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ON HARNACK INEQUALITIES

AND OPTIMAL TRANSPORTATION

D. Bakry, I. Gentil, M. Ledoux

University of Toulouse and University of Lyon, France

Abstract. – We develop connections between Harnack inequalities

for the heat flow of diffusion operators with curvature bounded from

below and optimal transportation. Through heat kernel inequalities, a

new isoperimetric-type Harnack inequality is emphasized. Commutation

properties between the heat and Hopf-Lax semigroups are developed

consequently, providing direct access to the heat flow contraction property

along Wasserstein distances.

1. Introduction

Harnack inequalities classically provide strong tools towards regularity properties of

solutions of partial differential equations and heat kernel bounds. A renowned result on

the topic is the parabolic inequality by P. Li and S.-T. Yau [L-Y]

(1)
|∇Ptf |2
(Ptf)2

− ∆Ptf

Ptf
≤ n

2t

for the heat semigroup (Pt)t≥0 on an n-dimensional Riemannian manifold (M, g) with

non-negative Ricci curvature, and every t > 0 and smooth positive function f :M → R.

By integration along geodesics, it yields the Harnack inequality

(2) Ptf(x) ≤ Pt+sf(y)
(t+ s

t

)n/2

ed
2/4s

for f : M → R non-negative and t, s > 0, where d = d(x, y) is the Riemannian distance

between x, y ∈ M . The results (1) and (2) admit versions for any lower bound on the

Ricci curvature (cf. [L-Y], [D]). A heat flow proof of (1), in the spirit of the arguments

developed in this note, has been provided in [B-L2].

In the context of diffusion operators, the Harnack inequality (2) may actually loose

its relevance due to the infinite-dimensional feature of some models. Let L = ∆−∇V ·∇
be a diffusion operator on a smooth complete connected Riemannian manifold (M, g),

where V : M → R is a smooth potential, with associated Markov semigroup (Pt)t≥0

and invariant and symmetric measure dµ = e−V dx (where dx is the Riemannian volume



element). A notion of curvature-dimension CD(ρ,m), ρ ∈ R, m ≥ 1, of such operators

L has been introduced by D. Bakry and M. Émery [B-É] (cf. [B], [Ba-G-L]), under the

name of Γ2 criterion, through the Bochner-type inequality

(3)
1

2
L
(

|∇f |2
)

−∇f · ∇Lf ≥ ρ|∇f |2 + 1

m
(Lf)2

for any smooth f : M → R. (The Γ2 operator in this context is precisely the

expression on the right-hand of (3).) For example, by the standard Bochner formula

from Riemannian geometry, the Laplace operator ∆ on an n-dimensional Riemannian

manifold with Ricci curvature bounded below by ρ satisfies CD(ρ,m) with m ≥ n. On

the other hand, on M = R
n with V the quadratic potential, the associated Ornstein-

Uhlenbeck operator L is intrinsically of infinite dimension m = ∞ since (3) cannot

hold for some ρ ∈ R with m finite. (It actually holds in this example with ρ = 1

and m = ∞.) In particular a Harnack inequality (2) cannot hold in this case, as well

as in further similar infinite-dimensional models. Note that, when m = ∞, again by

the Bochner formula, the curvature condition CD(ρ,∞), ρ ∈ R, amounts to the local

geometric lower bound

(4) Ric + Hess(V ) ≥ ρ

(as symmetric matrices) uniformly over the manifold.

To circumvent the drawbacks attached to the casem = ∞, F.-Y. Wang introduced in

[W1] (see also [W2]) a new form of Harnack inequalities for infinite dimensional diffusion

operators of the type L = ∆−∇V ·∇ (and more general ones). Namely, Wang’s Harnack

inequalities indicate that, under the curvature condition CD(ρ,∞) (thus equivalent to

(4)), for every (smooth) non-negative function f on M , every t > 0, every α > 1, and

every x, y ∈M ,

(5)
(

Ptf(x)
)α ≤ Pt(f

α)(y) eαd
2/2(α−1)σ(t)

where d = d(x, y) the Riemannian distance between x and y and where σ(t) = 1
ρ
(e2ρt−1)

(= 2t if ρ = 0). The proof of (5) is based on the interpolation

Ps
(

(Pt−sf)
α
)

(xs), s ∈ [0, t],

along a geodesic (xs)s∈[0,t] joining x to y together with the commutation, for all t ≥ 0

and smooth g :M → R,

(6) |∇Ptg| ≤ e−ρtPt
(

|∇g|
)

as an equivalent formulation of the curvature lower bound CD(ρ,∞). In a sense thus,

the gradient bound (6) is the counterpart of the Li-Yau inequality (1) in this context.

In the limit as α→ ∞, a log-Harnack inequality

(7) Pt(log f)(x) ≤ logPtf(y) +
d2

2σ(t)
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also holds (cf. [Bo-G-L], [W3]). It was further shown in [W1], [W3] that either (5) (for

one α > 1) or (7) implies back, as t → 0, the curvature condition CD(ρ,∞) (in its

infinitesimal form (4)).

The aim of this note is two-fold. We will first show how the previous infinite-

dimensional Harnack inequalities may actually be seen as consequences of the Lipschitz

property of a suitable functional of isoperimetric type. On the basis of this observation,

we establish next a kind of isoperimetric-type Harnack inequality. These results naturally

lead to develop connections between Harnack inequalities and mass transportation. In

particular, we establish a commutation property between the heat semigroup and the

Hopf-Lax infimum-convolution semigroup at the root of the Wasserstein contraction

property along the heat flow.

Two observations are actually at the starting point of this work. For simplicity in

the discussion below, let us restrict ourselves to CD(0,∞) (ρ = 0).

