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Abstract

We extend our modeling of smart structures to second order piezoelectricity. We show that three different models

have to be taken into account, which broadens the scope of the sensors and actuators field. Second order piezoelec-

tricity being compatible with isotropy, we also propose a systematic study of the impact of crystalline symmetries

on our models. To cite this article: T. Weller, C. Licht, C. R. Mecanique xxx (aaaa).

Résumé

Modélisation asymptotique de plaques piézoélectriques avec gradient du champ électrique Nous

étendons à la piézoélectricité avec gradient du champ électrique notre étude des couplages électromécaniques

dans les structures minces. Nous montrons en particulier que trois modèles distincts apparaissent à la limite,

ce qui enrichit substantiellement la description du comportement des capteurs et actionneurs en fonction du

chargement électrique qui leur est imposé. La piézoélectricité du second gradient étant compatible avec l’isotropie,

nous proposons également une étude systématique de l’influence des symétries cristallines sur les modèles obtenus.
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1. Introduction

In the 1960’s the study of unexplained aspects of piezoelectricity led Mindlin [1] to extend the classical
Voigt theory [2] in Toupin’s formulation [3] by assuming that the stored energy function not only depends
on the strain tensor and polarization vector but also on the polarization gradient tensor. What motivated
Mindlin to study the effects of the polarization gradient was the capacitance of a very thin dielectric
film. Experiments showed that the capacitance of a very thin film is systematically smaller than the
classical prediction. Moreover, performing experimental tests, Mead [4] showed that piezoelectric effects
can also appear in centrosymmetric crystals, which is in contradiction with classical Voigt theory. And,
indeed, the Mindlin’s theory of elastic dielectrics with polarization gradient accomodates the observed
and experimentally measured phenomena, such as electromechanical interactions in centrosymmetric ma-
terials, capacitance of thin dielectric films, surface energy of polarization, deformation and optical activity
in quartz (see for example [5], [6] and references quoted therein). In this paper we choose to adopt an
alternative to the Mindlin formulation by introducing the electric field gradient, as in [7] for example.
Because such gradient theories can describe size effects that are important in small-scale problems, it
seems unavoidable to use them to deepen our understanding of smart structures, the wide majority of
them being thin. In this paper we perform a mathematical modeling of second order piezoelectric plate
by regarding its thickness as a small parameter denoted by ε. Then, we study the behavior of the solution
of the electromechanical problem as ε tends to 0. We show that depending on the type of electric loading,
three different models indexed by p appear at the limit. This result extends our previous study in [8]
and shows that gradient theory broadens the understanding of sensors and actuators. When p = 2 and
p = 3 we are able to express the constitutive laws as a Schur complement of the second order piezoelectric
tensor (see (2) and (11)). It is important to emphasize that this expression is valid for any symmetry
class, which means that we do not make any simplifying assumptions dealing with the crystal symmetry
of the material constituting the plate. When p = 1, we are not able to explicitly derive the constitutive
law of the limit model. Therefore, as in the case of first order piezoelectric rods treated in [9], it seems
very likely to us that non-local terms appear in this delicate situation. Finally, we study the influence of
the crystal symmetries on our models for p = 2, 3 and show that even for second order piezoelectricity, an
electromechanical switch-off may appear in the structure if the plate is designed with specific materials.

2. Setting the problem

We will denote displacement fields by the letters u, v and w while the electric potentials will be denoted
by ϕ, ψ and φ. Depending on the nature of our formulation, these letters may be indexed by ε which
stands for the thickness of the plate, regarded as a parameter. Classically, the tensor of small strains
is written e(u) ∈ S3 where SN indicates the set of all N × N real and symmetric matrices. Used as
indexes, letters i and j take their values in {1, 2, 3} while α and β take their values in {1, 2}. We recall
that 2eij(u) = ∂iu + ∂ju where the symbol ∂i refers to the partial derivative with respect to the i-
th coordinate. The gradient of an electric potential ϕ will be denoted by ∇ϕ ∈ R3 and its bigradient
by ∇2ϕ ∈ S3 where ∇2

ijϕ = ∂2ijϕ = ∂i∂jϕ. Given an electromechanical state (u, ϕ) we therefore have

(e(u),∇ϕ,∇2ϕ) ∈ H, with

H = S3 × R3 × S3. (1)

