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ABSTRACT  

Classical heterochromatin chromosomal landmarks, such as centromeres and telomeres, are 

characterized by specific chromatin signatures. Among these, the incorporation of histone variants 

has recently emerged as an important feature. Using the centromere as a paradigm, we consider 

the role of histone variant dynamics in locus-specific chromatin organization. We describe the 

distinct location and dynamics of CenH3, H3.3, and H2AZ at the centromere during the cell cycle. 

This leads us to present the current view concerning modes of incorporation at this chromosomal 

landmark. Finally, we highlight the importance of histone variants in the crosstalk between the 

centric and pericentric domains for maintaining centromere identity. 
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INTRODUCTION  

The classical chromosomal landmarks, centromeres and telomeres, identified cytologically on 

metaphase chromosomes are maintained as individual entities during interphase. Condensed 

throughout the cell cycle, they provide clear illustrations of the original definition of heterochromatin 

[1]. To date, additional molecular marks distinguish heterochromatin from euchromatin, including 

DNA methylation, non-coding RNAs, heterochromatin-associated proteins, and a combination of 

specific histone post-translational modifications (PTMs) imposed on particular histone variants. 

Recent data sparked attention to histone variants to understand their possible contribution in the 

identity of defined chromosome landmarks.  

 

The two types of histone variants, canonical and replacement differ in their primary 

sequence, their expression during the cell cycle, their genome wide distribution and their mode of 

deposition [2] (Table 1). Canonical histones show a peak of expression during S phase and 

provide the main histone supply during DNA replication. They are mainly deposited in a DNA 

Synthesis-Coupled manner (DSC). In contrast, replacement variants are expressed independently 

of S phase, and are usually incorporated in a DNA Synthesis-Independent (DSI) manner. 

Challenging the notion that nucleosomes represent fairly stable biochemical entities, recent 

analyses with new technologies in vivo have shown high H3 turnover at defined transcribed and 

untranscribed regions, not only during genomic replication but also outside of S phase [3]. 

Therefore, nucleosome dynamics outside replication, when replacement variants are readily 

available should be considered. For a given variant, parameters affecting both in vivo nucleosome 

turnover (disassembly and reassembly events per unit of time) and local enrichment at particular 

loci are: (i) histone availability, (ii) presence of a functional deposition machinery, (iii) chromatin 

"receptivity" and (iv) stable maintenance. Additionally, the active recognition of a variant placement 

site, along with preventing its spreading to unwanted loci will favor locus-specific histone 

incorporation. Ultimately, the combination of all these aspects will enable the maintenance (or 

change) of a particular chromatin composition throughout multiple cell divisions.  

 

In this review, we focus on the centromere as a paradigm for a locus marked by a specific 

H3 variant. We concentrate on the centromeric histone variant H3 (CenH3), H3.3, and H2AZ, and 

discuss recent advances concerning their incorporation and maintenance during the cell cycle.  

 

MAIN TEXT 

Centric and pericentric chromatin; a marking with histone variants 

Centromeres, the chromosomal elements responsible for correct chromosome segregation during 

cell division, show a common chromatin organization [4]. Except in S. cerevisiae, where they are 

defined by a DNA sequence, in most eukaryotes centromeres assemble at repetitive sequences, 

yet these sequences are neither necessary nor sufficient for centromere formation. Thus, 
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centromere identity is considered of epigenetic nature, relying largely on chromatin features [4]. 

Within centromeres there are two chromatin domains: the centric chromatin, which serves as the 

site of kinetochore formation and is marked by the incorporation of a specific histone H3 variant, 

CenH3, and the adjacent pericentric heterochromatin (pHC), which lacks CenH3. The pericentric 

heterochromatin with highly methylated DNA, is enriched in hypoacetylated histones, H3K9me3, 

H3K9me2, H4K20me3, and accumulates Heterochromatin Protein 1 (HP1) [5,6]. In addition to the 

H3 variant CenH3, the presence of canonical H3, H3.3, and several H2A variants including H2AZ 

at centromeres (Table 1) prompts to evaluate our current knowledge concerning localization, 

timing, and mechanisms of deposition of these variants, to better understand how centromere 

organization is established and maintained throughout multiple cell divisions. 