First, the gradient bound (6) (and thus the curvature condition CD(0,∞)) is known

to imply (to be equivalent) to logarithmic Sobolev inequalities under Pt, in particular

in reverse form

(8) t
|∇Ptf |2
Ptf

≤ Pt(f log f)− Ptf logPtf

for every smooth f > 0 and every t > 0 (cf. [Ba-G-L]). Inequalities like the preceding one

are understood point-wise throughout this work. Now, as was noticed by M. Hino [H],

the latter ensures that whenever 0 < f ≤ 1 and ψ = (log(1/Ptf))
1/2, then

|∇ψ|2 ≤ 1

2t
.

In other words, ψ is Lipschitz with Lipschitz coefficient less than or equal to (2t)−1/2.

In particular thus, for every x, y ∈M ,

(

log
1

Ptf(x)

)1/2

≤
(

log
1

Ptf(y)

)1/2

+
d

2t

where we recall that d = d(x, y). After some work, it may then be shown that for each

ε > 0, there exists C(ε) > 0 such that

(

Ptf(x)
)2 ≤ C(ε)Pt(f

2)(y) ed
2/4(1+ε)t,

that is as close as possible to (5) (for α = 2).

It should be mentioned that it is precisely the dimensional version of the reverse

logarithmic Sobolev inequality (8) which has been used in [B-L2] to provide a mono-

tonicity proof of the Li-Yau parabolic inequality (1). We will exploit this information

toward dimensional statements in Section 5 below. For further dimensional Harnack in-

equalities under the curvature-dimension condition CD(ρ,m), comparing in particular

different times, see [W4].
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The second observation at the starting point of this investigation is the links between

Harnack-type inequalities and optimal transportation already put forward in [Bo-G-

L] where semigroup tools were developed towards a proof of the Otto-Villani HWI

inequality [O-V] (cf. [V1], [V2]). We briefly recall the basic step. Namely, the log-

Harnack inequality (7) may be translated equivalently as

(9) Pt(log f) ≤ Q2t(logPtf)

where (Qs)s>0 is the Hopf-Lax infimum-convolution semigroup

Qsϕ(x) = inf
y∈M

[

ϕ(y) +
d(x, y)2

2s

]

, x ∈M, s > 0.

Assume now that µ is a probability measure and let f > 0 be a probability density

with respect to µ. Then, by time reversibility and (9) applied to Ptf , t > 0,

∫

M

Ptf logPtfdµ =

∫

M

fPt(logPtf)dµ ≤
∫

M

f Q2t(logP2tf)dµ.

Now
∫

M
logP2tfdµ ≤ 0 by Jensen’s inequality. Hence, combining with the scaling

properties of (Qs)s>0,

∫

M

Ptf logPtfdµ ≤ 1

2t

[
∫

M

Q1ϕfdµ−
∫

M

ϕdµ

]

where ϕ = 2t logP2tf . By the Kantorovich-Rubinstein dual description of the quadratic

Wasserstein distance W2(ν, µ) between the probability measures dν = fdµ and µ on M

(cf. e.g. [V1]), the latter amounts to

(10)

∫

M

Ptf logPtfdµ ≤ 1

2t
W2

2(ν, µ).

Note that the preceding argument similarly yields, for every t ≥ 0,

(11) t

∫

M

Ptf logPtfdµ ≤ 1

2
W2

2(fµ, gµ) + t

∫

M

g log g dµ

where g is a further probability density with respect to µ, and where, for simplicity here,

fµ and gµ denote the probability measures fdµ and gdµ. Indeed, write in the preceding

notation that

t

∫

M

Ptf logPtfdµ ≤ 1

2

[
∫

M

Q1ϕfdµ−
∫

M

ϕgdµ

]

+ t

∫

M

g logP2tfdµ.

Since by convexity
∫

M
g logP2tfdµ ≤

∫

M
g log gdµ, the claim follows.

Now (10) is actually the major step in the semigroup proof of the HWI inequality

of [O-V] under the curvature condition CD(0,∞). Namely, the classical heat flow

4



interpolation scheme (cf. [B], [Ba-G-L]) indicates that, for every suitable probability

density f :M → R and every t ≥ 0,

∫

M

f log fdµ−
∫

M

Ptf logPtfdµ = −
∫ t

0

(

d

ds

∫

M

Psf logPsfdµ

)

ds

=

∫ t

0

∫

M

|∇Psf |2
Psf

dµ ds.

Since |∇Psf | ≤ Ps(|∇f |) according to (6),

|∇Psf |2
Psf

≤ Ps

( |∇f |2
f

)

by the Cauchy-Schwarz inequality along the Markov kernel Ps. Therefore,

∫

M

f log fdµ ≤
∫

M

Ptf logPtfdµ+ t

∫

M

|∇f |2
f

dµ.

Together thus with (10), optimization in t > 0 yields

∫

M

f log fdµ ≤ W2(ν, µ)

(

2

∫

M

|∇f |2
f

dµ

)1/2

which is the announced HWI inequality, connecting Entropy, Wasserstein distance and

Fisher Information. Similar arguments may be developed under CD(ρ,∞) for any ρ ∈ R

to yield the full formulation of Otto-Villani’s HWI inequality (cf. [Bo-G-L], [Ba-G-L]).

Note that together with (11), the argument also recovers the known inequality (cf. e.g.

[CE])
∫

M

f log fdµ ≤ W2(fµ, gµ)

(

2

∫

M

|∇f |2
f

dµ

)1/2

+

∫

M

g log gdµ

for probability densities f and g with respect to µ.