Often, an element of H will be represented by a triplet (e, g,G). For the sake of simplicity, the classical
symbol · will stand for the scalar product in H, S3 and R3. The set of all linear mappings from a space
V into a space W is denoted by L(V,W ) and, if V = W , we simply write L(V ). In the sequel, for all
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domain D of RN , H1
Γ(D) refers to the subset of the Sobolev space H1(D) whose elements vanish on Γ,

included in the boundary ∂D of D, except H1
m(D) which is the set of the elements of H1(D) with zero

average on D.
The reference configuration of a linearly piezoelectric thin plate is the closure in R3 of the set Ωε =

ω× (−ε, ε) whose outward unit normal is nε. Here, ε is a small positive number and ω a bounded domain
of R2 with a Lipschitz boundary ∂ω. The lateral part of the plate ∂ω × (−ε, ε) is denoted Γε

lat, while
Γε
± = ω × {± ε} refers to the upper or lower face, respectively. Let (Γε

mD,Γ
ε
mN ), (Γε

eD,i,Γ
ε
eN,i)i=1,2 three

suitable partitions of ∂Ωε with Γε
mD and Γε

eD,i of strictly positive surface measures. The plate is, on one
hand, clamped along Γε

mD and the electric potential ϕε satisfies ϕε = ϕε
0 on Γε

eD,1 and ∂nϕ
ε = ∂nϕ

ε
0

on Γε
eD,2, where the symbol ∂n refers to the normal derivative along the boundary of Ωε and ϕε

0 is a
smooth enough given field defined in Ωε. On the other hand, the plate is subjected to body forces fε

and electric loading qε in Ωε. Actually, qε vanishes, the material being an insulator, anyway the following
analysis stands with qε different from 0. Moreover, the plate is subjected to surface forces F ε and electric
loading qεs on Γε

mN and Γε
eN,1 respectively. It is also necessary to define ’body’ and ’surface’ electric

dipoles densities, respectively denoted by dε, dεs and defined in Ωε and on Γε
eN,2. Finally, we assume that

Γε
mD = γ0 × (−ε, ε), with γ0 ⊂ ∂ω.

We now define the operator

Mε =




aε −bε −αε

bε
T

cε βε

αεT βεT γε


 (2)

which describes the electromechanical coupling with electric field gradient effect. More precisely, aε, bε and
cε are respectively the elastic, piezoelectric and dielectric tensors while αε, βε and γε describe the second
order couplings. Recall that θT denotes the transpose of any tensor θ. We have (aε, bε, cε, αε, βε, γε) ∈
L(S3)× L(R3, S3)× L(R3)× L(S3)× L(S3,R3)× L(S3), so that Mε ∈ L(H)
We are looking for the electromechanical state (uε, ϕε) living in the piezoelectric plate at equilibrium,
where uε denotes the displacement field. For this purpose, we first make the following regularity hypothesis
on the exterior loading:

(H1) :

{
(fε, qε, dε, F ε, qεs , d

ε
s) ∈ L2(Ωε)3 × L2(Ωε)× L2(Ωε)3 × L2(Γε

mN )3 × L2(Γε
eN,1)× L2(Γε

eN,2),

ϕε
0 ∈ H2(Ωε),

and define

H2
Γε
eD

(Ωε) = {ψ ∈ H2(Ωε) : ψ = 0 on Γε
eD,1, ∂nψ = 0 on Γε

eD,2}. (3)

Now, on the space of electromechanical states

V ε = H1
Γε
mD

(Ωε)3 ×H2
Γε
eD

(Ωε), (4)

we define a bilinear form mε:

mε(r, t) = mε((v, ψ), (w, φ)) =

∫

Ωε

Mε(e(v),∇ψ,∇2ψ)) · (e(w),∇φ,∇2φ) dxε, (5)

and a linear form Lε:
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Lε(r) = Lε((v, ψ)) =

∫

Ωε

(fε ·v+ qε ψ+dε ·∇ψ) dxε+

∫

Γε
mN

F ε ·v dsε+

∫

Γε
eN,1

qεs ψ ds
ε+

∫

Γε
eN,2

dεs ∂nψ ds
ε.

(6)
The electromechanical problem then takes the form

P(Ωε) : Find sε = (uε, ϕε) ∈ (0, ϕε
0) + V ε such that mε(sε, r) = Lε(r), ∀ r ∈ V ε.

