

The Schrödinger Group in Molecular Quantum Mechanics: Beyond the Born-Oppenheimer Approximation

Andrzej Witkowski

► To cite this version:

Andrzej Witkowski. The Schrödinger Group in Molecular Quantum Mechanics: Beyond the Born-Oppenheimer Approximation. Molecular Physics, 2011, pp.1. 10.1080/00268976.2011.617319. hal-00742697

HAL Id: hal-00742697 https://hal.science/hal-00742697

Submitted on 17 Oct 2012

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

The Schrödinger Group in Molecular Quantum Mechanics: Beyond the Born-Oppenheimer Approximation

Journal:	Molecular Physics
Manuscript ID:	TMPH-2011-0229.R1
Manuscript Type:	Full Paper
Date Submitted by the Author:	10-Aug-2011
Complete List of Authors:	Witkowski, Andrzej; Polish Academy of Arts and Sciences
Keywords:	Schrödinger Group, Born-Oppenheimer Approximation, Gallilei transformation

SCHOLARONE[™] Manuscripts

Molecular Physics

The Schrödinger Group in Molecular Quantum Mechanics: Beyond the Born-Oppenheimer Approximation Andrzej Witkowski*1 Formatted: Line spacing: single Polish Academy of Arts and Sciences, Sławkowska 17, 31-016 Cracow, Poland Department of Theoretical Chemistry, Jagiellonian University, Ingardena 3, 30-360 Cracow, Poland Abstract The Galillei transformation invariant form of molecular quantum mechanics is obtained, which is not restricted by the Born-Oppenheimer approximation. The molecular Hamiltonian takes then the form of a linear combination of operators of the Schrödinger group, which define the new space-time molecular symmetry properties (e.g. helicity). The puzzling homochirality of the hydrogen bonded biomolecular systems appears then as a simple result of the molecular space-time symmetry. Deleted: ¶ 1. Introduction Deleted: that From the early years of quantum mechanics treatments, of molecular systems and those Deleted: the of of the solid state systems are based on the Born-Oppenheimer approximation, [1], [2] Deleted: ones where owing to a big difference between the nuclear and electronic mass, the ratio of nuclear to electronic velocity is considered as negligible. In quantum mechanics, this ratio can be evaluated [3], [4] from the Heisenberg relation where for the electronic energy Formatted: After: 0 pt $\overline{\Delta E} \cong \frac{\hbar}{\Delta \overline{t}} - \overline{\nabla_{e}} = \frac{D}{\overline{\Delta t}} = \frac{D\overline{\Delta E}}{\hbar} - \overline{\nabla_{e}} = \frac{D}{\overline{\Delta t}} - \overline{D} = \frac{D}{\overline{\Delta t} - \overline{D} = \frac{D}{\overline{\Delta t}} - \overline{D} = \frac{D}{\overline{\Delta t$ (1)(2)Deleted: the and by similar expressions for the energy of nuclear vibrations $\overline{\delta \varepsilon}$, we have

 $\kappa = \frac{\overline{v}_n}{\overline{v}_e} = \frac{d}{D} \frac{\overline{\delta \varepsilon}}{\overline{\Delta E}} \qquad (3)$

where D, d are the linear dimensions of the electronic and nuclear distributions.

*e-mail address: witkowsk@chemia.uj.edu.pl

Formatted: Indent: First line: 0 pt

Formatted: Indent: First line: 0 pt

Formatted: English U.S.

For the non-degenerate electronic states	
$\overline{\Delta E} \gg \delta \overline{\epsilon} $ (4)	
which justifies the Born-Oppenheimer approximation: an electron adjusts immediately (with	Deleted: this
no delay) to any momentary nuclear position. In relation (3) the electronic velocity \overline{v}_{e}	
i therefore, considered as very big and we can put $\kappa=0$ in the Born-Oppenheimer	Deleted: s
approximation: an electron "sees" the nuclear coordinate but no nuclear velocity.	
For the degenerate electronic states, the value of κ – by (3) – is very big (formally	
	Deleted: brakes
infinite) and the Born-Oppenheimer approximation <u>breaks</u> down. In molecular physics, the	
case of the degenerate electronic states is described in terms of vibronic coupling. For all	Deleted: :
three well known cases of vibronic coupling the Jahn-Teller effect [5], [6], the Renner effect	
[5], [6] and the vibronic coupling in dimers and molecular crystals [7]) in the matrix	
Hamiltonians for the nuclear wave functions, the off-diagonal terms of the nuclear potential	Deleted: to
energy are determined and lead only to the purely geometric instabilities for the non-totally	
symmetric normal coordinates.	
The physical situation for the degenerate and non-degenerate electronic molecular states	
requires, however, somewhat deeper analysis. For the non-degenerate electronic states it is	
reasonable, by (4), to consider the high frequency electronic states to adjust immediately to	
the nuclear positions and to neglect in the nuclear Hamiltonian any κ dependent terms.	
For the degenerate electronic states, however,	
$\delta \overline{\epsilon} \gg \Delta \overline{E}$ (5)	
and it does not make much sense to consider electronic movements as able to adjust	
immediately to the nuclear positions: they must adjust with a delay, which should be a	
function of κ and connect both extreme cases (4), (5).	
For this <u>purpose</u> , consider a molecular system in the Born-Oppenheimer approximation.	Deleted: aim
Define the origin of the nuclear reference system by a fixed value of the nuclear coordinate	-
and the origin of the electronic reference system also by its fixed value. The Schrödinger	
equation for the molecular oscillator equals then	
$\partial \Psi = 1 \left(-2 + -2 \right) \Psi$	
$i\frac{\partial\Psi}{\partial t} = \frac{1}{2}(p^2 + q^2)\Psi $ (6)	
where q denotes the corresponding nuclear normal coordinate. From (3) κ is then equal <u>to</u>	
2	

