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Introduction

Wood is a natural visco-elastic composite material usually considered to behave like an orthotropic medium at the millimeter scale with eigen-directions, or natural symmetry axes, that are theoretically parallel to the visible anatomical ones of the tree: radial R (1), tangential T (2) and longitudinal L (3) in cylindrical coordinates, see Fig. 1. This material is difficult to characterize due to its biological origin yielding anisotropic behavior, strong variability (especially within a tree), heterogeneity and sensitivity to moisture content, temperature and loading time. Difficulties then occur in determining all the components of the elastic tensor C ij (in Voigt notation where C 44 = C 2323 , C 55 = C 1313 and C 66 = C 1212 ) of wood materials, especially the off-diagonal terms that depend on the Poisson's ratios. This leads to underuse and/or misuse this material, hence predicting accurately its behavior for given environmental conditions is still an open question.

Classical characterization methods for anisotropic materials usually need the machining of several samples along different directions. However, due to the strong variability within a single tree, the consistence of the corresponding constants is not ensured. The reduction of the number of samples used for the determination of all the elastic constants is then a crucial point for wood. Quasi-static measurements on a single cubic sample of wood have been done [START_REF] Guitard | Modèles prévisionnels de comportement élastique tridimensionnel pour les bois feuillus et les bois résineux[END_REF][START_REF] Hassel | The single cube apparatus for shear testing -Full-field strain data and finite element analysis of wood in transverse shear[END_REF]. However, the development of fast measurement techniques is important to increase the number of available data for a relevant statistical analysis. Fast measurements can be obtained by using different techniques based on ultrasonic (or acoustic) wave propagations in direct contact [START_REF] Bucur | Elastic constants for wood by an ultrasonic method[END_REF][START_REF] Kohlhauser | Ultrasonic characterisation of porous biomaterials across different frequencies[END_REF] or in a coupling medium (e.g., water) with a protective coating if dry wood properties have to be measured [START_REF] Preziosa | Determination of the elasticity coefficients of wood with a goniometric acoustical method[END_REF][START_REF] Bucur | Dynamic elastic anisotropy and nonlinearity in wood and rock[END_REF]. These techniques allow the determination of the diagonal terms of the elastic tensor on a unique parallelepipedic sample [START_REF] Keunecke | Determination of Young's and shear moduli of common yew and Norway spruce by means of ultrasonic waves[END_REF] but, except in some cases with a polyhedral [START_REF] Francois | Determination of the symmetries of an experimentally determined stiffness tensor, application to acoustic measurements[END_REF] or spherical samples [START_REF] Bucur | Dynamic elastic anisotropy and nonlinearity in wood and rock[END_REF][START_REF] Mouridi | Searching for material symmetries in the burr wood of thuja by a direct contact ultrasonic method on spherical samples[END_REF], they usually require other samples, and/or coupling with other kind of measurements, for the determination of off-diagonal terms [START_REF] Dahmen | Elastic constants measurement of anisotropic Olivier wood plates using air-coupled transducers generated Lamb wave and ultrasonic bulk wave[END_REF][START_REF] Fortineau | Ultrasonic characterisation of wood[END_REF][START_REF] Hering | Moisture-dependent orthotropic elasticity of beech wood[END_REF][START_REF] Goncalves | Comparison of elastic constants of wood determined by ultrasonic wave propagation and static compression test[END_REF][START_REF] Kohlhauser | Determination of Poisson's ratios in isotropic, transversely isotropic, and orthotropic materials by means of combined ultrasonic-mechanical testing of normal stiffnesses: Application to metals and wood[END_REF].

Resonant ultrasound spectroscopy (RUS) could offer a good alternative because the determination of the entire specimen elastic constants can be obtained from only one sample thanks to non contact measurements of its resonant frequencies. It has already been applied to isotropic [START_REF] Visscher | On the normal modes of free vibration of homogeneous and anisotropic elastic objects[END_REF] or anisotropic materials presenting a known symmetry [START_REF] Delaunay | Full tensorial characterization of PZN-12%PT single crystal by resonant ultrasound spectroscopy[END_REF] but its application becomes more complex when testing materials of unknown symmetry and with high attenuation. It was first used on wood by Schubert [START_REF] Schubert | Rolling shear modulus and damping factor of spruce and decayed spruce estimated by modal analysis[END_REF] but only for the determination of one shear modulus by using the two lowest resonance frequencies.

