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Abstract. We study the asymptotic behavior of a three dimensional flat, heterogeneous and anisotropic piezoelectric body
when its thickness - seen as a parameter - goes to zero. Depending on the type of the electrical loading two models are
obtained which are related to the plate used as a sensor or as an actuator. These models are explicitly derived in any
piezoelectric crystal symmetry class. For some of them, a striking structural switch-off of the piezoelectric effect occurs. The
static case is solved through a unifying approach using techniques of singular perturbation while the transient situation is
formulated in terms of evolution equations in Hilbert spaces of possible states with finite electromechanical energy, so that
the study of these transient problems are easily deduced from the static case through the Trotter theory of convergence of
semi-groups of operators acting on variable spaces.

1 Introduction

The interest of an efficient modeling of the dynamic response of piezoelectric plates lies in the fact that a major technological
application of piezoelectric effect is the control of vibrations of structures through very thin patches. But, if many studies
have been devoted to their static behavior (see for instance the introduction in [2]), much less attention have been paid
to the dynamic response. We are only aware of the substantial but rather complex modeling of [11]. It seems to us that
this complexity stems from both the taking into account of the magnetic effects and its mathematical treatment. The
latter involves a variational evolution equation in terms of auxiliary variables like the electrical and the magnetic vector
potentials and not in terms of the root variables, i.e. the electric and magnetic fields. Moreover, because of the large
discrepancy between the celerities of the mechanical and electromechanical waves, magnetic effects can indeed be ignored.
That is why we propose a modeling in the appropriate framework of the quasi-electrostatic approximation through the
theory of semi-groups of linear operators acting on variable spaces. Since the Trotter result of convergence of semi-groups
claims that the study of the convergence of the transient problems reduces to the static case, we have choosed to first
revisit the static modeling of thin piezoelectric plates in an unified way. To this aim, we extend the mathematical derivation
of the asymptotic behavior of a linearly elastic plate exposed in [4] to the linearly piezoelectric case. The keypoint is to
consider that the thickness of the flat piezoelectric body is a parameter. We study the behavior of the solution of the physical
problem when this parameter goes to zero. Our modeling is derived from the limit behavior, so that the thinner the plate the
sharper the modeling. It is also efficient from the computational point of view because it involves two-dimensional problems.
Indeed, depending on the boundary conditions, two models are obtained which correspond to the cases when the plate acts
as a sensor or as an actuator. Because the piezoelectric effect is significantly increased in some composite materials, our
motivation is to treat realistic situations (general heterogeneous and anisotropic piezoelectric materials) in order that our
mathematical analysis be applicable, even if some of its aspects have already been studied in some papers for unrealistic
cases (see Section 3.1).

2 The static case

As usual we make no difference between the physical space and R
3 and, for all ξ = (ξ1, ξ2, ξ3) in R

3, we define

ξ̂ := (ξ1, ξ2). (1)

In all this paper, greek indices for coordinates take their values in 1, 2 whereas latin indices run from 1 to 3. Let

H := S3 × R
3, (2)

where S3 denotes the set of all 3× 3 real and symmetric matrices. For the sake of simplicity, the classical symbol ′ · ′ will
stand for the scalar product in H, S3 and R

3. The set of all linear mappings from a space V into a space W is denoted
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L(V,W ). If V =W , we simply write L(V ). In the sequel, for every domain G in R
N , the subset of the Sobolev space H1(G)

whose elements vanish on Γ , included in the boundary ∂G of G, will be denoted by:

H1
Γ (G) := {v ∈ H1(G) : v|Γ = 0, Γ ⊂ ∂G}. (3)

2.1 Setting the problem

The reference configuration of a linearly piezoelectric thin plate is the closure in R
3 of the set Ωε := ω × (−ε, ε), where

ε is a small positive number and ω a bounded domain of R2 with a Lipschitz boundary ∂ω. The lateral part of the plate
∂ω × (−ε, ε) is denoted Γ ε

lat, while the set constituted by its lower and upper faces is Γ ε
± := ω × {± ε}. Let (Γ ε

mD, Γ
ε
mN ),

(Γ ε
eD, Γ

ε
eN ) two suitable partitions of ∂Ωε with both Γ ε

mD and Γ ε
eD of strictly positive Lebesgue measure. The plate is, on

one hand, clamped along Γ ε
mD and at an electric potential ϕε

0 on Γ ε
eD and, on the other hand, subjected to body forces

fε and electrical loadings F ε in Ωε. Actually F ε vanishes, the material being an insulator, anyway the following analysis
stands with F ε different from 0. Moreover, the plate is subjected to surface forces gε and electrical loadings dε on Γ ε

mN and
Γ ε
eN respectively. We note nε the outward unit normal to ∂Ωε and assume that Γ ε

mD = γ0 × (−ε, ε), with γ0 ⊂ ∂ω. Then
the equations determining the electromechanical state sε := (uε, ϕε) at equilibrium are:





div σε + fε = 0 in Ωε, σεnε = gε on Γ ε
mN , u

ε = 0 on Γ ε
mD,

div Dε + F ε = 0 in Ωε, Dε · nε = dε on Γ ε
eN , ϕ

ε = ϕε
0 on Γ ε

eD,

(σε, Dε) =Mε(x)(e(u),∇ϕ) in Ωε,

(4)

where uε, ϕε, σε, e(uε) and Dε respectively denote the displacement and electrical potential fields, the stress tensor, the
linearized strain tensor and the electrical displacement. In the linearly piezoelectric framework which is studied here, we
recall that the operator Mε is an element of L(H) such that:

{
σε =Mε

mme(u
ε)−Mε

me∇ϕε,

Dε =MεT

mee(u
ε) +Mε

ee∇ϕε,
(5)

where (Mε
mm,M

ε
me,M

ε
ee) ∈ L(S3)×L(R3, S3)×L(R3) are respectively the elastic, piezoelectric and dielectric tensors while

MεT

me =:Mε
em denotes the transpose of Mε

me. We recall that Mε
mm and Mε

ee are symmetric and positive.
To give a variational formulation of (4), we first make the following regularity hypothesis on the exterior loading:

(H1) :

{
(fε, gε, F ε, dε) ∈ L2(Ωε)3 × L2(Γ ε

mN )3 × L2(Ωε)× L2(Γ ε
eN ),

ϕε
0 has an H1(Ωε)3 extension into Ωε still denoted by ϕε

0,

and on the space of electromechanical states

V
ε := {r = (v, ψ) ∈ H1

Γε
mD

(Ωε)3 ×H1
Γε
eD

(Ωε)} (6)

we define a bilinear form mε:

mε(r, q) = mε((v, ψ), (w, φ)) :=

∫

Ωε

Mε(e(v),∇ψ)) · (e(w),∇φ) dxε, (7)

and a linear form Lε:

Lε(r) = Lε((v, ψ)) :=

∫

Ωε

(fε · v + F ε ψ) dxε +

∫

Γε
mN

gε · v dsε +
∫

Γε
eN

dε ψ dsε. (8)

The physical problem, set on the real plate, then takes the form

P(Ωε) : Find sε = (uε, ϕε) ∈ (0, ϕε
0) + V

ε such that mε(sε, r) = Lε(r), ∀ r ∈ V
ε.

Thus, with the additional and realistic assumptions of boundedness of Mε
mm, Mε

me, M
ε
ee and of uniform ellipticity of Mε

mm

and Mε
ee:

(H2) : Mε ∈ L∞(Ωε,L(H)), ∃κε > 0 : Mε(xε)h · h ≥ κε |h |2H, ∀h ∈ H, a.e. xε ∈ Ωε,

the theorem of Stampacchia (cf. [3]) implies the
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Theorem 1. Under assumptions (H1)-(H2), the problem P(Ωε) has a unique solution.

To derive a simplified and accurate model, the very question is to study the behavior of sε when ε, considered as a
parameter, tends to zero. We will show that, depending on the type of boundary conditions, two limit behaviors, indexed
by p with value 1 or 2, can be obtained (see [17]).