Molecular Physics

$$\kappa = \frac{\nabla_{x} \cdot \nabla_{y}}{|\nabla_{x}|^{2}}$$
(7)
which defines for $\kappa \neq 0$ two distinct possibilities.
If both electronic and nuclear velocities move in the same direction, then
 $\kappa > 0$
but if they move in opposite directions, then
 $\kappa < 0$
(8)
but if they move in opposite directions, then
 $\kappa < 0$
(9)
The physical situation is somewhat similar to that which occurs in the ionic crystals with two
atoms in the unit cell. When both ions move in-phase, then an acoustic branch, both
ions move in phase with the same amplitudes, but in the optical one the amplitudes are
inversely proportional to the ionic mass.
To obtain for $\kappa \neq 0$ the molecular Schrödinger equations, which cover both cases (8) and
(9), observe that the Born-Oppenheimer approximation defines (by fixing the normal
coordinate as origin) a very special reference system – not a general inertial one. Suppose
now that both origins of the reference system set subject to the following transformation
 $q = 0 + \kappa t$ (10)
where q, p are the nuclear coordinate and the linear momentum correspondingly. If we take
 $q = 0$ as the origin of the reference system for the molecular oscillator in (6), then $q = 0$
means
 $\frac{q}{t} = \kappa p$ (11)
which (in the Schrödinger picture) is the Galillei transformation. The uniform shift with a
constant velocity of both origins is physically equivalent and cannot change the total
molecular interaction energy, but now in the space of the relative nuclear-electronic
coordinates, any two space-time points are related by the Galillei transformation (10).
In classical mechanics, the Galillei transformation, (10) is a simple shift with constant
velocity of the origin of the reference system. In quantum mechanics, however, the Galillei
transformation, should be considered [8], [9] as the non-relativistic limit of
the Lorenz transformation, The last one has the geometrical meaning of ground by
hyperbolic angles in planes containing the time axis and of a rotation by normal angles in
planes containing the space axis. In the

(contraction) this geometric meaning of the Lorentz transformation should be preserved. In a similar way (by contraction) one can determine the non-relativistic limits of the other operators of the relativistic groups. In particular the Schrödinger group[8], [9]is the non-relativistic limit of the most general relativistic group – the conformal group. The Hamiltonian of a quantum oscillator in (6) is an element of the Schrödinger group [8], [9] and as will be shown a little later, under the action of the Galillei transformation, leads to a linear combination with the other elements of the Lie algebra of the group, which – like the Lorentz group – is a space-time one. The Hamiltonian of the molecular oscillator in (6) is (for $\kappa=0$) invariant under the space group of the molecular point symmetry one. To extend the validity of molecular quantum mechanics beyond the Born-Oppenheimer approximation we must consider the molecular oscillator (6) in the general inertial reference system (10).

The Born-Oppenheimer approximation acquires now a new physical sense, as an attempt of separating the molecular space and time variables: for $\kappa \neq 0$ it is no more possible.

In an electronic Hamiltonian, the electronic pairs formed by electrons of opposite spins and equal energy play a similar role to the role of vibrational quanta: the Hamiltonian of an electronic pair under the Galillei transformation leads for $\kappa \neq 0$ to a linear combination with the other elements of the Lie algebra of the Schrödinger group.

For big values of κ_1 the space-time group defines a new molecular symmetry element: helicity, which is a projection of the time dependent angular momentum on the linear one.

It will be shown, a little later, that vibrational quanta for $\kappa \neq 0$ correspond to (8) and have, therefore, <u>a</u> mechanical character <u>where as molecular electronic pairs correspond to (9)</u> and are therefore, of a polar character, separating the nuclear and electronic charges. Electronic pairs at distances <u>greater</u> than the chemical bonds have <u>a</u> non-vanishing expectation value of helicity and correspond, therefore, to weak, long distance bonds between two electrons, but these bonds have no center or plane of symmetry. Invariance under the Galillei transformation defines the space-time

symmetry, which does not contain the space and time inversion: "the left and right glove" are not equivalent.

2. Hamiltonian of Nuclear Vibrations in the Inertial Molecular Reference System

Consider the Born-Oppenheimer molecular oscillator (6) in the inertial reference system

Deleted: ,	
Deleted: the	

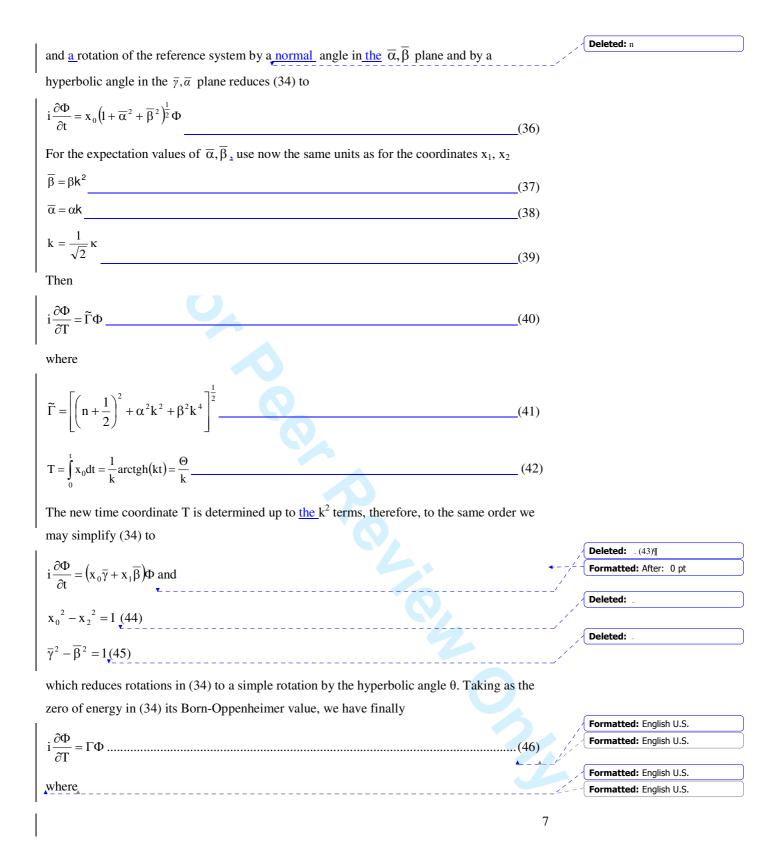
Deleted: for separation	
Deleted: the	
Deleted: the	
Deleted: with the same	
Deleted: the	