In this paper we propose an experimental study combining methods allowing the determination of the wood symmetry and that of its elastic constants. The three symmetry directions of the material are first identified from a spherical specimen by ultrasonic tomography [START_REF] Mouridi | Searching for material symmetries in the burr wood of thuja by a direct contact ultrasonic method on spherical samples[END_REF]. The sample is then cut into a cubic shape and subjected to RUS measurements. The method is validated on a beech specimen (Fagus Sylvatica L.) whose full elastic tensor is eventually determined and compared to literature values and to some obtained by ultrasonic velocimetry.

Method

Preparation of the sample

To apply the RUS method to cubic samples one has to know the material symmetry and its eigen-directions should preferably be perpendicular to the cube faces. However, wood characteristics undergo modifications form the center of the tree to its periphery. In particular, the radius of the annual ring is gradually increasing. To overcome this problem, we propose here to couple RUS measurement with a preliminary determination of the eigen/orthotropic directions of wood specimen by using ultrasonic tomography in a sphere sample [START_REF] Mouridi | Searching for material symmetries in the burr wood of thuja by a direct contact ultrasonic method on spherical samples[END_REF], see Fig. 2. This technique is similar to the one used by Bucur and Rasolofosaon [START_REF] Bucur | Dynamic elastic anisotropy and nonlinearity in wood and rock[END_REF] except that direct contact measurements are perfomed in the present case. Once the main orientations R, T and L are found, a cubic sample with the surfaces in agreement with the orthotropic symmetry axes can directly be cut from the sphere. A previous study has shown that the estimated error on the alignment of the symmetry axes to the normal of the cube surfaces is around 3˚ [START_REF] Mouridi | Searching for material symmetries in the burr wood of thuja by a direct contact ultrasonic method on spherical samples[END_REF]. Simulations proved that this leads to variations less than 3 % on the resonant frequencies of the cube presented here.

Preliminary tests: ultrasonic velocimetry

Once the cubic sample is available, pulse measurements in transmission are performed in the R, T and L directions using contact transducers: Panametrics V103 (center frequency: 1 MHz, diameter: 13 mm) and Panametrics V151 (center frequency: 0.5 MHz, diameter: 26 mm) for longitudinal and transverse measurements respectively. To improve the signal to noise ratio, 50 µs transmitted signals captured by the receiving transducer are acquired 100 times by means of a digital oscilloscope (LeCroy WaveJet 334) and averaged. The signal at the receiver without the sample (transmission with the surfaces of the transducers in contact) is also acquired and the wave time of travel through the sample in the directions R, T and L is estimated implementing a cross correlation between these two signals. The sound velocities are derived thanks to the measurement of the thickness of the samples. Knowing the material density, it is then possible to estimate the diagonal values C ii,i=1...6 of the elastic tensor [START_REF] Bucur | Acoustics of Wood[END_REF] (Table 1).

RUS measurements

As mentioned above, RUS is a technique based on the measurement of the different resonant frequencies of the specimen under test. A typical set-up includes an ultrasonic excitation sent out by a piezoelectric (PZT) transducer put in contact with the sample. The resonant frequencies describing the mechanical vibrations of the sample under test can be collected with another piezoelectric probe [START_REF] Maynard | Resonant ultrasound spectroscopy[END_REF] or by means of optical techniques (e.g., Laser Doppler Vibrometry, holography) [START_REF] Delaunay | Full tensorial characterization of PZN-12%PT single crystal by resonant ultrasound spectroscopy[END_REF][START_REF] Drain | The laser doppler technique[END_REF][START_REF] Joud | Imaging a vibrating object by Sideband Digital Holography[END_REF].

In this work, an arbitrary wave generator (Agilent 33220A) sends out an electric signal to a PZT transducer placed at the corner of the sample. Care was taken to choose the correct probe, in order to avoid the convolution of the transducer resonant frequencies with the ones of the wood sample. In our case, the transducer employed during the RUS measurements had its first resonance at 200 kHz. The electric signal was a 10 V peak-to-peak chirp of 20 ms with a bandwidth ranging from 20 kHz to 80 kHz. This choice of the shape of the excitation signal significantly reduces the measurement time. The induced mechanical vibrations in the structure and thus the associated resonant frequencies were measured by means of a Laser Doppler Vibrometer (Polytec OFV-505) with laser light aiming at one corner of the RT face of the sample under test where most of the eigen modes possess a significant displacement (see Fig. 2). To improve the experimental signal to noise ratio, an auto-correlation analysis has been performed [START_REF] Bendat | Random data: analysis and measurement procedures[END_REF] leading to a filtered power spectrum depicted in Fig. 3 and obtained for the beech sample. Knowing the resonant frequencies of the samples gives the possibility to estimate the elastic tensor C ij by solving the inverse problem. This task was supported by simulations able to calculate the theoretical values of these frequencies, with an initial tensor C ij given in input (direct problem). In the next paragraph some insights of these techniques are briefly reported.

