

Do IR models satisfy the TDC Retrieval Constraint?

Stéphane Clinchant, Éric Gaussier

▶ To cite this version:

Stéphane Clinchant, Éric Gaussier. Do IR models satisfy the TDC Retrieval Constraint?. 34th Annual ACM SIGIR Conference, Jul 2011, Beijing, China. pp.1155-1156, 10.1145/2009916.2010096. hal-00742614

HAL Id: hal-00742614 https://hal.science/hal-00742614v1

Submitted on 16 Oct 2012

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Do IR models satisfy the TDC Retrieval Constraint?

Stéphane Clinchant Xerox Research Center Europe & Université Grenoble I, LIG 6, Chemin de Maupertuis 38240 Meylan, France stephane.clinchant@xrce.xerox.com

Categories and Subject Descriptors

H.3.3 [Information Storage and Retrieval]: Information Search and Retrieval

General Terms

Algorithms, Experimentation, Theory

Keywords

axiomatic constraint, TDC constraint

1. INTRODUCTION

Axiomatic methods were pioneered by Fang *et al.* [5] and used since then in several studies including [3, 2]. In a nutshell, axiomatic methods provide formal constraints that IR functions should satisfy in order to be valid, i.e. to perfom well on IR tasks. According to [2], the four main constraints for an IR function to be valid can be phrased as: the weighting function should (a) be increasing and (b) concave wrt term frequencies, (c) have an IDF effect and (d) penalize long documents. In addition to these four basic constraints, Fang *et al.* [5] introduced additional constraints to regulate the relative importance of different parameters, as TF and IDF for example.

The IDF effect mentioned above relates to the constraint referred to in [5] as the TDC constraint, which can be formulated as follows:

TDC: Let q be a query and w_1, w_2 be two query terms. Assume $l_{d1} = l_{d2}, c(w_1, d_1) + c(w_2, d_1) = c(w_1, d_2) + c(w_2, d_2)$. If $idf(w_1) \ge idf(w_2)$ and $c(w_1, d_1) \ge c(w_1, d_2)$, then $RSV(d1, q) \ge RSV(d2, q)$.

where c(w, d) denotes the number of occurrences of w in d. This constraint aims at capturing the fact that, *ceteris paribus*, rarer terms (i.e. terms with a large IDF) should be preferred over more frequent ones. However, there are several ways to define the context (*ceteris paribus*) in which to place this constraint, and the study presented in [2] relies on a stricter context corresponding to a special case of the *TDC* constraint, where w1 only occurs in d1 and w2 only in d2. This constraint, referred to as *speTDC* can be formulated as:

speTDC: Let q be a query and w1, w2 two query terms. Assume $l_{d1} = l_{d2}$, c(w1, d1) = c(w2, d2), c(w2, d1) = c(w1, d2) = 0. If $idf(w1) \ge idf(w2)$, then $RSV(d1, q) \ge RSV(d2, q)$.

Copyright is held by the author/owner(s). *SIGIR'11*, July 24–28, 2011, Beijing, China. ACM 978-1-4503-0757-4/11/07.

Eric Gaussier Université Grenoble I, LIG BP 53 - 38041 Grenoble cedex 9 Grenoble, France eric.gaussier@imag.fr

If it has been show in previous studies (as [5, 2]) that most IR models satisfy most IR constraints, the situation of the TDC constraint is unclear, and the goal of this short paper is to show that several state-of-the-art IR models indeed do not comply with the general TDC constraint, but do satisfy the speTDC one. We will review here the recently introduced log-logistic model [2], as well as the Jelinek-Mercer and Dirichlet language models.

2. IR MODELS AND THE TDC CONSTRAINT

The **log-logistic model** proposed in [2] is specified by:

$$t(w,d) = c(w,d)\log(1+c\frac{avg(l_d)}{l_d})$$

$$r_w = \frac{N_w}{N}$$

$$RSV(q,d) = \sum_{w \in q \cap d} c(w,q)(\log(r_w + t_w^d) - \log(r_w))$$

where N_w is the number of documents in the collection containing the term w and N the total number of documents in the collection; l_d is the length of document d, and $\operatorname{avg}(l_d)$ the average document length in the collection.