2.2 The scaling operation

Classically (see [4]), we come down to a fixed open set Ω := ω × (−1, 1) through the mapping πε:

x = (x̂, x3) ∈ Ω 7→ πεx = (x̂, εx3) ∈ Ωε. (9)

Also, we drop the index ε for the image by (πε)−1 of the previous geometric sets. To get physically meaningful results, we
have to make various kinds of assumptions. They deal with

1. the electromechanical coefficients:

(H3) : Mε(πεx) =M(x) with M ∈ L∞(Ω,L(H)), ∃κ > 0 : M(x)h · h ≥ κ |h |2H, ∀h ∈ H, a.e. x ∈ Ω,

2. the electromechanical loading:

(H4) :





there exists (f, F, g, d) ∈ L2(Ω)3 × L2(Ω)× L2(ΓmN )3 × L2(ΓeN );

fε
α(π

εx) = ε fα(x), f
ε
3 (π

εx) = ε2 f3(x), F
ε(πεx) = ε2−p F (x), ∀x ∈ Ω,

gεα(π
εx) = ε2 gα(x), g

ε
3(π

εx) = ε3 g3(x), ∀x ∈ ΓmN ∩ Γ±,

gεα(π
εx) = ε gα(x), g

ε
3(π

εx) = ε2 g3(x), ∀x ∈ ΓmN ∩ Γlat

dε(πεx) = ε3−p d(x), ∀x ∈ ΓeN ∩ Γ±, d
ε(πεx) = ε2−p d(x), ∀x ∈ ΓeN ∩ Γlat,

ϕε
0(π

εx) = εp ϕ0(x), ∀x ∈ ΓeD.

3. the boundedness of the "work of the exterior loading":

(H5) :





p = 1 : the extension of ϕ0 into Ω does not depend on x3.

p = 2 : the closure δ of the projection of ΓeD on ω coincides with ω,

and either d = 0 on ΓeN ∩ Γlat or ΓeN ∩ Γlat = ∅.

Also, we associate a scaled electromechanical state sp(ε) := (up(ε), ϕp(ε)) =: Πε
ps

ε defined on Ω with the true physical
electromechanical state sε = (uε, ϕε) defined on Ωε:

ûε(xε) = ε (ûp(ε))(x), u
ε
3(x

ε) = (up(ε))3(x), ϕ
ε(xε) = εp ϕp(ε)(x), ∀xε = πεx ∈ Ωε. (10)

Assumptions (H3), (H4) together with the scaling operation (10) are classical. Actually, they are justified by the con-
vergence results they lead to. If we just consider the displacement, these hypotheses are the ones made in [4] and supply a
mathematical justification of the Kirchhoff-Love theory of thin linearly elastic plates.

Remark 1. In the following, if E stands for any function space defined on Ω, the same function space - but defined on Ωε -
will be denoted by Eε and vice-versa.

2.3 Variational formulation of the scaled problem

Let V be the space of scaled electromechanical states:

V := {r = (v, ψ) ∈ H1
ΓmD

(Ω)3 ×H1
ΓeD

(Ω)}. (11)

Of course, r ∈ Vε ⇐⇒ Πε
p r ∈ V. Now, for all r = (v, ψ) ∈ V, we define the scaled strain tensor e(ε, v) and the scaled

electrical potential gradient ∇(p)(ε, ψ) by:

eαβ(ε, v) := eαβ(v), eα3(ε, v) := ε−1 eα3(v), e33(ε, v) := ε−2 e33(v), ∇(p)(ε, ψ)α := εp−1 ∂αψ, ∇(p)(ε, ψ)3 := εp−2 ∂3ψ. (12)
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To simplify the notations, we set

k(r) := (e(v),∇ψ), kp(ε, r) := (e(ε, v),∇(p)(ε, ψ)), (13)

and, as in (7) and (8) we introduce a bilinear form mp(ε) and a linear form L on V:

mp(ε)(r, q) :=

∫

Ω

M(x) kp(ε, r) · kp(ε, q) dx, L(r) :=

∫

Ω

(f · v + F ψ) dx+

∫

ΓmN

g · v ds+
∫

ΓeN

dψ ds, (14)

so that under asumptions (H1) − (H4), the scaled electromechanical state sp(ε) = (up(ε), ϕp(ε)) is the unique solution of
the mathematical problem:

P(ε,Ω)p : Find sp(ε) ∈ (0, ϕ0) + V such that mp(ε)(sp(ε), r) = L(r), ∀ r ∈ V.

2.4 Asymptotic behavior of the scaled electromechanical state

The process
To generalize the method described in [4], we will show that some components of kp(ε, sp(ε)) and of Mkp(ε, sp(ε)) have

vanishing limits when ε goes to 0. In the purely mechanical case, we recall that the classical result is that the limit
displacement v is of Kirchhoff-Love type, i.e. such that ei3(v) = 0. In fact it is possible to generalize this idea to multi-
physical couplings by observing that a fundamental role is played by the algebraic structure of the space H defined in (2):
with the scaling operation, various powers of ε appear in kp(ε, .) (see (13)); their signs suggest a suitable orthogonal
decomposition of H in the following subspaces:

H−
1 := {h = (e, g) : eαβ = 0, gα = 0} , H−

2 := {h = (e, g) : eαβ = 0, gi = 0} ,
H0

1 := {h = (e, g) : ei3 = 0, g3 = 0} , H0
2 := {h = (e, g) : ei3 = 0, gα = 0} ,

H+
1 := {h = (e, g) : eij = 0, gi = 0} , H+

2 := {h = (e, g) : eij = 0, g3 = 0} .
(15)

This process is similar to the one of [14]. For a given p ∈ {1, 2},M can then be decomposed in nine elementsM⋆⋄
p ∈ L(H⋄

p,H⋆
p)

with ⋆, ⋄ ∈ {−, 0,+}. Hypothesis (H3) on the electromechanical coefficients implies that M00
p et M−−

p are positive operators
on H0

p and H−
p . Therefore, the Schur complement

M̃p :=M00
p −M0−

p (M−−
p )−1M−0

p (16)

is an element of L(H0
p). It is important to note that neither M00

p nor M̃p are necessarily symmetric, but nevertheless

κ |h0
p|2H 6 M̃p(x)h

0
p · h0

p, ∀h0
p ∈ H0

p, a.e. x ∈ Ω. (17)

This is implied by the coercivity of M (see (H3)) and by the fundamental relation:

(M h)−p = h+
p = 0 ⇒

{
M̃p h

0
p = (M h)0p,

M̃p h
0
p · h0

p =M h · h.
(18)

The key point of the asymptotic study is to show that if kp is the limit (in a suitable topology) of kp(ε, sp(ε)), then

(M kp)
−
p = (kp)

+
p = 0! This will enable us to exhibit M̃p as the operator governing the limit constitutive equations.

Functional framework
We will show that the limit displacements live in the space VKL of Kirchhoff-Love displacements

VKL := {v ∈ H1
ΓmD

(Ω)3 : ei3(v) = 0}, (19)

while the limit electrical potential belongs to

Φ1 := {ψ ∈ H1
ΓeD

(Ω) : ∂3ψ = 0} or Φ2 := {ψ ∈ H1
∂3
(Ω) : ψ|ΓeD∩Γ±

≡ 0}. (20)
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We recall that for all v ∈ VKL, there exists a unique couple (vM , vF ) ∈ H1
γ0
(ω)2 ×H2

γ0
(ω) such that:

v̂(x) = vM (x̂)− x3∇̂vF (x̂), v3(x) = vF (x̂). (21)

and we introduce

V
M
KL := {v ∈ VKL : vF = 0}, V

F
KL := {v ∈ VKL : vM = 0}. (22)

The space

H1
∂3
(Ω) := {ψ ∈ L2(Ω) : ∂3ψ ∈ L2(Ω)} (23)

equipped with the scalar product:

(ϕ,ψ) 7→
∫

Ω

ϕψ dx+

∫

Ω

∂3ϕ∂3ψ dx. (24)

is an Hilbert space. The trace mapping being linear and continuous from H1
∂3
(Ω) to L2(Γ±), the definition (20) of Φ2 is

meaningful. Thus, with the assumption (H5), Φ2 can be equipped with the scalar product:

(ϕ,ψ) 7→
∫

Ω

∂3ϕ∂3ψ dx (25)

equivalent to the one defined by (24). Finally, let

Sp := VKL × Φp, Xp :=

{
H1

ΓmD
(Ω)3 ×H1(Ω), if p = 1,

H1
ΓmD

(Ω)3 ×H1
∂3(Ω), if p = 2.

(26)

The Korn and Poincaré inequalities allow us to define on Sp and Xp the hilbertian norms

|(v, ψ)|2S1
:= |e(v)|2L2(Ω) + |∇ψ|2L2(Ω) , |(v, ψ)|2S2

:= |e(v)|2L2(Ω) + |∂3ψ|2L2(Ω),

|(v, ψ)|2X1
:= |e(v)|2L2(Ω) + |ψ|2L2(Ω) + |∇ψ|2L2(Ω) , |(v, ψ)|2X2

:= |e(v)|2L2(Ω) + |ψ|2L2(Ω) + |∂3ψ|2L2(Ω).
(27)

The set (0, ϕ0) + Sp will appear to be the limit set of electromechanical states.