Thus, with the additional and realistic assumptions of boundedness of aε, bε, cε, αε, βε, γε and of uniform
ellipticity of aε, cε and γε:

(H2) : Mε ∈ L∞(Ωε,L(H)), ∃κε > 0 : Mε(xε)h · h ≥ κε |h |2H, ∀h ∈ H, a.e. xε ∈ Ωε,

the Stampacchia’s theorem (cf. [10]) implies the
Theorem 2.1 Under assumptions (H1)-(H2), the problem P(Ωε) has a unique solution.

To derive a simplified and accurate model, the true question is to study the behavior of sε when ε,
regarded as a parameter, tends to zero.

3. The three different models

Here we will show that three different limit behaviors, indexed by p = 1, 2 or 3, appear according to
both the type of electric boundary conditions and the magnitude of the electric external loading. In the
sequel, any h = (e, g,G) ∈ H will be represented as (ê, e⊥, e33, ĝ, g3, Ĝ, G

⊥, G33) where the symbol ̂
denotes both elements of L(R3,R2) and L(S3, S2) defined by ξ̂ = (ξ1, ξ2) if ξ ∈ R3, (ξ̂)αβ = ξαβ if
ξ ∈ S3 while ⊥ stands for the element of L(S3,R2) such that (ξ⊥)α = ξα3. For the sake of simplicity, we
straightforwardly extend to differential operators the definitions of ̂ and ⊥.
Classicaly (see [11]) we come down to a fixed open set Ω = ω × (−1, 1) through the mapping πε:

x = (x̂, x3) ∈ Ω 7→ πεx = (x̂, εx3) ∈ Ω
ε
. (7)

Also, we drop the index ε for the images by (πε)−1 of the geometric sets defined in the preceding section.
To get physically meaningful results, we have to make various kinds of assumptions. They deal with

(i) the electromechanical coefficients:

(H3) : Mε(πεx) =M(x) with M ∈ L∞(Ω,L(H)), ∃κ > 0 : M(x)h·h ≥ κ |h |2H, ∀h ∈ H, a.e. x ∈ Ω,

(ii) the electromechanical loading:

(H4) :





∃ (f, F, q, d, qs, ds) ∈ L2(Ω)3 × L2(ΓmN )3 × L2(Ω)× L2(Ω)3 × L2(ΓeN,1)× L2(ΓeN,2);

f̂ε(πεx) = ε f̂(x), fε3 (π
εx) = ε2 f3(x), q

ε(πεx) = ε2−p q(x), ∀x ∈ Ω,

F̂ ε(πεx) = ε2 F̂ (x), F ε
3 (π

εx) = ε3 F3(x), ∀x ∈ ΓmN ∩ Γ±,

F̂ ε(πεx) = ε F̂ (x), F ε
3 (π

εx) = ε2 F3(x), ∀x ∈ ΓmN ∩ Γlat

d̂ε(πεx) = ε2−p d̂(x), dε3(π
εx) = ε3−p d(x), ∀x ∈ Ω,

qεs(π
εx) = ε3−p qs(x), ∀x ∈ ΓeN,1 ∩ Γ±, q

ε
s(π

εx) = ε2−p qs(x), ∀x ∈ ΓeN,1 ∩ Γlat

d̂εs(π
εx) = ε3−p d̂s(x), d

ε
s3
(πεx) = ε4−p ds3(x), ∀x ∈ ΓeN,2 ∩ Γ±

d̂εs(π
εx) = ε2−p d̂s(x), d

ε
s3
(πεx) = ε3−p ds3(x), ∀x ∈ ΓeN,2 ∩ Γlat

ϕε
0(π

εx) = εp ϕ0(x), ∀x ∈ Ω.
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(iii) the boundedness of the ”work of the exterior loading”:

(H5) :





p = 1 : the extension of ϕ0 into Ω does not depend on x3.

p = 2 : - the closure δα of the projection of ΓeD,α on ω coincides with ω,

- either qs = 0 on ΓeN,1 ∩ Γlat or ΓeN,1 ∩ Γlat = ∅,

- either ds = 0 on ΓeN,2 ∩ Γlat or ΓeN,2 ∩ Γlat = ∅,

- ϕ0 is x3-affine.

p = 3 : - the closure δα of the projection of ΓeD,α on ω coincides with ω,

- either qs = 0 on ΓeN,1 ∩ Γlat or ΓeN,1 ∩ Γlat = ∅,

- either ds = 0 on ΓeN,2 ∩ Γlat or ΓeN,2 ∩ Γlat = ∅.