Deleted: the	
Deleted: when	
Deleted: bigger	
Deleted: the	

Formatted

Formatted: No bullets or numbering, Tabs: Not at 36 pt Deleted: is

Deleted: therefore,


(10), as

$$\ \ \$$

and form the Lie algebra elements of the subgroup (dynamical SU(1,1)) of the Schrödinger	Deleted: the
group [8], [9]. Operators τ_i in (23) – (25) have <u>similar</u> commutation properties to those of the	Deleted: similar
components of the usual angular momentum (except the signs in (24) , (25)) and the Galillei	Deleted: that
transformation (12) has the sense of a rotation of the operator τ_3	Deleted: 6
$\frac{1}{2}(p^2 + q^2) = \tau_3 $ (26)	
in the corresponding two planes, but in the Minkowski space (22). In terms of the τ_i operators	
the transformation U of (13) equals	
$U = e^{-i\frac{1}{2}p^{2}\kappa t} = \exp\left[-\frac{i}{2}(\tau_{3} - \tau_{1})\kappa t\right]$ (27)	
$\lfloor 2 \qquad (27)$ The dynamical group SU(11) \approx SO(2,1) is the group of the transformations of a real three-	Deleted: a
dimensional vector space keeping invariant the indefinite form	/
7^{2} 7^{2} 7^{2} – inv	
$z_0 - z_1 - z_2 = mv$ (28) This group by keeping invariant (22), defines three operators τ_i in the space corresponding to	
the hyperbolic geometry (22).	
The coherent states τ_i in this group were defined by Barut and Girardello [10] by	
$(\tau_2 + i\tau_1) z\rangle = z z\rangle = (\alpha + i\beta) z\rangle$ (29)	
Now, the expectation values of τ_i operators	
* *	
$ \langle \mathbf{z} \boldsymbol{\tau}_1 \mathbf{z} \rangle = \overline{\boldsymbol{\beta}} $ $ \langle \mathbf{z} \boldsymbol{\tau}_2 \mathbf{z} \rangle = \overline{\boldsymbol{\alpha}} $ $ (30) $	
$\langle \mathbf{z} \mathbf{\tau}_3 \mathbf{z} \rangle = \overline{\gamma}$ (32)	
can be considered by (21) as components of a vector projected on the axes x_0 , x_1 , x_2 in the	Deleted: which have
space of <u>the hyperbolic geometry</u> (22), <u>and have</u> , therefore the same metric properties $-2 - \overline{2} - 2$	
$\overline{\gamma}^2 - \overline{\alpha}^2 - \overline{\beta}^2 = 1 $ (33)	
From (21) we have, therefore,	
$i\frac{\partial\Phi}{\partial t} = \overline{\eta}\Phi = \left(x_0\overline{\gamma} + x_1\overline{\beta} + x_2\overline{\alpha}\right)\Phi $ (34)	
where	
$\Psi = z\rangle \Phi(t) \tag{35}$	
(33)	
6	

Page 7 of 23

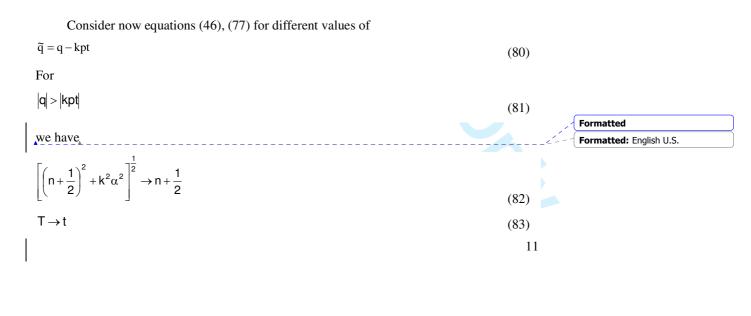
Molecular Physics

	Ĺ	Deleted:
$\begin{bmatrix} (& 1)^2 & \end{bmatrix}^{\frac{1}{2}} (& 1)$	_ <i>ر</i>	Formatted: English U
$\Gamma = \left[\left(n + \frac{1}{2} \right)^2 + \alpha^2 k^2 \right]^{\frac{1}{2}} - \left(n + \frac{1}{2} \right) (47)$		Formatted: English U
		_
To determine the physical nature of the new term $\alpha \kappa$ in (47), observe that taking $\hbar \omega$ as	an	
energy unit we have from (47) for $ \kappa\alpha < 1$ an additional term $\frac{1}{2}(\kappa\alpha)^2$ and for $ \kappa\alpha > 1$	a	
leading term $\kappa \alpha_{a}$ which allows to define these terms as correspondingly the kinetic ene		
the linear momentum of \underline{a} vibrational quantum relative to the origin of the electronic re-	elerence	
system.	.1	Deleted: that
It will be instructive to compare the properties of the molecular oscillator (46) with the	ose of	
the harmonic oscillator (6) in the Born-Oppenheimer approximation.		
It follows from (47) that for big values of $\kappa \alpha$		
	· · · · ·	Deleted:
$\Gamma \rightarrow \kappa \alpha > 0_{\epsilon}(48)$	/	
and the physical character of (46) is defined by (8). Nuclear and electronic velocities f	for κ≠0	
move in - phase, are of the mechanical character and perform periodic movements, wh	hich,	
however, are no more harmonic as in (6). The infrared absorption line shape function of	of	
molecular oscillator (46) is the Fourier transform $exp[-i\Gamma T](49)$		Deleted: of¶
· · · · · · · · · · · · · · · · · · ·	C	Deleted:
and should present a broad, structured band. The width and structure of this band shou	ld be	
dependent on the isotopic substitution in the reduced mass of the oscillator.		
On the other hand the linear structure of the normal coordinates in (6) may – by hyperl	bolic	
geometry (22), (33) – appear in (46) as the bent bonds.		
3. Hamiltonian of Electronic Pairs in the Inertial Molecular Reference System		
To describe the electronic states, introduce the creation and destruction operators	$s c^+, c$	
defined on the basis of the orthonormal and one-electron solutions of the electronic	- n / n	
Hamiltonian in the Born-Oppenheimer approximation which obey the usual anti-comm	nutation	
rules for fermions	nutation	
$\{c_{n}^{+}, c_{m}^{-}\} = \delta_{nm}$	(50)	
Consider now two fermions u, v		
	8	
	ph	