 

CenH3 at centric chromatin, its deposition and dynamics during the cell cycle 

CenH3 (CENP-A in humans), first identified in sera from CREST patients, specifically localizes to 

centromeres. This variant, among the six H3 replacement variants (Table 1), is the most divergent 

with ~50-60% identity to canonical H3s at the histone fold domain and a unique N-terminal tail 

[4,7,8]. In different species CenH3s further diverge, yet all CenH3s share the ability to form 

nucleosome-like particles and organize centromeric chromatin to ensure proper centromere 

function. Importantly, maintenance of centromere identity largely depends on determinants 

involved on CenH3 deposition and stability. Depending on the specie, CenH3 deposition at 

centromeres occurs at different times [4]: in S. cerevisiae, all pre-existing CenH3Cse4 exchanges for 

new CenH3Cse4 during DNA replication, which once assembled at centromeres remains stable 

during most of the cell cycle. In S. pombe, major incorporation occurs at early S phase when 

CenH3Cnp1 expression levels peak (Figure 1), followed by further deposition during G2 phase, a 

potential salvage/fidelity pathway. In contrast, in all other organisms studied so far, CenH3 

deposition at centromeres occurs outside of S phase, with variation in the exact timing of events. In 

Drosophila, CenH3CID deposition occurs in early anaphase and mostly during G2 in plants. In 

humans, while CenH3CENP-A expression peaks in late G2, new incorporation at centromeres occurs 

later during telophase and early G1 (Figure 1), when the overall CenH3CENP-A is highly dynamic 

[9,10]. This replication of centromeric DNA during S phase without CenH3CENP-A loading leads to 

the dilution of parental CenH3CENP-A in half, with centromeric CenH3CENP-A equally distributed to the 

daughter centromeres after each cell division [10]. Three non-mutually exclusive scenarios 

illustrate what occurs after DNA replication: (i) formation of hemisomes (documented in flies and 

humans [11,12]), (ii) formation of nucleosome gaps, or (iii) nucleosome gap-filling by a placeholder, 

either canonical H3 or H3.3, to be later replaced by CenH3 during the next cell cycle. While the 

actual nature and fate of centromeric particles during the cell cycle is still under debate, reaching a 

consensus on how to study nucleosome composition will be important, along with developing new 

technologies with enough resolution to test these scenarios.  
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Incorporation of CenH3 at centromeres, a complex and regulated process  

Priming/licensing, deposition, and maintenance are three major events in CenH3 incorporation, 

which will be discussed here only in mammals. During priming, specific factors including the 

hMis18 complex (hMis18, hMis18, M18BP1 [Mis18-binding protein 1]/HsKNL2) and the histone 

chaperones RbAp46/48 are recruited to centromeres [13,14]. Additionally, changes in the 

acetylation status of centromeric histones are thought to make chromatin more receptive to CenH3 

[13,14]. CenH3CENP-A deposition during G1 uses only newly synthesized CenH3CENP-A molecules 

[9,10] (Figure 1B). A critical chaperone required for CenH3 deposition in vitro and in vivo is the 

Holliday Junction-Recognizing Protein (HJURP) [15-17], which is also required for CenH3CENP-A 

stability and impacts on proper chromosome segregation [17]. Moreover, pre-nucleosomal 

CenH3CENP-A complexes also contain histone H4 and histone chaperones with broad histone 

specificity, that are also necessary for proper CenH3CENP-A deposition [15,17] (Figure 2). Additional 

factors essential for CenH3 deposition are listed in Table 2. After deposition, “stabilizing/retaining” 

CenH3 only at centromeres (avoiding or removing spurious incorporations) is crucial for 

maintaining centromere identity and genomic stability. As candidate maintenance factors, the two 

subunits of the ATP-dependent nucleosome remodeling and spacing factor (RSF) complex, Rsf-1 

and SNF2h, along with MgcRacGAP a GAP of the Rho family of small GTPases are particularly 

relevant [18,19] (Figure 1B; Table 2). The RSF complex, important for proper mitotic progression in 

vivo, can also reconstitute and space CenH3CENP-A nucleosomes in vitro [19]. Meanwhile, 

MgcRacGAP together with the GEF ECT2 and their cognate small GTPase Cdc42 (or Rac) 

maintain CenH3CENP-A at centromeres via a GTPase switch [18], and might mark newly 

incorporated CenH3CENP-A. Finally, how priming, deposition, and maintenance are regulated, and 

which primary cue at centromeric chromatin triggers these events to ensure a regulated CenH3 

dynamic cycle represent challenges for future study. 