Let us examine the *TDC* constraint for this model, and for that let us consider two documents d_1 and d_2 of equal length l; let $\gamma = \log(1 + c \frac{avg(l)}{l})$. For simplification, we use a to denote w_1 , b to denote w_b and a_1 (resp. a_2) for $c(a, d_1)$ (resp. $c(a, d_2)$). For a query q consisting of only a and b, the difference in score between d_1 and d_2 amounts to:

$$\Delta = RSV(q, d1) - RSV(q, d2) = \log(\frac{r_a + a_1\gamma}{r_a + a_2\gamma} \times \frac{r_b + b_1\gamma}{r_b + b_2\gamma})$$

Now, let us place ourselves in the conditions specified in the TDC constraint and let us assume that $r_a < r_b$, $a^1 > a^2$ and $a_1 + b_1 = a_2 + b_2$ (and thus $b_2 > b_1$). The TDC constraints stipulates in that case that $\Delta \ge 0$, that is:

$$\gamma(a_1b_1 - a_2b_2) + r_b(a_1 - a_2) + r_a(b_1 - b_2)) > 0$$

Setting: $a_1 = 7, b_1 = 4, a_2 = 6, b_2 = 5, r_a = 0.001$ and $r_b = 0.01$ shows that the above inequality is true *iff*: $\gamma < 0.0045$. Hence, γ must be very small for the *TDC* constraint to be verified. Indeed, for documents of average length, $\gamma \approx \log(1 + c)$ and c should be chosen smaller to 0.005 for the above inequality to be satisfied.

We now provide a more formal proof that the log-logistic model does not comply with the TDC constraint. Let's first

Table 1: Pair of query terms (short query) belowmean corpus language model

Collection	m	μ	diff < m
robust	0.0003	500	62.2~%
trec1-2	0.0005	1000	62.2~%

consider the following optimization problem:

$$\begin{aligned} \operatorname{argmax}_{t_a \ge 0, t_b \ge 0} \qquad & \mathcal{A} = \sum_{w \in \{a, b\}} \log(r_w + t_w) - \log(r_w) \\ \text{subject to} \qquad & \sum_{w \in \{a, b\}} t_w = s \end{aligned}$$

where s is a pre-defined, positive value. As the log is concave, the overall objective function is concave, and the solution to the above optimization problem correspond to the values maximizing the following Lagrangian:

$$\Lambda = \sum_{w \in \{a,b\}} \log(r_w + t_w) - \log(r_w) - \lambda(\sum_{w \in \{a,b\}} t_w - s)$$

for which the partial derivatives are defied as:

$$\frac{\partial \Lambda}{\partial t_w} = \frac{1}{r_w + t_w} - \lambda$$

Setting these derivatives to 0 leads to the following solution¹:

$$t_a = \frac{s + r_b - r_a}{2}, \ t_b = \frac{s + r_a - r_b}{2}$$

Now let us consider a query q with two words (a and b) occurring only once, and let d_1 a,d d_2 be two documents of equal length. Let us furthermore assume that: $\mathrm{idf}(a) = \frac{1}{r_a} \ge \mathrm{idf}(b) = \frac{1}{r_b}$, and:

$$t_a^{d_1} = \frac{s + r_b - r_a}{2} + \epsilon, \quad t_b^{d_1} = \frac{s + r_a - r_b}{2} - \epsilon$$
$$t_a^{d_2} = \frac{s + r_b - r_a}{2}, \qquad t_b^{d_2} = \frac{s + r_a - r_b}{2}$$

for ϵ sufficiently small for all the quantities to be positive. In this case, all the conditions of the TDC constraint are verified, and thus one should observe that $RSV(q, d_1) \geq RSV(q, d_2)$, which is in contradiction with the fact that the values for d_2 are the ones that maximize \mathcal{A} which corresponds in this case to the retrieval status value. This shows that the log-logistic model is not compliant with the TDC constraint. However, as shown in [2], the log-logistic model is compliant with the speTDC constraint, which represents a stricter version of the TDC constraint.

