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Abstract

In this paper, we develop a novel approach to the problem of learning sparse rep-
resentations in the context of fused sparsity and unknown noise level. We propose
an algorithm, termed Scaled Fused Dantzig Selector (SFDS), that accomplishes
the aforementioned learning task by means of a second-order cone program. A
special emphasize is put on the particular instance of fused sparsity corresponding
to the learning in presence of outliers. We establish finite sample risk bounds and
carry out an experimental evaluation on both synthetic and real data.

1 Introduction

Consider the classical problem of Gaussian linear regression1:

Y = Xβ∗ + σ∗ξ, ξ ∼ Nn(0, In), (1)

where Y ∈ R
n and X ∈ R

n×p are observed, in the neoclassical setting of very large dimensional
unknown vector β∗. Even if the ambient dimensionality p of β∗ is larger than n, it has proven
possible to consistently estimate this vector under the sparsity assumption. The letter states that the
number of nonzero elements of β∗, denoted by s and called intrinsic dimension, is small compared
to the sample size n. Most famous methods of estimating sparse vectors, the Lasso and the Dantzig
Selector (DS), rely on convex relaxation of ℓ0-norm penalty leading to a convex program that in-
volves the ℓ1-norm of β. More precisely, for a given λ̄ > 0, the Lasso and the DS [26, 4, 5, 3] are
defined as

β̂
L
= arg min

β∈Rp

{
1

2
‖Y −Xβ‖22 + λ̄‖β‖1

}
(Lasso)

β̂
DS

= argmin ‖β‖1 subject to ‖X⊤(Y −Xβ)‖∞ ≤ λ̄. (DS)

The performance of these algorithms depends heavily on the choice of the tuning parameter λ̄.
Several empirical and theoretical studies emphasized that λ̄ should be chosen proportionally to the
noise standard deviation σ∗. Unfortunately, in most applications, the latter is unavailable. It is
therefore vital to design statistical procedures that estimate β and σ in a joint fashion. This topic
received special attention in last years, cf. [10] and the references therein, with the introduction of
computationally efficient and theoretically justified σ-adaptive procedures the square-root Lasso [2]
(a.k.a. scaled Lasso [24]) and the ℓ1 penalized log-likelihood minimization [20].

In the present work, we are interested in the setting where β∗ is not necessarily sparse, but for a
known q × p matrix M, the vector Mβ∗ is sparse. We call this setting “fused sparsity scenario”.

1We denote by In the n × n identity matrix. For a vector v, we use the standard notation ‖v‖1, ‖v‖2 and
‖v‖∞ for the ℓ1, ℓ2 and ℓ∞ norms, corresponding respectively to the sum of absolute values, the square root
of the sum of squares and the maximum of the coefficients of v.
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The term “fused” sparsity, introduced by [27], originates from the case where Mβ is the discrete
derivative of a signal β and the aim is to minimize the total variation, see [12, 19] for a recent
overview and some asymptotic results. For general matrices M, tight risk bounds were proved in
[14]. We adopt here this framework of general M and aim at designing a computationally efficient
procedure capable to handle the situation of unknown noise level and for which we are able to
provide theoretical guarantees along with empirical evidence for its good performance.

This goal is attained by introducing a new procedure, termed Scaled Fused Dantzig Selector (SFDS),
which is closely related to the penalized maximum likelihood estimator but has some advantages in
terms of computational complexity. We establish tight risk bounds for the SFDS, which are nearly
as strong as those proved for the Lasso and the Dantzig selector in the case of known σ∗. We also
show that the robust estimation in linear models can be seen as a particular example of the fused
sparsity scenario. Finally, we carry out a “proof of concept” type experimental evaluation to show
the potential of our approach.

2 Estimation under fused sparsity with unknown level of noise

2.1 Scaled Fused Dantzig Selector

We will only consider the case rank(M) = q ≤ p, which is more relevant for the applications
we have in mind (image denoising and robust estimation). Under this condition, one can find a

(p−q)×p matrix N such that the augmented matrix M = [M⊤
N

⊤]⊤ is of full rank. Let us denote

by mj the jth column of the matrix M
−1, so that M −1 = [m1, ...,mp]. We also introduce:

M
−1 = [M†,N†], M† = [m1, ...,mq] ∈ R

p×q, N† = [mq+1, ...,mp] ∈ R
p×(p−q).

Given two positive tuning parameters λ and µ, we define the Scaled Fused Dantzig Selector (SFDS)

(β̂, σ̂) as a solution to the following optimization problem:

minimize

q∑

j=1

‖Xmj‖2|(Mβ)j | subject to





|m⊤
j X

⊤(Xβ − Y )| ≤ λσ‖Xmj‖2, j ≤ q;

N
⊤
† X

⊤(Xβ − Y ) = 0,

nµσ2 + Y ⊤
Xβ ≤ ‖Y ‖22.

(P1)

This estimator has several attractive properties: (a) it can be efficiently computed even for very large
scale problems using a second-order cone program, (b) it is equivariant with respect to the scale
transformations both in the response Y and in the lines of M and, finally, (c) it is closely related to
the penalized maximum likelihood estimator. Let us give further details on these points.

2.2 Relation with the penalized maximum likelihood estimator

One natural way to approach the problem of estimating β∗ in our setup is to rely on the standard
procedure of penalized log-likelihood minimization. If the noise distribution is Gaussian, ξ ∼
Nn(0, In), the negative log-likelihood (up to irrelevant additive terms) is given by

ℓ(Y ,X;β, σ) = n log(σ) +
‖Y −Xβ‖22

2σ2
.

In the context of large dimension we are concerned with, i.e., when p/n is not small, the maximum
likelihood estimator is subject to overfitting and is of very poor quality. If it is plausible to expect
that the data can be fitted sufficiently well by a vector β∗ such that for some matrix M, only a
small fraction of elements of Mβ∗ are nonzero, then one can considerably improve the quality of
estimation by adding a penalty term to the log-likelihood. However, the most appealing penalty,
the number of nonzero elements of Mβ, leads to a nonconvex optimization problem which cannot
be efficiently solved even for moderately large values of p. Instead, convex penalties of the form∑

j ωj |(Mβ)j |, where wj > 0 are some weights, have proven to provide high accuracy estimates

at a relatively low computational cost. This corresponds to defining the estimator (β̂PL, σ̂PL) as the
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minimizer of the penalized log-likelihood

ℓ̄(Y ,X;β, σ) = n log(σ) +
‖Y −Xβ‖22

2σ2
+

q∑

j=1

ωj |(Mβ)j |.

To ensure the scale equivariance, the weights ωj should be chosen inversely proportionally to σ:

ωj = σ−1ω̄j . This leads to the estimator

(β̂PL, σ̂PL) = argmin
β,σ

{
n log(σ) +

‖Y −Xβ‖22
2σ2

+

q∑

j=1

ω̄j
|(Mβ)j |

σ

}
.

