The Schrödinger Group in Molecular Quantum Mechanics: Beyond the Born-Oppenheimer Approximation

Andrzej Witkowski

- To cite this version:

Andrzej Witkowski. The Schrödinger Group in Molecular Quantum Mechanics: Beyond the BornOppenheimer Approximation. Molecular Physics, 2011, pp.1. 10.1080/00268976.2011.617319 . hal00742697

HAL Id: hal-00742697

https://hal.science/hal-00742697

Submitted on 17 Oct 2012

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

The Schrödinger Group in Molecular Quantum Mechanics: Beyond the Born-Oppenheimer Approximation

Journal:	Molecular Physics
Manuscript ID:	TMPH-2011-0229.R1
Manuscript Type:	Full Paper
Date Submitted by the	
Author:	10-Aug-2011
Complete List of Authors:	Witkowski, Andrzej; Polish Academy of Arts and Sciences
Keywords:	Schrödinger Group, Born-Oppenheimer Approximation, Gallilei transformation

The Schrödinger Group in Molecular Quantum Mechanics:

Beyond the Born-Oppenheimer Approximation

Andrzej Witkowski* ${ }^{1}$
Polish Academy of Arts and Sciences, Sławkowska 17, 31-016 Cracow, Poland Department of Theoretical Chemistry, Jagiellonian University, Ingardena 3, 30-360 Cracow, Poland

Formatted: Line spacing: single

Abstract

The Galillei transformation invariant form of molecular quantum mechanics is obtained, which is not restricted by the Born-Oppenheimer approximation. The molecular Hamiltonian takes then the form of a linear combination of operators of the Schrödinger group, which define the new space-time molecular symmetry properties (e.g. helicity).

The puzzling homochirality of the hydrogen bonded biomolecular systems appears then as a simple result of the molecular space-time symmetry.
\qquad

Deleted: $\mathbb{I I}$

1. Introduction

Deleted: that

From the early years of quantum mechanics treatments, of molecular systems and those of of the solid state systems are based on the Born-Oppenheimer approximation, [1], [2] where owing to a big difference between the nuclear and electronic mass, the ratio of nuclear to electronic velocity is considered as negligible. In quantum mechanics, this ratio can be evaluated [3], [4] from the Heisenberg relation where for the electronic energy
$\overline{\Delta \mathrm{E}} \cong \frac{\hbar}{\Delta \overline{\mathrm{t}}}$
$\overline{\mathrm{v}}_{\mathrm{e}}=\frac{\mathrm{D}}{\overline{\Delta \mathrm{t}}}=\frac{\mathrm{D} \overline{\Delta \mathrm{E}}}{\hbar}$ \qquad
and by similar expressions for the energy of nuclear vibrations $\overline{\delta \varepsilon}$, we have
Deleted: the
$\kappa=\frac{\overline{\mathrm{v}}_{\mathrm{n}}}{\overline{\mathrm{v}}_{\mathrm{e}}}=\frac{\mathrm{d}}{\mathrm{D}} \frac{\overline{\delta \varepsilon}}{\overline{\Delta \mathrm{E}}}$
where D, d are the linear dimensions of the electronic and nuclear distributions.
*e-mail address: witkowsk @ chemia.uj.edu.pl

For the non-degenerate electronic states
$\overline{\Delta \mathrm{E}} \gg \delta \bar{\varepsilon}$ \qquad (4)
which justifies the Born-Oppenheimer approximation: an electron adjusts immediately (with

no delay) to any momentary nuclear position. In relation (3) the electronic velocity $\overline{\mathrm{v}}_{\mathrm{e}}$
itherefore, considered as very big and we can put $\kappa=0$ in the Born-Oppenheimer

| Deleted: s |
| :--- | :--- | approximation: an electron "sees" the nuclear coordinate but no nuclear velocity.

For the degenerate electronic states, the value of κ - by (3) - is very big (formally infinite) and the Born-Oppenheimer approximation breaks down. In molecular physics, the case of the degenerate electronic states is described in terms of vibronic coupling. For all three well known cases of vibronic coupling(the Jahn-Teller effect [5], [6], the Renner effect [5], [6] and the vibronic coupling in dimers and molecular crystals [7]) in the matrix Hamiltonians for the nuclear wave functions, the off-diagonal terms of the nuclear potential energy are determined and lead only to the purely geometric instabilities for the non-totally

Deleted: to

 symmetric normal coordinates.The physical situation for the degenerate and non-degenerate electronic molecular states requires, however, somewhat deeper analysis. For the non-degenerate electronic states it is reasonable, by (4), to consider the high frequency electronic states to adjust immediately to the nuclear positions and to neglect in the nuclear Hamiltonian any κ dependent terms.

For the degenerate electronic states, however,
$\delta \bar{\varepsilon} \gg \Delta \overline{\mathrm{E}}$ \qquad (5)
and it does not make much sense to consider electronic movements as able to adjust immediately to the nuclear positions: they must adjust with a delay, which should be a function of κ and connect both extreme cases (4), (5).

For this purpose, consider a molecular system in the Born-Oppenheimer approximation.
Deleted: aim
Define the origin of the nuclear reference system by a fixed value of the nuclear coordinate and the origin of the electronic reference system also by its fixed value. The Schrödinger equation for the molecular oscillator equals then
$\mathrm{i} \frac{\partial \Psi}{\partial \mathrm{t}}=\frac{1}{2}\left(\mathrm{p}^{2}+\mathrm{q}^{2}\right) \Psi$
where q denotes the corresponding nuclear normal coordinate. From (3) κ is then equal to

$$
\kappa=\frac{\overline{\mathrm{v}}_{\mathrm{e}} \cdot \overline{\mathrm{v}}_{\mathrm{n}}}{\left|\overline{\mathrm{v}}_{\mathrm{e}}\right|^{2}}
$$

$$
\text { which defines for } \kappa \neq 0 \text { two distinct possibilities. }
$$

If both electronic and nuclear velocities move in the same direction, then
$\kappa>0$ \qquad (8)
but if they move in opposite directions, then
Deleted: the
$\kappa<0$ \qquad (9)

The physical situation is somewhat similar to that which occurs in the ionic crystals with two atoms in the unit cell. When both ions move in-phase, then an acoustic branch is formed, but when they move out-of-phase, an optical (polar) one is formed. In the acoustic branch, both