Remark 2. Because k(r) is not rigorously defined when r = (v, ψ) belongs to X2 (see definitions (13), (15), (23) and (26)),
we are led to slighty abuse of the notations by letting

k(r)02 = ((eαβ(v), 0), (0, ∂3ψ)). (28)

The two limit scaled problems
We have the following convergence result:

Proposition 1. Under assumptions (H3)−(H5), and when ε→ 0, the family (sp(ε))ε>0 of the unique solutions of P(ε,Ω)p
strongly converges in Xp to the unique solution sp of:

P(Ω)p : Find s ∈ (0, ϕ0) + Sp such that m̃p(s, r) :=

∫

Ω

M̃p k(s)
0
p · k(r)0p dx = L(r), ∀ r ∈ Sp.

Furthermore, limε→0mp(ε)(sp(ε), sp(ε)) = m̃p(sp, sp).
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Proof. It is divided in five steps.
First step : the family (sp(ε))ε is bounded in Xp.
We may assume ε ≤ 1. For all r ∈ V, s̃p(ε) := sp(ε)− (0, ϕ0) satisfies:

mp(ε)(s̃p(ε), r) = L̃(r) :=

∫

Ω

(f · v + F ψ) dx+

∫

ΓmN

g · v ds+
∫

ΓeN

dψ ds−mp(ε)((0, ϕ0), r). (29)

Thus, assumption (H3) on the electromechanical coefficients implies:

κ |s̃p(ε))|2Xp
≤ κ |k(ε, s̃p(ε))|2L2(Ω,H) ≤ mp(ε)(s̃p(ε), s̃p(ε)) = L̃(s̃p(ε)). (30)

To establish the boundedness of s̃p(ε) in Xp, it suffices to show that there exists a constant c which does not depend on ε
such that

L̃(s̃p(ε)) ≤ c |k(ε, s̃p(ε))|L2(Ω,H). (31)

Bounding the four terms of L̃(s̃p(ε)) - linked to the work of the exterior loading - is obvious except the third in the case p = 2
and the fourth if p = 1. Indeed, (H5) implies 1

ε
∂3ϕ0 = 0, therefore |k1(ε, (0, ϕ0))|L2(Ω) is uniformly bounded with respect

to ε; assumption (H5) deletes the problem of bounding
∫
ΓeN

d(ϕ(ε)−ϕ0) ds. Hence, ϕ0 being fixed, the family (sp(ε))0<ε≤1

is bounded in the Hilbert space Xp and so there exists a subsequence, not relabelled, such that:

(sp(ε), k(ε, sp(ε)) ⇀ (sp, kp) in Xp × L2(Ω,H), (32)

k(sp(ε))
−
p → 0 in L2(Ω,H), (33)

k(sp)
0
p = (kp)

0
p, (34)

where the ⇀ and → symbols respectively denote weak and strong convergences.
Second step : to identify the operator providing the limit constitutive law, we establish that (M kp)

−
p = (kp)

+
p = 0.

To get (M kp)
−
p = 0, we generalize the method introduced in [4] in the case of linearly isotropic elastic plates. In the

equation associated with P(ε,Ω)p, we choose:

i) r such that v3 = ψ = 0 and multiply by ε,
ii) r such that vα = 0 and ψ = 0 and multiply by ε2,
iii) r such v = 0 and multiply by ε if p = 1 only,

and, by going to the limit, we conclude with the lemma of [4]:

Lemma 1. If w ∈ L2(Ω) satisfies
∫
Ω
w ∂3v dx = 0, for all v in C∞(Ω) such that v = 0 on γ × [−1, 1], then w = 0.

From its very definition (k1)
+
1 vanishes, while (k2)

+
2 = 0 stems from a classical argument (see [15] for the details) in going

to the limit in the identity

∫

Ω

ε∂αϕ(ε)g dx = −ε
∫

Ω

ϕ(ε)∂αg dx, ∀ g ∈ C∞
0 (Ω). (35)

Therefore, using (18), we have

Mkp · kp = M̃(kp)
0
p · (kp)0p, (Mkp)

0
p = M̃p(kp)

0
p. (36)

Third step : the limit problem.

For all r ∈ Sp∩C∞(Ω,R4), kp(ε, r) strongly converges to k(r)0p in L2(Ω,H). Therefore, by passing to the limit in P(ε,Ω)p
with (32), (36) and (34), we get

L(r) =

∫

Ω

Mkp · k(r)0p dx =

∫

Ω

(Mkp)
0
p · k(r)0p dx =

∫

Ω

M̃p(kp)
0
p · k(r)0p dx =

∫

Ω

M̃pk(sp)
0
p · k(r)0p dx. (37)
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The density of Sp ∩ C∞(Ω,R4) in Sp implies that sp solves P(0, Ω)p. The bilinear form m̃p being Sp-elliptic (see (17)),
the problem P(0, Ω)p has a unique solution. Thus, by a classical compacity argument, the whole sequence sp(ε) weakly
converges to sp.

Fourth step : strong convergence.

By (32)-(34), the strong convergence of sp(ε) to sp in Xp is equivalent to the one of k(sp(ε))
0
p to k(sp)

0
p in L2(Ω,H). But

we have

κ |k(sp(ε))0p − k(sp)
0
p|2L2(Ω,H) ≤ κ |k(ε, sp(ε))− kp|2L2(Ω,H) ≤

∫

Ω

M (k(ε, sp(ε))− kp) · (k(ε, sp(ε))− kp) dx

=

∫

Ω

M (k(ε, sp(ε))) · (k(ε, sp(ε))) dx−
∫

Ω

M kp · (k(ε, sp(ε)) dx−
∫

Ω

M (k(ε, sp(ε))− kp) · kp dx

= L(s̃p(ε)) +

∫

Ω

M (k(ε, sp(ε))) · (k(ε, (0, ϕ0))) dx−
∫

Ω

M kp · (k(ε, sp(ε)) dx−
∫

Ω

M (k(ε, sp(ε))− kp) · kp dx, (38)

and from (32) and (36), we deduce that, as ε→ 0, the right member converges to

l = L(sp−(0, ϕ0))+

∫

Ω

M kp·k(0, ϕ0) dx−
∫

Ω

M kp·kp dx = L(sp−(0, ϕ0))+

∫

Ω

M̃p k
0
p·k(0, ϕ0)

0
p dx−

∫

Ω

M̃p k
0
p·k

0
p dx = 0. (39)

Fifth step : limε→0mp(ε)(sp(ε), sp(ε)) = m̃p(sp, sp).
It suffices to observe that (32), (H5) and (36) imply

lim
ε→0

mp(ε)(sp(ε), (0, ϕ0)) =

∫

Ω

Mkp · k(0, ϕ0)
0
p dx = m̃p(sp, (0, ϕ0)). (40)

�

2.5 Variants to Proposition 1

It is interesting to consider the cases when the elements f, F, g, d and ϕ0 are depending on ε or when the linear form L defined
in (14) is a more abstract mathematical object than the electromechanical loading. In this direction, a careful examination
of the preceding proof leads to the

Corollary 1. Let (Λε)ε>0 a family of continuous linear forms on Xp which converges weakly to Λ and (ϕ0ε)ε>0 ⊂ H1(Ω)
such that

(H5)
′ :

{
∃ϕ0 ∈ H1(Ω) if p = 1, H1

∂3(Ω) if p = 2, ∃ k0 ∈ L2(Ω,H);

(ϕ0ε , k(ε, ϕ0ε))⇀ (ϕ0, k0) in L2(Ω)× L2(Ω,H) with (k0)
0
p = (k(0, ϕ0))

0
p,

then, when ε→ 0, the family (s′p(ε))ε>0 of the unique solutions of

Find s ∈ (0, ϕ0ε) +V such that mp(ε)(s, r) = Λε(r), ∀ r ∈ V.

weakly converges in Xp to the unique solution s′p of

Find s ∈ (0, ϕ0) + Sp such that m̃p(s, r) = Λ(r), ∀ r ∈ Sp.

In addition, if the previous convergences of the data are strong then the familly (s′p(ε))ε>0 converges strongly in Xp and

lim
ε→0

mp(ε)(s
′
p(ε), s

′
p(ε)) = m̃p(s

′
p, s

′
p). (41)

For instance, when Λε is the scaled work:

Λε(r) = Lε(r) =

∫

Ω

(fε · v + Fε ψ) dx+

∫

ΓmN

gε · v ds+
∫

ΓeN

dε ψ ds, (42)
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with dε = 0 on ΓeN ∩ Γlat or ΓeN ∩ Γlat = ∅ if p = 2, the weak convergence of Λε is implied by

(fε, Fε, gε, dε)⇀ (f, F, g, d) in L2(Ω)3 × L2(Ω)× L2(ΓmN )3 × L2(ΓeN ). (43)

Actually, when p = 1, this assumption yields the strong convergence of Λε which is obtained if p = 2 with the additional
assumption of strong convergence of (Fε, dε) in L2(Ω)× L2(ΓeN ). It is worthwile to note that (H′

5) implies the weak (resp.
strong) convergence of ϕ0ε in H1(Ω) with ∂3ϕ0 = 0 if p = 1 or in H1

∂3(Ω) with (k0)
+
p = 0 if p = 2.