Although this problem can be cast [20] as a problem of convex minimization (by making the change
of parameters φ = β/σ and ρ = 1/σ), it does not belong to the standard categories of convex
problems that can be solved either by linear programming or by second-order cone programming or
by semidefinite programming. Furthermore, the smooth part of the objective function is not Lips-
chitz which makes it impossible to directly apply most first-order optimization methods developed in
recent years. Our goal is to propose a procedure that is close in spirit to the penalized maximum like-
lihood but has the additional property of being computable by standard algorithms of second-order
cone programming.

To achieve this goal, at the first step, we remark that it can be useful to introduce a penalty term that
depends exclusively on σ and that prevents the estimator of σ∗ from being too large or too small. One
can show that the only function (up to a multiplicative constant) that can serve as penalty without
breaking the property of scale equivariance is the logarithmic function. Therefore, we introduce an
additional tuning parameter µ > 0 and look for minimizing the criterion

nµ log(σ) +
‖Y −Xβ‖22

2σ2
+

q∑

j=1

ω̄j
|(Mβ)j |

σ
. (2)

If we make the change of variables φ1 = Mβ/σ, φ2 = Nβ/σ and ρ = 1/σ, we get a convex
function for which the first-order conditions [20] take the form

m⊤
j X

⊤(Y −Xβ) ∈ ω̄jsign({Mβ}j), (3)

N
⊤
† X

⊤(Y −Xβ) = 0, (4)

1

nµ

(
‖Y ‖22 − Y ⊤

Xβ
)
= σ2. (5)

Thus, any minimizer of (2) should satisfy these conditions. Therefore, to simplify the problem of
optimization we propose to replace minimization of (2) by the minimization of the weighted ℓ1-
norm

∑
j ω̄j |(Mβ)j | subject to some constraints that are as close as possible to (3-5). The only

problem here is that the constraints (3) and (5) are not convex. The “convexification” of these
constraints leads to the procedure described in (P1). As we explain below, the particular choice of
ω̄js is dictated by the desire to enforce the scale equivariance of the procedure.

2.3 Basic properties

A key feature of the SFDS is its scale equivariance. Indeed, one easily checks that if (β̂, σ̂) is a

solution to (P1) for some inputs X, Y and M, then α(β̂, σ̂) will be a solution to (P1) for the inputs
X, αY and M, whatever the value of α ∈ R is. This is the equivariance with respect to the scale
change in the response Y . Our method is also equivariant with respect to the scale change in M.

More precisely, if (β̂, σ̂) is a solution to (P1) for some inputs X, Y and M, then (β̂, σ̂) will be a
solution to (P1) for the inputs X, Y and DM, whatever the q × q diagonal matrix D is. The latter
property is important since if we believe that for a given matrix M the vector Mβ∗ is sparse, then
this is also the case for the vector DMβ∗, for any diagonal matrix D. Having a procedure the output
of which is independent of the choice of D is of significant practical importance, since it leads to a
solution that is robust with respect to small variations of the problem formulation.

The second attractive feature of the SFDS is that it can be computed by solving a convex optimiza-
tion problem of second-order cone programming (SOCP). Recall that an SOCP is a constrained
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optimization problem that can be cast as minimization with respect to w ∈ R
d of a linear function

a⊤w under second-order conic constraints of the form ‖Aiw + bi‖2 ≤ c⊤i w + di, where Ais are

some ri × d matrices, bi ∈ R
ri , ci ∈ R

d are some vectors and dis are some real numbers. The
problem (P1) belongs well to this category, since it can be written as min(u1 + . . .+ uq) subject to

‖Xmj‖2|(Mβ)j | ≤ uj ; |m⊤
j X

⊤(Xβ − Y )| ≤ λσ‖Xmj‖2, ∀j = 1, . . . , q;

N
⊤
† X

⊤(Xβ − Y ) = 0,

√
4nµ‖Y ‖22σ2 + (Y ⊤

Xβ)2 ≤ 2‖Y ‖22 − Y ⊤
Xβ.

Note that all these constraints can be transformed into linear inequalities, except the last one which
is a second order cone constraint. The problems of this type can be efficiently solved by various
standard toolboxes such as SeDuMi [22] or TFOCS [1].

2.4 Finite sample risk bound

To provide theoretical guarantees for our estimator, we impose the by now usual assumption of
restricted eigenvalues on a suitably chosen matrix. This assumption, stated in Definition 2.1 below,
was introduced and thoroughly discussed by [3]; we also refer the interested reader to [28].

Définition 2.1. We say that a n× q matrix A satisfies the restricted eigenvalue condition RE(s, 1),
if

κ(s, 1)
∆
= min

|J|≤s
min

‖δJc‖1≤‖δJ‖1

‖Aδ‖2√
n‖δJ‖2

> 0.

We say that A satisfies the strong restricted eigenvalue condition RE(s, s, 1), if

κ(s, s, 1)
∆
= min

|J|≤s
min

‖δJc‖1≤‖δJ‖1

‖Aδ‖2√
n‖δJ∪J0

‖2
> 0,

where J0 is the subset of {1, ..., q} corresponding to the s largest in absolute value coordinates of δ.

For notational convenience, we assume that M is normalized in such a way that the diagonal ele-
ments of 1

nM
⊤
† X

⊤
XM† are all equal to 1. This can always be done by multiplying M from the

left by a suitably chosen positive definite diagonal matrix. Furthermore, we will repeatedly use the
projector2

Π = XN†(N⊤
† X

⊤
XN†)−1

N
⊤
† X

⊤ onto the subspace of Rn spanned by the columns of

XN†. We denote by r = rank{Π} the rank of this projector which is typically very small compared
to n∧ p, and is always smaller than n∧ (p− q). In all theoretical results, the matrices X and M are
assumed deterministic.

Theorem 2.1. Let us fix a tolerance level δ ∈ (0, 1) and define λ =
√
2nγ log(q/δ). Assume that

the tuning parameters γ, µ > 0 satisfy

µ

γ
≤ 1− r

n
− 2

√
(n− r) log(1/δ) + log(1/δ)

n
. (6)

If the vector Mβ∗
is s-sparse and the matrix (In − Π)XM† satisfies the condition RE(s, 1) with

some κ > 0 then, with probability at least 1− 6δ, it holds:

‖M(β̂ − β∗)‖1 ≤ 4

κ2
(σ̂ + σ∗)s

√
2γ log(q/δ)

n
+

σ∗

κ

√
2s log(1/δ)

n
(7)

‖X(β̂ − β∗)‖2 ≤ 2(σ̂ + σ∗)

√
2γs log(q/δ)

κ
+ σ∗(√8 log(1/δ) + r

)
. (8)

If, in addition, (In − Π)XM† satisfies the condition RE(s, s, 1) with some κ > 0 then, with a
probability at least 1− 6δ, we have:

‖Mβ̂ −Mβ∗‖2 ≤ 4(σ̂ + σ∗)

κ2

√
2s log(q/δ)

n
+

σ∗

κ

√
2 log(1/δ)

n
(9)

Moreover, with a probability at least 1− 7δ, we have:

σ̂ ≤ σ∗

µ1/2
+

λ‖Mβ∗‖1
nµ

+
s1/2σ∗ log(q/δ)

nκµ1/2
+ (σ∗ + ‖Mβ∗‖1)µ−1/2

√
2 log(1/δ)

n
. (10)

2Here and in the sequel, the inverse of a singular matrix is understood as MoorePenrose pseudoinverse.
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Before looking at the consequences of these risk bounds in the particular case of robust estimation,
let us present some comments highlighting the claims of Theorem 2.1. The first comment is about
the conditions on the tuning parameters µ and γ. It is interesting to observe that the roles of these
parameters are very clearly defined: γ controls the quality of estimating β∗ while µ determines the
quality of estimating σ∗. One can note that all the quantities entering in the right-hand side of (6)
are known, so that it is not hard to choose µ and γ in such a way that they satisfy the conditions of
Theorem 2.1. However, in practice, this theoretical choice may be too conservative in which case it
could be a better idea to rely on cross validation.