Deleted: than

Deleted:

 ions move in phase with the same amplitudes, but in the optical one the amplitudes are inversely proportional to the ionic mass.To obtain for $\kappa \neq 0$ the molecular Schrödinger equations, which cover both cases (8) and (9), observe that the Born-Oppenheimer approximation defines (by fixing the normal coordinate as origin) a very special reference system - not a general inertial one. Suppose now that both origins of the reference systems are subject to the following transformation \qquad

Deleted: of

 $q=q-\kappa p t$where q, p are the nuclear coordinate and the linear momentum correspondingly. If we take $q=0$ as the origin of the reference system for the molecular oscillator in (6), then $q=0$
means
$\frac{q}{t}=\kappa p$
which (in the Schrödinger picture) is the Galillei transformation. The uniform shift with a constant velocity of both origins is physically equivalent and cannot change the total molecular interaction energy, but now in the space of the relative nuclear-electronic coordinates, any two space-time points are related by the Galillei transformation (10).

In classical mechanics, the Galillei transformation (10) is a simple shift with constant velocity of the origin of the reference system. In quantum mechanics, however, the Galillei transformation should be considered [8], [9] as the non-relativistic limit of the Lorentz transformation. The last one has the geometrical meaning of a rotation by hyperbolic angles in planes containing the time axis and of a rotation by normal angles in planes containing the space axes. In the continuous transition to the non-relativistic limit
(contraction) this geometric meaning of the Lorentz transformation should be preserved. In a similar way (by contraction) one can determine the non-relativistic limits of the other operators of the relativistic groups. In particular the Schrödinger group[8], [9]is the nonrelativistic limit of the most general relativistic group - the conformal group. The
Hamiltonian of a quantum oscillator in (6) is an element of the Schrödinger group [8], [9] and as will be shown a little later, under the action of the Galillei transformation, leads to a linear combination with the other elements of the Lie algebra of the group, which - like the Lorentz group - is a space-time one. The Hamiltonian of the molecular oscillator in (6) is (for

Deleted: the

 $\kappa=0$) invariant under the space group of the molecular point symmetry one. To extend the validity of molecular quantum mechanics beyond the Born-Oppenheimer approximation we must consider the molecular oscillator (6) in the general inertial reference system (10).The Born-Oppenheimer approximation acquires now a new physical sense, as an attempt of separating the molecular space and time variables: for $\kappa \neq 0$ it is no more possible.

In an electronic Hamiltonian, the electronic pairs formed by electrons of opposite spins and equal energy play a similar role to the role of vibrational quanta: the Hamiltonian of an electronic pair under the Galillei transformation leads for $\kappa \neq 0$ to a linear combination with the

Deleted: for separation

Deleted: the

Deleted: the
Deleted: with the same
Deleted: the other elements of the Lie algebra of the Schrödinger group.

For big values of κ_{2} the space-time group defines a new molecular symmetry element: helicity, which is a projection of the time dependent angular momentum on the linear one.

It will be shown, a little later, that vibrational quanta for $\kappa \neq 0$ correspond to (8) and have, therefore, a mechanical character where as molecular electronic pairs correspond to (9) and are therefore, of a polar character, separating the nuclear and electronic charges.
Electronic pairs at distances greater than the chemical bonds have a non-vanishing expectation value of helicity and correspond, therefore, to weak, long distance bonds between two electrons, but these bonds have no center or plane of symmetry. Invariance under the Galillei transformation defines the space-time symmetry, which does not contain the space and time inversion: "the left and right glove" are * not equivalent.

Deleted: the

Deleted: when

Deleted: bigger

Deleted: the

Formatted

Formatted: No bullets or numbering, Tabs: Not at 36 pt
Deleted: is
2. Hamiltonian of Nuclear Vibrations in the Inertial Molecular Reference System

Consider the Born-Oppenheimer molecular oscillator (6) in the inertial reference system (10), as
$\tilde{\mathrm{q}}=\mathrm{UqU}^{-1}=\mathrm{q}-\kappa \mathrm{pt}$
where
$U=e^{-i \frac{1}{2} p^{2} k t}$
then unitary transformation (13) transforms (6) to (Appendix 1)
$\mathrm{i} \frac{\partial \Psi}{\partial \mathrm{t}}=\frac{1}{2}\left(\mathrm{p}^{2}+\tilde{\mathrm{q}}^{2}\right) \Psi=\eta \Psi$
where
$\eta=\frac{1}{2}\left(p^{2}+q^{2}\right)-\frac{1}{2} \kappa t(p q+q p)+\frac{1}{2} \kappa^{2} t^{2} p^{2}$
The transformed Hamiltonian (15) does not yet have any transparent physical meaning. For
this purpose introduce the creation and destruction operators a+, a
$\left.\mathrm{p}=\frac{\mathrm{i}}{\sqrt{2}}\left(\mathrm{a}^{+}-\mathrm{a}\right)\right), \mathrm{q}=\frac{1}{\sqrt{2}}\left(\mathrm{a}^{+}+\mathrm{a}\right)$
with
$\left\lfloor\mathrm{a}^{+}, \mathrm{a}\right\rfloor=1$
and define the following 3 operators
$\tau_{1}=\frac{1}{2}\left(\mathrm{a}^{+} \mathrm{a}^{+}+\mathrm{aa}\right)$
$\tau_{2}=\frac{i}{2}\left(a^{+} a^{+}-a \mathrm{a}\right)$
$\tau_{3}=\frac{1}{2}\left(\mathrm{a}^{+} \mathrm{a}+\mathrm{aa}^{+}\right)=\frac{1}{2}\left(1+2 \mathrm{a}^{+} \mathrm{a}\right)$
the Hamiltonian (15) takes now the following form
$\eta=x_{0} \tau_{3}+x_{1} \tau_{1}+x_{2} \tau_{2}$
and from (15) (Appendix 1)
$x_{0}^{2}-x_{1}^{2}-x_{2}^{2}=1$
Operators τ_{i} have the following commutation properties
$\left[\tau_{1}, \tau_{2}\right]=2 i \tau_{3}$
$\left[\tau_{2}, \tau_{3}\right]=-2 i \tau_{1}$ \qquad
$\left[\tau_{3}, \tau_{1}\right]=-2 i \tau_{2}$
and form the Lie algebra elements of the subgroup (dynamical $\operatorname{SU}(1,1)$) of the Schrödinger group [8], [9]. Operators τ_{i} in (23) - (25) have similar commutation properties to those of the components of the usual angular momentum (except the signs in (24), (25)) and the Galillei transformation (12) has the sense of a rotation of the operator τ_{3}
$\frac{1}{2}\left(\mathrm{p}^{2}+\mathrm{q}^{2}\right)=\tau_{3}$
in the corresponding two planes, but in the Minkowski space (22). In terms of the τ_{i} operators the transformation U of (13) equals
$\mathrm{U}=\mathrm{e}^{-\frac{1}{2} \mathrm{p}^{2} \kappa t}=\exp \left[-\frac{\mathrm{i}}{2}\left(\tau_{3}-\tau_{1}\right) \kappa \mathrm{kt}\right]$
The dynamical group $\mathrm{SU}(11) \approx \mathrm{SO}(2,1)$ is the group of the transformations of a real three- \qquad