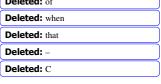
Page 9 of 23

Molecular Physics

$\{u, u\} = \{v, v\} = \{u, v\} = 0$	× ,	
The Hamiltonian for these two electrons equals		Deleted: this
$\eta' = \varepsilon_{u}u^{+}u + \varepsilon_{v}v^{+}v = \frac{1}{2}(\varepsilon_{u} + \varepsilon_{v})(1 - \sigma_{3}) + \frac{1}{2}(\varepsilon_{u} - \varepsilon_{v})(n_{u} - n_{v}) \dots$		
where		
$\sigma_3 = 1 - u^+ u - v^+ v = 1 - n_u - n_v$	(54)	
For		
$\varepsilon_{\mathbf{u}} = \varepsilon_{\mathbf{v}} = \varepsilon$	(55)	
we have, therefore, for the energy eigenvalues		
$i\frac{\partial\Psi'}{\partial t} = (1 - \sigma_3)\Psi' \dots$	C	
where η ' is measured in ε units	t	Deleted: the
Introduce now the operators σ_i		
$\sigma_3 = 1 - u^+ u - v^+ v = 1 - n_u - n_v$		
$\sigma_2 = u^+ v^+ - vu \qquad \dots \qquad $		
	(59)	
which obey the commutation rules $[\sigma_1, \sigma_2] = 2i\sigma_3$	(60)	
$[\sigma_2,\sigma_3] = -2i\sigma_1$	(61)	
$[\sigma_3,\sigma_1] = -2i\sigma_2$	(62)	Deleted: that
which are identical with those of $(23) - (25)$ and for any i, k		Deleteu: that
$[\tau_i, \sigma_k] = 0$		
In terms of σ_i operators the Galillei transformation U in (27) takes <u>the</u> form of	of V <u>, where</u>	
	9	
	-	


Molecular Physics		Page
$V = \exp\left[-\frac{i}{2}(\sigma_3 - \sigma_1)\kappa t\right]$ and (56) transforms to	(64)	
$i\frac{\partial \psi'}{\partial t} = (1 + x_0'\sigma_3 + x_1'\sigma_1 + x_2'\sigma_2)\psi'$	(65)	
where $x'_{0}^{2} - x'_{1}^{2} - x'_{2}^{2} = 1$		
and	(66)	
$x_{0}' = -x_{0}$	(67)	
$x_{1}' = -x_{1}$	(68)	
$x_{2}' = -x_{2}$	(69)	
Introduce, as in (29), the coherent states in the SU(1,1) group		Deleted: 0 Deleted: 2
$\left(\sigma_{2}+i\sigma_{1}\right)\left z'\right\rangle =\left(\alpha'+i\beta'\right)\left z'\right\rangle$	(70)	
where		
$\psi' = z'\rangle \Phi'(t)$		
and $ -1 - -1\rangle = 1$		
$\langle \mathbf{z'} \boldsymbol{\sigma}_3 \mathbf{z'} angle = \overline{\gamma'}$	(71)	
$\left< z' \sigma_2 z' \right> = \overline{\alpha}'$	(72)	
$\left< z' \sigma_1 z' \right> = \overline{\beta}'$	(73)	
and	(10)	
$\overline{\gamma}'^2 - \overline{\alpha}'^2 - \overline{\beta}'^2 = 1$	(74)	
In the same units as in (37), (38)		
$\overline{\beta}' = k^2 \beta'$	(75)	
$\overline{\alpha}' = k\alpha'$	(76)	
and up to the k^2 terms, we may simplify (65) to		
$i \frac{\partial \Phi'}{\partial T} = -\Gamma' \Phi'$	(77)	
where		
	10	
URL: http://mc.manuscriptcentral.co	m/tandf/tmph	

Molecular Physics


 $\Gamma' = \left[\varepsilon^2 + \alpha'^2 k^2 \right]^{\frac{1}{2}} - \varepsilon$ (78)It follows from (77), (78) that for big values of $|k\alpha'|$ $-\Gamma' \rightarrow -k\alpha'$ (79)Deleted: t Therefore the physical character of (78) is determined by (9). Electronic pairs in (77) describe the out – of – phase, polar movements of nuclear and electronic velocities, separating the nuclear and electronic charges. It follows from (77) that an electronic pair has, by (78), a lower energy than it has in the Born-Oppenheimer case (56), forming, therefore, some attractive interaction -a kind of a two-electron bond. This bonding - by (78) - is dependent on the ratio of velocities (3) and (in contrast to any Coulombic interaction) depends on the reduced mass of the quantum oscillator. It can be described as an electron-electron attraction by a virtual exchange of a vibrational quantum. Observe now that <u>the</u> expectation values of the τ_i operators are determined on one Deleted: of branch of the hyperbola (for the positive values of x_i) where as those of the σ_i ones are Deleted: when <u>determined</u> on the other branch, (of the negative x_i) by (67) – (68). <u>A continuous change of κ </u> Deleted: that Deleted: in the Galillei transformation is a rotation. Space for $\kappa \neq 0$ where vibrational quanta and Deleted: C electronic pairs are determined, cannot contain these discrete operations of space and time reversal. An electronic pair described by (77), (78) cannot have, therefore, a symmetry center or

a plane of symmetry perpendicular to the bond.