The second remark is about the rates of convergence. According to (8), the rate of estimation

measured in the mean prediction loss 1
n‖X(β̂−β∗)‖22 is of the order of s log(q)/n, which is known

as fast or parametric rate. The vector Mβ∗ is also estimated with the nearly parametric rate in both
ℓ1 and ℓ2-norms. To the best of our knowledge, this is the first work where such kind of fast rates
are derived in the context of fused sparsity with unknown noise-level. With some extra work, one

can check that if, for instance, γ = 1 and |µ− 1| ≤ cn−1/2 for some constant c, then the estimator

σ̂ has also a risk of the order of sn−1/2. However, the price to pay for being adaptive with respect
to the noise level is the presence of ‖Mβ∗‖1 in the bound on σ̂, which deteriorates the quality of
estimation in the case of large signal-to-noise ratio.

Even if Theorem 2.1 requires the noise distribution to be Gaussian, the proposed algorithm remains
valid in a far broader context and tight risk bounds can be obtained under more general conditions
on the noise distribution. In fact, one can see from the proof that we only need to know confidence
sets for some linear and quadratic functionals of ξ. For instance, such kind of confidence sets can be
readily obtained in the case of bounded errors ξi using the Bernstein inequality. It is also worthwhile
to mention that the proof of Theorem 2.1 is not a simple adaptation of the arguments used to prove
analogous results for ordinary sparsity, but contains some qualitatively novel ideas. More precisely,
the cornerstone of the proof of risk bounds for the Dantzig selector [4, 3, 9] is that the true parameter
β∗ is a feasible solution. In our case, this argument cannot be used anymore. Our proposal is then

to specify another vector β̃ that simultaneously satisfies the following three conditions: Mβ̃ has the

same sparsity pattern as Mβ∗, β̃ is close to β∗ and lies in the feasible set.

A last remark is about the restricted eigenvalue conditions. They are somewhat cumbersome in this
abstract setting, but simplify a lot when the concrete example of robust estimation is considered,
cf. the next section. At a heuristical level, these conditions require from the columns of XM† to
be not very strongly correlated. Unfortunately, this condition fails for the matrices appearing in
the problem of multiple change-point detection, which is an important particular instance of fused
sparsity. There are some workarounds to circumvent this limitation in that particular setting, see
[17, 11]. The extension of these kind of arguments to the case of unknown σ∗ is an open problem
we intend to tackle in the near future.

3 Application to robust estimation

This methodology can be applied in the context of robust estimation, i.e., when we observe Y ∈ R
n

and A ∈ R
n×k such that the relation

Yi = (Aθ∗)i + σ∗ξi, ξi
iid∼ N (0, 1)

holds only for some indexes i ∈ I ⊂ {1, ..., n}, called inliers. The indexes does not belonging to
I will be referred to as outliers. The setting we are interested in is the one frequently encountered
in computer vision [13, 25]: the dimensionality k of θ∗ is small as compared to n but the presence
of outliers causes the complete failure of the least squares estimator. In what follows, we use the
standard assumption that the matrix 1

nA
⊤
A has diagonal entries equal to one.

Following the ideas developed in [6, 7, 8, 18, 15], we introduce a new vector ω ∈ R
n that serves to

characterize the outliers. If an entry ωi of ω is nonzero, then the corresponding observation Yi is an
outlier. This leads to the model:

Y = Aθ∗ +
√
nω∗ + σ∗ξ = Xβ∗ + σ∗ξ, where X = [

√
n In A], and β = [ω∗ ;θ∗]⊤.

Thus, we have rewritten the problem of robust estimation in linear models as a problem of

estimation in high dimension under the fused sparsity scenario. Indeed, we have X ∈ R
n×(n+k)
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and β∗ ∈ R
n+k, and we are interested in finding an estimator β̂ of β∗ for which ω̂ = [In0n×k]β̂

contains as many zeros as possible. This means that we expect that the number of outliers is
significantly smaller than the sample size. We are thus in the setting of fused sparsity with
M = [In 0n×k]. Setting N = [0k×n Ik], we define the Scaled Robust Dantzig Selector (SRDS) as

a solution (θ̂, ω̂, σ̂) of the problem:

minimize ‖ω‖1 subject to





√
n‖Aθ +

√
nω − Y ‖∞ ≤ λσ,

A
⊤(Aθ +

√
nω − Y ) = 0,

nµσ2 + Y ⊤(Aθ +
√
nω) ≤ ‖Y ‖22.

(P2)

Once again, this can be recast in a SOCP and solved with great efficiency by standard algorithms.
Furthermore, the results of the previous section provide us with strong theoretical guarantees for the
SRDS. To state the corresponding result, we will need a notation for the largest and the smallest
singular values of 1√

n
A denoted by ν∗ and ν∗ respectively.

Theorem 3.1. Let us fix a tolerance level δ ∈ (0, 1) and define λ =
√
2nγ log(n/δ). Assume that

the tuning parameters γ, µ > 0 satisfy
µ
γ ≤ 1 − k

n − 2
n

(√
(n− k) log(1/δ) + log(1/δ)

)
. Let Π

denote the orthogonal projector onto the k-dimensional subspace of Rn spanned by the columns of
A. If the vector ω∗ is s-sparse and the matrix

√
n(In − Π) satisfies the condition RE(s, 1) with

some κ > 0 then, with probability at least 1− 5δ, it holds:

‖ω̂ − ω∗‖1 ≤ 4

κ2
(σ̂ + σ∗)s

√
2γ log(n/δ)

n
+

σ∗

κ

√
2s log(1/δ)

n
, (11)

‖(In −Π)(ω̂ − ω∗)‖2 ≤ 2(σ̂ + σ∗)

κ

√
2s log(n/δ)

n
+ σ∗

√
2 log(1/δ)

n
. (12)

If, in addition,
√
n (In −Π) satisfies the condition RE(s, s, 1) with some κ > 0 then, with a proba-

bility at least 1− 6δ, we have:

‖ω̂ − ω∗‖2 ≤ 4(σ̂ + σ∗)

κ2

√
2s log(n/δ)

n
+

σ∗

κ

√
2 log(1/δ)

n

‖θ̂ − θ∗‖2 ≤ ν∗

ν2∗

{
4(σ̂ + σ∗)