Deleted: a

dimensional vector space keeping invariant the indefinite form
$z_{0}{ }^{2}-z_{1}{ }^{2}-z_{2}{ }^{2}=$ inv
This group by keeping invariant (22), defines three operators τ_{i} in the space corresponding to the hyperbolic geometry (22).

The coherent states τ_{i} in this group were defined by Barut and Girardello [10] by
$\left(\tau_{2}+\mathrm{i} \tau_{1}\right)|\mathrm{z}\rangle=\mathrm{z}|\mathrm{z}\rangle=(\alpha+\mathrm{i} \beta)|\mathrm{z}\rangle$
Now, the expectation values of τ_{i} operators
$\langle\mathrm{z}| \tau_{1}|\mathrm{z}\rangle=\bar{\beta}$
$\langle\mathrm{z}| \tau_{2}|\mathrm{z}\rangle=\bar{\alpha}$
$\langle\mathrm{z}| \tau_{3}|\mathrm{z}\rangle=\bar{\gamma}$
can be considered by (21) as components of a vector projected on the axes $\mathrm{x}_{0}, \mathrm{x}_{1}, \mathrm{x}_{2}$ in the
space of the hyperbolic geometry (22), and have, therefore the same metric properties \qquad
$\bar{\gamma}^{2}-\bar{\alpha}^{2}-\bar{\beta}^{2}=1$
From (21) we have, therefore,
$\mathrm{i} \frac{\partial \Phi}{\partial \mathrm{t}}=\bar{\eta} \Phi=\left(\mathrm{x}_{0} \bar{\gamma}++\mathrm{x}_{1} \bar{\beta}+\mathrm{x}_{2} \bar{\alpha}\right) \Phi$
where
$\Psi=|\mathrm{z}\rangle \Phi(\mathrm{t})$
and a rotation of the reference system by a normal angle in the $\bar{\alpha}, \bar{\beta}$ plane and by a hyperbolic angle in the $\bar{\gamma}, \bar{\alpha}$ plane reduces (34) to
$\mathrm{i} \frac{\partial \Phi}{\partial \mathrm{t}}=\mathrm{x}_{0}\left(1+\bar{\alpha}^{2}+\bar{\beta}^{2}\right)^{\frac{1}{2}} \Phi$
For the expectation values of $\bar{\alpha}, \bar{\beta}$, use now the same units as for the coordinates $\mathrm{x}_{1}, \mathrm{x}_{2}$
$\bar{\beta}=\beta k^{2}$
$\bar{\alpha}=\alpha k$ \qquad
$\mathrm{k}=\frac{1}{\sqrt{2}} \kappa$
Then
$\mathrm{i} \frac{\partial \Phi}{\partial \mathrm{T}}=\tilde{\Gamma} \Phi$ \qquad
where
$\tilde{\Gamma}=\left[\left(n+\frac{1}{2}\right)^{2}+\alpha^{2} k^{2}+\beta^{2} k^{4}\right]^{\frac{1}{2}}$
$\mathrm{T}=\int_{0}^{\mathrm{t}} \mathrm{x}_{0} \mathrm{dt}=\frac{1}{\mathrm{k}} \operatorname{arctgh}(\mathrm{kt})=\frac{\Theta}{\mathrm{k}}$
The new time coordinate T is determined up to the k^{2} terms, therefore, to the same order we may simplify (34) to
$\mathrm{i} \frac{\partial \Phi}{\partial \mathrm{t}}=\left(\mathrm{x}_{0} \bar{\gamma}+\mathrm{x}_{1} \bar{\beta}\right) \Phi$ and
$\mathrm{x}_{0}{ }^{2}-\mathrm{x}_{2}{ }^{2}=1(44)$
$\bar{\gamma}^{2}-\bar{\beta}^{2}=1(45)$
which reduces rotations in (34) to a simple rotation by the hyperbolic angle θ. Taking as the zero of energy in (34) its Born-Oppenheimer value, we have finally
$\mathrm{i} \frac{\partial \Phi}{\partial \mathrm{T}}=Г \Phi$ \qquad

Formatted: English U.S.
Formatted: English U.S.

Formatted: English U.S.
Formatted: English U.S.
$\Gamma=\left[\left(n+\frac{1}{2}\right)^{2}+\alpha^{2} k^{2}\right]^{\frac{1}{2}}-\left(n+\frac{1}{2}\right)(47)$

Deleted:

Formatted: English U.S.
Formatted: English U.S.

To determine the physical nature of the new term $\alpha \kappa$ in (47), observe that taking $\hbar \omega$ as an energy unit we have from (47) for $|\kappa \alpha|<1$ an additional term $1 / 2(\kappa \alpha)^{2}$ and for $|\kappa \alpha|>1$ a leading term $\kappa \alpha_{2}$ which allows to define these terms as correspondingly the kinetic energy and the linear momentum of a vibrational quantum relative to the origin of the electronic reference system.

It will be instructive to compare the properties of the molecular oscillator (46) with those of the harmonic oscillator (6) in the Born-Oppenheimer approximation.

It follows from (47) that for big values of $\kappa \alpha$
Deleted: that
$\Gamma \rightarrow \kappa \alpha>0$ (48)
and the physical character of (46) is defined by (8). Nuclear and electronic velocities for $\kappa \neq 0$ move in - phase, are of the mechanical character and perform periodic movements, which, however, are no more harmonic as in (6). The infrared absorption line shape function of molecular oscillator (46) is the Fourier transform $\exp [-\mathrm{i} \Gamma \mathrm{T}](49)$
and should present a broad, structured band. The width and structure of this band should be dependent on the isotopic substitution in the reduced mass of the oscillator.