Solving the direct and inverse problem

In order to evaluate the theoretical resonant frequencies of the samples under test, the direct problem [START_REF] Ohno | Rectangular parallellepiped resonance method for piezoelectriccrystals and elastic-constants of alpha-quartz[END_REF][START_REF] Delaunay | Full tensorial characterization of PZN-12%PT single crystal by resonant ultrasound spectroscopy[END_REF] is solved with initial values of the elastic tensor C 0 ij computed using the empirical relationships developped by Guitard and Amri [START_REF] Guitard | Modèles prévisionnels de comportement élastique tridimensionnel pour les bois feuillus et les bois résineux[END_REF] knowing the wood density. They represent a good starting point for our investigation as they offer an order of magnitude concerning the elastic coefficients of the wood sample under test. Hence, the inverse problem is solved by modifying the initial values of the C ij tensor to fit the measured resonant frequencies obtained in Section 2.3. This algorithm enables the determination of the elastic constants by minimizing the distance ∆ mc between the measured (m) resonance frequencies and the computed (c) ones using the Simplex routine [START_REF] Delaunay | Full tensorial characterization of PZN-12%PT single crystal by resonant ultrasound spectroscopy[END_REF]:

∆ mc = i |f i measured -f i computed | f i measured . (1) 
Due to the orthotropic symmetry of the sample, nine constants of the C ij tensor had to be identified for the cubic sample under test [START_REF] Bucur | Acoustics of Wood[END_REF]: Longitudinal constants (C 11 , C 22 and C 33 ), off-diagonal constants (C 12 , C 13 and C 23 ) and shear constants (C 44 , C 55 and C 66 ).

With such number of parameters, the convergence to the correct solution could be difficult to obtain. For this reason a characterization protocol is proposed. To do so, a sensitivity study has been performed in a way to select resonances sensitive to only one elastic constant. As an example, the first resonance has been proved to be highly sensitive to C 66 . In a first phase of the convergence procedure, the corresponding parameters are separately identified while fixing the other ones. In a second phase, the constants with influence on multiple resonances are deduced from a global fit. The results of this procedure are given in the next section.

Results and discussion

To validate the proposed experimental characterization method, the whole protocol is here applied to a beech specimen. Indeed, beech wood has the advantages to be a quite homogeneous, orthotropic and already well characterized, allowing the comparison of our results with those from the literature [START_REF] Guitard | Modèles prévisionnels de comportement élastique tridimensionnel pour les bois feuillus et les bois résineux[END_REF][START_REF] Bucur | Elastic constants for wood by an ultrasonic method[END_REF][START_REF] Hering | Moisture-dependent orthotropic elasticity of beech wood[END_REF]. The determination of the material symmetry thanks to the tomography of a sphere led to a 20.91 × 21.06 × 21.11 mm 3 cubic shaped specimen. The sample thicknesses were measured using a micrometer with a precision of 10 µm. Density was then assessed as mass divided by volume yielding a value of 717 kg • m -3 with a precision of 1%. All measurements have been done in room conditions (i.e., around 20 • C and 30%RH) and the results of the velocity measurements of Section 2.2 have been used to estimate the diagonal constants of the elastic tensor (Table 1) from the classical relationship C = ρV 2 .

To identify the elastic tensor thanks to RUS measurements, the iterative computation previously described is then performed on the first nine resonances of the sample ranging between 20 kHz and 70 kHz, see Fig. 3. The experimental and final numerical resonance frequencies are given in Table 2.

Table 1: Estimated elastic tensor components (in GPa) for the beech wood sample, with the initial values C 0 ij used for RUS identification between brackets, and comparison to litterature data on beech (m.c. = moisture content). The standard deviations for velocimetry measurements are given in parenthesis.