For the matter of comparison, it might be worthwhile mentioning that the recent

Kuwada lemma (see [G-K-O]) develops similar arguments towards the inequality

(12) W 2
2 (Ptfµ, fµ) ≤

t

2

[
∫

E

f log fdµ−
∫

E

Ptf logPtfdµ

]

for any probability density f with respect to µ and any t ≥ 0. Indeed, for ϕ : E → R

bounded and measurable,

∫

M

Q1ϕPtfdµ−
∫

M

ϕfdµ =

∫ 1

0

(

d

ds

∫

M

QsϕPstfdµ

)

ds

=

∫ 1

0

∫

M

[

− 1

2
|∇Qsϕ|2Pstf + tQsϕLPtsf

]

dµ ds

=

∫ 1

0

∫

M

[

− 1

2
|∇Qsϕ|2Pstf − t∇Qsϕ · ∇Pstf

]

dµ ds
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by the fact that the Hopf-Lax semigroup solves the standard Hamilton-Jacobi equation

and by integration by parts. Next, by the Cauchy-Schwarz inequality,
∫

M

Q1ϕPtfdµ−
∫

M

ϕfdµ ≤ t2

2

∫ 1

0

∫

M

|∇Pstf |2
Pstf

dµ ds

which yields (12) by the Kantorovich-Rubinstein duality and integration.

With respect to (10), the Kuwada inequality (12) somewhat works in the other

direction. The point is that while (10) leads to the HWI inequality, the Kuwada

inequality (10) has been identified in [G-L] at the root of the Otto-Villani theorem [O-V]

(cf. [Bo-G-L], [V1], [V2]) connecting logarithmic Sobolev inequalities to transportation

cost inequalities.

On the basis of these two early observations, the purpose of this note is, as

announced, to develop a synthetic and refined treatment of Harnack-type inequalities

for diffusion operators with curvature bounded from below and of their connections with

transportation cost inequalities. The various contributions of this work are summarized

as follows.

In Section 2, we provide a direct treatment of Wang’s Harnack inequalities (5) and

(7) relying on an improved, isoperimetric-type version, of the reverse logarithmic Sobolev

inequality (8) along the heat flow.

This reverse isoperimetric-type inequality in turn implies a new isoperimetric version

of Harnack inequalities emphasized in Section 3. For example, under non-negative

curvature, it yields that for any say closed set A in M , any t > 0 and any x, y ∈M ,

(13) Pt(1A)(x) ≤ Pt(1Ad
)(y)

where d = d(x, y) and Aε is the ε-neighborhood of A in the metric d. This result seems

to be new even for the standard heat flow operator on a Riemannian manifold.

A major direct consequence of (13) is the commutation

(14) Pt(Qs) ≤ Qs(Pt), t, s > 0,

between the heat and Hopf-Lax semigroups (under non-negative curvature) which we

emphasize in Section 4. This commutation may in turn be seen at the root of the

contraction property of the Wasserstein distance along the heat flow

W2(µt, νt) ≤ W2(µ0, ν0)

where dµt = Ptfdµ and dνt = Ptgdµ, t ≥ 0, f, g probability densities with respect to µ,

first established in [C-MC-V], [vR-S] and [O-W] (see also [W2]).

This main commutation property (14) may actually be reached in several ways, and

Section 5 presents a variety of methods depending on the underlying context.

In the last Section 6, we briefly discuss some connections between the material

presented here and recent developments, following [A-G-S3], around the Evolutionary

Variational Inequality (EVI) expressing in the preceding notation that

W2
2(µt, ν0) + t

∫

M

Ptf logPtfdµ ≤ W2
2(µ0, ν0) + t

∫

M

g log gdµ.

6



This property actually connects the Γ2 Bakry-Émery CD(ρ,∞) curvature condition

([B-É], [B], [Ba-G-L]), expressed by the commutation (6), with the curvature bound

in the sense of Lott-Villani-Sturm in metric measure spaces as convexity of relative

entropy along the geodesics of optimal transportation ([L-V], [S1], [S2], [V2]). The

recent main achievement by L. Ambrosio, N. Gigli and G. Savaré [A-G-S3] actually

provides a link between the Γ2 and Lott-Villani-Sturm curvature lower bounds in the

class of the Riemannian energy measure spaces through the EVI. In Section 6, we sketch,

following [A-G-S3], the principle of proof of the EVI in a smooth setting, for comparison

with some of the tools developed besides in this note.

For simplicity in the exposition, the results of this work are presented in the weighted

Riemannian setting, for thus diffusion operators L = ∆−∇·∇V on a complete connected

Riemannian manifold (M, g) with invariant and reversible measure dµ = e−V dx (not

necessarily a probability measure) where V :M → R is a smooth potential. Integration

by parts with respect to L is expressed by
∫

M
f(−Lg)dµ =

∫

M
∇f · ∇gdµ for smooth

functions f, g : M → R. The associated curvature condition CD(ρ,∞), ρ ∈ R, is

expressed equivalently by (4) as the infinitesimal version of the Bochner-type inequality

(3). It amounts to the standard lower bound on the Ricci curvature for the Laplace

operator ∆ on (M, g). The curvature condition CD(ρ,∞) is also equivalent to the

gradient bound (6) which is, in an essential manner, the only way the curvature condition

will be used throughout this work.