On the other hand the linear structure of the normal coordinates in (6) may - by hyperbolic geometry (22), (33) - appear in (46) as the bent bonds.
3. Hamiltonian of Electronic Pairs in the Inertial Molecular Reference System

To describe the electronic states, introduce the creation and destruction operators $\mathrm{c}_{\mathrm{n}}^{+}, \mathrm{c}_{\mathrm{n}}$ defined on the basis of the orthonormal and one-electron solutions of the electronic Hamiltonian in the Born-Oppenheimer approximation which obey the usual anti-commutation rules for fermions
$\left\{\mathrm{c}_{\mathrm{n}}^{+}, \mathrm{c}_{\mathrm{m}}\right\}=\delta_{\mathrm{nm}}$
Consider now two fermions u, v

$$
\begin{align*}
& \left\{\mathrm{u}^{+}, \mathrm{u}\right\}=\left\{\mathrm{v}^{+}, \mathrm{v}\right\}=1 \tag{51}\\
& \{u, u\}=\{v, v\}=\{u, v\}=0 \tag{52}\\
& \{u, u\}=\{v, v\}=\{u, v\}=0 \\
& \text { The Hamiltonian for these two electrons equals }
\end{align*}
$$

$\eta^{\prime}=\varepsilon_{u} u^{+} u+\varepsilon_{v} v^{+} v=\frac{1}{2}\left(\varepsilon_{u}+\varepsilon_{v}\right)\left(1-\sigma_{3}\right)+\frac{1}{2}\left(\varepsilon_{u}-\varepsilon_{v}\right)\left(n_{u}-n_{v}\right)$
where
$\sigma_{3}=1-\mathrm{u}^{+} \mathrm{u}-\mathrm{v}^{+} \mathrm{v}=1-\mathrm{n}_{\mathrm{u}}-\mathrm{n}_{\mathrm{v}}$
For
$\varepsilon_{u}=\varepsilon_{v}=\varepsilon$
we have, therefore, for the energy eigenvalues \qquad
$i \frac{\partial \Psi^{\prime}}{\partial \mathrm{t}}=\left(1-\sigma_{3}\right) \Psi^{\prime}$ \qquad
where η^{\prime} is measured in ε units
Introduce now the operators σ_{i}
$\sigma_{3}=1-u^{+} u-v^{+} v=1-n_{u}-n_{v}$
$\sigma_{2}=u^{+} \mathrm{v}^{+}-\mathrm{vu}$
$\sigma_{1}=i\left(u^{+} v^{+}+v u\right)$
which obey the commutation rules
$\left\lfloor\sigma_{1}, \sigma_{2}\right\rfloor=2 \mathrm{io}_{3}$
$\left[\sigma_{2}, \sigma_{3}\right]=-2 \mathrm{i} \sigma_{1}$
$\left[\sigma_{3}, \sigma_{1}\right]=-2 \mathrm{i} \sigma_{2}$
which are identical with those of (23) - (25) and for any i, k
$\left[\tau_{i}, \sigma_{k}\right]=0$
In terms of σ_{i} operators the Galillei transformation U in (27) takes the form of V, where
$V=\exp \left[-\frac{i}{2}\left(\sigma_{3}-\sigma_{1}\right)_{\kappa t}\right]$
and (56) transforms to
$i \frac{\partial \psi^{\prime}}{\partial \mathrm{t}}=\left(1+\mathrm{x}_{0}{ }^{\prime} \sigma_{3}+\mathrm{x}_{1}{ }^{\prime} \sigma_{1}+\mathrm{x}_{2}{ }^{\prime} \sigma_{2}\right) \psi^{\prime}$
where
$x_{0}{ }^{2}-x_{1}{ }_{1}^{2}-x^{\prime}{ }_{2}{ }^{2}=1$
and
$x_{0}{ }^{\prime}=-x_{0}$
$x_{1}{ }^{\prime}=-x_{1}$
$x_{2}{ }^{\prime}=-x_{2}$
Introduce, as in (29), the coherent states in the $\mathrm{SU}(1,1)$ group
$\left(\sigma_{2}+i \sigma_{1}\right)\left|z^{\prime}\right\rangle=\left(\alpha^{\prime}+i \beta^{\prime}\right)\left|z^{\prime}\right\rangle$
where
$\psi^{\prime}=\left|z^{\prime}\right\rangle \Phi^{\prime}(\mathrm{t})$
and
$\left\langle\mathrm{z}^{\prime}\right| \sigma_{3}\left|\mathrm{z}^{\prime}\right\rangle=\bar{\gamma}^{\prime}$
$\left\langle z^{\prime}\right| \sigma_{2}\left|z^{\prime}\right\rangle=\bar{\alpha}^{\prime}$
$\left\langle z^{\prime}\right| \sigma_{1}\left|z^{\prime}\right\rangle=\bar{\beta}^{\prime}$
and
$\bar{\gamma}^{\prime 2}-\bar{\alpha}^{\prime 2}-\bar{\beta}^{\prime 2}=1$
In the same units as in (37), (38)
$\bar{\beta}{ }^{\prime}=k^{2} \beta^{\prime}$
$\bar{\alpha}^{\prime}=\mathrm{k} \alpha^{\prime}$
and up to the k^{2} terms, we may simplify (65) to
$i \frac{\partial \Phi^{\prime}}{\partial T}=-\Gamma^{\prime} \Phi^{\prime}$
where
$\Gamma^{\prime}=\left[\varepsilon^{2}+\alpha^{\prime 2} \mathrm{k}^{2}\right]^{\frac{1}{2}}-\varepsilon$
It follows from (77), (78) that for big values of $\left|\mathrm{k} \alpha^{\prime}\right|$
$-\Gamma^{\prime} \rightarrow-\mathrm{k} \alpha$
Therefore the physical character of (78) is determined by (9). Electronic pairs in (77) describe the out - of - phase, polar movements of nuclear and electronic velocities, separating the nuclear and electronic charges.