 

Canonical H3 and H3.3 at centromeres 

The current view of centromeric structure organization based on chromatin fiber analysis from 

humans, mouse, and flies, proposes that within centric DNA, CenH3 subdomains are interspersed 

with histone H3 subdomains [4]. These centromeric H3 nucleosomes possess marks that differ 

from those at the flanking pericentric heterochromatin and euchromatin, and contain a specific 

combination of eu- and heterochoromatic PTMs (detailed in Table 1). The presence of these marks 

at centric chromatin, especially H3K4me2, is important for HJURP recruitment to the centromere 

and for maintenance of CenH3 throughout multiple cell divisions [20]. Whether centromeric H3 

nucleosomes contain canonical H3, H3.3, or a combination of both variants remains to be clarified. 

  

 The presence of H3.3 at pericentric heterochromatin is intriguing (Figure 2; Table 1), 

whether it localizes to the centric domain remains unclear. In mice, H3.3 becomes enriched at 

paternal chromosomes and this, along with methylation of H3.3K27 plays a critical role during de 
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novo heterochromatin formation at pericentric regions [21]. In human somatic cells, the 

pericentromeric but not the euchromatic H3.3 pool is phosphorylated in mitosis at serine 31 

(H3.3S31p), a residue present only in H3.3 [22]. This mitotic phosphorylation also occurs in 

centromeric and telomeric heterochromatin in mouse embryonic stem cells (mESCs) [23]. However 

in these cells, satellite sequences, compared to other repeat sequences, show no particular 

enrichment in H3.3; accumulation only became evident upon differentiation [23-25]. Given the 

recently described importance of these transcripts during early development in mice [26], the 

presence of H3.3 at centromeres is perhaps a consequence of transcribing DNA satellite repeats. 

However, considering the lower stability reported for H3.3-containing nucleosomes [27,28], their 

presence within pericentric heterochromatin may promote the transcription of satellite repeats. 

Finally, H3.3 enrichment may simply reflect chromatin dynamics outside S phase, possibly 

occurring during reorganization of pHC and/or incorporation of CenH3.  

 

Incorporation of H3.3 at pericentromeres  

Deposition of H3.3 involves distinct histone chaperones [2] (Figure 2). The Histone Regulator A 

(HIRA) is part of a complex critical for DSI deposition of H3.3 in vitro [29]. HIRA is required for the 

global deposition of H3.3 during sperm remodeling in flies, and possibly in mice. In mESCs H3.3 

enrichment at promoters and active gene bodies depends on HIRA [24] (Figure 2). An additional 

H3.3 associated complex contains the Death Domain-Associated (DAXX) and Alpha-

Thalassemia/mental Retardation X-linked syndrome (ATRX) proteins. In this complex, DAXX 

serves as the H3.3 chaperone and requires ATRX for the enrichment at specific landmarks such 

as telomeres and pHC [24,25,30]. Interestingly, ATRX preferentially binds G-rich repetitive 

elements, predicted or known to form G-quadruplex structures, which include telomeric and mouse 

pericentric satellite repeats [31]. Importantly, loss of ATRX in human cells causes chromosome 

cohesion defects that lead to chromosome missegregation [32], and mutations in Drosophila ATRX 

homologues affect heterochromatin-mediated silencing [33]. To which extent these phenotypes are 

related to H3.3 loading at heterochromatic regions, or if they relate to other ATRX functions should 

stimulate future work. Several hypotheses can explain H3.3 maintenance at heterochromatic loci. 

First, the exchange of H3.3 during transcription of pericentromeric repeats, second, less removal 

from chromatin when compared to other loci in the genome, potentially due to the relatively 

compact nature of pHC. Third and non-exclusively, H3.3 could accumulate at centromeres by an 

active loading mechanism, similar to the one involved in loading newly synthesized H3.3 at 

telomeric heterochromatin during S phase in mESCs [34]. Coincidentally, while ATRX is 

constitutively found at pHC throughout the cell cycle, DAXX recruitment to these loci occurs during 

mid-late S phase, time of their replication [35]. Still, whether this S phase deposition of H3.3 is 

coupled to DNA synthesis or occurs shortly after fork passage in a DSI manner needs to be 

determined. Additional H3.3 deposition should also be considered at the time of centromere 

reorganization during mitosis and early G1 (Figure 1).  
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H2A variants at centromeres  

In mammals, there are five H2A variants at centromeres (Table 1). Among them, H2AZ shows a 

direct role in centromere organization and function. Intriguingly, H2AZ enrichment at centromeres 

varies between species. In S. cerevisiae, centromeric nucleosomes are mostly devoid of H2AZ 

[36], while in S. pombe this remains controversial. Some reports suggest that H2AZ is part of the 

pHC, yet relatively depleted from centric chromatin [37], while others did not detect H2AZ at any 

position within the centromere [38,39]. Besides possible technical differences (ChIP vs ChIP-Seq), 

a relatively low enrichment of H2AZ at yeast centromeres may have caused high variability in 

these analyses. In mammals, H2AZ is present in both pericentric and centric chromatin [40]. 