4. Molecular Space-Time Symmetry Properties

1 2 and then (82) reduces to the energy of a standard harmonic oscillator and the normal 3 coordinate q has the space symmetry determined by the irreducible representations of the 4 5 molecular point symmetry group. 6 7 If ,however, for the electronic pair, in (80) 8 |kpt| > |q|9 (84)10 Deleted: bigger therefore, for an electronic pair located at a distance greater than the linear dimension of the 11 Deleted: bigger 12 nuclear distribution or <u>greater</u> than the corresponding chemical bond in the molecular 13 Deleted: then quantum oscillator, we have from (77) 14 15 $-\left[\epsilon^{2}+k^{2}\alpha^{2}\right]^{\frac{1}{2}}\rightarrow-k\alpha$ 16 (85)17 18 and 19 $T = \frac{\Theta}{k} = \frac{1}{k} \operatorname{arctgh}(kt)$ 20 21 (86)22 Deleted: no more It follows from (84) that the molecular point symmetry group of q can no more be used for 23 defining the symmetry of the time dependent operator 24 25 kpt (87)26 27 which has the symmetry of a pseudoscalar - even in the time reversal and odd in the space 28 reversal. 29 30 The time dependent equation for the electronic pair in (77) equals now 31 32 ki $\frac{\partial \Phi'}{\partial \Theta} = kM\Phi' = -k\alpha'\Phi'$ 33 (88)34 Deleted: as 35 and defines helicity [3]. 36 Deleted: therefore, 37 <u>As M</u> is an operator of rotation by an angle Θ , (88) is equivalent to 38 $\langle \Psi' | \mathbf{M} \mathbf{k} \mathbf{p} | \Psi' \rangle = -\mathbf{k} \alpha'$ 39 (89) 40 41 or 42 43 $\chi = \frac{\left\langle \Psi' \middle| Mkp \middle| \Psi' \right\rangle}{\left| k\alpha' \right|} = -1$ 44 (90)45 46 and (90) defines the helicity [3]: projection of the angular momentum on the linear one, which 47 48 is a pseudoscalar. 49 50 From (88) the wave function Φ ' equals 51 12 52 53 54 55 56 57

$$\begin{split} \varphi = & \varphi \left[-i \Delta T \right] \qquad (b) \\ \text{The the limit (85) the wave function of an electronic pair takes, therefore, a form which is that of an asseless particle with a helicity equal $\chi = 1$.
$$\end{split}$$
The the values of kod smaller than the limiting case (85), only the expectation values of the intervalues of kod smaller than the limiting case (85), only the expectation values of the intervalues of kod smaller than the limiting case (85), only the expectation values of the intervalues of kod smaller than the limiting case (85), only the expectation values of the intervalues of kod smaller than the limiting case (85), only the expectation values of the intervalues of the intervalues of kod smaller than the limiting case (85), only the expectation value of the intervalues of kod smaller than the limiting case (85), only the expectation value of the intervalue of the intervalue of the intervalue expectation value $\bar{\chi}$ equals: for the Born-Oppenheimer case $[2 - 0 \ (2 - 1)$$$

electrons, <u>the</u> π -type electrons delocalized in aromatic molecules, or <u>in</u> graphite or <u>the</u> electrons near the Fermi level in metals.

5. Hydrogen Bond: Quantum Oscillator and the Retarded Electronic Pair

In a hydrogen bond, the lightest nucleus has at its both sides the non-bonding electrons which can be easily displaced by the vibrating proton and are shielded from the direct Coulombic repulsion.

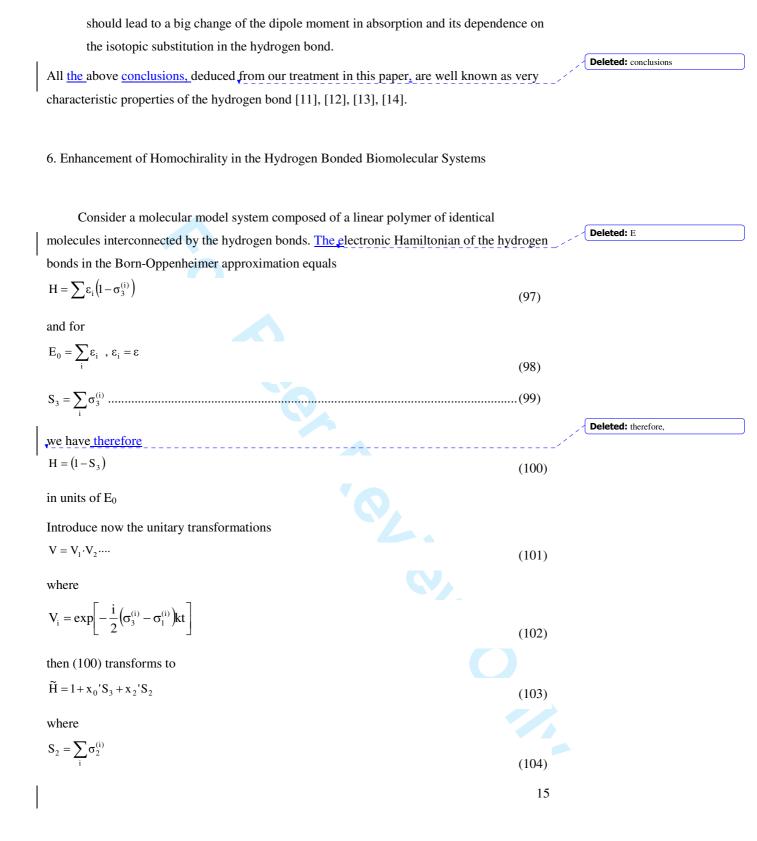
A quantum oscillator and an electronic pair of the non-bonding electrons in the Born-Oppenheimer approximation can serve as a good starting model for studying the hydrogen bond properties.

$$i\frac{\partial\Psi}{\partial t} = [\hbar\omega\tau_3 + \varepsilon(1-\sigma_3)]\Psi....(96)$$

The Gallilei transformation invariant form of (96) extends its validity beyond the Born-Oppenheimer approximation and leads to equations (46), (77) for <u>the</u> description of the vibrational and electronic properties.