κ2

√
2s log(n/δ)

n
+

σ∗

κ

√
2 log(1/δ)

n
+

σ∗(
√
k +

√
2 log(1/δ))√
n

}

Moreover, with a probability at least 1− 7δ, the following inequality holds:

σ̂ ≤ σ∗

µ1/2
+

λ‖ω∗‖1
nµ

+
s1/2σ∗ log(n/δ)

nκµ1/2
+ (σ∗ + ‖ω∗‖1)µ−1/2

√
2 log(1/δ)

n
. (13)

All the comments made after Theorem 2.1, especially those concerning the tuning parameters and
the rates of convergence, hold true for the risk bounds in Theorem 3.1 as well. Furthermore, the
restricted eigenvalue condition in the latter theorem is much simpler and deserves a special attention.
In particular, one can remark that the failure of RE(s, 1) for

√
n(In − Π) implies that there is

a unit vector δ in Im(A) such that |δ(1)| + . . . + |δ(n−s)| ≤ |δ(n−s+1)| + . . . + |δ(n)|, where
δ(k) stands for the kth smallest (in absolute value) entry of δ. To gain a better understanding of
how restrictive this assumption is, let us consider the case where the rows a1, . . . ,an of A are
i.i.d. zero mean Gaussian vectors. Since δ ∈ Im(A), its coordinates δi are also i.i.d. Gaussian
random variables (they can be considered N (0, 1) due to the homogeneity of the inequality we are
interested in). The inequality |δ(1)| + . . . + |δ(n−s)| ≤ |δ(n−s+1)| + . . . + |δ(n)| can be written

as 1
n

∑
i |δi| ≤ 2

n (|δ(n−s+1)| + . . . + |δ(n)|). While the left-hand side of this inequality tends to

E[|δ1|] > 0, the right-hand side is upper-bounded by 2s
n maxi |δi|, which is on the order of 2s

√
logn
n .

Therefore, if 2s
√
logn
n is small, the condition RE(s, 1) is satisfied. This informal discussion can be

made rigorous by studying large deviations of the quantity maxδ∈Im(A)\{0} ‖δ‖∞/‖δ‖1. A simple

sufficient condition entailing RE(s, 1) for
√
n(In −Π) is presented in the following lemma.

Lemma 3.2. Let us set ζs(A) = infu∈Sk−1
1
n

∑n
i=1 |aiu|− 2s‖A‖2,∞√

n
. If ζs(A) > 0, then

√
n (In−

Π) satisfies both RE(s, 1) and RE(s, s, 1) with κ(s, 1) ≥ κ(s, s, 1) ≥ ζs(A)/
√
(ν∗)2 + ζs(A)2.
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SFDS Lasso Square-Root Lasso

|β̂ − β∗|2 |σ̂ − σ∗| |β̂ − β∗|2 |β̂ − β∗|2 |σ̂ − σ∗|

( T, p, s∗, σ∗) Ave StD Ave StD Ave StD Ave StD Ave StD

(200, 400, 2, .5) 0.04 0.03 0.18 0.14 0.07 0.05 0.06 0.04 0.20 0.14
(200, 400, 2, 1) 0.09 0.05 0.42 0.35 0.16 0.11 0.13 0.09 0.46 0.37
(200, 400, 2, 2) 0.23 0.17 0.75 0.55 0.31 0.21 0.25 0.18 0.79 0.56
(200, 400, 5, .5) 0.06 0.01 0.28 0.11 0.13 0.09 0.11 0.06 0.18 0.27
(200, 400, 5, 1) 0.20 0.05 0.56 0.10 0.31 0.04 0.25 0.02 0.66 0.05
(200, 400, 5, 2) 0.34 0.11 0.34 0.21 0.73 0.25 0.47 0.29 0.69 0.70
(200, 400, 10, .5) 0.10 0.01 0.36 0.02 0.15 0.00 0.10 0.01 0.36 0.02
(200, 400, 10, 1) 0.19 0.09 0.27 0.26 0.31 0.04 0.19 0.09 0.27 0.26
(200, 400, 10, 2) 1.90 0.20 4.74 1.01 0.61 0.08 1.80 0.04 3.70 0.48

Table 1: Comparing our procedure SFDS with the (oracle) Lasso and the SqRL on a synthetic dataset. The

average values and the standard deviations of the quantities |β̂−β∗|2 and |σ̂−σ∗| over 500 trials are reported.
They represent respectively the accuracy in estimating the regression vector and the level of noise.

The proof of the lemma can be found in the supplementary material.

One can take note that the problem (P2) boils down to computing (ω̂, σ̂) as a solution to

minimize ‖ω‖1 subject to

{ √
n‖(In −Π)(

√
nω − Y )‖∞ ≤ λσ,

nµσ2 +
√
n[(In −Π)Y ]⊤ω ≤ ‖(In −Π)Y ‖22.

and then setting θ̂ = (A⊤
A)−1

A
⊤(Y −√

n ω̂).

4 Experiments

For the empirical evaluation we use a synthetic dataset with randomly drawn Gaussian design matrix
X and the real-world dataset fountain-P113, on which we apply our methodology for computing the
fundamental matrices between consecutive images.

4.1 Comparative evaluation on synthetic data

We randomly generated a n × p matrix X with independent entries distributed according to the
standard normal distribution. Then we chose a vector β∗ ∈ R

p that has exactly s nonzero elements
all equal to one. The indexes of these elements were chosen at random. Finally, the response
Y ∈ R

n was computed by adding a random noise σ∗Nn(0, In) to the signal Xβ∗. Once Y and X

available, we computed three estimators of the parameters using the standard sparsity penalization
(in order to be able to compare our approach to the others): the SFDS, the Lasso and the square-
root Lasso (SqRL). We used the “universal” tuning parameters for all these methods: (λ, µ) =

(
√

2n log(p), 1) for the SFDS, λ =
√
2 log(p) for the SqRL and λ = σ∗√2 log(p) for the Lasso.

Note that the latter is not really an estimator but rather an oracle since it exploits the knowledge of
the true σ∗. This is why the accuracy in estimating σ∗ is not reported in Table 1. To reduce the
well known bias toward zero [4, 23], we performed a post-processing for all of three procedures. It
consisted in computing least squares estimators after removing all the covariates corresponding to
vanishing coefficients of the estimator of β∗. The results summarized in Table 1 show that the SFDS
is competitive with the state-of-the-art methods and, a bit surprisingly, is sometimes more accurate
than the oracle Lasso using the true variance in the penalization. We stress however that the SFDS
is designed for being applied in—and has theoretical guarantees for—the broader setting of fused
sparsity.

4.2 Robust estimation of the fundamental matrix

To provide a qualitative evaluation of the proposed methodology on real data, we applied the SRDS
to the problem of fundamental matrix estimation in multiple-view geometry, which constitutes an

3available at http://cvlab.epfl.ch/˜strecha/multiview/denseMVS.html

7

http://cvlab.epfl.ch/~strecha/multiview/denseMVS.html


1 2 3 4 5 6 7 8 9 10 Average

σ̂ 0.13 0.13 0.13 0.17 0.16 0.17 0.20 0.18 0.17 0.11 0.15
‖ω̂‖0 218 80 236 90 198 309 17 31 207 8 139.4
100
n ‖ω̂‖0 1.3 0.46 1.37 0.52 1.13 1.84 0.12 0.19 1.49 1.02 0.94

Table 2: Quantitative results on fountain dataset.