Interestingly, centromeric H2AZ is also maintained in both the inactive X-chromosome, generally 

depleted of H2AZ [40], and in mature human sperm, where less than 10% of the histones are 

retained [41,42]; supporting a significant role for H2AZ at the centromere and a transgenerational 

inheritance. In S. pombe, loss of H2AZPth1 causes defects in silencing at centromeres [39]. In 

mouse cells, depletion of H2AZ results in changes in pHC structure during both interphase and 

mitosis, and formation of inter-chromosomal bridges containing major satellite repeats [40]. Thus, it 

is tempting to speculate that the major phenotype following global H2AZ depletion consisting in 

chromosome segregation defects [37,40], relates directly to H2AZ perturbations in pHC. 

Alternatively, it was proposed that in S. pombe the genomic instability caused by H2AZPht1 

depletion was due to H2AZ’s function in RNA processing [38]. 

 

H2AZ incorporation  

The incorporation of H2AZ onto chromatin requires coordination between histone chaperones and 

chromatin remodelers. In all organisms tested, unincorporated H2AZ-H2B dimers are in complex 

with the nucleosome assembly protein 1 (Nap1), a known chaperone for H2A-H2B, which 

facilitates H2AZ exchange in vitro [38,43]. The function of an additional H2AZHtz1 specific 

chaperone, identified in budding yeast, Chz1, partially overlaps with Nap1, and other chaperones 

can substitute for both Nap1 and Chz1 in vivo [43]. In S. cerevisiae and S. pombe, the exchange of 

H2A for H2AZ on chromatin is carried out by the chromatin remodeling complex SWR1 (SWR1-C) 

[38,44]. The catalytic subunit of SWR1-C, Swr1, has an ATPase/helicase domain homologous to 

that of Swi2/Snf2 remodelers and is essential for genome-wide incorporation of H2AZ [44]. In S. 

pombe, the absence of Swr1 results in the global loss of H2AZPht1 throughout the genome with a 

relative accumulation of H2AZPht1 at core centromeric and subtelomeric regions [45]. These data 

suggest the existence of other loading complex(es) that can deposit H2AZPht1 at these 

heterochromatic loci. In S. cerevisiae, the genome-wide distribution of H2AZ is further tuned by the 

eviction of mislocalized H2AZ by another member of the Swi2/Snf2 remodelers, the INO80 

complex, which can replace nucleosomal H2AZ-H2B with free H2A-H2B dimers in vivo and in vitro 

[46]. This in vitro activity of INO80 towards H2AZ-H2B remains controversial [46,47]; the 
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discrepancy is likely due to different experimental conditions, as INO80 activity seems to require 

relatively high concentration of substrate [46]. In higher order eukaryotes, members of the 

SWI2/SNF2 family of remodelers are also involved in H2AZ exchange [44]. For example, the 

Drosophila TIP60 complex, which contains the homologue of Swr1 (Domino/p400) can catalyze 

the exchange of H2AZH2Av. In human cells, TIP60 and SRCAP (SWI2/SNF2-related CBP activator 

protein) complexes are required for incorporation of H2AZ at defined promoters in vivo (Figure 2). 

Interestingly, two components of SRCAP, the ATP-dependent helicases TIP48 and TIP49 (also 

known as TIP49a/b), can exchange H2AZ-H2B dimers and show a preference for H2AZ over H2A 

or H2AX in vitro [48]. Notably, TIP48 and TIP49 are components of several other chromatin 

complexes [49]. Thus, future studies should evaluate how different chromatin remodelers together 

with the network of chromatin chaperones mediate H2AZ/H2A exchange, and help better explain 

H2AZ accumulation at distinct chromosomal landmarks. 