It is also interesting to consider a perturbation of the bilinear form mp(ε). In fact, the following corollary will play a
crucial role in the study of the dynamic case. Let us introduce the assumption

(Hdecoupl
p ) :

∫ +1

−1

x3M̃1 dx3 = 0, M̃2(x̂, x3) = M̃2(x̂) with Γ± ⊂ ΓeD,

and the bilinear forms

(v, w) ∈ L2(Ω)2 7→ kl(ε)(v, w) := ε2(l−1)
∫
Ω
(v̂ · ŵ + ε−2v3w3) dx, l = 1, 2,

(v, w) ∈ VM2

KL 7→ k̃1(v, w) :=
∫
Ω
v̂ · ŵ dx,

(v, w) ∈ VF2

KL 7→ k̃2(v, w) :=
∫
Ω
v3w3 dx,

(44)

and let

V1 := V
M
KL, W1 := V

F
KL, V2 := V

F
KL, W2 := V

M
KL. (45)

We have the

Corollary 2. Let λ ∈ R
+ and Λ a continuous linear form on Xp such that Λ(Wl) = 0. Then, under assumptions (H3) and

(Hdecoupl
p ), the familly (s′′p,l(ε))ε>0 of the unique solutions of

Find s = (u, ϕ) ∈ V such that kl(ε)(u,w) + λmp(ε)(s, r) = Λ(r), ∀ r = (w,ψ) ∈ V,

converges strongly in Xp to the unique solution s′′p,l of

Find s = (u, φ) ∈ Vl × Φp such that k̃l(u,w) + λm̃p(s, r) = Λ(r), ∀ r = (w,ψ) ∈ Vl,

and, of course,

lim
ε→0

kl(ε)(u
′′
p,l(ε), u

′′
p,l(ε)) + λmp(ε)(s

′′
p,l(ε), s

′′
p,l(ε)) = k̃l(ε)(u

′′
p,l, u

′′
p,l) + λm̃p(s

′′
p,l, s

′′
p,l). (46)

Actually, the additional property s′′p,l ∈ Vl is deduced from assumption (Hdecoupl
p ) which permits (see section 2.7) to exploit

Λ(Wl) = 0.

2.6 Back to the problem P(Ωε): a proposal of simplified and acurate modeling

We now come back to the reference configuration Ωε of the real plate of thickness 2ε through the operators πε and (Πε
p)

−1

(see (9) and (10)). With the solution sp of P(Ω)p is associated a physical electromechanical state sεp defined on Ωε by:

sεp(π
εx) := (Πε

p)
−1sp(x), ∀x ∈ Ω. (47)

This electromechanical state is the solution of a problem posed over Ωε which is the transportation by πε of the (limit
scaled) problem P(Ω)p. This transported problem, set on Ωε, is our proposal to model thin linearly piezoelectric plates of
thickness 2ε. The function sεp represents an approximation of the electromechanical state sε inside the plate. It remains to
show that this approximation is acurate. In this direction, we let

M̃ε
p (π

εx) := M̃p(x), ∀x ∈ Ω, (s, r) ∈ V
ε2 7→ m̃ε

p(s, r) :=

∫

Ωε

M̃ε
p (x) k(s)

0
p · k(r)0p dx. (48)

Proposition 1 implies the



Piezoelectric plates models 9

Theorem 2. Under assumptions (H3)− (H5), the couple sεp =: (uε
p, ϕ

ε
p) constituted by the limit ("descaled") displacement

and electrical potential defined over the physical plate Ωε is the unique solution of the problem:

P(Ωε)p : Find s ∈ (0, ϕε
0) + S

ε
p such that m̃ε

p(s, r) = L(r), ∀ r ∈ S
ε
p.

Furthermore, the electromechanical state sεp is asymptotically equivalent to the unique solution sε of the genuine physical
problem P(Ωε) in the sense that:

lim
ε→0

ε−1

∫

Ωε

ε−2|(uε
p)α − uε

α|2 + |(uε
p)3 − uε

3|2 dxε = 0, lim
ε→0

ε−3

∫

Ωε

|eεαβ((u
ε
p)α)− eεαβ(u

ε)|2 dxε = 0,

lim
ε→0

ε−3

∫

Ωε

|ϕε
1 − ϕε|2 + |∂ε

αϕ
ε
1 − ∂ε

αϕ
ε|2 dxε = 0, lim

ε→0
ε−5

∫

Ωε

|ϕε
2 − ϕε|2 + ε2|∂ε

3ϕ
ε
2 − ∂ε

3ϕ
ε|2 dxε = 0,

ε−3

∫

Ωε

|ei3(uε)|2 dxε, ε−3

∫

Ωε

|∂ε
αϕ

ε|2 dxε and ε−3

∫

Ωε

|∂ε
3ϕ

ε|2 dxε are bounded.

We emphasize on the following points (see [17]):

1. the first model, with ϕε
0 = 0, deals with the physical situation when the plate is used as a sensor,

2. the second model corresponds to an actuator.

2.7 Bidimensional limit equations. Decoupling

To simplify the notations (and to be realistic), we make the additional assumption

(H6) : F ε = 0 and there exists γeN ⊂ ∂ω such that ΓeN = γeN × (−1,+1).

Let γmN = γ \ γ0, we consider the functions gε±i , dε±, pεi , q
ε
α, rεi , s

ε
α, p′ε, r′ε ∈ L2(ω) defined by

gε±i (x̂) :=

{
gεi (x̂,±ε) if x ∈ Γ ε

mN ∩ Γ ε
±

0 in the other cases
, dε±(x̂) :=

{
dε(x̂,±ε) if x ∈ Γ ε

eN ∩ Γ ε
±

0 in the other cases
, (49)

and

pεi :=
∫ +ε

−ε
fε
i dx+ gε+i + gε−i , qεα :=

∫ +ε

−ε
xfε

α dx+ gε+α − gε−α , rεi :=
∫ +ε

−ε
gεi dx,

sεα :=
∫ +ε

−ε
xgεα dx , p′ε := dε+ + dε− , r′ε :=

∫ +ε

−ε
dε dx.

(50)

Case p = 1
We define

LMε

KL(v
M ) :=

∫
ω
pεαv

M
α dx̂+

∫
γmN

[rεαv
M
α − sεαv

M
α ] dx̂, LFε

KL(v
F ) :=

∫
ω
pε3v

F dx̂−
∫
ω
qεα∂αv

F dx̂+
∫
γmN

rε3v
F dx̂,

Lε
e(ψ) :=

∫
ω
p′εψ dx̂−

∫
γeN

r′εψ dx̂,
(51)

for all v = (vM , vF ) ∈ Vε
KL and all ψ ∈ Φε

1. The limit space Sε
1 is the direct sum of the two subspaces

S
Mε

1 := V
Mε

KL × Φε
1, S

Fε

1 := V
Fε

KL × {0}, (52)

and for all r = (v, ψ) ∈ Sε
1, we have

k(r)01(x) =





e11(v

M )− x3∂
2
11 v

F e12(v
M )− x3∂

2
12 v

F 0
e12(v

M )− x3∂
2
12 v

F e22(v
M )− x3∂

2
22 v

F 0
0 0 0


 ,



∂1ψ
∂2ψ
0






=





e11(v

M ) e12(v
M ) 0

e12(v
M ) e22(v

M ) 0
0 0 0


 ,



∂1ψ
∂2ψ
0




− x3





∂2
11 v

F ∂2
12 v

F 0
∂2
12 v

F ∂2
22 v

F 0
0 0 0


 ,



0
0
0




 =: k(vM , ψ)01(x̂)− x3D

2(vF )01(x̂).

(53)
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Letting

M̃0
1 = M̃0

1(x̂) :=

∫ +ε

−ε

M̃ε
1 (x

ε) dxε3, M̃1
1 = M̃1

1(x̂) :=

∫ +ε

−ε

xε3 M̃
ε
1 (x

ε) dxε3, M̃2
1 = M̃2

1(x̂) :=

∫ +ε

−ε

xε
2

3 M̃ε
1 dx

ε
3, (54)

the problem P(Ωε)1 takes the following form

P(Ωε)1





Find (u, ϕ) ∈ (0, ϕ0) + Sε
1 such that∫

ω
[M̃0

1k(u
M , ϕ)01 · k(vM , ψ)01 − M̃1

1k(u
M , ϕ)01 ·D2(vF )01 − M̃1

1D
2(uF )01 · k(vM , ψ)01 + M̃2

1D
2(uF )01 ·D2(vF )01] dx̂

= LMε

KL(v
M ) + LFε

KL(v
F ) + Lε

e(ψ), ∀ (v, ψ) ∈ Sε
1.