It follows from (77) that an electronic pair has , by (78), a lower energy than it has in the Born-Oppenheimer case (56), forming, therefore, some attractive interaction - a kind of a two-electron bond. This bonding - by (78) - is dependent on the ratio of velocities (3) and (in contrast to any Coulombic interaction) depends on the reduced mass of the quantum oscillator. It can be described as an electron-electron attraction by a virtual exchange of a vibrational quantum.

Observe now that the expectation values of the τ_{i} operators are determined on one branch of the hyperbola (for the positive values of x_{i}) where as those of the σ_{i} ones are determined on the other branch $\left(\right.$ of the negative x_{i}) by (67) - (68). A continuous change of κ in the Galillei transformation is a rotation. Space for $\kappa \neq 0$ where vibrational quanta and electronic pairs are determined ${ }_{2}$ cannot contain these discrete operations of space and time reversal.

Deleted: of
Deleted: when
Deleted: that
Deleted: -
Deleted: C

An electronic pair described by (77), (78) cannot have, therefore, a symmetry center or a plane of symmetry perpendicular to the bond.
4. Molecular Space-Time Symmetry Properties

Consider now equations (46), (77) for different values of

$$
\begin{equation*}
\tilde{\mathrm{q}}=\mathrm{q}-\mathrm{kpt} \tag{80}
\end{equation*}
$$

For
$|q|>|k p t|$
we have
Formatted
$\left[\left(\mathrm{n}+\frac{1}{2}\right)^{2}+\mathrm{k}^{2} \alpha^{2}\right]^{\frac{1}{2}} \rightarrow \mathrm{n}+\frac{1}{2}$
Formatted: English U.S.
$T \rightarrow t$
and then (82) reduces to the energy of a standard harmonic oscillator and the normal coordinate q has the space symmetry determined by the irreducible representations of the molecular point symmetry group.
If ,however, for the electronic pair, in (80)

$$
\begin{equation*}
|\mathrm{kpt}|>|\mathrm{q}| \tag{84}
\end{equation*}
$$

therefore, for an electronic pair located at a distance greater than the linear dimension of the nuclear distribution or greater than the corresponding chemical bond in the molecular \qquad quantum oscillator we have from (77)

$$
\begin{equation*}
-\left[\varepsilon^{2}+\mathrm{k}^{2} \alpha^{2}\right]^{\frac{1}{2}} \rightarrow-\mathrm{k} \alpha \tag{85}
\end{equation*}
$$

and
$\mathrm{T}=\frac{\Theta}{\mathrm{k}}=\frac{1}{\mathrm{k}} \operatorname{arctgh}(\mathrm{kt})$
It follows from (84) that the molecular point symmetry group of q can no more be used for defining the symmetry of the time dependent operator kpt
which has the symmetry of a pseudoscalar - even in the time reversal and odd in the space reversal.

The time dependent equation for the electronic pair in (77) equals now
$\mathrm{ki} \frac{\partial \Phi^{\prime}}{\partial \Theta}=\mathrm{kM} \Phi^{\prime}=-\mathrm{k} \alpha^{\prime} \Phi^{\prime}$
and defines helicity [3].
Deleted: as

As M is an operator of rotation by an angle $\Theta,(88)$ is equivalent to
$\left\langle\Psi^{\prime}\right| \operatorname{Mkp}\left|\Psi^{\prime}\right\rangle=-\mathrm{k} \alpha^{\prime}$
or
$\chi=\frac{\left\langle\Psi^{\prime}\right| \mathrm{Mkp}\left|\Psi^{\prime}\right\rangle}{\left|\mathrm{k} \alpha^{\prime}\right|}=-1$
and (90) defines the helicity [3]: projection of the angular momentum on the linear one, which is a pseudoscalar.

From (88) the wave function Φ^{\prime}, equals
$\Phi^{\prime}=\exp \left[-\mathrm{ik} \alpha^{\prime} \mathrm{T}\right]$
In the limit (85) the wave function of an electronic pair takes, therefore, a form which is that of a mass-less particle with \underline{a} helicity equal $\chi=-1$.

For the values of $|k \alpha|$ smaller than the limiting case (85), only the expectation values of the
helicity can be determined. For the group velocity from (77), (78)
$-\frac{\partial\left(\Gamma^{\prime}\right)}{\partial\left(\mathrm{k} \alpha^{\prime}\right)}=-\frac{\mathrm{k} \alpha^{\prime}}{\left[\varepsilon^{2}+\mathrm{k}^{2} \alpha^{\prime 2}\right]^{\frac{1}{2}}}=-\overline{\mathrm{k} \alpha^{\prime}}$
and then the helicity expectation value $\bar{\chi}$ equals: for the Born-Oppenheimer case
$\bar{\chi}=0$ \qquad
and for (84)
$\bar{\chi}=-1$
and (92) takes values between (93), (94) otherwise.
An electronic pair with a helicity corresponding to (84) cannot have a center or a plane of symmetry. Indeed, the wave function of a quantum system with acenter or plane of

Deleted: the
symmetry can be classified as even or odd with respect to these operators, therefore

$$
\begin{equation*}
\left\langle\psi_{1}\right| \operatorname{Mkp}\left|\psi_{1}\right\rangle=\sum_{\mathrm{i}}\left\langle\psi_{1}\right| \mathrm{M}\left|\psi_{\mathrm{i}}\right\rangle\left\langle\psi_{\mathrm{i}}\right| \mathrm{kp}\left|\psi_{1}\right\rangle \tag{95}
\end{equation*}
$$

which can never be different from zero. This confirms the conclusion obtained by a different argument at the end of section 3 .

Conditions (85), (86), which by (84) define the physical situation beyond the BornOppenheimer approximation lead therefore, to a new type of the two-electron bonding interaction. It appears that at a distance greater than a valence chemical bond an electronic pair has a pseudoscalar character with some expectation value of the helicity and that the pair has no center or plane of symmetry. The nature of this interaction results from the physical sense of κ in (10) as a measure of retardation of electrons in following the nuclear movements. The increasing of the mass of the vibrating nucleus will by (3) diminish κ and

Deleted: never

Deleted: the

Deleted:

Deleted: for

Deleted: an electronic pair

Deleted: bigger

Deleted:
Deleted: s

Deleted: N

Deleted: I (in contrast to any Coulombic interaction) diminish the electron-electron bonding.