 

Crosstalk between centric and pericentric domains  

Propagation of centromere integrity involves interactions between centric and pericentric 

chromatin. In S. pombe, pHC is essential for de novo establishment of CenH3 chromatin [50,51], 

which might also serve as a boundary for limiting CenH3 spreading as illustrated in Drosophila, 

where pHC facilitates proper CenH3CID localization [52]. Similarly, in artificial human chromosomes, 

some CenH3 spreading occurs due to the transient overexpression of CenH3Cenp-A. In this context, 

CenH3Cenp-A displaces neighboring H3K9me2, but not H3K9me3 nucleosomes, a hallmark of pHC 

[53]. Additionally, histone variants might serve as barriers between centric and pericentric 

chromatin. For instance, ectopic enrichment of H2AZPht1 at centric chromatin results in an increase 

of canonical H3 occupancy at this region [45], and this coincides with decreased CenH3Cnp1 [54], 

suggesting that H2AZPth1 might antagonize CenH3 incorporation at the domain. Thus, pHC both 

promotes and antagonizes formation of the centric domain. Intriguingly, in yeast and mammals, the 

initiation of CenH3 deposition coincides with the partial disruption of pHC organization (Figure 1C). 

In S. pombe, Swi6 (the HP1 homologue) is partially released from centromeres at the beginning of 

mitosis due to a phospho-methyl switch involving phosphorylation of H3S10 and partial loss of 

H3K9me2 (Figure 1C; left). Full restoration of pHC organization occurs in late S phase, after the 

loading of CenH3 (early S phase) [5]. In mammals, there is also substantial HP1 dissociation from 

pHC during late G2/early M phase (Figure 1C; right), and HP1 re-accumulates at this domain 

during G1 [55]. This restoration likely occurs after centromeric chromatin “priming” and initiation of 

CenH3 deposition [10,14]. How these two domains are disrupted and restored in a coordinated 

and timely manner will be an important question to address. Notably, this partial disruption of pHC 

organization during mitosis can provide a window of opportunity for priming centric chromatin, the 

initial targeting of the CenH3 pre-deposition complex, and perhaps the incorporation of CenH3. 

These changes in chromatin organization might also facilitate the eviction and replacement by 

CenH3 of other H3 variants used as placeholders during the dilution of CenH3 in S phase. Once 
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CenH3 deposition is initiated, restoration of pHC organization would prevent promiscuous 

spreading of CenH3 and facilitate the retention of this variant at the domain. Reciprocally, 

spreading of heterochromatin marks to centric chromatin should also be prevented. In human 

artificial chromosomes, targeting of a transcriptional repressor to the centromere results in the 

strong accumulation of H3K9me3 and the binding of HP1 at the centric domain, which coincides 

with the gradual loss of CenH3 from centromeres and kinetochore inactivation [56]. How centric 

and pericentric domain boundaries are mechanistically established is still a puzzle. One possibility 

includes a rapid histone turnover at the boundary, which might serve to separate chromatin 

domains [57]. Indeed, in S. cerevisiae nucleosomes containing hyperacetylated H2AZHtz1, which 

exhibit a high turnover rate, are necessary to prevent the spreading of heterochromatin factors 

from the adjacent subtelomeric regions [58,59]. In mammals, nucleosomes containing both H2AZ 

and H3.3 are unstable in vivo [27]. Thus, searching for the presence of double-variant-containing 

particles at centromeres as a means to form a barrier between centric and pericentric chromatin 

represents an attractive hypothesis to explore.  

 

CONCLUSIONS  

We have discussed how histone variants contribute to centromere specification, organization, 

maintenance, and function. The precise and regulated incorporation of CenH3 at centromeres 

presents a major challenge to preserve centromere identity. Whether the incorporation of other 

histone variants including H3.3 and H2AZ at centromeres is as tightly regulated remains to be 

tested. The existence of an H3.3 complex (ATRX-DAXX) important for H3.3 enrichment at 

heterochromatic regions is highly suggestive of a regulated mechanism. Although CenH3 is a key 

determinant for centromere identity it is not the only factor to be considered. Incorporation of other 

histone variants carrying specific posttranslational modifications, association with other proteins 

(e.g., the constitutive centromere-associated network, CCAN; Table 2), non-coding RNAs, and a 

particular 3D organization of the domain, are important candidates to be further evaluated. 

Furthermore, the current view suggests that the centromere 3D organization may act as a 

feedback loop that controls centromere identity and propagation [4,10]. In particular, Condensins, 

which form protein complexes that contribute to higher-order chromatin organization, are important 

for deposition and retention of CenH3 at centromeres in several organisms [60-62]. To enrich our 

understanding of centromere dynamics we should also account for changes that occur during both 

the cell cycle and development, when major rearrangements take place and cells exhibit different 

proliferation abilities. Finally, beyond thinking of this structure as an individual entity, considering 

the “local neighborhood” and the crosstalk between domains within the nuclear space should 

promote new research avenues. 