It is important to note that P(Ωε)1 is a bidimensional problem in the sense that it is posed over ω and that Sε
1 only involves

functions defined on ω. We then remark that hypothesis (Hdecoupl
p ) (which is true if the electromechanical coefficients are

even functions of x3) implies a decoupling between membrane displacements and flexural displacements in the sense that
they solve two independent variational equations:

P(Ωε)1

{
Find (uM , ϕ) ∈ (0, ϕ0) + SMε

1 such that
∫
ω
M̃0

1k(u
M , ϕ)01 · k(vM , ψ)01 dx̂ = LMε

KL(v
M ) + Lε

e(ψ), ∀ (vM , ψ) ∈ SMε

1 ,

Find uF ∈ VFε

KL such that
∫
ω
M̃2

1D
2(uF )01 ·D2(vF )01 dx̂ = LFε

KL(v
F ), ∀ vF ∈ SFε

1 ,

where the second problem does not involve the electrical potential. The decisive aspect of assumption (Hdecoupl
p ) is that it

implies the m̃ε
1-polarity of SMε

1 and SFε

1 , i.e.:

m̃ε
1(s

M , rF ) = m̃1(r
F , sM ) = 0, ∀ (sM , rF ) ∈ S

Mε

1 × S
Fε

1 . (55)

Case p = 2
From its very definition, ϕε

2 satisfies

∂3(M̃
ε
2ee∂3ϕ

ε
2) = −∂3(M̃ε

2me
ê(uεM

2 )(x̂)− x3D
2(uεF

2 )(x̂)), (56)

so that ϕε
2(x̂, ·) is a second order polynomial as soon as M̃ε

2 does not depend on x3. When M̃ε
2 depends on x3 but Γ ε

± ⊂ Γ ε
eD,

ϕε
2 is a local function of ê(uεM

2 ) and D2(uεF
2 ):

ϕε
2 = Aε(ϕε+

0 (x̂)− ϕε−

0 (x̂)) +Bεê(uεM
2 ) + CεD2(uεF

2 ), (57)

where

Aε := aε
−1

(x̂, ε)∂3a
ε, Bε := ∂3b

ε − aε
−1

bε(x̂, ε)∂3a
ε, Cε := ∂3c

ε − aε
−1

cε(x̂, ε)∂3a
ε,

aε(x̂, x3) :=
∫ x3

−ε
(M̃ε

2ee)
−1(x̂, z) dz, bε(x̂, x3) :=

∫ x3

−ε
(M̃ε

2ee)
−1M̃εT

2me
(x̂, z) dz,

ϕε±

0 (x̂) := ϕε
0(x̂,±ε), cε(x̂, x3) :=

∫ x3

−ε
z(M̃ε

2ee)
−1M̃εT

2me
(x̂, z) dz.

(58)

Hence, uε
2 satisfies

∫

Ωε

[M̃ε
2mm

(ê(uεM )− x3D
2(uεF )) + M̃ε

2me
(Bεê(uεM ) + CεD2(uεF )] · [ê(vM )− x3D

2vF ] dx

= −
∫

Ωε

(M̃ε
2me

Aε(ϕε+ − ϕε−)) dx + LMε

KL(v
M ) + LFε

KL(v
F ), ∀ v ∈ V

ε
KL. (59)

Actually, it is a bidimensionnal non symmetric variational problem set on ωε. Moreover, with the additional hypothesis
(Hdecoupl

2 ), there is a decoupling between the membrane and the flexural parts of the displacement. If we let

Φoε

2 := {x3-odd parts of Φε
2 elements}, Φeε

2 := {x3-even parts of Φε
2 elements}, (60)
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the two subspaces

S
Mε

2 := V
Mε

KL × Φoε

2 , S
Fε

2 := V
Fε

KL × Φeε

2 , (61)

are m̃2-polar in the sense of (55) where the index 1 is replaced by 2.
These facts, presented in [17] and [19], already noted under stronger symmetry hypothesis in [10], [15] and [9], have also

been observed latter in [5].

2.8 Some properties of the limit constitutive laws

It is interesting to give some properties of the operators M̃ε
p which supply the constitutive equations of the piezoelectric

plate. For a detailed discussion on this point, see [19]. Similarly to (5), we associate with M̃ε
p the sub-operators M̃ε

pmm
,

M̃ε
pem , M̃ε

pme
, M̃ε

pee . Due to the fact that the projections from H to Hp
0 commutes with the involution idS3 − idR3 , the

fundamental coupling property of Mε remains true for the Schur complement M̃ε
p :

M̃ε
pem = −(M̃ε

pme
)T . (62)

A handmade proof of this nice property can be found in [19]. Considering the influence of crystalline symmetries (see for
example [13]), we deduce that in the case of a polarization normal to the plate:

- M̃ε
2mm

involves mechanical terms only,

- M̃ε
1mm

= M̃ε
2mm

for the crystalline classes m, 32, 422, 6, 622 and 6m2,

- M̃ε
1mm

involves electrical terms except for these previous classes,

- when p = 1, there is an electromechanical decoupling (M̃ε
1me

= 0) for the classes 2, 222, 2mm, 4, 4, 422, 4mm, 42m, 6,
622, 6mm and 23, while when p = 2, this decoupling occurs with the classes m, 32, 422, 6, 622 and 6m2, nevertheless
the operators M̃ε

pmm
and M̃ε

pee involve a mixture of elastic, piezoelectric and dielectric coefficients. In these cases,

M̃ε
p is symmetric which involves a quadratic convex energy. For plates made of these piezoelectric monocrystals, the

piezoelectric effect disappears at the structural level!

3 Application and example: 222 crystalline class

Let’s consider a thin piezoelectric plate constituted by a material whose crystalline symmetry class is 222. Then (5) takes
the form:




σ11

σ22

σ33√
2σ23√
2σ31√
2σ12

D1

D2

D3




=




a11 a12 a13 0 0 0 0 0 0
a12 a22 a23 0 0 0 0 0 0
a13 a23 a33 0 0 0 0 0 0
0 0 0 a44 0 0 −b41 0 0
0 0 0 0 a55 0 0 −b52 0
0 0 0 0 0 a66 0 0 −b63
0 0 0 b41 0 0 c11 0 0
0 0 0 0 b52 0 0 c22 0
0 0 0 0 0 b63 0 0 c33




·




e11(u)
e22(u)
e33(u)√
2 e23(u)√
2 e31(u)√
2 e12(u)
ϕ,1

ϕ,2

ϕ,3




. (63)

Therefore, (16) leads to




σ11

σ22√
2σ12

D1

D2




=




a11 − a2
13

a33
a12 − a13a23

a33
0 0 0

a12 − a13a23
a33

a22 − a2
23

a33
0 0 0

0 0 a66 +
b263
c33

0 0

0 0 0 c11 +
b241
a44

0

0 0 0 0 c22 +
b252
a55




·




e11(u)
e22(u)√
2 e12(u)
ϕ,1

ϕ,2




(64)

in the sensor case (p = 1) and to
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


σ11

σ22√
2σ12

D3


 =




a11 − a2
13

a33
a12 − a13a23

a33
0 0

a12 − a13a23
a33

a22 − a2
23

a33
0 0

0 0 a66 −b63
0 0 b63 c33


 ·




e11(u)
e22(u)√
2 e12(u)
ϕ,3


 (65)

in the actuator case (p = 2).
As outlined in the preceeding section, the relation (64) shows that σ and D respectively depend solely on e(u) and ∇ϕ

when the plate acts as a sensor, so that it can be considered as no more piezoelectric. However, when the same plate acts
as an actuator, the piezoelectric coupling does not vanish as it can be seen in (65). Moreover, we observe that the difference

between both Mpmm
lies in the inplane shear coefficient: if p = 1, this coefficient is equal to a66 +

b263
c33

while it is equal to
a66 if p = 2. Since the order of magnitude of the permittivity c33 is most of the time very low compared to the piezoelectric

constants (see [13]), the term
b263
c33

cannot be neglected. Therefore, from the purely mechanical point of view, it appears a
significative difference between the two models.