The situation for language models wrt the TDC and speTDC constraints is identical to the one of the log-logistic model. Indeed, it has been shown in [1] that the **Jelinek-Mercer model** could be seen as a special case of the log-logistic model. All the development made above in the context of the log-logistic model applies to the Jelinek-Mercer model, which is not compliant with the TDC constraint (it is however compliant with the speTDC constraint).

As shown in [5], and using the notations introduced previously, the **Dirichlet language model** agrees with the *TDC* constraint in the following case:

$$\mu \ge \frac{a_1 - b_2}{p(b|C) - p(a|C)} \tag{1}$$

¹As $r_a \ll t_a$ and $r_b \ll t_b$, both t_a and t_b are ≥ 0 .

where p(a|C) represents the collection probability. Table 1 shows for several collections the mean value of p(w|C) for query terms (denoted m), the optimal values obtained for the Dirichlet smoothing parameter μ and the percentage of pairs of query terms for which the corpus language model absolute difference (|p(w'|C) - p(w|C)|) is below m (denoted diff < m). As one can note, in almost two third of the cases, the numerator of equation 1 is very small. So, for the bound given in equation 1 to hold, one needs to rely on large values for μ (larger than 2,000 when the numerator is one). As shown in table 1, we are far from these values in practice, and the Dirichlet language model is in general not compliant with the *TDC* constraint. Furthermore, using the analytical formulation of the speTDC constraint proposed in [2], one can show that the Dirichlet language model is compliant with the speTDC constraint.

3. CONCLUSION

We have shown here that several state-of-the-art IR models do not satisfy the TDC retrieval constraint introduced in [5]. The IR models we have considered are the recently introduced log-logistic model, and two standard versions of the language model, namely the one based on Jelinek-Mercer smoothing, and the one based on Dirichlet smoothing. Furthermore, we have seen that all these models satisfy speTDC, a stricter version of the TDC constraint introduced in [2] to directly formalize the IDF effect. Because of the good behavior of the models we have reviewed, we believe that the above development suggests that the TDC constraint is not valid, and should be replaced with the speTDC one.

Directly assessing the validity of a particular retrieval constraint is not straightforward. The work presented in [4] shows that it is possible to experimentally assess whether a particular IR model complies or not with a given constraint. It is however not clear whether all constraints can be taken into account. We have followed here a different line, based on a theoretical analysis of the behavior orf IR models wrt a particular constraint.

4. **REFERENCES**

- S. Clinchant and E. Gaussier. Bridging language modeling and divergence from randomness models: A log-logistic model for ir. In *ICTIR*, pages 54–65, 2009.
- [2] S. Clinchant and E. Gaussier. Information-based models for ad hoc IR. In Proceeding of the 33rd international ACM SIGIR conference on Research and development in information retrieval, SIGIR '10, pages 234–241, New York, NY, USA, 2010. ACM.
- [3] R. Cummins and C. O'Riordan. An axiomatic comparison of learned term-weighting schemes in information retrieval: clarifications and extensions. *Artif. Intell. Rev.*, 28:51–68, June 2007.
- [4] R. Cummins and C. O'Riordan. Measuring constraint violations in information retrieval. In Proceedings of the 32nd international ACM SIGIR conference on Research and development in information retrieval, SIGIR '09, pages 722–723, 2009.
- [5] H. Fang, T. Tao, and C. Zhai. A formal study of information retrieval heuristics. In SIGIR '04: Proceedings of the 27th annual international ACM SIGIR conference on Research and development in information retrieval, 2004.