Most of the results below actually extend to the framework of a Markov diffusion

triple (E, µ,Γ) in the sense of [B], [Ba-G-L], consisting of a state space E equipped with a

diffusion semigroup (Pt)t≥0 with infinitesimal generator L and carré du champ operator

Γ and invariant and symmetric σ-finite measure µ. In the weighted Riemannian context,

Γ(f, f) = |∇f |2 for smooth functions. In this setting, the abstract curvature condition

CD(ρ,∞), ρ ∈ R, stems from the Bochner-type inequality (3) (with m = ∞) which

is thus by now classically referred to as the Γ2 criterion going back to [B-É] (see [B],

[Ba-G-L]). The condition CD(ρ,∞) is equivalent to the gradient bound (6)

√

Γ(Ptf) ≤ e−ρtPt(
√

Γ(f) )

for every t ≥ 0 and every f in a suitable algebra of functions. The state space E may

be endowed with an intrinsic distance d for which Lipschitz functions f are such that

Γ(f) is bounded (µ-almost everywhere). We refer to [Ba-G-L] for details on this general

setting. Note that at the level of the local inequalities along the semigroup, the setting

covers the example of a generator L = ∆ + Z for some smooth vector field Z on a

manifold M as developed in [W1], [W2], [W3].

2. Reverse isoperimetry and Wang’s Harnack inequalities

In this section, we address a direct proof of Wang’s Harnack inequalities (5) and (7)

along the Hino argument on the basis of a reinforced family of heat kernel inequalities

first emphasized in [B-L1].

7



Denote by I : [0, 1] → R+ the Gaussian isoperimetric function defined by I = ϕ◦Φ−1

where

Φ(x) =

∫ x

−∞
e−u

2/2 du√
2π
, x ∈ R,

and ϕ = Φ′. The function I satisfies the basic differential equality I I ′′ = −1.

The following statement, as a kind of reverse isoperimetric-type inequality, was first

put forward in [B-L1]. We enclose a proof for completeness.

Proposition 2.1. Under the curvature condition CD(ρ,∞) for some ρ ∈ R, for

every smooth function f on M with values in [0, 1] and every t ≥ 0,

(15)
[

I(Ptf)
]2 −

[

Pt
(

I(f)
)]2 ≥ σ(t)|∇Ptf |2

where σ(t) = 1
ρ
(e2ρt − 1) (= 2t if ρ = 0).

Proof. By the heat flow interpolation, write

[

I(Ptf)
]2 −

[

Pt
(

I(f)
)]2

= −
∫ t

0

d

ds

[

Ps
(

I(Pt−sf)
)]2

ds.

Now, by the chain rule for the diffusion operator L,

− d

ds

[

Ps
(

I(Pt−sf)
)]2

= −2Ps
(

I(Pt−sf)
)

Ps

(

LI(Pt−sf)− I ′(Pt−sf) LPt−sf)
)

= −2Ps
(

I(Pt−sf)
)

Ps
(

I ′′(Pt−sf)|∇Ptf |2
)

= 2Ps
(

I(Pt−sf)
)

Ps

( |∇Ptf |2
I(Pt−sf)

)

where we used that I I ′′ = −1 in the last step. Since Ps is given by a kernel, it satisfies

a Cauchy-Schwarz inequality, and thus

Ps(Y )Ps

(

X2

Y

)

≥
[

Ps(X)
]2
, X, Y ≥ 0.

Hence, with X = |∇Ptf | and Y = I(Pt−sf),

[

I(Ptf)
]2 −

[

Pt
(

I(f)
)]2 ≥ 2

∫ t

0

[

Ps
(

|∇Pt−sf |
)

]2

ds.

By the gradient bound (6), Ps(|∇g|) ≥ eρs|∇Psg|. With g = Pt−sf , it follows that

[

I(Ptf)
]2 −

[

Pt
(

I(f)
)]2 ≥ 2

∫ t

0

e2ρsds |∇Ptf |2

which is the result.

For the comparison with the Hino observation mentioned in the introduction, note

that the inequality (15) of Proposition 2.1 implies the reverse logarithmic Sobolev

inequality (8) by applying it to εf and letting ε→ 0.
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As announced, we next show how Proposition 2.1 actually covers Wang’s Harnack

inequalities recalled in the introduction. Namely, in terms of gradient bounds, Proposi-

tion 2.1 indicates that for every (smooth) f with values in [0, 1], Φ−1 ◦Ptf is (σ(t))−1/2-

Lipschitz, t > 0. In particular thus, for x, y ∈ M and d = d(x, y) the Riemannian

distance between x and y,

(16) Φ−1 ◦ Ptf(x) ≤ Φ−1 ◦ Ptf(y) +
d

√

σ(t)
.

This Lipschitz property actually entails most of the inequalities emphasized in this work.

Towards a first illustration, set δ = d/
√

σ(t), so that (16) reads as

Ptf(x) ≤ Φ
(

Φ−1 ◦ Ptf(y) + δ
)

.

Apply now this inequality to 1{f≥a}, a ≥ 0, for a non-negative (measurable) function f

on M . Denoting by λ the distribution of f under Pt at the point y,

Pt(1{f≥a})(x) ≤ Φ
(

Φ−1
(

λ([a,∞))
)

+ δ
)

.

Integrating in a ≥ 0 and using Fubini’s theorem, denoting by dγ(u) = e−|u|2/2 du√
2π

the

standard Gaussian distribution on the line,

Ptf(x) ≤
∫ ∞

0

∫ Φ−1(λ([a,∞)))+δ

−∞
dγ(u)da =

∫ ∞

−∞

(
∫ ∞

0

1{u≤Φ−1(λ([a,∞)))+δ}da

)

dγ(u).

Change u into u+ δ to get

Ptf(x) ≤ e−δ
2/2

∫ ∞

−∞
e−δu

(
∫ ∞

0

1{Φ(u)≤λ([a,∞))}da

)

dγ(u).