One can expect such a weak, long range two-electron bonding interaction to occur between the electrons that are not localized in the primary chemical bonds - like non bonding
electrons, the π-type electrons delocalized in aromatic molecules, or in graphite or the electrons near the Fermi level in metals.
5. Hydrogen Bond: Quantum Oscillator and the Retarded Electronic Pair

In a hydrogen bond, the lightest nucleus has at its both sides the non-bonding electrons which can be easily displaced by the vibrating proton and are shielded from the direct Coulombic repulsion.

A quantum oscillator and an electronic pair of the non-bonding electrons in the BornOppenheimer approximation can serve as a good starting model for studying the hydrogen bond properties.
$\mathrm{i} \frac{\partial \Psi}{\partial \mathrm{t}}=\left[\hbar \omega \tau_{3}+\varepsilon\left(1-\sigma_{3}\right)\right] \Psi$
The Gallilei transformation invariant form of (96) extends its validity beyond the BornOppenheimer approximation and leads to equations (46), (77) for the description of the vibrational and electronic properties.

It was shown in a recent paper [3] that the main results concerning the experimental infrared spectra of the hydrogen bond are well reproduced by a perturbation treatment of equation (46).

The properties of the electronic pair in (77), which result from our analysis in the present paper, are:
a. it follows from (84) that the distance in the electronic pair should be greater than the length of the chemical bond in the quantum oscillator
b. it follows from (95) and the discussion in Section 3 that the electronic pair cannot have a center or a plane of the space symmetry
c. it follows from (78) and (3) that the substitution of proton by deuterium in the hydrogen bond should diminish the attraction between the electrons (in contrast to any

Deleted: bigger

Deleted: then Coulombic interaction) and, therefore, make the bond longer.
d. infrared absorption beyond the Born-Oppenheimer approximation is defined by $\langle 0| \tilde{\mathrm{q}}|1\rangle$ of (10) and (in contrast to the harmonic oscillator of (6)) is accompanied by the change of $\mathrm{k} \alpha$ ' in (77) and determines the nuclear - electronic charge separation. This
should lead to a big change of the dipole moment in absorption and its dependence on the isotopic substitution in the hydrogen bond.

All the above conclusions, deduced from our treatment in this paper, are well known as very characteristic properties of the hydrogen bond [11], [12], [13], [14].
6. Enhancement of Homochirality in the Hydrogen Bonded Biomolecular Systems

Consider a molecular model system composed of a linear polymer of identical

 molecules interconnected by the hydrogen bonds. The electronic Hamiltonian of the hydrogen
Deleted: E

 bonds in the Born-Oppenheimer approximation equals$\mathrm{H}=\sum \varepsilon_{\mathrm{i}}\left(1-\sigma_{3}^{(\mathrm{i})}\right)$
and for
$\mathrm{E}_{0}=\sum_{\mathrm{i}} \varepsilon_{\mathrm{i}}, \varepsilon_{\mathrm{i}}=\varepsilon$
$\mathrm{S}_{3}=\sum_{\mathrm{i}} \sigma_{3}^{(\mathrm{i})}$ \qquad
we have therefore
$\mathrm{H}=\left(1-\mathrm{S}_{3}\right)$
in units of E_{0}
Introduce now the unitary transformations
$\mathrm{V}=\mathrm{V}_{1} \cdot \mathrm{~V}_{2} \cdots$
where
$\mathrm{V}_{\mathrm{i}}=\exp \left[-\frac{\mathrm{i}}{2}\left(\sigma_{3}^{(\mathrm{i})}-\sigma_{1}^{(\mathrm{i})}\right) \mathrm{kt}\right]$
then (100) transforms to
$\tilde{\mathrm{H}}=1+\mathrm{x}_{0}{ }^{\prime} \mathrm{S}_{3}+\mathrm{x}_{2}{ }^{\prime} \mathrm{S}_{2}$
where
$\mathrm{S}_{2}=\sum_{\mathrm{i}} \sigma_{2}^{(\mathrm{i})}$
and where
$\mathrm{x}_{0}{ }^{\prime 2}-\mathrm{x}_{2}{ }^{\prime 2}=1$
(105)

Introduce now the coherent states in $\mathrm{S} \underline{\mathrm{U}}(1,1)$ group by
Deleted: O
Deleted: 2
$\sigma_{2}^{(i)}\left|z_{i}\right\rangle=\alpha_{i}\left|z_{i}\right\rangle$
$\left.|\mathrm{z}\rangle=\left|\mathrm{z}_{1}\right\rangle \mathrm{z}_{2}\right\rangle \ldots$.
then, putting the Born-Oppenheimer energy E_{0} at zero,
$\Gamma=-\left[\mathrm{E}_{0}{ }^{2}+\mathrm{k}^{2}\left(\sum \alpha_{\mathrm{i}}\right)^{2}\right]^{\frac{1}{2}}+\mathrm{E}_{0}$
energy value in (108) is lowered below its Born-Oppenheimer value if
$\mathrm{k}^{2} \sum_{\mathrm{i}} \alpha_{\mathrm{i}}{ }^{2}+\mathrm{k}^{2} \sum_{\mathrm{i} \neq 1} \alpha_{\mathrm{i}} \alpha_{1}>0$

Deleted: t

Therefore, $\alpha_{i} \alpha_{1}$ must be of the same sign and by the same reason as in (79)
$\mathrm{k} \alpha_{\mathrm{i}}<0$
to have, however,
$\sum_{i \neq 1} \alpha_{i} \alpha_{1}>0$
the symmetry of the space separating two electrons of different hydrogen bonds should be the same as all α_{i}, α_{1}, and therefore, the space should have the symmetry of the pseudoscalar. The
molecules separating the hydrogen bonds should be, therefore, chiral and of the same negative sign as the helicity in hydrogen bond in (77).

The chirality of molecules, considered in older chemical literature as a purely static space property("left and right glove") js now understood [15], [16], [17], [18] as a dynamic \qquad property, which allows to differentiate between the true and false chirality. The modern \qquad definition of molecular chirality is determined by its pseudoscalar property: even in the time reversal and odd in the parity reversal - corresponding to the helicity

The puzzling homochirality in biomolecular systems seems, therefore, to be the result of the space-time molecular symmetry.
7. Molecular Quantum Mechanics and Molecular Quantum Field Theory.

The classical papers [1], [2] in which the quantum mechanical foundations of molecular and solid state physics were introduced, contain implicitly a serious drawback: the separation of the center of mass movement from the Hamiltonian in the relative nuclear electronic coordinates was not obtained.