Figure 1: Qualitative results on fountain dataset. Top left: the values of ω̂i for the first pair of images. There
is a clear separation between outliers and inliers. Top right: the first pair of images and the matches classified
as wrong by SRDS. Bottom: the eleven images of the dataset.

essential step in almost all pipelines of 3D reconstruction [13, 25]. In short, if we have two images I
and I ′ representing the same 3D scene, then there is a 3×3 matrix F, called fundamental matrix, such
that a point x = (x, y) in I1 matches with the point x′ = (x′, y′) in I ′ only if [x; y; 1]F [x′; y′; 1]⊤ =
0. Clearly, F is defined up to a scale factor: if F33 6= 0, one can assume that F33 = 1. Thus, each
pair x ↔ x

′ of matching points in images I and I ′ yields a linear constraint on the eight remaining
coefficients of F. Because of the quantification and the presence of noise in images, these linear
relations are satisfied up to some error. Thus, estimation of F from a family of matching points
{xi ↔ x

′
i; i = 1, . . . , n} is a problem of linear regression. Typically, matches are computed by

comparing local descriptors (such as SIFT [16]) and, for images of reasonable resolution, hundreds
of matching points are found. The computation of the fundamental matrix would not be a problem in
this context of large sample size / low dimension, if the matching algorithms were perfectly correct.
However, due to noise, repetitive structures and other factors, a non-negligible fraction of detected
matches are wrong (outliers). Elimination of these outliers and robust estimation of F are crucial
steps for performing 3D reconstruction.

Here, we apply the SRDS to the problem of estimation of F for 10 pairs of consecutive images
provided by the fountain dataset [21]: the 11 images are shown at the bottom of Fig. 1. Using SIFT
descriptors, we found more than 17.000 point matches in most pairs of images among the 10 pairs
we are considering. The CPU time for computing each matrix using the SeDuMi solver [22] was
about 7 seconds, despite such a large dimensionality. The number of outliers and the estimated
noise-level for each pair of images are reported in Table 2. We also showed in Fig. 1 the 218 outliers
for the first pair of images. They are all indeed wrong correspondncies, even those which correspond
to the windows (this is due to the repetitive structure of the window).

5 Conclusion and perspectives

We have presented a new procedure, SFDS, for the problem of learning linear models with unknown
noise level under the fused sparsity scenario. We showed that this procedure is inspired by the
penalized maximum likelihood but has the advantage of being computable by solving a second-
order cone program. We established tight, nonasymptotic, theoretical guarantees for the SFDS with
a special attention paid to robust estimation in linear models. The experiments we have carried out
are very promising and support our theoretical results.

In the future, we intend to generalize the theoretical study of the performance of the SFDS to the case
of non-Gaussian errors ξi, as well as to investigate its power in variable selection. The extension to
the case where the number of lines in M is larger than the number of columns is another interesting
topic for future research.
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Supplementary material to “Fused sparsity and robust estimation for linear
models with unknown variance” submitted to NIPS 2012

This supplement contains the proofs of the theoretical results stated in the main paper.

A Proof of Theorem 2.1

Let us begin with some simple relations one can deduce from the definitions M = [M⊤
N

⊤]⊤,

M
−1

= [M† N†]:
M†M+N†N = Ip,

MM† = Iq, NN† = In−q, MN† = 0, NM† = 0.

We introduce the following vector:

β̄ = M†Mβ∗ +N†(N
⊤
† X

⊤
XN†)

−1
N

⊤
† X

⊤(Y −XM†Mβ∗),

which satisfies

Mβ̄ = Mβ∗, Nβ̄ = (N⊤
† X

⊤
XN†)

−1
N

⊤
† X

⊤(Y −XM†Mβ∗),

and

Xβ̄ = XM†Mβ∗ +Π(Y −XM†Mβ∗)

= ΠY + (In −Π)XM†Mβ∗

= ΠY + (In −Π)X(I−N†N)β∗

= ΠY + (In −Π)Xβ∗

= Xβ∗ + σ∗
Πξ. (14)

The main point in the present proof is the following: if we set

β̃ =

(
1 + σ∗ ξ

⊤(In −Π)Xβ̄

‖Xβ̄‖22

)
β̄,

then, with high probability, for some σ̃ > 0, the pair (β̃, σ̃) is feasible (i.e., satisfies the constraint of
the optimization problem we are dealing with). In what follows, we will repeatedly use the following

property: for m = Xβ̄

‖Xβ̄‖2

it holds that

Y −Xβ̃ = Y −Xβ̄ − σ∗mm⊤(In −Π)ξ

= σ∗(In −Π)ξ − σ∗mm⊤(In −Π)ξ

= σ∗(In −mm⊤)(In −Π)ξ. (15)

Most of subsequent arguments will be derived on an event B, having probability close to one, which
can be represented as B = A ∩B ∩ C, where:

A =
{
‖M⊤

† X
⊤
1 (In −mm⊤)(In −Π)ξ‖∞ ≤

√
2n log(q/δ)

}
,

B =
{
‖(In −Π)ξ‖22 ≥ n− r − 2

√
(n− r) log(1/δ)

}
,

C =
{
|m⊤(In −Π)ξ| ≤

√
2 log(1/δ)

}
,

for some δ ∈ (0, 1) close to zero. For the convenience of the reader, we recall that r = rank{Π} =
rank{XN†(N⊤

† X
⊤
XN†)−1

N
⊤
† X

⊤}.
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Step I: Evaluation of the probability of B Let us check that the conditions involved in the
definition of B are satisfied with probability at least 1 − 5δ. Since all the diagonal entries of
1
nM

⊤
† X

⊤
XM† are equal to 1, we have ‖(XM†)j‖22 = n for all j = 1, ..., q. Then we have:

P(Ac) = P

(
‖M⊤

† X
⊤(In −mm⊤)(In −Π)ξ‖∞ ≥

√
2n log(q/δ)

)

≤
q∑

j=1

P

(
|(XM†)

⊤
j (In −mm⊤)(In −Π)ξ| ≥

√
2n log(q/δ)

)

=

q∑

j=1

P

(
|η|‖(XM†)

⊤
j (In −mm⊤)(In −Π)‖2 ≥

√
2n log(q/δ)

)

where η ∼ N (0, 1). Using the inequality ‖(XM†)⊤j (In −mm⊤)(In −Π)‖2 ≤ ‖(XM†)j‖2 and
the well known bound on the tails of the Gaussian distribution, we get

P(Ac) ≤
q∑

j=1

P

(
|η|‖(XM†)

⊤
j ‖2 ≥

√
2n log(q/δ)

)

= q P
(
|η|√n ≥

√
2n log(q/δ)

)

= 2q P
(
η ≥

√
2 log(q/δ)

)

≤ 2q exp{−1

2
(
√

2 log(q/δ))2} = 2δ.