Changing u into −u and denoting by F the distribution function of λ, it follows that

Ptf(x) ≤ e−δ
2/2

∫ ∞

−∞
eδu

(
∫ ∞

0

1{F (a)≤Φ(u)}da

)

dγ(u).

After the further change of variables v = Φ(u),

Ptf(x) ≤ e−δ
2/2

∫ 1

0

eδΦ
−1(v)

(
∫ ∞

0

1{F (a)≤v}da

)

dv.

The next statement summarizes the conclusion reached so far.

Theorem 2.2. Under the curvature condition CD(ρ,∞) for some ρ ∈ R, for every

non-negative measurable function f on M , every t > 0 and every x, y ∈M ,

Ptf(x) ≤ e−δ
2/2

∫ ∞

0

eδΦ
−1◦F (s) s dF (s)

9



where δ = d(x, y)/
√

σ(t) and F is the distribution function of f under Pt at the point

y.

Theorem 2.2 appears at the root of the various Harnack inequalities in this context.

It is however not expressed in a very tractable form. But it easily implies known ones.

For example, by Cauchy-Schwarz,

∫ ∞

0

eδΦ
−1◦F (s) s dF (s) ≤

(
∫ ∞

0

e2δΦ
−1◦F (s)dF (s)

)1/2(∫ ∞

0

s2 dF (s)

)1/2

≤ eδ
2(

Pt(f
2)(y)

)1/2

since
∫ ∞

0

e2δΦ
−1◦F (s)dF (s) =

∫ 1

0

e2δΦ
−1(v)dv =

∫ ∞

−∞
e2δudγ(u) = e2δ

2

.

The preceding thus yields Wang’s Harnack inequality (5) for α = 2,

Ptf(x)
2 ≤ Pt(f

2)(y) ed
2/σ(t).

By Hölder’s inequality rather than Cauchy-Schwarz, one obtains the whole family of

inequalities (5) with α > 1. Using the entropic inequality yields similarly the log-

Harnack inequality (7) (which is also obtained as α→ ∞). With respect to the Wang’s

original argument, the proof here avoids interpolation along geodesics (although the

length space property is required to move from (15) to (16)).

3. Isoperimetric-type Harnack inequalities

As announced, the basic Lipschitz inequality (16) may be seen at the origin of a

number of inequalities of interest, and this section develops further consequences in

combination with isoperimetric bounds for heat kernel measures. To this task, recall

first the isoperimetric comparison theorem for heat kernel measures under curvature

bounds of [B-L1]. Recall I the Gaussian isoperimetric function.

Theorem 3.1. Under the curvature condition CD(ρ,∞) for some ρ ∈ R, for every

smooth function f on M with values in [0, 1] and every t ≥ 0,

I(Ptf) ≤ Pt

(

√

I2(f) + ρ(t)|∇f |2
)

where ρ(t) = 1
ρ
(1− e−2ρt) (= 2t if ρ = 0).

As developed in [B-L1] (cf. also [Ba-G-L]), this result is an isoperimetric comparison

theorem expressing that the isoperimetric profile of the heat kernel measures is bounded

below by the Gaussian isoperimetric function (up to a scaling depending on t and ρ).

More precisely, for any y ∈M , any measurable set A ⊂M , any t > 0 and any ε > 0,

(17) Pt(1Aε
)(y) ≥ Φ

(

Φ−1
(

Pt(1A)(y)
)

+
ε

√

ρ(t)

)

10



where Aε is the ε-neighborhood of A in the distance d.

Applied to f = 1A, the Lipschitz property (16) ensures on the other hand that, for

any measurable set A ⊂M , and again with δ = d/
√

σ(t),

(18) Pt(1A)(x) ≤ Φ
(

Φ−1
(

Pt(1A)(y)
)

+ δ
)

.

The combination of (17) and (18) together with the fact that ρ(t)
σ(t)

= e−2ρt then yields

the following isoperimetric-type Harnack inequality.

Theorem 3.2. Under the curvature condition CD(ρ,∞) for some ρ ∈ R, for every

measurable set A in M , every t ≥ 0 and every x, y ∈M ,

Pt(1A)(x) ≤ Pt(1Adt
)(y)

where dt = e−ρtd(x, y) = e−ρtd. In particular, when ρ = 0,

Pt(1A)(x) ≤ Pt(1Ad
)(y).

4. The commutation property and contraction in Wasserstein distance

The isoperimetric-type Harnack inequality of Theorem 3.2 has several consequences

of interest in terms of commutation properties between the heat and the Hopf-Lax

semigroups developed in this section.

To start with, let f : M → R be Lipschitz with Lipschitz constant L. Then, if

A = {f ≥ a} (f ≥ 0 for simplicity), Adt ⊂ {f ≥ a − Ldt}. Therefore, by Theorem 3.2,

under thus CD(ρ,∞), for every x, y ∈M and t ≥ 0,

Pt(1{f≥a})(x) ≤ Pt(1{f+Ldt≥a})(y).

Integrating in a ≥ 0,

Ptf(x) ≤ Ptf(y) + Ldt.

In other words, Ptf is Lipschitz with Lipschitz constant less than e−ρtL, a result by

M.-K. von Renesse and K.-Th. Sturm [vR-S].

The same argument may actually be used to reach a more precise property which in

turn entails the contraction property of the heat flow with respect to Wassertein metrics.

The key is expressed in the commutation between the heat and Hopf-Lax semigroups.

Recall the Hopf-Lax infimum-convolution semigroup (cf. [E], [V1], [V2])

Qsf(x) = inf
y∈M

[

f(y) +
d(x, y)2

2s

]

, x ∈M, s > 0.