 

ACKNOWLEDGEMENTS 



 10 

We apologize to colleagues whose work could not be cited due to space constrains. We thank D. 

Ray-Gallet, A. Cook and Z. Gurard-Levin for discussions and critical reading. This work was 

supported by la Ligue Nationale contre le Cancer (Equipe labellisée Ligue 2010 to G. A and 

postdoctoral fellowship to R. M), ANR "ECenS" ANR-09-BLAN-0257-01 and ERC Advanced Grant 

2009-AdG_20090506 "Eccentric".  

 

GLOSSARY 

Location/localization: presence of a given histone variant at a defined site. 

Deposition/incorporation: loading of a given histone variant potentially involving specific histone 

chaperones, remodelers and/or modifiers.  

Maintenance: an active process to keep a mark during multiple cellular divisions. 
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FIGURE LEGENDS 
 
Figure 1. Comparison of the propagation of centric and pericentric chromatin during the 

cell cycle in S. pombe and mammals. A) Schematic of centromere composition and 

organization. Two domains are distinguished, a central domain, centric chromatin and the flanking 

pericentric heterochromatin (pHC). Centromere DNA sequence and size varies between species. 

In the S. pombe centromere, the central core region is flanked by innermost (imr) and pericentric 

outer repeats, while the M. musculus centromeres contain tandem repeats of centric minor (~600 

kb) and pericentric major (~6 Mb) satellite DNA. Both domains show characteristic chromatin 

marks including the histone variant CenH3 (SpCnp1, MmCENP-A) in the centric domain, and the 

presence of heterochromatin protein 1 (Swi6 in S. pombe, HP1 in mammals) in the pericentric 

regions. We show factors important for the propagation of the centric and pericentric chromatin 

(purple and green, respectively). B) CenH3 propagation during the cell cycle involves: 1) 

priming/licensing as identified in humans, which occurs during anaphase/telophase to early G1 and 

depends on the hMis18 complex and the chaperones RbAp46/48; 2) deposition, which occurs 

during S and G2 phases in S. pombe, and from telophase to early G1 phase and involves the 

CenH3 specific chaperone HJURP in mammals; and 3) CenH3 maintenance during late G1, as 

described in mammals, and depends on the RSF complex and the MgcRacGAP small GTPase. 

Importantly, since CenH3 deposition is not coupled to centromeric DNA replication in mammalian 

cells, the CenH3CENP-A protein pool is diluted in half after S phase. This dilution leads to three 

potential scenarios: formation of hemisomes, nucleosome gaps, or the use of other histone 

variants as placeholders until the end of mitosis, when newly synthesized CenH3CENP-A will be 

deposited and presumably will replace these variants. C) Similarly to CenH3, pericentric 

heterochromatin is also propagated in a regulated manner as shown in the overlaid schematic. 

HP1 (SpSwi6) partially dissociates from pHC at the beginning of mitosis due to a phospho-methyl 

switch (H3S10p vs H3K9me2). In S. pombe, pHC organization is restored in S phase after 

centromeric DNA replication resulting in further dilution of heterochromatic marks. This restoration 

involves RNAi-dependent and independent pathways that recruit histone-modifying enzymes to 

restitute the typical heterochromatic signatures of pHC: Swi6, H3K9me2, and hypoacetylated 

histones. In mammals, HP1 levels are restored at the beginning of G1 phase. Later, HP1 and the 

heterochromatic histone marks are maintained throughout replication. Fidelity of this process is 

ensured by the cooperation between the DNA replication machinery and multiple DNA and histone 

modifying complexes at the replication fork, including the histone methyltransferase Suv39h 

(SpClr4), the CAF-1 chaperone complex (p150 subunit, Sppcf1), and histone deacetylases (only 

known in S. pombe, Clr3, Clr6). Thus, full heterochromatic structure is restored after fork passage 

[6,63]. Replication-coupled maintenance of heterochromatin components also contributes to the 

restoration of pHC structure in yeast [6]. The priming of centric chromatin and the initiation of 

CenH3 deposition coincide with the temporal disruption of pHC organization in both organisms, 

which might facilitate CenH3 loading at centromeres. 
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Figure 2. Distribution of histone variants at mammalian centromeres. Deposition of CenH3, 