For the set B, we recall that ξ⊤(In −Π)ξ is a chi-squared random variable with n − r degrees of

freedom: ξ⊤(In −Π)ξ ∼ χ2(n− r). Therefore:

P(Bc) = P(χ2(n− r) ≤ n− r − 2
√
(n− r) log(1/δ)) ≤ e− log(1/δ) = δ

Finally, to bound the probability of Cc, we use that m⊤(In −Π)ξ ∼ ‖(In −Π)m‖2N (0, 1). This
yields:

P(Cc) = P(|η|‖(In −Π)m‖2 ≥
√
2 log(1/δ))

≤ P(|η|‖m‖2 ≥
√
2 log(1/δ))

≤ 2P(η ≥
√

2 log(1/δ)) = 2δ.

Because of B = A ∩B ∩ C, we can conclude that:

P(Bc) ≤ P(Ac) + P(Bc) + P(Cc) ≤ 5δ

or, equivalently, P(B) ≥ 1− 5δ.

Step II: feasibility of β̃ The goal here is to check that if λ and µ satisfy the condition:

λ2

µ
≥ 2n2 log(q/δ)

n− r − 2
√
(n− r) log(1/δ)− 2 log(1/δ)

(16)

then, on the event B, there exists σ̃ ≤ σ∗/
√
µ such that the pair (β̃, σ̃) is feasible.

The matrix In − mm⊤ is the orthogonal projector onto the (n − 1)-dimensional subspace of Rn

containing all the vectors orthogonal to Xβ̄. Therefore, using (14), we arrive at

Y ⊤(Y −Xβ̃) = (Xβ∗)⊤(Y −Xβ̃) + σ∗ξ⊤(Y −Xβ̃)

= σ∗ξ⊤(In −Π)(In −mm⊤)Xβ∗ + (σ∗)2ξ⊤(In −mm⊤)(In −Π)ξ

= (σ∗)2ξ⊤(In −Π)(In −mm⊤)Πξ + (σ∗)2ξ⊤(In −mm⊤)(In −Π)ξ

= (σ∗)2ξ⊤(In −Π)(In −mm⊤)(In −Π)ξ

= (σ∗)2‖(In −Π)ξ‖22 − (σ∗)2[m⊤(In −Π)ξ]2.

11



On the event B, we have:

‖(In −Π)ξ‖22 ≥ n− r − 2
√

(n− r) log(1/δ), [m⊤(In −Π)ξ]2 ≤ 2 log(1/δ).

So we know:

Y ⊤(Y −Xβ̃) ≥ (σ∗)2
(
n− r − 2

√
(n− r) log(1/δ)− 2 log(1/δ)

)
≥ (σ∗)2nµ

Setting σ̃ = σ∗(n− r− 2
√
(n− r) log(1/δ)− 2 log(1/δ)

)1/2
(nµ)−1/2 we get that the pair (β̃, σ̃)

satisfies the third constraint and that σ̃ ≤ σ∗/
√
µ. It is obvious that the second constraint is satisfied

as well. To check the first constraint, we note that

M
⊤
† X

⊤(Y −Xβ̃) = σ∗
M

⊤
† X

⊤
1 (In −mm⊤)(In −Π)ξ,

and therefore

‖M⊤
† X

⊤(Y −Xβ̃‖∞ = σ∗‖M⊤
† X

⊤
1 (In −mm⊤)(In −Π)ξ‖∞ ≤ σ∗√2n log(q/δ).

Under the condition stated in (16) above, the right-hand side of the last inequality is upper bounded

by λσ̃. This completes the proof of the fact that the pair (β̃, σ̃) is a feasible solution on the event B.

Step III: proof of (7) and (8) On the event B, the pair (β̃, σ̃) is feasible and therefore ‖Mβ̂‖1 ≤
‖Mβ̃‖1. Let ∆ = Mβ̂ −Mβ̃ and J be the set of indexes corresponding to the nonzero elements
of Mβ∗. We have |J | ≤ s. Note that J is also the set of indexes corresponding to nonzero elements

of Mβ̃ ∝ Mβ̄ = Mβ∗. This entails that:

‖(In −Π)XM†∆‖22 = ∆
⊤
M

⊤
† X

⊤(In −Π)2XM†∆

= ∆
⊤
M

⊤
† X

⊤(In −Π)XM†∆

≤ ‖∆‖1‖M⊤
† X

⊤(In −Π)XM†∆‖∞. (17)

Using the relations M†M = Ip −N†N and (In −Π)XN† = 0 yields

‖M⊤
† X

⊤(In −Π)XM†∆‖∞ = ‖M⊤
† X

⊤(In −Π)XM†M(β̃ − β̂)‖∞
= ‖M⊤

† X
⊤(In −Π)(Xβ̃ −Xβ̂)‖∞.

Taking into account the fact that both β̂ and β̃ satisfy the second constraint, we get Π(Xβ̃−Xβ̂) =

Π(Xβ̃ − Y )−Π(Xβ̂ − Y ) = 0. From the first constraint, we deduce:

‖M⊤
† X

⊤(In −Π)XM†∆‖∞ = ‖M⊤
† X

⊤(Xβ̃ −Xβ̂)‖∞ ≤ λ(σ̂ + σ̃). (18)

To bound ‖∆‖1, we use a standard argument from [4]:

‖∆Jc‖1 = ‖Mβ̂Jc‖1 = ‖Mβ̂‖1 − ‖Mβ̂J‖1.

Since β̃ is a feasible solution while β̂ is an optimal one, ‖Mβ̂‖1 ≤ ‖Mβ̃‖1, and we have:

‖∆Jc‖1 ≤ ‖Mβ̃‖1 − ‖Mβ̂J‖1 = ‖Mβ̃J‖1 − ‖Mβ̂J‖1 ≤ ‖(Mβ̃ −Mβ̂)J‖1 = ‖∆J‖1.
This yields the bound

‖∆‖1 ≤ 2‖∆J‖1 ≤ 2s1/2‖∆J‖2
and also allows us to use the condition of RE(s, 1), which implies that:

‖∆J‖2 ≤ ‖(In −Π)XM†∆‖2
κ
√
n

. (19)

Combining these estimates, we get

‖(In −Π)XM†∆‖22 ≤ 2λ(σ̂ + σ∗)
√
s‖(In −Π)XM†∆‖2
κ
√
n

,
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and, after simplification

‖(In −Π)XM†∆‖2 ≤ 2λ(σ̂ + σ∗)

√
s

κ
√
n
, ‖∆J‖2 ≤ 2λ(σ̂ + σ∗)

√
s

nκ2
. (20)

Furthermore:

‖∆‖1 = ‖∆J‖1 + ‖∆Jc‖1 ≤ 2‖∆‖1 ≤ 2
√
s‖∆‖2 ≤ 4λ(σ̂ + σ∗)

s

nκ2

So we have:

‖Mβ̂ −Mβ̃‖1 ≤ 4λ(σ̂ + σ∗)
s

nκ2
, ‖(In −Π)X(β̂ − β̃)‖2 ≤ 2λ(σ̂ + σ∗)

√
s

κ
√
n

To complete this step, we decompose β̂ − β̃ into the sum of the terms β̂ − β∗ and β∗ − β̃ and
estimate the latter in prediction norm and in ℓ1-norm. For the ℓ1-norm, this gives

‖Mβ̃ −Mβ∗‖1 = σ∗
∥∥∥ξ

⊤(In −Π)Xβ̄

‖Xβ̄‖22
Mβ∗

∥∥∥
1
= σ∗|m⊤(In −Π)ξ| ‖Mβ∗‖1

‖Xβ̄‖2

≤ σ∗√2 log(1/δ)
‖Mβ∗‖1

‖(In −Π)Xβ̄‖2
= σ∗√2 log(1/δ)

‖Mβ∗‖1
‖(In −Π)XM†Mβ∗‖2

≤ σ∗√2 log(1/δ)

√
s‖Mβ∗‖2

‖(In −Π)XM†Mβ∗‖2
≤ σ∗√2 log(1/δ)

√
s

κ
√
n

=
√
2 log(1/δ)

σ∗√s

κ
√
n
.