Theorem 4.1. Under the curvature condition CD(ρ,∞) for some ρ ∈ R, for any

t, s > 0 and any measurable f :M → R,

(19) Pt(Qsf) ≤ Qe2ρts(Ptf).

11



Proof. Let f be non-negative on M . It is enough by homogeneity to consider

s = 1. As above, apply Theorem 3.2 to A = {Q1f ≥ a} for every a ≥ 0. Since

Adt ⊂ {f + d2t/2 ≥ a},

Pt(1{Q1f≥a})(x) ≤ Pt(1{f+d2t/2≥a})(y)

for all x, y ∈M and t ≥ 0. Integrating in a ≥ 0 yields

Pt(Q1f)(x) ≤ Ptf(y) +
d2t
2
.

Taking then the infinmum in y ∈ M yields the result by definition of the infimum-

convolution Q1.

The infimum-convolution semigroup (Qs)s>0 being solution of the Hamilton-Jacobi

equation ∂su = −1
2 |∇u|2 with initial condition u(0, ·) = f , the commutation property

(19) implies by a Taylor expansion at s = 0 that |∇Ptf |2 ≤ e−2ρtPt
(

|∇f |2
)

for every

t ≥ 0. This gradient bound, weaker than (6), is still equivalent to the curvature

bound CD(ρ,∞), providing thus a converse to Theorem 4.1. In particular also,

the isoperimetric Harnack inequality from Theorem 3.2 is actually equivalent to the

curvature condition CD(ρ,∞).

As announced, it immediately follows from the commutation property (19) of

Theorem 4.1 that the Wasserstein distance W2 is contractive along the semigroup

(Pt)t≥0. This result is going back to [vR-S], with a stochastic proof, and to [O-W],

with an Eulerian point of view, in a Riemannian framework (further discussed below

in Section 6). The proof presented here on the basis of Theorem 4.1 extends to the

abstract Markov semigroup setting of [B], [Ba-G-L]. The measure µ is assumed here to

be a probability measure.

Corollary 4.2. Under the curvature condition CD(ρ,∞) for some ρ ∈ R, for any

t ≥ 0,

(20) W2(µt, νt) ≤ e−2ρtW2(µ0, ν0)

where dµt = Ptfdµ and dνt = Ptgdµ for probability densities f, g with respect to the

probability measure µ.

Proof. For any bounded measurable ϕ : M → R, by time reversibility and the

commutation property (19),

∫

M

Q1ϕPtfdµ−
∫

M

ϕPtgdµ =

∫

M

Pt(Q1ϕ)fdµ−
∫

M

Ptϕgdµ

≤
∫

M

Qe2ρt(Ptϕ)fdµ−
∫

M

Ptϕgdµ

≤ e−2ρt

[
∫

M

Q1(e
2ρtPtϕ)fdµ−

∫

M

e2ρtPtϕgdµ

]

≤ e−2ρtW 2
2 (µ0, ν0)

12



where the last step follows from the Kantorovich-Rubinstein dual description of the

Wasserstein distance W2. The proof is complete.

By adapting Theorem 4.1 to costs d(x, y)p, the same argument works for any

Wasserstein distanceWp, 1 ≤ p <∞, extending the contraction property of Corollary 4.2

to this class. More general Wasserstein functionals associated to further transportation

costs may be considered similarly.

5. Alternate proofs of the commutation property

In this last section, we briefly outline alternate proofs of the basic commutation

property (19) of Theorem 4.1. For simplicity in the notation and the exposition, we

only consider ρ = 0 below. Each proof involves at some point specific properties.

First alternate proof. This proof requires the use of geodesics and the Hopf-Lax

formula as solution of the Hamilton-Jacobi equation. It appears independently as

Lemma 3.4 in the recent [A-G-S3]. Consider

φ(s) = Pt(Qsf)(xs), 0 ≤ s ≤ 1,

where (xs)s∈[0,1] is a constant speed curve joigning x0 = y to x1 = x in M . Set as above

d = d(x, y). Then, by the gradient bound (6) under CD(0,∞),

φ′(s) = Pt

(

− 1

2
|∇Qsf |2

)

(xs) +∇Pt(Qsf)(xs) · ẋs

≤ Pt

(

− 1

2
|∇Qsf |2

)

(xs) + d
∣

∣∇Pt(Qsf)(xs)
∣

∣

≤ Pt

(

− 1

2
|∇Qsf |2

)

+ dPt
(

|∇Qsf |
)

≤ d2

2
.

Hence

Pt(Q1f)(x)− Ptf(y) = φ(1)− φ(0) =

∫ 1

0

φ′(s)ds ≤ d2

2

which is the result.

Second alternate proof. This second alternate proof also uses the Hopf-Lax infimum-

convolution semigroup as solution of the Hamilton-Jacobi equation, and relies on the

hypercontractivity property along the heat flow recently put forward in [B-B-G]. Namely,

by the log-Harnack inequality (7), for every v > 0,

Pt(Q1f) ≤
1

v
Q2t

(

logPt(e
vQ1f )

)

.

Under non-negative curvature, it is shown in [B-B-G] that for every ψ : M → R and

t > 0,

logPt(e
Q2tψ) ≤ Ptψ.

13



With v = 1/2t and ψ = f/2t, the conclusion immediately follows by homogeneity of the

infimum-convolutions.

Third alternate proof. This proof may be obtained by linear approximations of

the Hamilton-Jacobi equation (vanishing viscosity method) along the lines of [Bo-G-

L]. Following the notation therein, let for every ε > 0, the approximated Hopf-Lax

semigroup

Qεtf = −2ε logPt(e
−f/2ε)

solution of the equation

∂tu = εLu− 1

2
|∇u|2.