It was shown in a recent paper [3] that <u>the main results</u> concerning the experimental infrared spectra of the hydrogen bond are well reproduced by a perturbation treatment of equation (46).

The properties of the electronic pair in (77), which result from our analysis in the present paper, are:


- a. it follows from (84) that <u>the</u> distance in the <u>electronic</u> pair should be <u>greater</u>, than the length of the chemical bond in <u>the</u> quantum oscillator
- b. it follows from (95) and the discussion in Section 3 that the electronic pair cannot have a center or a plane of the space symmetry
- c. it follows from (78) and (3) that <u>the</u> substitution of proton by deuterium in the hydrogen bond should diminish <u>the</u> attraction between the electrons (in contrast to any Coulombic interaction) and, therefore, make the bond longer.
- d. infrared absorption beyond the Born-Oppenheimer approximation is defined by $\langle 0|\tilde{q}|1\rangle$ of (10) and (in contrast to the harmonic oscillator of (6)) is accompanied by the change of k α ' in (77) and determines the nuclear electronic charge separation. This

Deleted: bigger
Deleted: then

Deleted: an

Deleted: a

Molecular Physics

and where		
$x_0'^2 - x_2'^2 = 1$	(105)	
Let a la come de la come det a la SU(1,1) come a la		Deleted: 0
Introduce now the coherent states in SU(1,1) group by (1)	2	Deleted: 2
$\sigma_{2}^{(i)} \big z_{i} \big\rangle = \alpha_{i} \big z_{i} \big\rangle$	(106)	
$ \mathbf{z}\rangle = \mathbf{z}_1\rangle \mathbf{z}_2\rangle$	(107)	
then, putting the Born-Oppenheimer energy E_0 at zero,		Deleted: E ₀ at zero of
I		
$\Gamma = -\left[E_0^2 + k^2 \left(\sum \alpha_i\right)^2 \right]^{\frac{1}{2}} + E_0$	(108)	
an annu unlus in (108) is laws of balance its Dame Organizations unlus if		Deleted: E
energy value in (108) is lowered below its Born-Oppenheimer value if $1^{2}\Sigma^{-2} + 1^{2}\Sigma^{-2}$	′	
$k^2 \sum_i \alpha_i^2 + k^2 \sum_{i \neq l} \alpha_i \alpha_l > 0$	(109)	
Therefore, a a must be of the same size and by the same reason as in (70)		Deleted: t
Therefore, $\alpha_i \alpha_j$ must be of the same sign and by the same reason as in (79)	'	
$k\alpha_i < 0$	(110)	
to have, however,		
$\sum \alpha_i \alpha_1 > 0$		
i≠l	(111)	
the symmetry of the space separating two electrons of different hydrogen bon	nds should be the	
same as all α_i, α_i , and therefore, the space should have the symmetry of the pset	eudoscalar. The	Deleted: both
molecules separating the hydrogen bonds should be, therefore, chiral and of the	he same negative	
sign as <u>the helicity in hydrogen bond in (77)</u> .		Deleted: C
The chirality of molecules, considered in older chemical literature as a p	purely static	
space property("left and right glove") is now understood [15], [16], [17], [18] as a dynamic	Deleted: are
property, which allows to <u>differentiate</u> between the true and false chirality. T	he modern	Deleted: differ
definition of molecular chirality is determined by its pseudoscalar property: e	even in the time	
reversal and odd in <u>the parity</u> reversal – corresponding to <u>the helicity</u>		
The puzzling homochirality in biomolecular systems seems, therefore, to be t	he result of the	
space-time molecular symmetry.		
7. Molecular Quantum Mechanics and Molecular Quantum Field Theory.		
	16	
	10	

The classical papers [1], [2] in which the quantum mechanical foundations of molecular and solid state physics were introduced, contain implicitly a serious drawback: <u>the</u> separation of the center of mass movement from the Hamiltonian in the relative nuclear electronic coordinates was not obtained.

<u>There is no doubt that after separation of the nuclear and electrnic motion, prper</u> elimination of the center of mass motion is, as pointed by Mankhorst [19], of central importance to a dynamic theory of molecules.

For atoms a proper linear combination of coordinates (the Jacobi ones) allows for a simple elimination of the center of mass movement. Any attempts along this line of reasoning applied to the molecular systems lead to the linear combination of the electronic and nuclear coordinates resulting in an awkward dependence of the Hamiltonian on these coordinates which eliminates any effective treatment [20], [21]. The only way of avoiding these difficulties seems to be the introduction of an independent set of coordinates [22], [23] relative to some nuclear coordinate q_N (e.g. of the most heavy atom). Molecular properties, however, cannot depend on an arbitrary choice of a particular nucleus as the origin of a reference system.

Any general reconciliation of a separation of nuclear and electronic motions introduced in the classical papers [1], [2], with an effective elimination of the center of the mass motion seems, however, still inaccessible.

For an atom <u>a linear</u> combination of only the space coordinates (Jacobi ones) is sufficient to eliminate the uniform movement with a constant velocity of a single point (<u>the</u> center of mass).

For a molecular system (in the Born-Oppenheimer approximation), a quantum oscillator determines the time unit and the linear combination of the space and time coordinates (the Gallilei transformation) is necessary to define, in the inertial reference system, the Hamiltonian in the relative space-time coordinates.

This approach requires, however, <u>the</u> reformulation of the molecular quantum mechanics in the spirit of a molecular quantum field theory.

The energy eigenvalues of <u>a</u> quantum oscillator and <u>an</u> electronic pair in (6), (56) are determined in the corresponding reference systems located in the usual Euclidean space, for

Deleted: the

Deleted: the Deleted: s

Deleted: [19],
Deleted: an

Deleted: We must admit that a molecular Hamiltonian in the relative nuclear-electronic coordinates is still inaccessible. ¶

Deleted: the

fixed values of the origins. Inversion of the space coordinates in the reference systems cannot change the eigenvalues in (6), (56) as the Euclidean space is uniform.

How the vibrational quanta and electronic pairs move in the relative time and space remains yet undetermined: the Born-Oppenheimer separation is formulated in the time independent Schrödinger equation and contains no relative nuclear-electronic velocity as κ =0 in (6), (56).