Also, with the true physical electromechanical state sε = (uε, ϕε) defined on Ωε, we associate a scaled

electromechanical state sp(ε) = (up(ε), ϕp(ε)) defined on Ω by:

ûε(xε) = ε (ûp(ε))(x), u
ε
3(x

ε) = (up(ε))3(x), ϕ
ε(xε) = εp ϕp(ε)(x), ∀x

ε = πεx ∈ Ω
ε

(8)

so that sp(ε) is the unique solution of the following mathematical problem:

P(ε,Ω)p : Find sp(ε) ∈ (0, ϕ0) + V such that mp(ε)(sp(ε), r) = L(r), ∀ r ∈ V = H1
ΓmD

(Ω)3 ×H1
ΓeD

(Ω),

equivalent to the genuine physical one, with





mp(ε)(s, r) =

∫

Ω

M(x) kp(ε, s) · kp(ε, r) dx, kp(ε, r) = kp(ε, (v, ψ)) = (e(ε, v),∇p(ε, ψ),∇
2
p(ε, ψ)),

ê(ε, v) = ê(v), e⊥(ε, v) = ε−1 e⊥(v), e33(ε, v) = ε−2 e33(v),

2eij(v) = ∂ivj + ∂jvi, ∇̂p(ε, ψ) = εp−1∇̂ψ, ∇p(ε, ψ)3 = εp−2∂3ψ,

∇̂2
p(ε, ψ) = εp−1(∇̂2ψ), ∇2⊥

p (ε, ψ) = εp−2(∇2⊥ψ),∇2
p(ε, ψ)33 = εp−3(∇2ψ)33,

L(r) = L(v, ψ) =

∫

Ω

(f · v + qψ + d · ∇ψ) dx+

∫

ΓmN

F · v ds+

∫

ΓeN,1

qsψ ds+

∫

ΓeN,2

ds ∂nψ ds.

(9)
Finding the limit problems is more difficult than in the situation of first order piezoelectricity because
the case p = 1 involves a greater number of state variables: s̃1 = (v, w, ψ, φ) needs to be added to the
initial state variable s = (u, ϕ) and we set s1 = (s, s̃1). Let:

VKL = {u ∈ H1
ΓmD

(Ω)3; ei3(u) = 0},

V = {v ∈ L2(ω,H1
m(−1, 1))2 × {0}}, W = {w ∈ {0}2 × L2(ω,H1

m(−1, 1))},

H1
∂3

= {ϕ ∈ L2(Ω); ∂3ϕ ∈ L2(Ω)}, H2
∂3

= {ψ ∈ H1
∂3
; ∂3ψ ∈ H1

∂3
}, H2

∇2⊥
= {φ ∈ H2

∂3
;∇2⊥φ ∈ L2(Ω)},

E1 = {ϕ ∈ H2
ΓeD

(Ω);φ x3-affine function},

E2 = {ψ ∈ H2
∇2⊥

, ψ x3-affine function, ψ = 0 on ΓeD,1 ∩ Γlat, ∂3ψ = 0 on ΓeD,2 ∩ Γlat},

E3 = {φ ∈ H2
∂3
, φ = 0 on Γ±

eD,1, ∂3φ = 0 on Γ±

eD,2},

X1 = H1
ΓmD

(Ω)3 ×H1
∂3

× V ×W ×H2
∂3

×H2
∇2⊥

, X2 = H1
ΓmD

(Ω)3 ×H2
∂3
, X3 = H1

ΓmD
(Ω)3 ×H2

∇2⊥
.

V1 = VKL × E1 × V ×W × E2 × E3, V2 = VKL × E2, V3 = VKL × E3.

If s10 = (0, ϕ0, 0, 0, 0) the limit problem for p = 1 reads as

5



P(Ω)1 : Find s1 ∈ s10 + V1 such that

∫

Ω

M(x) k1(s1) · k1(r1) dx = L(r), ∀ r1 = (r, r̃1) ∈ V1

where k1(r1) ∈ L2(Ω,H) is represented by (ê(u′), e⊥(v′), e33(w
′), ∇̂ϕ′, ∂3ψ

′, ∇̂2ϕ′,∇2⊥ψ′,∇2
33φ

′) when
r = (u′, ϕ′) and r̃1 = (v′, w′, ψ′, φ′).
If p = 2, 3 it is possible to generalize the method described in [8]. The key point of this method is to
observe that some components of kp(ε, sp(ε)) and of Mkp(ε, sp(ε)) have vanishing limits when ε goes to
0 so that it suggests a suitable orthogonal decomposition of H in the following subspaces:

H−

1 = {h = (e, g,G); ê = 0, ĝ = 0, Ĝ = 0} , H0
1 = {h = (e, g,G) : ei3 = 0, g3 = 0, Gi3 = 0} ,

H−

2 = {h = (e, g,G); ê = 0, gi = 0, Gαi = 0} , H−

3 = {h = (e, g,G) : ê = 0, gi = 0, Gij = 0} ,

H0
2 = {h = (e, g,G); ei3 = 0, ĝ = 0, Ĝ = G33 = 0} , H0

3 = {h = (e, g,G); ei3 = 0, gi = 0, Gi3 = 0} ,

H+
2 = {h = (e, g,G); eij = 0, g3 = 0, Gi3 = 0} , H+

3 = {h = (e, g,G); eij = 0, G33 = 0} .

(10)
For a given p ∈ {2, 3},M can then be decomposed in nine elementsM⋆⋄

p ∈ L(H⋄
p,H

⋆
p) with ⋆, ⋄ ∈ {−, 0,+}.

Hypothesis (H3) on the electromechanical coefficients implies that M00
p et M−−

p are positive operators
on H0

p and H−
p . Therefore, the Schur complement

M̃p =M00
p −M0−

p (M−−
p )−1M−0

p (11)

is an element of L(H0
p). It is important to note that neither M00

p nor M̃p are necessarily symmetric, but
nevertheless

κ |h0p|
2
H 6 M̃p(x)h

0
p · h

0
p, ∀h0p ∈ H0

p, a.e. x ∈ Ω. (12)

This is implied by the coercivity of M (see (H3)) and by the fundamental relation:

(M h)−p = h+p = 0 ⇒ M̃p h
0
p = (M h)0p and M̃p h

0
p · h

0
p =M h · h. (13)

The key point of the asymptotic study is to show that if kp is the limit (in a suitable topology) of

kp(ε, sp(ε)), then (M kp)
−
p = (kp)

+
p = 0 which exhibits M̃p as the operator governing the two limit

problems for p = 2, 3:

P(Ω)p : Find sp ∈ (0, ϕ0) + Vp such that

∫

Ω

M̃p(x) k(sp)
0
p · k(r)

0
p dx = L(r), ∀ r ∈ Vp,

where k(r) stands for (e(v),∇ψ), while k(r)0p denotes the projection of k(r) on the space H0
p, for all

r = (v, ψ) ∈ Vp.

Under assumptions (H1)− (H5), we have the following convergence result:
Theorem 3.1 i) When ε tends to 0, the family (s1(ε))ε>0 of the unique solutions of P(ε,Ω)1 is such that

(s1(ε), k1(ε, s1(ε)) converges strongly in H1
ΓmD

(Ω)3 ×H1
∂3

× L2(Ω,H) to (s1, k1(s1)), where s1 = (s1, s̃1)

is the unique solution of P(Ω)1.
ii) For p = 2, 3 and when ε tends to 0 the family (sp(ε))ε>0 of the unique solutions of P(ε,Ω)p converges

strongly in Xp to the unique solution sp of P(Ω)p.
SKETCH OF PROOF . – As usual, C denotes various constants which can differ from one line to another.

Taking into account Korn and traces inequalities in H1(Ω)3 for the displacements and Poincaré-like
and traces inequalities in H1

∂3
(Ω) for the electric potential and its derivatives, (H4) − (H5) suffice to
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show that | kp(ε, (0, ϕ0)) |L2(Ω,H) ≤ C and |L(r) | ≤ C| kp(ε, r) |L2(Ω,H). Assumption (H3) then implies

| kp(ε, sp(ε)) |L2(Ω,H) ≤ C. Thus there exist a non-relabeled subsequence and (sp, kp) in Vp × L2(Ω,H)
such that

(sp(ε), kp(ε))⇀ (sp, kp) in Xp × L2(Ω,H), k(sp) = (kp)
0
p, (kp)

+
p = 0. (14)