Moreover, limε→0Q
ε
tf = Qtf . Dealing with

φ(s) = Ps
(

Qε1(Pt−sf)
)

, 0 ≤ s ≤ t,

shows that

φ′(s) = 2εPs

(

1

Pεg

[ |∇Pεg|2
Pεg

− Pε

( |∇g|2
g

)])

where g = e−Pt−sf/2ε. Under the gradient bound (6), φ′(s) ≤ 0 which yields that

Pt(Q
ε
1f) ≤ Qε1(Ptf).

In the limit as ε→ 0, the announced commutation property follows.

One benefit of the third alternate proof is that it may be developed similarly

on the reinforced curvature-dimension condition CD(0, m) with a finite-dimensional

parameter m, for example with m = n for the Laplace operator on an n-dimensional

Riemannian manifold with non-negative Ricci curvature (cf. [B], [Ba-G-L]). We sketch

the argument. The local logarithmic Sobolev inequalities of [B-L2] (see also [Ba-G-L])

under CD(0, m) ensure after linearization that, for any t > 0, any non-negative smooth

function g :M → R and any c > 0,

c
|∇Ptg|2
Ptg

− Pt

( |∇g|2
g

)

≤ (c− 1)Pt(Lg) +
m

2t

(√
c− 1

)2
Ptg.

Arguing as previously in the CD(0,∞) case yields that for any f and t, s > 0,

Pt(Q
ε
1f) ≤ Qε1(Psf) +m

(
√
t−

√
s
)2

and similarly in the limit as ε→ 0.

Applied to the Wasserstein contraction, the latter shows that, under CD(0, m) thus

and in the notation of Corollary 4.2,

(21) W 2
2 (µt, νs) ≤W 2

2 (µ0, ν0) +m
(
√
t−

√
s
)2
.

This inequality covers (20), however only when s = t. Note that when s = 0 and µt = νt,

then W 2
2 (µt, µ0) ≤ mt which describes a classical behavior of Brownian motion in

Euclidean space. Further Wasserstein contraction properties under curvature-dimension

condition are emphasized in [W4].
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6. Links with the Evolutionary Variational Inequality

To conclude this note, we briefly describe some of the connections between the pre-

ceding material and recent contributions around the so-called Evolutionary Variational

Inequality (EVI). As mentioned in the introduction, the EVI actually connects the cur-

vature condition CD(ρ,∞) in the sense of the Γ2 operator of [B-É] (see [B], [Ba-G-L]),

expressed here through the commutation (6), with the curvature bound in the sense of

Lott-Villani-Sturm in metric measure spaces as convexity of relative entropy along the

geodesics of optimal transportation ([L-V], [S1], [S2], [V2]). See [A-G-S2], [A-G-S3].

The purpose of this short paragraph is to describe the main ideas at the root of

the EVI following the recent main development [A-G-S3] by L. Ambrosio, N. Gigli and

G. Savaré. In this work, the authors actually establish the EVI in the extended class of

Riemannian energy measure spaces, providing there a complete link between the Bakry-

Émery Γ2 and Lott-Villani-Sturm curvatures (the implication from Lott-Villani-Sturm

to Γ2 was achieved in [A-G-S2]). With respect to [A-G-S3], we only concentrate here

on the main principle of proof in the simplified framework of weighted Riemannian

manifolds, the main achievement of [A-G-S3] being actually to perform the argument

in a much larger class of non-smooth spaces together with a rather involved analysis.

The guideline of this investigation is the Eulerian approach of [O-W] and [D-S] but the

non-smooth structure causes a lot of technical problems. We nevertheless found it useful

to outline the argument, avoiding all the regularity issues, in the context of this note, to

illustrate the general principle and the links with the material of the previous sections.

We of course refer to [A-G-S3] for a complete rigorous investigation.

For simplicity thus, we deal with the weighted Riemannian framework of the

preceding sections with dµ = e−V dx a probability measure, and restrict ourselves to the

non-negative curvature assumption CD(0,∞) expressed in the form of the commutation

property (6) with ρ = 0. The case of arbitrary ρ ∈ R is easily adapted along the same

lines (cf. [A-G-S3]).

Let f and g be probability densities with respect to the probability measure µ. The

Evolutionary Variational Inequality (EVI) indicates that under CD(0,∞), for any t > 0,

(22) W2
2(µt, ν0) + t

∫

M

Ptf logPtfdµ ≤ W2
2(µ0, ν0) + t

∫

M

g log gdµ

where dµt = Ptfdµ, dνt = Ptgdµ. In the limit as t → 0, together with the semigroup

property,

(23)
d

dt
W2

2(µt, ν0) ≤
∫

M

g log gdµ−
∫

M

Ptf logPtfdµ

(the derivative being understood in an extended sense).

The material described in the preceding sections gets close to (22), however not quite.

Indeed, the conjunction of (11) and of the Wasserstein contraction (20) (for ρ = 0) yields

W2
2(µt, νt) + t

∫

M

Ptf logPtfdµ ≤ 3

2
W2

2(µ0, ν0) + t

∫

M

g log gdµ
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which is not directly comparable to (23) but which, in any case, is useless in the limit

as t→ 0. To reach EVI, more on optimal transportation is actually required.

One key step in this regard is the existence of curves of probability densities hs,

s ∈ [0, 1], with respect to µ interpolating between h0 = g and h1 = f , assumed to be

smooth both in space and s, such that for every smooth function ψ on M ,

(24)

∫

M

ḣs ψ dµ ≤ W2
2(µ0, ν0) +

1

2

∫

M

|∇ψ|2hsdµ.

Such curves are naturally provided by optimal transportation, and arise for example

in the Benamou-Brenier dynamical description of the Wasserstein distance [B-B] (cf.