3.1 Bibliographical note

For almost twenty years, several asymptotic theories have been proposed to deal with piezoelectric plates. They differ in
the scaling techniques adopted and their results depend on the type of electric boundary conditions on upper and lower
faces, so that some controversies appeared. For example, by mean of asymptotic expansions, the first two orders of an
asymptotic theory of thin piezoelectric plates are established in [7]. At the first order, a purely mechanical Kirchhoff-Love
theory emerges, while the electric potential satisfies a two-dimensional Poisson-Neumann problem, with an effective dielectric
constant accounting for electromechanical coupling. Nevertheless, these results do not agree with the thin plate limit obtained
in [2]. In particular, the deflection given by [7] depends on elastic constants and not on piezoelectric and dielectric ones. The
procedure used in [2] to derive field equations governing the piezoelectric problem is based on the initial functions method
in conjunction with a rescaling of the applied loads. These discrepancies have been first conciliated in the work of [10] who
shows, in spite of a somewhat uncorrect mathematical framework, that these two models were in fact dealing with two
different physical situations, so that both were true. This distinction, fundamental for technological applications, is not yet
taken into account in some papers and has to be emphasized... It seems that the first rigorous and unified derivation of these
facts in the full anisotropic and heterogeneous cases has been presented in [17] and [19]. Some observations concerning these
facts also appear in [11]. We can check that in the framework of the present paper, the constitutive laws obtained by [7]

and [2] are respectively given by M̃1 and M̃2 for 6mm crystal class. A piezoelectric plate model was also derived by [12]
as a zero-curvature shell model. The case p = 1 has been treated by [7] through formal asymptotic expansions for a 6mm
homogeneous material. To deal with the difficulty introduced by the Dirichlet condition on the electrical potential, [6] used
Lagrange’s multipliers while [1] simply used a change of variable to make the electrical boundary conditions homogeneous.
We also find a mathematical treatment of the case p = 1 in [10]. The case p = 2 has been formally treated by [2] for a 6mm
homogeneous material. Mathematical derivations can be found in [10] , [15] and [9] in less heterogeneous and less anisotropic
situations than our present study. It seems that the useful properties indicated in section 2.8 are new.

4 The dynamic case

5 First formulation of the problem

5.1 The quasi-(electro)static approximation

As pointed out in the introduction, the magnetic effects can be disregarded so that the study of the dynamic response of
the piezoelectric plate may be carried out in the framework of the quasi-electrostatic approximation which claims that the
electrical field still derives from an electrical potential (see [13]) for further physical details). We recall that for a treatment
of the piezoelectric evolution problem with the magnetic effects, one can refer to [11]. Nevertheless, the relations between
the obtained limit models have to be studied.

5.2 Setting the problem

Here we consider that the density of the plate at a point x = (x̂, x3) is ρδ(x̂, x3/ε) with δ a positive element of L∞(Ω)
bounded from below on Ω. Whereas the static problem was only parameterized by the thickness ε of the plate, it is now
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appropriate to consider a couple η := (ε, ρ) of real and positive parameters. Just as we get the asymptotic static behavior
by letting ε going to 0, here, the couple of parameters η will tend to η = (0, ρ), where ρ ∈ [0,+∞[. We will see that the
relative behavior of ε and ρ plays a crucial role.

The electromechanical state of the plate is given by a triplet yη(t) := (uη, ϕη, vη)(t) of displacement uη(t), electric
potential ϕη(t) and velocity vη(t) := u̇η(t) fields. Here, the time t takes his values in [0, T ] and we denote the time derivative
by an upper dot. Then, the equations describing the evolution of the system are:

Qη(Ω
ε)





div ση + fη = ρ δ üη in Ωε, ση nε = gη on Γ ε
mN , u

η = 0 on Γ ε
mD,

div Dη + F η = 0 in Ωε, Dη · nε = dη on Γ ε
eN , ϕ

η = ϕη
0 on Γ ε

eD,

(ση, Dη) =Mε(xε)(e(uη),∇ϕη) in Ωε,

(uη, vη)(0) = (uη0, vη0) given.

Above and in the continuation, the index ε only affects the geometrical data and the constitutive law. On the other hand, the
stress and displacements fields, the electric field, etc. are indexed by η. The evolution problem being quasi-electrostatic, the
initial conditions are only related to the displacement and velocity. Our goal is to show that Qη(Ω

ε) has a unique solution
and then to study the behavior of this solution when η goes to η = (0, ρ).

6 New formulation of the problem

Assumptions (H3) − (H4) as well as the change of unknowns (10) make it possible to reformulate Qη(Ω
ε) as a problem

denoted Q(η,Ω)p, mathematically equivalent but posed over the fixed set Ω = ω× (−1, 1). We then introduce the following
spaces

Yη := H1
ΓmD

(Ω)3 ×H1
ΓeD

(Ω)× L2(Ω)3, Sη := H1
ΓmD

(Ω)3 ×H1
ΓeD

(Ω), Uη := H1
ΓmD

(Ω)3 × L2(Ω)3. (66)

The use of the index η will be justified further by the introduction of norms depending on η. The scaled electromechanical
state

y(η) := (u(η), ϕ(η), v(η) := u̇(η)) ∈ Yη, (67)

and the following couples

s(η) := (u(η), ϕ(η)) ∈ Sη, U(η) := (u(η), v(η)) ∈ Uη, (68)

will have an important role in the treatment of the evolution problem.
An equivalent scalar product, associated with the scaled kinetic energy, is defined on L2(Ω)3 by

<v,w>η:= ρ

∫

Ω

(vαwα + ε−2v3w3) δ(x) dx. (69)

From now on, we consider that the scaled electromechanical loading involved in (H5) may depend on η and is indexed by
η. We make the assumption

(H7) : (fη, gη, Fη, dη, ϕ0η ) ∈ C2,1([0, T ];L2(Ω)3 × L2(ΓmN )3 × L2(Ω)× L2(ΓeN )×H1(Ω)),

and keep in (H5) the part relative to p = 2 only, so that, introducing the linear form

Lη(r; t) :=

∫

Ω

fη(t) · w dx+

∫

ΓmN

gη(t) · w ds+
∫

Ω

Fη(t)ψ dx+

∫

ΓeN

dη(t)ψ ds, ∀ r = (w,ψ) ∈ Sη, (70)

the scaled problem Q(η,Ω)p reads as:

Q(η,Ω)p

{
Find y(η) ∈ (0, ϕ0η , 0) + Yη such that <v̇(η), w>η +mp(ε)(s(η), r) = Lη(r; t), ∀ (r = (w,ψ), t) ∈ Sη × [0, T ],

U(η)(0) = (u0(η), v0(η)) =: U0(η) given in Uη.
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Classicaly, we seek the solution y(η) on the form

y(η) = ye(η) + yr(η), (71)

with ye and yr the solutions of the following problems Pe(η,Ω)p and Qr(η,Ω)p, respectively. The problem Pe(η,Ω)p is
quasi-static and takes into account the exterior loading:

Pe(η,Ω)p : Find se(η) ∈ (0, ϕ0η ) + Sη such that mp(ε)(s
e(η), r) = Lη(r; t), ∀ (r, t) ∈ Sη × [0, T ],

The existence, the unicity, but also the asymptotic behavior of se(η) have been studied in the previous section. Of course,
we define ye(η) by (67), and (H7) implies:

se(η) ∈ C2,1([0, T ];Sη). (72)

On the other hand the problem Qr(η,Ω)p is an evolution problem:

Qr(η,Ω)p

{
Find sr(η) ∈ Sη such that < ür(η), w >η +mp(ε)(s

r(η), r) = − < üe(η), w >η, ∀ (r = (w,ψ), t) ∈ Sη × [0, T ],

ur(η)(0) = u0(η)− ue(η)(0), u̇r(η)(0) = v0(η)− u̇e(η)(0).

Taking into account the true nature of Q(η,Ω)p, quasi-static with respect to the electrical potential and dynamic with
respect to the displacement, we can eliminate the electrical potential ϕr(η) whose souvenir is kept by the operator

Sη : u ∈ H1
ΓmD

(Ω)3 7→ Sη u := ϕη ∈ H1
ΓeD

(Ω) such that mp(ε)((u, ϕη), (0, ψ)) = 0, ∀ψ ∈ H1
ΓeD

(Ω). (73)

Clearly, from (H2) and the Lax-Milgram Lemma, Sη is a well defined linear continuous operator. Then, introducing the
operator Aη:





D(Aη) := {U = (u, v) ∈ Uη : v ∈ H1
ΓmD

(Ω)3 ∃ ! z ∈ L2(Ω)3 such that

<z,w>η +mp(ε)((u,Sη u), (w, 0)) = 0, ∀w ∈ H1
ΓmD

(Ω)3},
Aη U := (v, z),

(74)

we can associate an evolution equation in Uη with the problem Qr(η,Ω)p:

U̇
r(η)− AηU

r(η) = F(η) := (0,−üe(η)), U
r(η)(0) = U

0(η)− U
e(η)(0). (75)

Note that assumption (H7) gives a sense to U
r(η)(0) and F(η).

