-
sists of the brute force simplification of imposing on a certain nonnegative
polynomial to be the constant polynomial equal to zero, a very restrictive
condition.

However, inspired by this interpretation, one has provided a systematic
strategy to improve the LP-hierarchy by doing a much less brutal simplifi-
cation. That is, one now imposes on the same nonnegative polynomial to be
an SOS polynomial whose degree k is fixed in advance and parametrizes the
whole hierarchy. Each convex relaxation is now a semidefinite program but
whose LMI constraint has fixed size O(nk). Hence, the resulting families
of parametrized relaxations achieve a compromise between the hierarchy of
semidefinite relaxations (1.3) limited to problems of modest size and the
LP-relaxations (1.4) that theoretically can handle problems of larger size
but with a poor behavior when applied to convex problems.
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[9] Krivine J.L. Anneaux préordonnés, J. Anal. Math. 12, pp. 307–
326, 1964.

[10] Lasserre J.B. Semidefinite programming vs. LP relaxations for
polynomial programming, Math. Oper. Res. 27, pp. 347–360,
2002.

[11] Lasserre J.B. Convexity in semi-algebraic geometry and polyno-
mial optimization, SIAM J. Optim. 19, pp. 1995–2014, 2009.

[12] Lasserre J.B. Moments, Positive Polynomials and Their Applica-
tions, Imperial College Press, London, 2009.

[13] Laurent M. A comparison of the Sherali-Adams, Lovász-Schrijver
and Lasserre relaxations for 0-1 programming, Math. Oper. Res.
28, pp. 470–496, 2003.

[14] Marshall M. Representation of non-negative polynomials, degree
bounds and applications to optimization, Canad. J. Math. 61, pp.
205–221, 2009.

[15] Nie J. Optimality Conditions and Finite Convergence of Lasserre’s
Hierarchy, Technical report, Dept. Mathematics, University of
California, San Diego, 2012. arXiv:1206.0319.

[16] Putinar M. Positive polynomials on compact semi-algebraic sets,
Ind. Univ. Math. J. 42, pp. 969–984, 1993.

[17] Sherali H.D., Adams W.P. A hierarchy of relaxations between the
continuous and convex hull representations for zero-one program-
ming problems, SIAM J. Discr. Math. 3, pp. 411–430, 1990.

[18] Sherali H.D., Adams W.P. A Reformulation-Linearization Tech-
nique for Solving Discrete and Continuous Nonconvex Problems,
Kluwer, Dordrecht, MA, 1999.

20



[19] Stengle G. A Nullstellensatz and a Positivstellensatz in semialge-
braic geometry, Math. Ann. 207, pp. 87–97, 1974.

21