There is no doubt that after separation of the nuclear and electrnic motion, prper
elimination of the center of mass motion is, as pointed by Mankhorst [19], of central importance to a dynamic theory of molecules.

For atoms a proper linear combination of coordinates (the Jacobi ones) allows for a simple elimination of the center of mass movement Any attempts along this line of reasoning applied to the molecular systems lead to the linear combination of the electronic and nuclear coordinates resulting in an awkward dependence of the Hamiltonian on these coordinates which eliminates any effective treatment [20], [21]. The only way of avoiding these difficulties seems to be the introduction of an independent set of coordinates [22], [23]

Deleted: the

Deleted: s relative to some nuclear coordinate q_{N} (e.g. of the most heavy atom). Molecular properties, however, cannot depend on an arbitrary choice of a particular nucleus as the origin of a reference system.

Any general reconciliation of a separation of nuclear and electronic motions introduced in the classical papers [1], [2], with an effective elimination of the center of the mass motion seems,

For an atom a linear combination of only the space coordinates (Jacobi ones) is sufficient to eliminate the uniform movement with a constant velocity of a single point (the center of mass).

Deleted: the

For a molecular system (in the Born-Oppenheimer approximation), a quantum oscillator determines the time unit and the linear combination of the space and time coordinates (the Gallilei transformation) is necessary to define, in the inertial reference system, the Hamiltonian in the relative space-time coordinates.

This approach requires, however, the reformulation of the molecular quantum mechanics in the spirit of a molecular quantum field theory.

The energy eigenvalues of a quantum oscillator and an electronic pair in (6), (56) are determined in the corresponding reference systems located in the usual Euclidean space, for
fixed values of the origins. Inversion of the space coordinates in the reference systems cannot change the eigenvalues in (6), (56) as the Euclidean space is uniform.

How the vibrational quanta and electronic pairs move in the relative time and space remains yet undetermined: the Born-Oppenheimer separation is formulated in the time independent Schrödinger equation and contains no relative nuclear-electronic velocity as $\kappa=0$ in (6), (56).

The Gallilei transformation invariant equations with the new relative coordinate T define the vibrational quanta and electron pairs on the opposite branches (44), (66) of a two dimensional space-time hyperbola. In this non-Euclidean space, the left and right directions are no more equivalent: the parity operator does not commute with the corresponding Hamiltonians. Energy expectation values for electronic pairs and vibrational quanta are, for

Deleted: s

 $\mathrm{k} \neq 0$ and the same time T_{2} separated by an energy gap. This energy gap results from the hyperbolic geometry in which move now vibrational quanta and electronic pairs: for a sufficiently big gap, the electronic pair by (91) can move as a mass-less particle in the Euclidean space.8. Space-Time Symmetry Elements in Molecular Quantum Mechanics

We have started our considerations by choosing a molecular system composed of a quantum oscillator and an electronic pair (with opposite spins and the same energy) defined in the reference systems with fixed origins (Born-Oppenheimer approach). $\mathrm{i} \frac{\partial \Psi}{\partial \mathrm{t}}=\left[\tau_{3}+\left(1-\sigma_{3}\right)\right] \Psi$

The interaction energy between the nuclear and electronic subsystems cannot be changed, if both origins are subject to the Gallilei transformation $\widetilde{\mathrm{q}}=\mathrm{q}-\kappa \mathrm{pt}$..................................... (113)
and therefore, the total energy in
$\underline{i \frac{\partial \widetilde{\Psi}}{\partial t}=\left(\eta+\eta^{\prime}\right) \widetilde{\Psi}}$
is, by (46), (77) the same as in (112).
The physical sense of (112) and (114) is, however, much different.

[^0]Deleted: II

The vibrational quanta and electronic pairs move now, by (114), in a space where any two space-time points are related by the Gallilei transformation (113). This transformation can be written in an equivalent form

$$
\tilde{\mathrm{q}}=\mathrm{q}-\frac{\kappa}{\mathrm{c}} \mathrm{pct}
$$

where c is the light velocity. At the range
$\mathrm{ct}=\lambda>\mathrm{q}$
where λ is the wave length of the virtual transition in quantum oscillator - the dynamic
operator of the linear momentum is changed by the scaling factor $\frac{\kappa}{\mathrm{c}}$
$\mathrm{p}^{\prime}=\frac{\kappa}{\mathrm{c}} \mathrm{p}$

In the molecular and solid state physics κ can be very big (formally infinite for the degenerate electronic states) and may lead to important relative velocity dependent interactions.

In (112), the space, in which the electronic and nuclear coordinates are defined, is, of course, Euclidean. This is not the case for vibrational quanta and electronic pairs in (114).

The coordinates x_{i} in (21) or x_{i}^{\prime} in (65)_appearing in the one-to-one correspondence with operators τ_{i} or $\sigma_{\underline{i}}$ satisfy the condition
$\mathrm{x}_{0}{ }^{2}-\mathrm{x}_{1}{ }^{2}-\mathrm{x}_{2}{ }^{2}=1$ \qquad
which defines a space-time hyperbola.
Relation (118) is equivalent (for inv $=1$) to the condition (28) defining the dynamical group
$\underline{\mathrm{SU}}$ (11) to which belong τ_{i} and σ_{i}. The expectation values of these operators follow by (33), (66) the same geometry.

In (114), the new time coordinate
$\mathrm{T}=\frac{1}{\mathrm{k}} \operatorname{arctanh}(\mathrm{kt})$
is the same for vibrational quanta and electronic pairs but energy expectation values for the vibrational and electronic quanta are separated by an energy gap.

A linear normal coordinate of a quantum oscillator in (112) may appear in (114) as a bent
bond owing to the effective hyperbolic geometry.
The Gallilei transformation (12) can also be considered as a unitary transformation introducing in the Schrödinger equation the dilatation of the time coordinate $t t^{\prime}=\kappa t$
which, therefore leads to the change of scale of the dynamic operator like (117).
Neither the Born-Oppenheimer treatment [1] nor the Born one [2] can describe the molecular systems for $\kappa \neq 0$. The simplest molecular invariant of the Gallilei transformation allows this description for any κ, but in terms of a space-time group: the Schrödinger group.