While for the prediction norm:

‖(In −Π)X(β̃ − β∗)‖2 = ‖(In −Π)XM†M(β̃ − β∗)‖2

= σ∗
∥∥∥(In −Π)XM†

ξ⊤(In −Π)Xβ̄

‖Xβ̄‖22
Mβ∗

∥∥∥
2

= σ∗|m⊤(In −Π)ξ| ‖(In −Π)XM†Mβ∗‖2
‖Xβ̄‖2

≤ σ∗|m⊤(In −Π)ξ| ‖(In −Π)XM†Mβ∗‖2
‖(In −Π)Xβ̄‖2

= σ∗|m⊤(In −Π)ξ| ‖(In −Π)XM†Mβ∗‖2
‖(In −Π)XM†Mβ∗‖2

≤ σ∗√2 log(1/δ).

We conclude that:

‖Mβ̂ −Mβ∗‖1 ≤ 4λ(σ̂ + σ∗)
s

nκ2
+

√
2 log(1/δ)σ∗

√
s

κ
√
n

‖(In −Π)X(β̂ − β∗)‖2 ≤ 2λ(σ̂ + σ∗)

√
s

κ
√
n
+ σ∗√2 log(1/δ).

To finish, we remark that

‖X(β̂ − β∗)‖2 ≤ ‖(In −Π)X(β̂ − β∗)‖2 + ‖Π(Xβ̂ − Y )‖2 + σ∗‖Πξ‖2
= ‖(In −Π)X(β̂ − β∗)‖2 + σ∗‖Πξ‖2 (in view of the second constraint)

≤ 2λ(σ̂ + σ∗)

√
s

κ
√
n
+ σ∗(

√
2 log(1/δ) + r +

√
2 log(1/δ)),

the last inequality being true with a probability at least 1− 6δ.
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Step IV: Proof of (9) Here we define J0 a subset of {1, ..., q} corresponding to the s largest value
coordinates of ∆ outside of J , so J1 = J ∪ J0. It is easy to see that the kth largest in absolute value
element of ∆Jc satisfies |∆Jc |(k) ≤ ‖∆Jc‖1/k. Thus,

‖∆Jc
1
‖22 ≤ ‖∆Jc‖21

∑

k≥s+1

1

k2
≤ 1

s
‖∆Jc‖21

On the event B, with c0 = 1 we get:

‖∆Jc
1
‖2 ≤ ‖∆J‖1√

s
≤

√
s

s
‖∆J‖2 ≤ ‖∆J1

‖2

Then, on B,
‖∆‖2 ≤ ‖∆Jc

1
‖2 + ‖∆J1

‖2 ≤ 2‖∆J1
‖2

On the other hand, from (20),

‖(In −Π)XM†∆‖22 ≤ 2λ(σ̂ + σ∗)
√
s‖∆J‖2 ≤ 2λ(σ̂ + σ∗)

√
s‖∆J1

‖2
Combining this inequality with the Assumption RE(s, s, 1),

‖(In −Π)XM†∆‖2√
n‖∆J1

‖2
≥ κ, κ

√
n‖∆J1

‖2 ≤ ‖(In −Π)XM†∆‖2

we obtain on B,

‖∆J1
‖2 ≤ 2

σ̂ + σ̃

κ2

√
sλ

n

with the condition ‖∆‖2 ≤ 2‖∆J1
‖2, we get:

‖Mβ̂ −Mβ̃‖2 ≤ 4
σ̂ + σ̃

κ2

√
sλ

n
.

In addition, we have:

‖Mβ̃ −Mβ∗‖2 = σ∗
∥∥∥ξ

⊤(In −Π)Xβ̄

‖Xβ̄‖22
Mβ∗

∥∥∥
2
= σ∗|m⊤(In −Π)ξ| ‖Mβ∗‖2

‖Xβ̄‖2

≤ σ∗√2 log(1/δ)
‖Mβ∗‖2

‖(In −Π)Xβ̄‖2
= σ∗√2 log(1/δ)

‖Mβ∗‖2
‖(In −Π)XM†Mβ∗‖2

≤ σ∗√2 log(1/δ)
1

κ
√
n
=

σ∗

κ
√
n

√
2 log(1/δ).

Putting these estimates together and using the obvious inequality

‖Mβ̂ −Mβ∗‖2 ≤ ‖Mβ̂ −Mβ̃‖2 + ‖Mβ̃ −Mβ∗‖2
we arrive at

‖Mβ̂ −Mβ∗‖2 ≤ 4
σ̂ + σ∗

κ2

√
sλ

n
+

σ∗

κ

√
2 log(1/δ)

n
.

Replacing λ =
√
2nγ log(p/δ), we get the inequality in (9).

Step V: proof of an upper bound on σ̂ To complete the proof, one needs to check that σ̂ is of the
order of σ∗. This is done by using the following chain of relations:

nµσ̂2 ≤ ‖Y ‖22 − Y ⊤
Xβ̂ = Y ⊤(Y −Xβ̂)

= (β∗)⊤X⊤(Y −Xβ̂) + σ∗ξ⊤(Y −Xβ̂)

= (β∗)⊤M⊤
M

⊤
† X

⊤(Y −Xβ̂) + (β∗)⊤N⊤
N

⊤
† X

⊤(Y −Xβ̂) + σ∗ξ⊤(Y −Xβ̂).

The second term of the last expression vanishes since β̂ satisfies the second constraint. To bound the
first term, we will use the first constraint while for bounding the third term, we will use the relation
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Y −Xβ̂ = (In −Π)(Y −Xβ̂) = σ∗(In −Π)ξ+ (In −Π)X(β∗ − β̂) = σ∗(In −Π)ξ+ (In −
Π)XM†M(β∗ − β̂). This leads to

nµσ̂2 ≤ σ̂λ‖Mβ∗‖1 + σ∗ξ⊤(In −Π)XM†M(β∗ − β̂) + (σ∗)2ξ⊤(In −Π)ξ

On the event B, we have:

|ξ⊤(In −Π)XM†Mβ̂| ≤ ‖Mβ̂‖1‖M⊤
† X

⊤(In −Π)ξ‖∞ ≤ ‖Mβ̂‖1
√

2n log(q/δ),

|ξ⊤(In −Π)XM†Mβ∗| ≤ ‖Mβ∗‖1‖M⊤
† X

⊤(In −Π)ξ‖∞ ≤ ‖Mβ∗‖1
√

2n log(1/δ).