The Gallilei transformation invariant equations with the new relative coordinate T define the vibrational quanta and electron pairs on the opposite branches (44), (66) of a two dimensional space-time hyperbola. In this non-Euclidean space, the left and right directions are no more equivalent: the parity operator does not commute with the corresponding Hamiltonians. Energy expectation values for electronic pairs and vibrational quanta are, for $k\neq 0$ and the same time T, separated by an energy gap. This energy gap results from the hyperbolic geometry in which move now vibrational quanta and electronic pairs: for a sufficiently big gap, the electronic pair by (91) can move as a mass-less particle in the Euclidean space.

8. Space – Time Symmetry Elements in Molecular Quantum Mechanics

We have started our considerations by choosing a molecular system composed of a quantum oscillator and an electronic pair (with opposite spins and the same energy) defined in the reference systems with fixed origins (Born-Oppenheimer approach).

 $\frac{i\frac{\partial\Psi}{\partial t} = [\tau_3 + (1 - \sigma_3)]\Psi}{(1 - \sigma_3)}$

The interaction energy between the nuclear and electronic subsystems cannot be changed, if both origins are subject to the Gallilei transformation $\tilde{q} = q - \kappa pt$ (113)

and therefore, the total energy in

is, by (46), (77) the same as in (112).

The physical sense of (112) and (114) is, however, much different.

Formatted: Indent: First line: 0 pt

Deleted: s

Deleted: ¶

The vibrational quanta and electronic pairs move now, by (114), in a space where space-time points are related by the Gallilei transformation (113). This transform written in an equivalent form $ \frac{\tilde{q} = q - \frac{\kappa}{c} \text{pct}}{\frac{1}{c}} $ where c is the light velocity. At the range $ \frac{ct = \lambda > q}{\frac{1}{c}} $ where λ is the wave length of the virtual transition in quantum oscillator – the space	<u>rmation can be</u>
space-time points are related by the Gallilei transformation (113). This transform written in an equivalent form $\tilde{q} = q - \frac{\kappa}{c} \text{pct}$ where c is the light velocity. At the range ct = $\lambda > q$ where λ is the wave length of the virtual transition in quantum oscillator – the	<u>mation can be</u>
$\widetilde{q} = q - \frac{\kappa}{c} \text{pct}$ where c is the light velocity. At the range $ct = \lambda > q$ where λ is the wave length of the virtual transition in quantum oscillator – the	
where c is the light velocity. At the range $ct = \lambda > q$ where λ is the wave length of the virtual transition in quantum oscillator – the	
where c is the light velocity. At the range $ct = \lambda > q$	
where λ is the wave length of the virtual transition in quantum oscillator – the	
where λ is the wave length of the virtual transition in quantum oscillator – the	(116
К	
operator of the linear momentum is changed by the scaling factor $\frac{\kappa}{c}$	
<u> </u>	
$p' = \frac{\kappa}{c}p$	(117
In the molecular and solid state physics κ can be very big (formally infinite for	the degenerat
electronic states) and may lead to important relative velocity dependent interaction	<u>tions.</u>
In (112), the space, in which the electronic and nuclear coordinates are defined	, is , of course
Euclidean. This is not the case for vibrational quanta and electronic pairs in (1)	<u>14).</u>
<u>The coordinates x_i in (21) or x'_i in (65) appearing in the one-to-one correspond</u>	lence with
operators τ_i or σ_i satisfy the condition	
$\mathbf{x}_{0}^{2} - \mathbf{x}_{1}^{2} - \mathbf{x}_{2}^{2} = 1$	(118
which defines a space-time hyperbola.	
Relation (118) is equivalent (for inv = 1) to the condition (28) defining the dyn	namical group
SU (11) to which belong τ_i and σ_i . The expectation values of these operators	follow by
(33), (66) the same geometry.	
In (114), the new time coordinate	
$T = \frac{1}{k} \arctan h(kt)$	<u>(119</u>
is the same for vibrational quanta and electronic pairs but energy expectation v	alues for the
vibrational and electronic quanta are separated by an energy gap.	

<u>A linear normal coordinate of a quantum oscillator in (112) may appear in (114) as a bent</u> bond owing to the effective hyperbolic geometry.

<u>The Gallilei transformation (12) can also be considered as a unitary transformation</u> introducing in the Schrödinger equation the dilatation of the time coordinate

which, therefore leads to the change of scale of the dynamic operator like (117).

Neither the Born-Oppenheimer treatment [1] nor the Born one [2] can describe the molecular systems for $\kappa \neq 0$. The simplest molecular invariant of the Gallilei transformation allows this description for any κ , but in terms of a space-time group: the Schrödinger group.

Appendix<u>1</u>.

In transforming $i\frac{\partial}{\partial t}$ operator in (6), (56)₂ the time independent term $\frac{1}{2}\kappa p^2$ must be put equal to zero₂ as for $\kappa t \rightarrow 0$, $\tilde{q} \rightarrow q$ and (15), (65) must reduce to (6), (56). The Born-Oppenheimer Hamiltonians in (6), (56) are, therefore, the initial values of transformed ones (15), (65).

In (21) <u>the explicit forms</u> of x_i are equal to

$x_0 = 1 + \frac{1}{2}\kappa^2 t^2$	(A1)
$\mathbf{x}_1 = -\frac{1}{2}\kappa^2 \mathbf{t}^2$	(A2)
$x_2 = -\kappa t$	(A3)
and	

The metric properties (A4) are valid for any value of the time coordinate t. Therefore, (A4)

can be considered as equivalent to

$$\overline{\mathbf{x}}_{0}^{2} - \overline{\mathbf{x}}_{1}^{2} - \overline{\mathbf{x}}_{2}^{2} = 1$$

 $x_0^2 - x_1^2 - x_2^2 = 1$

where \bar{x}_1, \bar{x}_2 are two independent space coordinates subject to relation (A5).