With the compatibility assumption between initial loading and mechanical phase

(H7) : U
0(η)− U

e(η)(0) ∈ D(Aη),

we have the

Proposition 2. Under assumptions (H3), (H4), (H7) and (H8) the evolution equation (75) has a unique solution of class
C1([0, T ];Uη).

Proof. The keypoint is to equip Uη by a scalar product <<., .>>η for which Uη is a Hilbert space and Aη is skew-adjoint.
Let the bilinear continuous form on Uη defined by:

<<U,U′>>η=<<(u, v), (u
′, v′)>>η:= mp(ε)((u,Sη u), (u

′, 0))+ <v, v′>η . (76)

The structure of M (see (5)) and the very definition of Sη imply the symmetry of <<., .>>η because

mp(ε)((u,Sηu), (u
′, 0)) = mp(ε)((u, 0), (u

′, 0))−mp(ε)((u
′, 0), (0,Sηu))

= mp(ε)((u, 0), (u
′, 0))−mp(ε)((0,Sηu

′), (0,Sηu)).
(77)
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Furthermore, assumption (H3) and definition (73) imply

κ|u|2
H1

ΓmD(Ω)3
≤ mp(ε)((u,Sηu), (u,Sηu)) = mp(ε)((u,Sηu), (u, 0))

≤ |M |L∞(Ω,L(H))(|u|H1
Γm,D

(Ω)3 + |Sηu|H1
Γe,D

(Ω))|u|H1
Γm,D

(Ω)3

≤ |M |L∞(Ω,L(H))(1 +
|M|L∞(Ω,H)

κ
)|u|2

H1
Γm,D

(Ω)3 ,

(78)

which proves that <<·, ·>>η generates an Hilbert structure on Uη equivalent to the usual one. Now, the definitions of Aη and
<<·, ·>>η imply

<<U,Aη U>>η=<<(u, v), (v, z)>>η= mp(ε)((u,Sη u), (v, 0))+ < v, z >η= 0. (79)

Then, to establish that the skew-symmetric operator Aη is skew-adjoint, it suffices to show that for all F = (f1, f2) in
Uη and all λ > 0, the equation U − λAη = F has a unique solution U = (u, v). The definition of AηU = (v, z) implies
u− λ2z = f1 + λf2 and (74) yields

<u,w>η +λ2mp(ε)((u,Sηu), (w, 0)) =<f1 + λf2, w>η, ∀w ∈ H1
ΓmD

(Ω)3. (80)

The Lax-Milgram lemma implies the existence and uniqueness of a solution u of (80) and, clearly, U = (u, (u − f1)/λ)
belongs to D(Aη) and solves U− λAηU = F .

The proof is achieved by invoking the Stone theorem and the fact that (72) implies F(η) ∈ C0([0, T ];Uη).

�

Eventually, this proposition and the regularity property (72) imply the

Theorem 3. Under assumptions (H3), (H4), (H7) and (H8), the problem Q(η,Ω)p has a unique solution of class C1([0, T ];Yη).

A similar result is shown in [8].

Remark 3. By modifying the definition of se, it is possible to choose body forces fη in W 1,∞([0, T ];L2(Ω)3). This milder
assumption leads to technical complications in the asymptotic analysis which are exposed in [18]. In order to clarify the
matter, a more direct method is chosen here.

7 The various asymptotic behaviors

We will treat independently the behavior of ye(η) and the one of yr(η). As a solution of a quasi-static problem, ye(η) has an
asymptotic behavior described by the results obtained in the preceding section. On the other hand, we choose the framework
of the theory of Trotter (see [16]) of approximation of semigroups of operators acting on variable spaces to deal with the
asymptotic behavior of yr(η). We will consider four cases, indexed by q, of relative behaviors of the parameters ε and ρ :

q = 1 : ρ→ ρ ∈]0,+∞[, q = 2 : ρ→ 0 and ρ/ε2 → +∞, q = 3 : ρ/ε2 → ρ ∈]0,+∞[, q = 4 : ρ = o(ε2). (81)

Lastly, we make the assumption of convergence and regularity

(H9) :





· (fη, gη, Fη, dη, ϕ0η , k(ε, ϕ0η )) → (fη, gη, Fη, dη, ϕ0η , k0) strongly in

W 2,1((0, T ), L2(Ω)3 × L2(ΓmN )3 × L2(Ω)× L2(ΓeN )× L2(Ω)× L2(Ω,H)), with (k0)
0
p = (k(0, ϕ0η ))

0
p,

· (fη, gη, Fη, dη, ϕ0η ) ∈ C2,1([0, T ], L2(ΓmN )3 × L2(Ω)× L2(ΓeN )×H1(Ω)) if q = 1, 3.

·
√
ρ

ε
(ue(η))3 converges to 0 in W 2,1([0, T ], L2(Ω)) if q = 1, 2.

Remark 4. The last point in (H9) concerns the magnitude and the nature of the external loading: it requires that the scaled
kinetic energy of the quasi-static response does not tend to infinity.
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Due to the pointwise limits of the scaled kinetic energy (see (69)), we will see that there are no flexural motions when
q = 1, 2. Thus, we introduce the following spaces of limit electromechanical states:

Sp,q := V
M
KL × Φp, q = 1, 2, Sp,q := VKL × Φp, q = 3, 4 (82)

and the limit continuous linear form on Sp,q:

Lη(r; t) :=

∫

Ω

fη(t) · w dx+

∫

ΓmN

gη(t) · w ds+
∫

Ω

Fη(t)ψ dx+

∫

ΓeN

dη(t)ψ ds. (83)

Asymptotic behavior of se(η) Combining Corollary 1 with an equicontinuity argument, we deduce the:

Proposition 3. Under assumptions (H3) − (H5), (H7) and (H9), when η goes to η, the family (se(η)(t))η of the unique
solutions of Pe(η,Ω)p strongly converges in Xp to se ∈ C2,1([0, T ];Xp), the unique solution of:

Find s ∈ (0, ϕ0) + Sp,q such that m̃p(s, r) = Lη(r; t), ∀ (r, t) ∈ Sp,q × [0, T ], (84)

uniformly on [0, T ]. In addition, limη→η mp(ε)(s
e
η(t), s

e
η(t)) = m̃p(s

e(t), se(t)) uniformly on [0, T ].

Remark 5. Assumption (H9) implies that ue
3 = 0 when q = 1, 2.

Asymptotic behavior of sr(η) Because the electrical potential is not concerned by the evolution equations, we first
study the asymptotic behavior of Ur(η).

Operational framework Again, because of the various limit behaviors of the scaled kinetic energy, we introduce the
spaces:

V1 := VM
KL, V3 := VF

KL,
K1 := {v ∈ L2(Ω)3 : v = (v1, v2, 0), vα(x) = vα(x̂), vα ∈ L2(ω)},K3 := {v ∈ H−1(Ω)3 : ∃η ∈ L2(ω), vα = −x3∂αη, v3 = η},

(85)

the last two spaces being respectively equipped with the scalar products:

K1(v, w) := ρ

∫

Ω

v̂ · ŵ δ(x) dx, K3(v, w) := ρ

∫

Ω

v3w3 δ(x) dx. (86)

The limit spaces of the "dynamical part" of the mechanical phases will be:

Uq := Vq × Kq. (87)

Remark 6. In the cases q = 2 and q = 4 we will see that the asymptotic behavior is purely quasi-static. This explains why
the spaces Uq are defined only when q = 1 and q = 3.

As in (73), we define a linear, continuous and one to one operator:

S : u ∈ VKL 7→ Su := ϕ ∈ Φp ; m̃p((u, ϕ), (0, ψ)) = 0, ∀ψ ∈ Φp, (88)

which permits us to equip Uq with an hilbertian structure through the scalar product

<<U,U′>>p,q:= m̃p((u,Su), (u′, 0)) + kq(v, v
′). (89)

We denote the associated norm by ||.||p,q.
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Remark 7. It should be noted that S maps VM
KL in Φ1, Φ

o
2 and VF

KL in {0}, Φe
2, if p = 1, 2 respectively. This rises from the

decoupling assumption (Hdecoupl
p ) and (55)

The study of the convergence of the phases requires the introduction of an operator Qη which makes it possible to compare
the elements of Uη with those of Uq:





Qη : U ∈ Uq = (u, v) 7→ QηU := (uη, vη) ∈ Uη such that:

·mp(ε)((uη,Sηuη), (w, 0)) = m̃p((u,Su), (w, 0)), ∀w ∈ H1
ΓmD

(Ω)3,

· vη = ρv/ρ if q = 1 and vη = ρε2v3/ρ if q = 3.