Parameters

Trans In order to estimate the efficiency of the fitting procedure, the deviation ∆ mc between the measured resonant frequencies and the computed ones is discussed. First of all, as shown in Table 2, the maximum deviation is 1.5% and the mean value on the nine resonances is 0.67%, indicating a very good quality of the convergence. Then, the individual deviations may be linked to the precision that one may obtain during the identification of the different constants. As previously mentioned, the first resonance is highly sensitive to C 66 and the very good agreement between the corresponding measured and computed frequencies yields a good confidence in the estimated elastic constant value. The whole set of elastic constants estimated for the beech cubic sample under test is presented in Table 1 together with other authors' measurements. It shows that the diagonal values C ii,i=1...6 of this elastic tensor agree with the ones obtained from ultrasonic transmission measurements. Indeed, the relative deviations δ ii are: δ 11 = -2.86%, δ 22 = +5.55%, δ 33 = -4.1%, δ 44 = +5.0%, δ 55 = -7.14% and δ 66 = -10.0%. The highest deviations are obtained for the shear moduli where used for the indentification procedure shows that most of the final RUS values are in good agreement with deviations less than 10%. However, some parameters underwent significant modifications and a maximum deviation of 20% is registered for the δ 66 , δ 11 and δ 23 being of the same order of magnitude. This can be explained by the fact that the estimated constants C 0 ij given by the empircial relationships developped by Guitard and Amri [START_REF] Guitard | Modèles prévisionnels de comportement élastique tridimensionnel pour les bois feuillus et les bois résineux[END_REF] are mean characteristics obtained from various samples and only take into account density effects on elastic properties.

RUS [C 0 ij ] Hering et al. Bucur L.E.M.T.A. [12] [3] [1] ρ (kg/m 3 ) 717 (7) 691-711 674 676 m.c. (%) ≈ 7. 5 12.3 - 12 C 11 3.6 (0.1) 3.5 [2.9] 2.5 3.4 3.4 C 22 1.7 (0.1) 1.8 [1.7] 0.8 1.4 1.4 
Table 1 also presents full sets of elastic constants found in the literature for beech wood samples [START_REF] Guitard | Modèles prévisionnels de comportement élastique tridimensionnel pour les bois feuillus et les bois résineux[END_REF][START_REF] Bucur | Acoustics of Wood[END_REF][START_REF] Hering | Moisture-dependent orthotropic elasticity of beech wood[END_REF]. Being consistent, they however present some discrepancies. As previously noticed, wood materials are known to be inhomogeneous and to undergo property modifications inside a single species and even inside a single tree leading to final tensor inconsistencies. Moreover, the moisture content of the sample also influences the material stiffness. As a consequence, the relatively good agreement between the beech properties presented in this paper and those from the literature allows us to have a good confidence in the further application of the RUS method to the characterization of wood.

Conclusion

In this paper, an experimental characterization protocol of wood stiffness constants is presented. It couples two ultrasonic methods allowing the determination of the material symmetry by ultrasonic tomography of a sphere and the identification of the orthotropic tensor thanks to Resonant Ultrasound Spectroscopy. In a way to validate its application to complex materials such as wood, the characterization of a beech reference sample has been performed. The material properties were compared with success to values from the literature and to some obtained by ultrasonic velocimetry. Beech being of low symmetry, these good results prove that the RUS method is a promising tool to characterize wood species in different environmental conditions ranging from dry to green wood. Future research could evaluate the possibility to avoid the use of a sphere in order to apply the RUS directly on cubic samples cut in the anatomical directions. This task could also involve the use of Scanning Laser Vibrometer (SLDV) and/or holographic techniques to experimentally determine the sample modes shapes.
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 1 Figure 1: Symmetry axes of a tree trunk.

Figure 2 :

 2 Figure 2: Whole experimental set-up from the identification of the material eigen directions on a sphere to the RUS measurements. The cubic sample cut from the sphere is excited by a PZT sending out a chirp signal. The induced vibrations are measured by the Laser Doppler Vibrometer.

Figure 3 :

 3 Figure 3: Measured resonant frequencies for the beech sample.

Table 2 :

 2 Measured and predicted resonance frequencies for the beech wood cubic sample.

	Mode Measured frequencies Computed frequencies ∆ mc
		(Hz)	(Hz)	(%)
	1	20150	20114	0.2
	2	26200	26210	< 0.1
	3	28850	29263	1.4
	4	34700	34317	1.1
	5	41700	41677	< 0.1
	6	45850	45466	0.8
	7	49250	48975	1.5
	8	57000	57409	0.7
	9	62500	62518	< 0.1
	ultrasonic transmission measurements are less accurate. This already offers an
	important validation of the RUS technique application to wood samples. The
	comparison with the initial values C 0 ij		
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