H3.3, and H2AZ at different genome locations in mammals. Schematic of an acrocentric 

chromosome depicting the chromosomal landmarks, telomeres and centromere. Two domains 

form the centromere, centric (purple) and pericentric (green), at which several histone variants are 

incorporated by specific chaperones as indicated. H3.3 localization at telomeres and pericentric 

heterochromatin is dependent on the ATRX/DAXX complex, while presence at active promoters 

depends on the HIRA complex [24,25]. Note that localization of H3.3 at telomeres is only 

documented in mESCs [23,24]. The presence of H2AZ at promoters requires the SRCAP complex 

and/or TIP60 [44]. How H2AZ locates at heterochromatic loci remains unknown. The deposition of 

CenH3CENP-A at centric chromatin requires the CenH3-specific chaperone HJURP [15,17]. Other 

histone chaperones might aid in deposition and/or eviction of histone variants including the FACT 

complex, RbAp46/48, nucleophosmin 1 (NPM1), and the chromatin remodeling complex RSF, in 

which the Rsf-1 subunit serves as the chaperone [14,17,19,64].  
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Table 1. Distribution and posttranslational modifications of eukaryotic histone variants 
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Variant/ 
Species 
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H3 
(canonical) 
Ubiquitous 

Sc, Sp: H3
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Dm, Xl: H3.2 
Mm, Hs: H3.1 
& H3.2 

Global 

Centric: 
H3K4me2 

[4]
, 

H3K56me2/3,
 

H3K9me2/3 
[20]

, 
Hypoacetylated 

[5] 

 
Pericentric:  
H3K9Me2/3, 
H3K27me 

[5]
, 

H3T3p (mitosis) 
[65]

, 
Hypoacetylated 

[5]
 

H3.3 
Metazoan 

Dm, Xl, Mm, 
Hs: H3.3 

Promoters and active gene bodies, gene 
regulatory elements. Mm: telomeres, 
meiotic XY body. Mm, Hs: Centromeres.  
Dm, Mm: Paternal chromatin at 
fertilization 

[2]
 

Centric: ND 
Pericentric:  
H3.3S31p (mitosis) 

[22]
, 

H3.3K27me (paternal 
pronucleus) 

[21]
 

CenH3 
Ubiquitous 

ScCse4 
SpCnp1 
DmCID 
Xl, Mm, Hs: 
CENP-A 

Centromeres 
Sc: Regions with high histone turnover, 
tRNA genes 

[66,67]
,  

Hs: DNA breaks
b [68] 

 

Centric: 
CENP-A S7p 
(mitosis)

[69] 

 
Pericentric: NA 

H3t 
Mammals

c
 

Mm, Hs: H3t 
ND (sperm) 

[7]
 

Nucleolus (somatic cells)
 [70]

 
NA 

H3.X/Y 
Primates 

Hs: H3.X & 
H3.Y 
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[71]

 
NA 

H3.5 
Hominids 

Hs: H3.5 Testis-specific, euchromatin 
[72]

 
NA 

H4 
H4 

(canonical) 
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H4K20me3  
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[5]
 

H2A 

H2A 
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H2A
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[65]
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H2A.X 
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DmH2Av
e
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Centric, Pericentric: 
H2AXS139p 
exclusively at the 
periphery of the 
centromere 

[73]
 

H2AZ 
Ubiquitous 

ScHtz1, 
SpPht1  
DmH2Av

e
 

XlH2A.Zl 
Mm, Hs: 
H2AZ1 & 2  

Promoters and the body of active and 
inducible genes, gene regulatory 
elements 

[7]
, nucleolus 

[70]
. 

Sc, Sp: subtelomeric regions 
[38,58].

 
Sp, Dm Mm, Hs: centromeres 

[7,37,40]  

Mm: meiotic XY body 
[74]

 

 
 
Centric, Pericentric:  
ND 

Macro-H2A 
1,2 

Amniotes 

Gg: mH2A.1 & 
mH2A.2 
Mm, Hs: 
mH2A.1-1, -2 & 
mH2A.2 

Inactive X-chromosome, promoters of 
imprinted genes, promoters of inducible 
developmental genes 

[7]
, telomeres 

[75]
, 

centromeres 
[76,77]

, nucleolus 
[70]

, meiotic 
XY body 

[77]
 

 
Centric, Pericentric: 
mH2A S137p 
excluded

[78]
 

H2AL1, L2 
Rodent 

MmH2AL1 & 
H2AL2 

Centromeres (sperm) 
[7]

 
ND 

H2ABbd 
Mammals 

Mm, Hs: 
H2ABbd 

Euchromatin 
[7]

 
NA 

H2B 
H2B 

(canonical) 
Ubiquitous 

H2B Global 
Centric, pericentric: 
H2BT119p (mitosis) 