(90)

Note that <<QηU,U
′>>η=<<U,U′>>p,q for all U in Uq and all U

′ in Uη. As a simple consequence of Corollary 2 with
Λ(r) = m̃p((u,Su), (w, 0)), for all r = (w,ψ) in Sη, we have the fundamental

Proposition 4. The spaces Uη associated with the operators Qη form a sequence of Hilbert spaces approximating Uq in the
sense of Trotter:

i) ∃C ∈ R
+ such that ||QηU||η ≤ C ||U||p,q, ∀U ∈ Uq.

ii) limη→η ||QηU||η = ||U||p,q, ∀U ∈ Uq.

Moreover, if U = (u, v), QηU = (ũη, ṽη), Uη = (uη, vη) then, when η goes to η:

iii) ũη → u in H1(Ω) and ṽη → v in L2(Ω)3 when q = 1, (ṽη)3 → v3 in L2(Ω) when q = 3.

iv) limη→η ||QηU− Uη||η = 0 ⇔





||Uη||η → ||U||p,q, uη → u in H1(Ω)3 and

vη → v in L2(Ω)3 when q = 1

(vη)3 → v3 in L2(Ω) and

εvη → 0 in L2(Ω) when q = 3.

The limit evolution equation In the cases q = 1 and q = 3, the limit problem will involve an evolution equation
similar to (75) but governed by the following operator:

{
D(A) = {U = (u, v) ∈ Up : v ∈ Vq, ∃ ! z ∈ Kq such that Kq(z, w) + m̃p((u,S u), (w, 0)) = 0, ∀w ∈ Vq},
AU = (v, z).

(91)

Arguing as in the proof of the Proposition 2 yields the

Proposition 5. The operator A is skew-adjoint.

Hence, similarly to the Proposition 2, with the compatibility assumption between initial limit loading and mechanical phase

(H10) : U
0 − U

e(0) ∈ D(A),

we have the

Proposition 6. Under hypotheses (H1)− (H5), (H7)− (H10) and (Hdecoupl
p ), the evolution equation

U̇
r − AU

r = F
r := (0,−üe), U

r(0) = U
0 − U

e(0), (92)

has a unique solution U
r
:= (ur, vr) of class C1([0, T ];Uq).
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Convergence of U
r(η) The additional assumption:

(H11) : lim
η→η

||QηU
0 − U

0(η)||η = 0, q = 1, 3; lim
η→η

||U0
η − U

e
η(0)||η = 0, q = 2, 4,

allows us to state the

Proposition 7. Under hypotheses (H1)− (H11) we have

lim
η→η

||QηU
r − U

r(η)||η = 0, q = 1, 3; lim
η→η

||Ur(η)||η = 0, q = 2, 4. (93)

Proof. Cases q = 1 and q = 3:

Within the framework of the Trotter theory of approximation of semigroups of operators acting on variable spaces
(cf. [16]), three conditions has to be satisfied to obtain the convergence results. These conditions of convergence in the sense
of Trotter of the resolvents, the initial conditions and the second members read as:

limη→η ||(I − λAη)
−1

QηV − Qη(I − λA)−1
V||η = 0, ∀ (λ,V) ∈ R

+ × Uq,
limη→η ||QηU

r(0)− U
r(η)(0)||η = 0,

limη→η

∫ T

0
||QηF

r − F
r(η)||η dt = 0.

(94)

Let V := (V,W), QηV := (V(η),W(η)), U(η) = (uη, vη) = (I − λAη)
−1

QηV and U = (I − λA)−1
V, then:

{
<vη, w>η +λ2mp(ε)((vη,Sη vη), (w, 0) =<<QηV, (−λw,w)>>η=<<V, (−λw,w)>>p,q, ∀w ∈ H1

ΓmD
(Ω)3,

uη = Vη + λvη,
(95)

and

{
kq(v, w) + λ2 m̃p((v,S v), (w, 0)) =<<V, (−λw,w)>>p,q, ∀w ∈ Vq,

u = V + λv.
(96)

Hence (94)1 is a consequence of Corollary 2 with <<V, (−λw,w)>>p,q as second member and of the point (iv) in Proposition 4.
Lastly, (94)2 is given by (H11), while (94)3 stems from (92), (90) and (H9).

Cases q = 2 and q = 4:

Through the Duhamel formula, hypotheses (H9) and (H11) clearly imply that ||Ur(η)(t)||η uniformly converges to 0 on
[0, T ] when η goes to η.

�

Consequence: convergence of sr(η) Let sr(η) := (ur(η),Sηu
r(η)) and sr := (ur,Sur), ur = 0 if q = 2, 4. Then, the

Proposition 7 and Corollary 1 with Λε(w,ψ) = m̃p((u,Su), (w, 0)) yields the

Proposition 8. When η goes to η we have:

| sr(η)(t)− sr(t) |Xp→ 0, mp(ε)(s
r(η)(t), sr(η)(t)) → m̃p(s

r(t), sr(t)), (97)

uniformly on [0, T ].
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7.1 Final results

We can now synthetize all the convergence results obtained previously in the

Theorem 4. Under assumptions (H3)− (H11) and (Hdecoupl
p ), when η goes to η, the family (sη)η strongly converges in Xp

and uniformly on [0, T ] to the unique element sp,q = (up,q, ϕp,q) of C1([0, T ]; (0, ϕ0) + Sp,q) satisfying:





if q = 2 or 4 : m̃p(sp,q, r) = Lη(r), ∀ (r, t) ∈ Sp,q × [0, T ],

if q = 1 or 3 : Kq(üp,q, w) + m̃p(sp,q, r) = Lη(r), ∀ (r = (w,ψ), t) ∈ Sp,q × [0, T ],

(üp,q(0), u̇p,q(0)) = U
0,

(98)

(ûp,1)α, (up,3)3 belongs to C2([0, T ];L2(ω)), sp,q belongs to C2([0, T ];Xp) if q = 2 or 4. Moreover, limη→η mp(ε)(s(η), s(η)) =
m̃p(sp,q, sp,q) uniformly on [0, T ].

Proof. It remains to prove that limη→η mp(ε)(s
r(η), se(η)) = m̃p(s

r, se). Arguing as in the proof of Proposition 1, k(ε, se(η))
converges strongly in L2(Ω,H) to k

e
with (k

e
)0p = k(se)0p. Proposition 7 implies that k(ε, sr(η)) converges strongly in

L2(Ω,H) to k
r

which is also the limit of k(ε, (ũr(η),Sũr(η)) where ũr(η) is the "displacement component" of QηU
r. Arguing

again as in the proof of Proposition 1 when L(w,ψ) is replaced by m̃p((u
r,Sũr(η)), (w, 0)) we deduce that (Mk

r
)0p = 0. The

result stems from (Mk
r
)0p = M̃(k

r
)0p.

�

8 A few comments

In the cases q = 2 and 4, the relation limη→η ||Ur(η)||η = 0 means that the limit response of the plate to the electromechanical
loading is purely quasi-static. On the other hand, in the cases q = 1 and q = 3, the acceleration of the displacement is
involved. Moreover, assumption (Hdecoupl

p ) implying that Sp,q is the direct sum of subspaces m̃p-polar, a decoupling between
the membrane and the flexural displacements appears. Thus, if q = 1, 2 there is no flexion and the membrane response is
dynamic if q = 1, quasi-static if q = 2. If q = 3, 4 the membrane response is quasi-static and the flexural response is dynamic
if q = 3 and quasi-static if q = 4. In these last two cases, the limit electrical potential is not involved in the equation
providing the flexural part if p = 1.

8.1 The suggested model

For every value of q we can, like in Section 2.6, come back to the real plate occupying Ωε and set a problem solved by
(Πε

p)
−1(sp,q). But, since ρ and ρ do not have any physical meaning, we prefer to propose the following model for the dynamic

behavior of a plate of thickness 2ε and with density ρδ(x̂, x3/ε):

{
Find sεp = (uε

p, ϕ
ε
0) ∈ Sε

p such that
∫
Ωε ρδü

ε

p · w dx+ m̃ε
p(s

ε
p, r) = Lε(r), ∀ (r = (w,ψ), t) ∈ Sε

p × [0, T ],

(uε
p(0), u̇

ε

p(0)) = U
ε
0,

(99)

where U
ε
0 is the descaled of U0. Actually, with hypothesis (Hdecoupl

p ), it clearly appears (see (48)) that the main tendancy
is given by the magnitudes of ρ and ε−2ρ.
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