[A-G-S1], [Vi1], [Vi2]). To illustrate at a mild level such curves, and in M = R
n for

the simplicity of the notation (the manifold case being similar at the expense of further

Riemannian technology, cf. [V2]), consider the Brenier map T : R
n → R

n pushing

forward dµ0 = fdµ to dν0 = gdµ and providing optimal transportation in the sense of

the Wasserstein distance W2 as

(25) W2
2(µ0, ν0) =

1

2

∫

R
n

∣

∣x− T (x)
∣

∣

2
f(x)dµ(x)

(cf. [A-G-S1], [V1], [V2]...). Consider then the geodesics Ts = s Id + (1− s)T , s ∈ [0, 1],

of optimal transportation. If hs denotes the density with respect to µ of the pushforward

measure of dµ0 = fdµ by Ts (so that h0 = g and h1 = f) assumed to be smooth both

in space and s, it is easily checked that for every smooth function ψ on R
n,

∫

Rn

ḣs ψ dµ =

∫

Rn

(

x− T (x)
)

· ∇ψ
(

Ts(x)
)

f(x)dµ(x)

yielding (24) by the quadratic inequality and (25). Of course, the existence of such

curves hs, s ∈ [0, 1], satisfying (24) in a non-smooth setting is a delicate issue carefully

investigated in [A-G-S3].

On the basis of (24), the EVI (22) is then analyzed by a suitable coupling between

the heat kernel and optimal transportation parametrizations. Precisely, the expressions

(26)

∫

M

Q1ϕPtfdµ−
∫

M

ϕgdµ+ t

(
∫

M

Ptf logPtfdµ−
∫

M

g log gdµ

)

for any smooth ϕ on M may be represented as
∫ 1

0

(

d

ds

∫

M

QsϕPsthsdµ+ t
d

ds

∫

M

Psths logPsthsdµ

)

ds.

Now, again under suitable smoothness assumptions not detailed here, by the Hamilton-

Jacobi equation and integration by parts,

d

ds

∫

M

QsϕPsthsdµ = −1

2

∫

M

|∇Qsϕ|2Psthsdµ+

∫

M

ḣsPst(Qsϕ)dµ

+ t

∫

M

QsϕLPsthsdµ

= −1

2

∫

M

|∇Qsϕ|2Psthsdµ+

∫

M

ḣsPst(Qsϕ)dµ

− t

∫

M

∇Qsϕ · ∇Psthsdµ.
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On the other hand,

d

ds

∫

M

Psths logPsthsdµ =

∫

M

[

Pstḣs + tLPsths
]

logPsthsdµ

=

∫

M

Pstḣs logPsthsdµ− t

∫

M

∇Psths · ∇(logPsths)dµ

where we used that d
ds
Psths = Pstḣs + tLPsths and

∫

M
Pstḣsdµ =

∫

M
ḣsdµ = 0.

From these expressions, it is easily checked that the sum

d

ds

∫

M

QsϕPsthsdµ+ t
d

ds

∫

M

Psths logPsthsdµ

may be rearranged as

−1

2

∫

M

∣

∣∇(Qsϕ+ t logPsths)
∣

∣

2
Psthsdµ− t2

2

∫

M

|∇Psths|2
Psths

dµ

+

∫

M

ḣsPst
(

Qsϕ+ t logPsths
)

dµ.

Forgetting the term t2

2

∫

M
|∇Psths|2
Psths

dµ (which is anyway of the order o(t) in the limit

(23)), this quantity is upper-bounded by

−1

2

∫

M

Pst
(
∣

∣∇(Qsϕ+ t logPsths)
∣

∣

2)
hsdµ+

∫

M

ḣsPst
(

Qsϕ+ t logPsths
)

dµ

where we used also symmetry of the semigroup. Now, by the curvature condition in the

form of the commutation (6), the latter is further upper-bounded by

−1

2

∫

M

∣

∣∇Pst(Qsϕ+ t logPsths)
∣

∣

2
hsdµ+

∫

M

ḣsPst
(

Qsϕ+ t logPsths
)

dµ

With ψ = Pst(Qsϕ+ t logPsths), (24) implies that this expression is precisely bounded

above by W2
2(µ0, ν0). Integrating in s from 0 to 1 and taking the supremum over all ϕ

then yields the announced EVI (22).

As mentioned above, the preceding argument is inspired by the Eulerian calculus

developed by F. Otto and M. Westdickenberg [O-W] in their approach of the contraction

property (20). Namely, if the parametrization does not involve the heat flow, consider

for ϕ :M → R smooth enough,

∫

M

Q1ϕPtfdµ−
∫

M

ϕPtgdµ =

∫ 1

0

(

d

ds

∫

M

QsϕPthsdµ

)

ds.

Since, as above,

d

ds

∫

M

QsϕPthsdµ = −1

2

∫

M

|∇Qsϕ|2Pthsdµ+

∫

M

ḣsPt(Qsϕ)dµ,
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by time reversibility and the gradient bound (6),

d

ds

∫

M

QsϕPthsdµ = −1

2

∫

M

Pt
(

|∇Qsϕ|2)hsdµ+

∫

M

ḣsPt(Qsϕ)dµ

≤ −1

2

∫

M

∣

∣∇Pt(Qsϕ)
∣

∣

2
hsdµ+

∫

M

ḣsPt(Qsϕ)dµ.

Using (24) then yields
∫

M

Q1ϕPtfdµ−
∫

M

ϕPtgdµ ≤W 2
2 (µ0, ν0),

that is, after taking the supremum in ϕ, the contraction property (20) of Corollary 4.2.
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