For p ≥ 2, using suitable test functions in P(ε,Ω)p as in [8], we get (Mkp)
−
p = 0. Taking test functions

such that kp(ε, r) = k(r)0p we conclude that sp is the unique solution of P(Ω)p so that the whole sequence
sp(ε) converges. To get the strong convergence it suffices to choose h = kp(ε, sp(ε))−kp in (H3), integrate
in Ω and go to the limit in the right hand side of the inequality obtained through (13)− (14).
If p = 1 the test function methods does not make it possible to show that (Mk1)

−

1 = 0. We therefore
proceed as in [12] and [9] by introducing the additional state variables v1(ε) = (û1(ε)/ε, 0), w1(ε) =
(0, 0, u13(ε)/ε

2), ψ1(ε) = ϕ(ε)/ε and φ1(ε) = ϕ1(ε)/ε
2 so that k1(s1(ε)) = k1(ε, s1(ε)). Moreover, for all

r1 ∈ V1 there exists r(ε) in V such that k1(ε, r(ε)) converges strongly in L2(Ω,H) toward k1(r1) and
L(r(ε)) tends to L(r). Hence, we deduce the weak convergence in X1 of s1(ε) to the unique (see (H3))
solution s1 of P(Ω)1. The strong convergence is proved as for p ≥ 2.
�

4. Some properties of M̃p

It is interesting to give some properties of the operators M̃p which supply the constitutive relations
of the electromechanical plate with electric field gradient. We recall that these operators are defined for
p = 2, 3. In the case p = 2, the limit model involves a coupling between the displacement field, the electric
field and the electric field gradient while in the case p = 3, the coupling involve the displacement field
and the electric field gradient only (see the definitions of the spaces V2 and V3 given supra). Because of

the explicit expression (11) of M̃p as a Schur complement, it is possible to show that

M̃2 =




ã2 −b̃2 −α̃2

b̃T2 c̃2 β̃2

α̃T
2 β̃T

2 γ̃2


 , M̃3 =


 ã3 −α̃3

α̃T
3 γ̃3


 ,

where (ã2, b̃2, c̃2, α̃2, β̃2, γ̃2) ∈ L(S2)×L(R, S2)×L(R)×L(R2, S2)×L(R2,R)×L(R2) and (ã3, α̃3, γ̃3) ∈
L(S2) × L(R, S2) × L(R). Considering the influence of crystallographic classes, it can be shown that in
the case of a polarization normal to the plate we have the following properties:

- ã3 involves mechanical terms only,
- α̃3 never vanishes,
- b̃2 vanishes for the crystalline classes m, 32, 422, 6, 622 and 6m2, as in first order piezoelectricity
(see [8]),

- α̃2 always vanishes except for the classes 3, 32 and 3m,
- β̃2 always vanishes except for the class m,
- when p = 2, there is a complete electromechanical decoupling (̃b2 = α̃2 = β̃2 = 0) for the classes 422,
6, 622 and 6m2, nevertheless the operators ã2, c̃2 and γ̃2 involve a mixture of elastic, dielectric and
coupling coefficients. In these cases, M̃ε

2 is symmetric which involves a quadratic convex energy. For
plates made of these piezoelectric monocrystals, the first and second order coupling effects disappear

at the structural level!

7



References

[1] R. D. Mindlin, 1968. Polarization gradient in elastic dielectrics. Int. J. Solids Struct. 4, 637-642, 1968.

[2] W. Voigt, 1910. Lehrbuch der Kristallphysik. B. G. Teubner, Leipzig.

[3] R. A. Toupin, 1956. The elastic dielectric. J. Rational Mech. Anal. 5, 849-915.

[4] C. A. Mead, 1962. Electron transport mechanism in thin insulating films. Phys. Rev. 128, 20882095.

[5] J. P. Nowacki, 2010. Static and dynamic coupled fields in bodies with piezoeffects or polarization gradient. Lecture notes
in applied and computational mechanics, vol.26. Springer.

[6] J. Yang, 2010. Special topics in the theory of piezoelectricity. Springer.

[7] J. Yang, H. G. Zhou & J. Y. Li, 2006. Electric field gradient effects in anti-plane circular inclusion in polarized ceramics.

Proc. R. Soc. A 462, 3511-3522.

[8] T. Weller, C. Licht, 2010. Asymptotic modeling of thin piezoelectric plates. Ann. Solid Struct. Mech. 1, 173-188.

[9] T. Weller, C. Licht, 2008. Asymptotic modeling of linearly piezoelectric slender rods. C. R. Mecanique 336, 572-577.
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