Appendix 2

Deleted: th

(A4)

(A5)

Molecular Physics

of the conformal group. Therefore, as should be, the non relativist	tic limit of this wave
equation is invariant under the non-relativistic limits of the confo	ormal group operators.
The non-relativistic limit of this wave equation is the Schr	ödinger operator [8], [9]
a	Field Code Char
$S = 2mi \frac{\partial}{\partial t} - p^2$	(<u>A6)</u>
and the non-relativistic limit of the conformal group is the Schröd the Schrödinger operator is invariant under the operators of the di	
conformal transformation. Those transformations have the geometry	*
of scale and of a change of scale from point to point, e.g. dilatatio	
ime and space coordinates	on is the change of scale for
	(17) Field Code Char
<u>t'= κt</u>	Field Code Char
<u>x'= κx</u>	
The wave equation for the mass-less particle	
	Field Code Char
$\left(\frac{\partial^2}{\partial t^2} - \frac{\partial^2}{\partial x^2}\right) \Phi = 0$	(<u>A9)</u>
	/
s invariant under the dilatation (A7), (A8).	
For a massive particle, dilatation and special conformal transform	nation symmetries require,
nowever, a transformation of the mass e.g. for the dilatation symmetry	netry in (A6)
m'= κm	(A10) Field Code Char
The last equation is, of course, not a symmetry in the usual sense	as it connects a particle of
mass m with another particle of mass m'.	
The way out of this difficulty was proposed by Barut [8]. If we ke	eep the mass unchanged but
change the metric properties of the time and space coordinates	Field Code Char
$t' = \kappa^2 t$	
x'= κx	(A12) Field Code Char
	Formatted: Font
Then S in (A6) is invariant under the dilatation (A11), (A12).	
	21

Formatted: English U.S.

2
2
3
4
-
5
6
7
1
8
0
9
10
11
12
13
10
14
15
40
16
17
1 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 12 23 24 25 26 7 8 9 10 11 12 13 14 15 16 17 18 19 20 12 23 24 25 26 7 8 9 10 13 13 33 34 35 6 7 8 9 10 <td< td=""></td<>
10
19
20
20
21
22
~~
23
24
21
25
26
27
27
28
20
29
30
21
31
32
22
33
34
35
55
36
37
01
38
39
40
40
41
42
4 2
43
44
45
40
4h
46
47
47
47 48
47 48 49
47 48 49
47 48 49 50
47 48 49 50 51
47 48 49 50
47 48 49 50 51 52
47 48 49 50 51 52 53
47 48 49 50 51 52
47 48 49 50 51 52 53 54
47 48 49 50 51 52 53 54 55
47 48 49 50 51 52 53 54 55 55
47 48 49 50 51 52 53 54 55 55
47 48 49 50 51 52 53 54 55 56 57
47 48 49 50 51 52 53 54 55 55

60

1

In the present paper we focused our attention on (112) which can be considered as the simplest (or fundamental) molecular invariant of the Gallilei transformation, because the total energy in (112) is the same as in (114).

The Schrödinger equations for a quantum oscillator or an electronic pair are now changed

compared with that in (112). The quantum oscillator is now, by (21), a linear combination of

the τ_i operators and τ_2 and τ_1 are the quantum –mechanical forms [8],[9] of the non-relativistic

limits of the dilatation and special conformal transformations.

The final forms of the Schrödinger equations for a quantum oscillator and an electronic pair in (114) keep the corresponding mass unchanged, but the metric properties for the time and space coordinates are changed to those of the hyperbolic geometry.

References

- 1. M.Born and R.Oppenheimer, Ann.Phys.(Leipzig), 457 (1927), 84
- 2. M.Born, Gött. Nachr.Math.Phys.Kl.<u>1</u>, (1951); M.Born and Kun Huang, Dymaical Theory of Cristal Lattices (appendix 8), Oxford at the Clarendon Press 19
- 3. A.Witkowski, Chem.Phys, 328 (2006), 17
- 4. A.Witkowski, Phys.Rev. A41 (1990) 3511
- 5. H.C.Longuett-Higgins, Adv.Spectrosc. 2, (1961) 429
- I.B.Bersuker and W.Z.Polinger, Vibronic Interactions in Molecules and Crystals, Nauka, Moscow 1983
- 7. A.Witkowski and W.Moffitt, J.Chem.Phys. 33, (1960) 872
- 8. A.O.Barut, Helv.Phys.Acta 46, (1973) 496
- A.O.Barut and R.R¹czka, Theory of Group Representations and Applications, Polish Scientific Publishers, Warsaw 1980 (in English)
- 10. A.O.Barut and L.Giraedello, Commun. Math. Phys., 21, 41(1971)
- The Hydrogen Bond Recent Development in Theory and Experiments, P.Schuster, G.Zundel and C.Sandorfy eds., North Holland, 1976
- 12. Theoretical Treatments of Hydrogen Bonding D.Hadzi (ed), Wiley, 1997
- 13. O.Henri-Rousseau and P.Blaise, Adv.Chem.Phys. 103, (1998)
- 14. Y.Marechal, Hydrogen Bond and the Water Molecule, Elsevier 2007

5. M.Avalos, R.Babiano, P.Cintas, J.L.Jimenez, J.C.Polacios and L.D.Barron, Chem.Rev. 98	1	Formatted: English U.S.
•		Formatted: English U.S.
(1998), 2391	. 1	

16. Barron L.D., Mol. Phys. 43, (1981), 1395

17. Barron L.D., Molecular Light Scattering and Optical Activity, Cambridge University Press, Cambridge 1982

- 18. Barron L.D., Chem. Phys. Lett. 123 (1986) 423
- 19. H.J. Monkhorst, Phys.Rev.A 36, 1544 (1987) 1544
- 20. A.Fröman, J.Chem.Phys., 36 (1962) 1490
- 21. H.Essen, Int.J.Quantum Chem., 12, (1987) 721
- 22. A.Fröman and J.L.Kinsey, Phys.Rev., 123, (1961) 2077
- 23. M.D.Girardeau, Phys.Rev., A28, (1983) 3635