Appendix 1.
In transforming $\mathrm{i} \frac{\partial}{\partial \mathrm{t}}$ operator in (6), (56), the time independent term $\frac{1}{2} \kappa p^{2}$ must be put equal to zero, as for $\kappa t \rightarrow 0, \tilde{\mathrm{q}} \rightarrow \mathrm{q}$ and (15), (65) must reduce to (6), (56). The Born-Oppenheimer Hamiltonians in (6), (56) are, therefore, the initial values of transformed ones (15), (65). In (21) the explicit forms of x_{i} are equal to
$\mathrm{x}_{0}=1+\frac{1}{2} \kappa^{2} \mathrm{t}^{2}$
$\mathrm{x}_{1}=-\frac{1}{2} \kappa^{2} \mathrm{t}^{2}$
$\mathrm{x}_{2}=-\kappa \mathrm{t}$
and

$$
\mathrm{x}_{0}{ }^{2}-\mathrm{x}_{1}{ }^{2}-\mathrm{x}_{2}{ }^{2}=1
$$

The metric properties (A4) are valid for any value of the time coordinate t. Therefore, (A4) can be considered as equivalent to

$$
\begin{equation*}
\overline{\mathrm{x}}_{0}^{2}-\overline{\mathrm{x}}_{1}^{2}-\overline{\mathrm{x}}_{2}^{2}=1 \tag{A5}
\end{equation*}
$$

where $\overline{\mathrm{x}}_{1}, \overline{\mathrm{x}}_{2}$ are two independent space coordinates subject to relation (A5).
Appendix 2

The relativistic wave equation for the massive particles is invariant under the operators of the conformal group. Therefore, as should be, the non relativistic limit of this wave equation is invariant under the non-relativistic limits of the conformal group operators.

The non-relativistic limit of this wave equation is the Schrödinger operator [8], [9]
$\mathrm{S}=2 \mathrm{mi} \frac{\partial}{\partial \mathrm{t}}-\mathrm{p}^{2}$
and the non-relativistic limit of the conformal group is the Schrödinger group. In particular the Schrödinger operator is invariant under the operators of the dilatation and special conformal transformation. Those transformations have the geometrical meaning of a change of scale and of a change of scale from point to point, e.g. dilatation is the change of scale for time and space coordinates

The wave equation for the mass-less particle
$\left(\frac{\partial^{2}}{\partial \mathrm{t}^{2}}-\frac{\partial^{2}}{\partial \mathrm{x}^{2}}\right) \Phi=0$
is invariant under the dilatation (A7), (A8).
For a massive particle, dilatation and special conformal transformation symmetries require, however, a transformation of the mass e.g. for the dilatation symmetry in (A6)
$\mathrm{m}^{\prime}=\kappa \mathrm{m}$
The last equation is, of course, not a symmetry in the usual sense as it connects a particle of mass m with another particle of mass m '.

The way out of this difficulty was proposed by Barut [8]. If we keep the mass unchanged but change the metric properties of the time and space coordinates

$t^{\prime}=\kappa^{2} t$	
$x^{\prime}=\kappa x$	(A11)

Field Code Changed

Field Code Changed

Formatted: Font: Bold
Then S in (A6) is invariant under the dilatation (A11), (A12).

Field Code Changed

Field Code Changed

In the present paper we focused our attention on (112) which can be considered as the simplest (or fundamental) molecular invariant of the Gallilei transformation, because the total energy in (112) is the same as in (114).

The Schrödinger equations for a quantum oscillator or an electronic pair are now changed compared with that in (112). The quantum oscillator is now, by (21), a linear combination of the τ_{i} operators and τ_{2} and τ_{1} are the quantum -mechanical forms [8],[9] of the non-relativistic limits of the dilatation and special conformal transformations.

The final forms of the Schrödinger equations for a quantum oscillator and an electronic pair in (114) keep the corresponding mass unchanged, but the metric properties for the time and space coordinates are changed to those of the hyperbolic geometry.

References

1. M.Born and R.Oppenheimer, Ann.Phys.(Leipzig), 457 (1927), 84
2. M.Born, Gött. Nachr.Math.Phys.Kl.1, (1951); M.Born and Kun Huang, Dymaical Theory of Cristal Lattices (appendix 8), Oxford at the Clarendon Press 19
3. A.Witkowski, Chem.Phys, 328 (2006), 17
4. A.Witkowski, Phys.Rev. A41 (1990) 3511
5. H.C.Longuett-Higgins, Adv.Spectrosc. 2, (1961)_429
6. I.B.Bersuker and W.Z.Polinger, Vibronic Interactions in Molecules and Crystals, Nauka, Moscow 1983
7. A.Witkowski and W.Moffitt, J.Chem.Phys. 33_ (1960)_872
8. A.O.Barut, Helv.Phys.Acta 46, (1973) 496
9. A.O.Barut and R.R ${ }^{1}$ czka, Theory of Group Representations and Applications, Polish Scientific Publishers, Warsaw 1980 (in English)
10. A.O.Barut and L.Giraedello, Commun. Math. Phys., 21, 41(1971)
11. The Hydrogen Bond - Recent Development in Theory and Experiments, P.Schuster, G.Zundel and C.Sandorfy eds., North Holland, 1976
12. Theoretical Treatments of Hydrogen Bonding D.Hadzi (ed), Wiley, 1997
13. O.Henri-Rousseau and P.Blaise, Adv.Chem.Phys. 103, (1998)
14. Y.Marechal, Hydrogen Bond and the Water Molecule, Elsevier 2007
15. M.Avalos, R.Babiano, P.Cintas, J.L.Jimenez, J.C.Polacios and L.D.Barron, Chem.Rev. 98 (1998), 2391
16. Barron L.D., Mol. Phys. 43, (1981), 1395
17. Barron L.D., Molecular Light Scattering and Optical Activity, Cambridge University

Press, Cambridge 1982
18. Barron L.D., Chem.Phys.Lett. 123 (1986) 423
19. H.J. Monkhorst, Phys.Rev.A 36, 1544 (1987)_1544
20. A.Fröman, J.Chem.Phys., 36 (1962) 1490
21. H.Essen, Int.J.Quantum Chem., 12, (1987) 721
22. A.Fröman and J.L.Kinsey, Phys.Rev., 123, (1961) 2077
23. M.D.Girardeau, Phys.Rev., A28, (1983) 3635

[^0]: Deleted: \mathbb{T}