[79] 
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TSH2B 
Mammals

f
 

Mm, Hs: 
TSH2B  

Global (sperm) 
[7]

  
Telomeres (somatic cells) 

[75]
 

NA 

H2BFWT 
Mammals 

Ms: H2BL1 
Hs: H2BWT 

Telomeres (sperm) 
[7]

 
NA 

 
Footnotes:  
NA, not applicable; ND, not determined; Sc, S. cerevisiae; Sp, S. pombe; Dm, D. melanogaster; Xl, X. laevis; 
Gg, G. gallus; Mm, M. musculus; Hs, H. sapiens 
a 

CenH3 and H3 are the only two H3 variants in yeast. In yeast the “canonical” H3 is related to the metazoan 
H3.3, and can be deposited onto chromatin in both DNA synthesis-coupled and -independent manners [2] 
b
 The transient accumulation of GFP-CENP-A at DNA breaks might be a result of CENP-A overexpression 

c
 H3t, originally reported as testis specific, was also found in a nucleolus proteome from HeLa cells [70]. 

Note that the tumoral origin of HeLa cells might have caused the expression of H3t in this somatic cell line. 
d
 H2A and H2AZ are the only two H2A variants in yeast. H2A is referred as canonical H2A; however, it 

functions similarly to vertebrate H2AX during DNA damage responses (e.g., it is phosphorylated at DNA 
damage sites) 
e
 H2Av is a hybrid between H2AX and H2AZ, it contains an SQ(E/D)F motif at its C-terminus and becomes 

phosphorylated in response to DNA damage [7] 
f
 TSH2B, originally reported as a testis specific variant, it was recently found in association with telomeric 
repeats in several human cell lines [75] 

 



Table 2. Factors required for CenH3 incorporation at mammalian centromeres 
 

Function during 
CenH3 

incorporation 

Factor Conservation Properties Centromeric 
localization 
during cell 

cycle 

Refs 

Priming/licensing RbAp46/48 SpMis16 General chaperone for 
H3-H4 and potentially 
CenH3

CENP-A
. Might alter 

chromatin acetylation 
status 

ND 
[14,17] 

Priming/licensing Mis18/ SpMis18 Part of the hMis18 
complex, which does not 
associate with 
CenH3

CENP-A
 in vivo 

Late 
anaphase/ 

telophase  
early G1 

[14] 

Priming/licensing M18BP1/HsKNL2 CeKNL-2 Part of the hMis18 
complex, which does not 
associate with 
CenH3

CENP-A
 in vivo 

Late 
anaphase/ 

telophase  
early G1 

[14] 

Deposition in vitro 
& in vivo 

HJURP ScScm3 
SpScm3 
XlHJURP 

CenH3
CENP-A

 specific 
chaperone  

Late telophase 
 early G1 

[15-17] 

Deposition FACT complex 
(SSRP1, SPT16) 

DmSsrp1 
SpPob3 
ScSpt16 
SpSpt16 
DmDre4 

General chaperone for 
H3-H4, H2A-H2B, and 
potentially for 
CenH3

CENP-A
 

Constitutive 
[64] 

Deposition CHD1 SpHrp1 Chromatin remodeling 
factor 

Constitutive 
[64] 

Deposition Constitutive 
Centromere-
associated 

network (CCAN)  

CENP-O 
CENP-P 
CENP-Q 
CENP-R 

CENP-U/50/KLIP-1 
CENP-L / 

(SpSPAC4F10.12) 
CENP-M (SpMis17) 
CENP-N (SpMis15) 

CENP-S 
CENP-T 

CENP-H / (SpSim4) 
CENP-I / (SpMis6) 

CENP-K  

Multiprotein complex 
required for centromere 
specification and 
kinetochore assembly 

Constitutive  
[8] 

Maintenance RSF complex 
(Rsf-1, SNF2h) 

DmRsf-1, 
ScIsw1 

ATP-dependent 
chromatin remodeling 
complex 

Mid-G1  M 
[19] 

Maintenance MgcRacGAP  GAP for the Rho family 
of small GTPases. 
Associates with the 
nucleotide exchange 
factor (GEF) Ect2, and 
the small GTPases 
Cdc42 and Rac. 
Interacts with the 
licensing factor 
M18BP1/HsKNL2 

Only in late-G1 
[18] 

 
Footnotes:  
Sc, S. cerevisiae; Sp, S. pombe; Xl, X. laevis; Ce, C. elegans; Hs, H. sapiens. ND, not determined 
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