Also with a probability at least 1− δ:

ξ⊤(In −Π)ξ ≤ n− r + 2
√

(n− r) log(1/δ) + 2 log(1/δ) ≤ (
√
n− r +

√
2 log(1/δ))2.

So combining all these relations, we get with probability at least 1− 7δ:

σ̂2 ≤ σ̂
λ‖Mβ∗‖1

nµ
+

(σ∗)2(
√
n− r +

√
2 log(1/δ))2

nµ
+ (‖Mβ̂‖1 + ‖Mβ∗‖1)

σ∗

µ

√
2 log(q/δ)

n
.

All the subsequent relations, even if it is not explicitly mentioned, are true on an event of probability
at least 1− 7δ. Combining simple algebra and the condition RE(s), we get that:

‖Mβ̂‖1 ≤ ‖Mβ̃‖1 ≤ ‖Mβ∗‖1 + σ∗ |ξ⊤(In −Π)Xβ̄|
‖Xβ̄‖22

‖Mβ∗‖1

≤ ‖Mβ∗‖1 + σ∗|m⊤(In −Π)ξ| ‖Mβ∗‖1
‖(In −Π)XM†Mβ∗‖2

≤ ‖Mβ∗‖1 +
σ∗

κ

√
2s log(1/δ)

n
.

Then,

(
σ̂ − λ‖Mβ∗‖1

2nµ

)2

≤
(λ‖Mβ∗‖1

2nµ

)2

+
(σ∗)2(

√
n+

√
2 log(1/δ))2

nµ

+
2s1/2(σ∗)2 log(q/δ)

nκµ
+ 2‖Mβ∗‖1

σ∗

µ

√
2 log(1/δ)

n

From the fact that
√
a2 + b2 + c ≤ a+ b+ c

2b , we have:

σ̂ ≤ λ‖Mβ∗‖1
nµ

+
σ∗
√
µ

(
1 +

√
2 log(1/δ)

n

)
+

s1/2σ∗ log(q/δ)

nκµ1/2
+ ‖Mβ∗‖1

√
2 log(1/δ)

nµ
.

This yields the desired result.

B Proof of Theorem 3.1

All the claims of this theorem, except the bound on ‖θ̂ − θ∗‖2 are direct consequences of the
corresponding claims in Theorem 2.1. Therefore, we focus here only on the proof of an upper

bound on ‖θ̂ − θ∗‖2 taking all the other claims of Theorem 3.1 as granted.

Since (β̂, ω̂, σ̂) is a feasible solution to (SRDS), it satisfies the second constraint:

A
⊤(Aθ̂ +

√
n ω̂ −Aθ∗ −√

nω∗ − σ∗ξ) = 0,

which implies that

‖A⊤
A(θ̂ − θ∗)‖2 ≤ √

n‖A⊤(ω∗ − ω̂)‖2 + σ∗‖A⊤ξ‖2.
Recall that ν∗ stands for the smallest eigenvalue of ( 1nA

⊤
A)1/2. This yields

ν2∗‖θ̂ − θ∗‖2 ≤ 1

n
‖A⊤

A(θ̂ − θ∗)‖2 ≤ 1√
n
‖A⊤(ω∗ − ω̂)‖2 +

σ∗

n
‖A⊤ξ‖2.

15



Since ν∗ is the largest eigenvalue of ( 1nA
⊤
A)1/2, we have

1√
n
‖A⊤(ω∗ − ω̂)‖2 ≤ ν∗‖ω∗ − ω̂‖2 ≤ 4ν∗(σ̂ + σ∗)

κ2

√
2s log(n/δ)

n
+

ν∗σ∗

κ

√
2 log(1/δ)

n
.

To bound σ∗

n ‖A⊤ξ‖2 = ‖ 1√
n
(A⊤

A)1/2ξ‖2 we denote by {νi} the eigenvalues of 1√
n
(A⊤

A)1/2

and use the singular value decomposition of A⊤:

A
⊤ = U∆V

⊤

where U is a k× k orthogonal matrix, V is a n×n orthogonal matrix and ∆ is a k×n matrix with
(assume n > k):

∆ = [diag{ν1, . . . , νk}, 0k×(n−k)].

Setting η = V
⊤ξ, we get

‖A⊤ξ‖22 = ‖U∆V
⊤ξ‖22 = ‖∆V

⊤ξ‖22 = ‖∆η‖22 ≤ ν∗(η21 + ...+ η2k) , ν∗‖η1:k‖22.
Using the well-known inequality on the tails of chi-squared distribution:

P(‖η1:k‖22 ≥ k + 2
√
kx+ 2x) ≤ e−x

with x = log(1/δ), we obtain that with a probability at least 1− δ:

‖η1:k‖22 ≤ k + 2
√

k log(1/δ) + 2 log(1/δ) ≤ (
√
k +

√
2 log(1/δ))2.

Combined with the previous estimates, this leads to the desired result.

C Proof of Lemma 3.2

Let J be a subset of {1, . . . , n} of cardinality s and let δ be a vector of Rn satisfying ‖δJc‖1 ≤
‖δJ‖1. Let us denote by δ1 the projection of δ onto the image of A and by δ2 the projection onto
the orthogonal complement. We are interested in lower bounding the quotient

‖δ2‖2√
‖δ1‖22 + ‖δ2‖22

=
‖δ2‖2/‖δ1‖2√

1 + (‖δ2‖2/‖δ1‖2)2
. (21)

To this end, we use the following sequence of inequalities:

‖δ1‖1 = ‖(δ1)Jc‖1 + ‖(δ1)J‖1
≤ ‖δJc‖1 + ‖(δ2)Jc‖1 + s‖δ1‖∞
≤ ‖δJ‖1 + ‖(δ2)Jc‖1 + s‖δ1‖∞
≤ ‖(δ1)J‖1 + ‖δ2‖1 + s‖δ1‖∞
≤ √

n‖δ2‖2 + 2s‖δ1‖∞

This entails that

‖δ2‖2 ≥ ‖δ1‖1 − 2s‖δ‖∞√
n

≥ ‖δ1‖2 inf
w∈Im(A)

‖w‖1 − 2s‖w‖∞√
n‖w‖2

Let v ∈ R
k be a vector such that Av = w. We have ‖w‖∞ = ‖Av‖∞ ≤ ‖A‖2,∞‖v‖2. Further-

more, ‖w‖2 = ‖Av‖2 ≤ √
nν∗‖v‖2. Thus

‖δ2‖2
‖δ2‖2

≥ inf
v

1

nν∗
‖Av‖1
‖v‖2

− 2s‖A‖2,∞
ν∗

√
n

≥ ζs(A)

ν∗
.

Injecting this bound in (21), the assertion of the lemma follows.
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